1	Original investigation							
2	Probiotic Supplementation and Development of Preterm Infant Gut							
3	Microbiota and Antibiotic Resistome							
4	An Observational Multi-Center Study							
5	Eirin Esaiassen, MD ^{a,b} , Erik Hjerde, PhD ^c , Jorunn Pauline Cavanagh, PhD ^{a,b} ,							
6	Tanja Pedersen, MD ^d , Jannicke H Andresen, PhD ^e , Siren Rettedal, PhD ^f , Ragnhild Støen,							
7	PhD ^{g,h} , Britt Nakstad, PhD ^{i,j} , Nils P Willassen, PhD ^c , Claus Klingenberg, PhD ^{a,b}							
8								
9	Affiliations (all in Norway):							
10	^a Paediatric Research Group, Department of Clinical Medicine, UiT, The Arctic University of							
11	Norway, Tromsø; ^b Dept. of Paediatrics, University Hospital of North Norway, Tromsø;							
12	^c Norstruct, Dept. of Chemistry, UiT, The Arctic University of Norway, Tromsø; ^d Dept. of							
13	Paediatrics, Haukeland University Hospital, Bergen; ^e Dept. of Neonatology, Oslo University							
14	Hospital, Ullevål, Oslo; ^f Dept. of Paediatrics, Stavanger University Hospital, Stavanger;							
15	^g Dept. of Neonatology, St. Olavs University Hospital, Trondheim; ^h Dept. of Clinical and							
16	Molecular Medicine, Norwegian University of Science and Technology, Trondheim; ⁱ Dept. of							
17	Paediatric and Adolecents Medicine, Akershus University Hospital, Nordbyhagen, ^j Institute							
18	of Clinical Medicine - Campus Ahus, University of Oslo, Oslo							
19								
20	Address correspondence to: Claus Klingenberg. Dept. of Paediatrics, University Hospital							
21	North Norway, N-9038 Tromsø, Norway. Phone +47 77669845. Fax: +47 77626369							
22	Email: <u>claus.klingenberg@unn.no</u>							
23								
24	Word count in main text: 3000							
25								
26								
27								

28 KEY POINTS

30	Question: Can probiotic supplementation restore gut microbiota composition and the
31	antibiotic resistome in preterm infants?
32	
33	Findings: In a multi-center, study including 31 extremely preterm infants receiving probiotics
34	and 35 very preterm infants not receiving probiotics, Bifidobacterium dominated the gut
35	microbiota short after commencing probiotics. Extremely preterm infants receiving probiotics
36	had much higher antibiotic exposure, but microbial diversity and abundance of antibiotic
37	resistance genes was not different than in the more mature infants at 4 weeks and 4 months.
38	
39	Meaning: Probiotic supplementation may alleviate harmful effects of antibiotics on gut
40	microbiota composition. A gradual dose increase after birth may be warranted.
41	
42	
43	
44	
45	
46	
47	

48 ABSTRACT

- 49 **IMPORTANCE:** Gut microbiota dysbiosis is associated with development of necrotizing
- 50 enterocolitis (NEC) in preterm infants. Probiotic supplementation may reduce rates of NEC,
- 51 but there is limited data on the impact of probiotics on early development of gut microbiota
- 52 composition and the antibiotic resistome in extremely preterm infants.
- 53 **OBJECTIVE:** To determine the association between probiotic (bifidobacteria and
- 54 lactobacilli) supplementation and development of the gut microbiota and the antibiotic
- resistome in extremely preterm infants, and compare data with very preterm infants not
- supplemented with probiotics and healthy full-term infants.
- 57 **DESIGN:** Prospective, longitudinal observational multicenter study.
- 58 **SETTING:** Six Norwegian tertiary care neonatal intensive care units.
- 59 PARTICIPANTS: Between January and December 2015 we enrolled 76 infants; 31
- 60 extremely preterm infants supplemented with probiotics, 35 very preterm infants not
- 61 supplemented with probiotics and 10 healthy vaginally delivered full-term control infants.
- 62 **EXPOSURES:** Probiotic supplementation and antibiotic therapy.

63 MAIN OUTCOMES AND MEASURES: Taxonomic composition and antibiotic resistance

- 64 genes (ARGs) in fecal samples collected at 7 and 28 days and 4 months of age. Extracted
- 65 DNA was analyzed using shotgun metagenome sequencing.
- 66 **RESULTS:** Mean gestational age/birth weight were 26 weeks/826 grams and 29 weeks/1290
- 67 grams in preterm infants exposed and not exposed to probiotics, respectively. At one week of
- 68 age we found higher median relative abundance of *Bifidobacterium* in probiotic supplemented
- 69 infants (64.7) compared to non supplemented preterm infants (0.00) and term control infants
- 70 (43.9). Lactobacillus was only detected in small amounts in all groups, but the relative
- abundance increased up to age 4 months. We detected higher abundance of ARGs in infants
- receiving broad-spectrum antibiotics compared to narrow-spectrum regimens. Extremely
- 73 preterm infants receiving probiotics had much higher antibiotic exposure, still overall
- 74 microbial diversity and abundance of ARGs was not different than in the more mature infants
- at 4 weeks and 4 months.

76	CONCLUSIONS AND RELEVANCE: We speculate that probiotic supplementation may
77	induce colonization resistance and thereby partly alleviate harmful effects of antibiotics on
78	the gut microbiota and antibiotic resistome. The early high abundance of Bifidobacterium in
79	probiotic-supplemented extremely preterm infants may suggests that a gradual increase in
80	probiotic supplementation is warranted.
81	
82	TRIAL REGISTRATION: Clinicaltrials.gov: NCT02197468.
83	https://clinicaltrials.gov/ct2/show/NCT02197468
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	
98	
99	
100	
101	
102	
103	

104 INTRODUCTION

Preterm infants experience unique challenges in establishing their gut microbiota. Cesarean deliveries, extensive antenatal and neonatal antibiotic exposure, parenteral nutrition and residing for long periods in a neonatal intensive care unit (NICU), may cause unpredictable perturbations of the gut microbiota development.¹ Gut microbiota dysbiosis is associated with development of necrotizing enterocolitis (NEC).² Probiotic supplementation to preterm

110 infants aims to restore the gut microbiota and to prevent NEC and other complications.³⁻⁵

Meta-analyses of randomized and observational trials show that probiotic supplementation, mainly with bifidobacteria and/or lactobacilli, reduce rates of NEC.^{3,4,6,7} There seems to be strain-specific effects⁴ and not all products are efficacious.⁸ Still, based on recent evidence³ and expert opinion⁹, many NICUs in Europe, Australia and Canada have implemented routine probiotic supplementation to preterm infants. Probiotics are infrequently used in preterm infants in the US.¹⁰ Risks of probiotic sepsis and contaminations of probiotic products may explain skepticism.¹¹⁻¹⁴ Some experts recommend waiting for additional studies to confirm the safety and efficacy of an available and reliable product.¹⁵ Moreover, there is a paucity of in-depth knowledge on microbiological effects and effective dose of probiotic therapy.

Antibiotics are the most commonly prescribed medications in the NICU, ¹⁶ and 111 prolonged therapy increases the risk for NEC.^{17,18} Antibiotics may influence both the 112 113 physiological gut microbiota composition and the collection of antibiotic resistance genes (ARGs) in the gut, defined as the gut resistome.¹⁹ However, there is limited knowledge on 114 115 how probiotic supplementation influences the gut resistome in extremely preterm infants. 116 In Norway probiotic supplementation was implemented as standard of care for 117 extremely preterm infants at high risk for NEC in 2014. In a longitudinal multi-center study, 118 using shotgun-metagenomic sequencing, we set out to evaluate the taxonomy and the 119 antibiotic resistome of the gut microbiota of extremely preterm infants supplemented with 120 probiotics, and compare it to very preterm infants not supplemented with probiotics and a group of healthy, full-term infants. 121

122 MATERIALS AND METHODS

123 Study patients and sampling procedure

124 We prospectively planned to include two convenient groups of preterm infants from six 125 Norwegian NICUs; one group of extremely preterm infants (gestational age 25-27 weeks 126 and/or birth weight < 1000 g) supplemented with probiotics, and one group of very preterm 127 infants (gestational age 28-31 weeks and/or birth weight 1000-1500 g) not supplemented with 128 probiotics. Exclusion criteria were gestation below 25 weeks and/or an early, life threatening 129 condition leading to high risk of not surviving the first weeks of life. We included a control 130 group of ten healthy, vaginally delivered full-term control (FTC) infants born at the 131 University Hospital of Northern Norway. No formal power calculation was performed, but we 132 expected that around 30 infants in each group of preterm infant would allow us to detect 133 differences in gut microbiota composition up to 4 months of age. The sample size was also 134 adapted to cover the high expenses for shotgun metagenome sequencing. The original 135 protocol²⁰ focused on taxonomic composition. We decided post hoc to add a resistome 136 analysis.

137 After careful instructions, fecal samples were collected by a nurse in the NICU at

around seven and 28 days of age, and by the parents at home at around four months of age.

139 We used a commercially available sampling kit (OMNIgen GUT kit, DNA Genotek, Ottawa,

140 Canada) allowing storage of samples at ambient temperatures for up to 14 days before DNA

141 extraction (eMethods).²¹ We obtained routine clinical data including details on antibiotic

142 exposure.

143 DNA extraction, library preparation and sequencing

144 DNA extraction, library preparation and shotgun-metagenomic DNA sequencing (Miseq,

145 Illumina Inc) were performed using standard procedures (eMethods).

146 **Taxonomic profiling and the gut resistome**

147 The relative abundance of bacteria at genus level was calculated using MetaPhlAn 2.0.²² The

148 prediction of ARGs was performed on the assembled metagenomes, searched against the

149 Comprehensive Antibiotic Resistance Database (CARD).²³ Data are presented as distribution

150 of ARG classes among the three different groups of infants at three time points. In order to

- 151 obtain quantitative measures of the putative ARGs in each sample, the quality trimmed reads
- 152 were analyzed using Short, Better Representative Extract Dataset (ShortBRED)²⁴ against a

153 formatted CARD database and normalized per total reads in each sample. Data are presented

as abundance of ARGs among the three different groups of infants at three time points.

155 Probiotic supplementation

- 156 A consensus-based protocol for probiotic supplementation was implemented in Norway in
- 157 2014.²⁵ After considering the safety profile, a widely used probiotic combination product was
- 158 selected (Infloran[®]).²⁶ One capsule Infloran contained 10⁹ Lactobacillus acidophilus (ATCC
- 4356) and 10⁹ B. longum subspecies infantis (ATCC 15697). One half capsule once daily was
- 160 initiated on day 3-4 and increased to one capsule daily after 4-7 days.

161 Influence of antibiotic therapy

- 162 To quantify changes in the gut microbiota composition and resistome after antibiotic exposure,
- 163 we stratified four different categories of antibiotic exposure: (i) antenatal exposure, (ii) short
- 164 (< 72-96 h) versus prolonged (> 72-96 h) exposure in the first week of life, (iii) any exposure
- after first week of life (yes/no) and (iv) narrow- versus broad-spectrum exposure after first
- 166 week of life. Potential effects of antenatal exposure and short versus prolonged therapy after
- 167 birth were only investigated at 7 days of age.

168 Ethics and statistical analysis

- 169 The study was approved by the Norwegian Regional Ethical Committee. Informed written
- 170 consent was obtained from all parents. Data were analyzed using IBM-SPSS version 22 (IBM,
- 171 Armonk NY, USA) statistical software, the R statistical framework (version 3.2.4;
- 172 <u>http://www.r-project.org/</u>), and Statistical Analysis of Metagenomic Profiles (STAMP)
- 173 software package.²⁷ We used Mann-Whitney U test or a Kruskal-Wallis test for comparisons
- between two or multiple independent groups. We used a Poisson generalized linear model to
- 175 calculate trends in the relative abundance of genera and ARGs in the gut microbiota.
- 176 Corrections based on multiple comparisons were performed by the Benjamini-Hochberg false
- 177 discovery rate (FDR).²⁸ A FDR *P* value \leq .10 was considered significant for any analyses with

178 multiple comparisons. A standard *P* value $\leq .05$ was considered significant for all other 179 analyses.

180 Alpha diversity was assessed by calculating the Shannon Diversity index (MEGAN, v5.10.6).²⁹ To detect changes in alpha diversity over time, we first performed a normality test 181 182 and found that the residuals were normally distributed. Therefore, differences in alpha 183 diversity over time between the three different groups were calculated using linear mixed 184 models. The same model was used to calculate the influence of antibiotic exposure on alpha 185 diversity. Multiple beta diversity metrics of samples was performed using non-metrical 186 multidimensional scaling (NMDS) based on a matrix of Bray-Curtis distances calculated 187 using the vegan R package. Differences between groups were tested using permutational

188 multivariate analysis (PerMANOVA) on beta diversity matrices.

189

190 **RESULTS**

191 Study population and antibiotic exposure

192 Figure 1 shows study flow. We enrolled 66 preterm infants and 10 healthy full-term control

193 (FTC) infants between January and December 2015. Clinical characteristics, antibiotic and

194 probiotic exposure, duration of parenteral nutrition and enteral nutrition data are reported in

195 Table 1. The "probiotic extremely preterm (PEP)" infants received much more antibiotics

than the "non-probiotic very preterm (NPVP)" infants after first week of life.

197 Taxonomic composition

198 On day 7, we found higher relative abundance of *Bifidobacterium* and *Lactobacillus* in PEP-

infants compared to NPVP-infants (Figure 2a, eTable 1). FTC infants had higher abundance

- 200 of some genera (*Streptococcus*, *Veilonella* and *Haemophilus*) that were only sparsely present
- in the two preterm infant groups (Figure 2a). Mode of delivery did not lead to detectable
- 202 differences in the microbiota composition within the preterm groups on day 7 (data not
- 203 shown).

204 On day 28, there was a striking increase in relative abundance of *Escherichia* in the
205 PEP-infants and a similar striking increase in relative abundance of *Bifidobacterium* in

206 NPVP-infants. FTC infants had significantly higher relative abundance of *Lactobacillus* than

- 207 NPVP infants. Overall, at 28 days of age the FTC- and NPVP-infants had higher abundance
- 208 of *Veilonella* and *Streptococcus* than PEP-infants, while both preterm groups had higher
- 209 relative abundance of *Staphylococcus* and *Enterococcus* than FTC-infants (Figure 2b).
- 210 By four months of age, there were no significant differences in taxonomic profile
- between PEP- and FTC-infants. The NPVP-infants had more *Prevotella* than PEP-infants, but
- 212 otherwise all three groups were similar (Figure 2c). Duration of parenteral nutrition did not
- 213 lead to detectable differences in the microbial composition between the preterm group(s) on
- 214 28 days and at 4 months of age (data not shown).

215 Influence of antibiotic exposure on taxonomic composition

216 We found no significant influence of antenatal antibiotic exposure on the gut microbiota

217 composition on day 7. However, 57/66 (86%) preterm infants also received antibiotic therapy

- 218 (ampicillin or penicillin + gentamicin) during the first week of life (Table 1) limiting the
- 219 possibility to detect isolated effects of antenatal exposure. There was no difference in the gut
- 220 microbiota between those exposed to a short (<72 or 96 hours) compared to a prolonged (>72
- 221 or 96 hours) course during first week of life. Broad-spectrum antibiotic therapy after the first
- 222 week of life was mainly given to PEP-infants. At four months of age there was reduced
- 223 relative abundance of *Lactobacillus* and *Veilonella* in those exposed to broad-spectrum
- antibiotics compared to infants exposed to narrow-spectrum therapy (eTable 2-3). Moreover,

there was a non-significant trend towards reduced relative abundance of *Bifidobacterium* and

- 226 increased relative abundance of *Escherichia* among all preterm infants exposed to broad-
- spectrum antibiotics at both 28 days and 4 months of age (eTable 2-3).

228 Diversity of the gut microbiota and influence of antibiotic exposure

- 229 We found large intra-individual differences in the gut microbiota composition, in particular at
- 230 7 and 28 days of age (Fig 2a-c). The alpha diversity increased significantly with age in both
- 231 preterm infant groups, but not in FTC-infants (Fig 3a). FTC-infants had significant higher
- diversity compared to PEP infants at 7 days of age. On day 28 and at 4 months of age, there
- 233 were no significant differences in alpha diversity between any groups. Significant overall

- community (beta diversity) differences were detected at 7 days of age and 28 days of age
- 235 (Figure 3b-d). However, we found no difference in alpha or beta diversity between different

categories of antibiotic exposure at the three sampling time points.

237 Antibiotic resistome – distribution of ARG classes and abundance of ARGs

- 238 In all three groups, we identified putative ARGs conferring resistance to nine different classes
- 239 of antibiotics, including beta lactams, aminoglycosides, tetracyclines, fosfomycine,
- sulphonamides, vancomycin, and the macrolide-lincosamide-streptogramin B group. Genes
- 241 conferring resistance to fluoroquinolones and chloramphenicol were only detected in PEP-
- and NPVP-infants. Several genes encoding efflux pumps were also identified at all three
- sampling time points. In total 99 unique ARGs were identified, of which 28 (28%) were
- located on mobile genetic elements, and these latter were found in more than 80% of all
- infants (eTable 4).
- 246 We found 21 different genes encoding beta-lactamases, including broad-spectrum and 247 extended-spectrum beta lactamases (ESBLs). ESBL-genes were represented at all three time 248 points in NPVP- and FTC-infants, but not detected in PEP-infants. The methicillin resistance 249 gene (mecA) was identified at seven days and 28 days of age in 11/35 NPVP-infants and 250 13/31 PEP-infants, but not at 4 months of age. Only one PEP-infant and four NPVP-infants 251 were persistent fecal carriers of mecA at days 7 and 28. Vancomycin ARGs were identified at 252 four months of age in 16 infants, but only four of these had received vancomycin. Many of 253 the ARGs identified, encoded resistance to other antibiotics than those used in the NICUs. 254 On day 7 NPVP-infants had higher abundance of ARGs from four different ARG 255 classes and PEP-infants higher abundance of ARGs from two other ARG classes (Table 2). 256 Only 24% of ARG-classes changed significantly their abundance during over the three 257 sampling points (p<0.05) (Table 2). 258 On day 7 and at 4 months of age, different antibiotic exposure did not result in 259 significant difference in total abundance of ARGs (eTable 5-8). However, on day 28, we
- 260 detected significantly higher abundances of four classes of ARGs, including genes encoding

261 beta-lactam and aminoglycoside resistance, in infants exposed to broad-spectrum antibiotics

262 compared to infants treated with narrow-spectrum regimens (eTable 5).

263

264 **DISCUSSION**

The main aim of this explorative, observational multi-center study was to obtain in-depth knowledge on the impact of probiotic supplementation to extremely preterm infants on gut microbiota and the antibiotic resistome. Previous studies have shown that the gut microbiota in preterm infants differs from term infants with limited diversity and delayed acquisition of a stable profile.³⁰⁻³² However, most studies have assessed the gut microbiota composition collapsed at phylum level by sequencing of the 16S ribosomal RNA gene^{26,33}, and few studies¹⁹ have investigated the association between use of probiotics, antibiotics and gut

272 resistome development using shotgun-metagenomic sequencing.

273 Bifidobacteria strongly dominated the gut microbiota in extremely preterm infants 274 only few days after commencing probiotic supplementation, in stark contrast to very preterm 275 infants not receiving probiotics who predominantly had *Escherichia*. High levels of probiotic 276 bacteria are not necessarily indicative of colonization, but may represent the passage of DNA from the administered probiotic species through the host.³⁴ Still, this early bifidobacterial 277 278 dominance may potentially enhance the risk of translocation to the blood stream, in particular 279 at a very early stage when enteral nutrition with "fuel for bifidobacteria" is not yet fully 280 established.^{11,12} Previous studies have shown that the gut microbiota of preterm infants shortly 281 after birth have a high proportion of *Proteobacteria* and that a bloom of *Bifidobacterium* first 282 occurs around 33 weeks of age, in line with our findings in NPVP-infants at 7 and 28 days of age.35,36 283

Lactobacillus was only detected in small amounts in all groups, but relative
 abundance increased up to four months of age in all three groups. High levels of
 Bifidobacterium and barely detectable levels of *Lactobacillus* have been reported earlier in
 infants supplemented with equal doses of a probiotic combination of bifidobacteria and
 lactobacilli.²⁶ A possible explanation for this observation is the spatial organization of

intestinal bacteria, where lactobacilli are found in intestinal crypts, thus less accessible to
 collection of luminal contents.³⁷

291 There is no consensus on the optimal dose of probiotics. One study from India 292 compared standard and high-dose probiotic regimens and found no difference in proportion of 293 infants colonized or quantitative colonization rates with probiotic species.³⁸ Most large randomized trial have used daily doses of 1 x 10^8 - 10^9 CFU.^{34,39,40} Some authors suggest that 294 295 at least 1 x 10⁹ CFU is required to achieve a beneficial effect, in line with doses in our study.⁴¹ 296 However, we speculate that the early and very high relative abundance of *Bifidobacterium* in 297 PEP-infants, observed in our study, may not be optimal for the developing gut ecosystem. A 298 more gradual increase in probiotic supplementation concomitantly with increased enteral 299 nutrition may replicate the physiological gut microbiota development, and secure gut growth, digestive maturation and an appropriate response to bacterial colonization.^{42 43} 300 301 A lower relative abundance of Bifidobacterium, Lactobacillus and Veilonella, and a 302 higher relative abundance of *Escherichia*, were observed at day 28 and 4 months of age 303 among infants treated with broad-spectrum compared to narrow-spectrum antibiotic regimens. 304 Reduced abundance of protective anaerobe commensals and higher abundance of *Enterobacteriaceae* after antibiotic exposure has also previously been reported.^{44,45} When 305 306 comparing presence and absence of antibiotic exposure after the first week of life, no 307 differences in diversity or taxonomic composition were found. Previous studies on alpha diversity and influence of antibiotic treatment have shown inconsistent results.⁴⁶ However, 308 309 infants who were most heavily exposed to antibiotic treatment in our study, were also 310 supplemented with probiotics. In animals probiotics may alleviate the potential loss of microbial diversity created by antibiotic treatment.⁵⁴ This may explain why PEP-infants, 311 312 exposed to massive antibiotic pressure, did not have reduced microbial gut diversity 313 compared to other groups. Thus, probiotic supplementation may offer a protective effect 314 partly compensating harmful effects of antibiotics in preterm infants. However, the early low 315 number of taxa in preterm infant stools places constraints on interpreting diversity changes as 316 diversity in a non-complex population may reflect changes in only one taxon.

317 In line with others, we found that the gut antibiotic resistome of preterm and term infants is established early, independent of antibiotic exposure.^{19,47-49} We detected significant 318 319 higher abundance of ARGs in infants receiving broad-spectrum antibiotics compared to 320 narrow-spectrum regimens. Gibson and co-workers also showed that broad-spectrum 321 antibiotic therapy in preterm infants, was associated with enrichment of specific ARGs.¹⁹ We 322 aimed to investigate how probiotic supplementation can influence the gut antibiotic resistome. 323 Overall there were no differences in distribution of ARG-classes or abundance of ARGs at 28 324 days and 4 months of age between PEP-infants, exposed to massive antibiotic therapy, and 325 the two other groups with limited or no antibiotic exposure. One possible mechanisms for this 326 finding is that probiotic bacteria can produce bacteriocins that improve mucosal integrity and 327 thereby reduces the pathogenic bacterial population and antibiotic resistance.⁵⁰

328 Strengths and limitations

329 At the time of this study, probiotic supplementation to extremely preterm infants was

330 considered standard of care in Norway. We were therefore beyond equipoise to perform a

randomized study comparing probiotic to no probiotic supplementation in this population.

332 The NPVP-infant group has limitations as a control group due to maturational differences and

the difference in antibiotic exposure compared to the PEP-infants. However, more antibiotic

and higher exposure in the PEP-infants would most likely have led to less diversity and higher

abundance of ARGs. Still, we found few differences between the two preterm groups at 28

days and 4 months of age, suggesting a protective effect of probiotics in the PEP-infant

337 group. The gut microbiota composition of preterm infants may differ between hospitals ⁵¹, but

338 our multi-center approach intended to average local differences and strengthen

339 generalizability. Infants harbor a much lower gut microbial diversity compared to adults. Any

340 variation in the gut microbiota composition caused by storage may thus theoretically have a

341 proportionally greater effect on the composition.²¹ We chose a standardized sampling

technique in order to avoid potential biases due to freezing of samples at different time points

and temperature variation during transport to the laboratory.

344

345 Conclusions

- 346 We speculate that probiotic supplementation may induce colonization resistance and thereby
- 347 partly alleviate harmful effects of antibiotics on gut microbiota composition and antibiotic
- 348 resistome. The high relative abundance of *Bifidobacterium* in probiotic-supplemented
- 349 extremely preterm infants at one week of age, suggests that a gradual increase in probiotic
- doses may be warranted.

352 ACKNOWLEDGMENTS

353 **Contributor's Statement**: Eirin Esaiassen organized all phases of the study, analyzed data,

- 354 wrote the first version of the manuscript and revised the manuscript. Tanja Pedersen, Jannicke
- 355 Andresen, Siren Rettedal, Ragnhild Støen and Britt Nakstad were responsible for inclusion of
- 356 patients at participating centers, data retrieval and revised the manuscript. Erik Hjerde, Jorunn
- 357 Pauline Cavanagh and Nils P Willassen took part in study design, were responsible for
- 358 microbiological (JPC) and bioinformatics (EH, NPW) analyses and revised the manuscript.
- 359 Claus Klingenberg conceptualized and designed the study, directed all phases of the study,

and revised the final manuscript. All authors approved the final manuscript as submitted and

- agree to be accountable for all aspects of the work. Eirin Esaiassen and Claus Klingenberg
- had full access to all of the data in the study and take responsibility for the integrity of the
- data and the accuracy of the data analysis.
- **Financial disclosure:** We have no financial relationships relevant to this article to disclose.
- 365 **Funding source:** Northern Norway Regional Health Authority, Institute of Clinical medicine,
- 366 UiT, Odd Berg Group, Medical Research fund
- 367 **Conflict of interest:** We have no potential conflicts of interest to disclose.
- 368 Clinical trial registration: Clinicaltrials.gov: NCT02197468
- 369 Ethical approval: The study was approved by the Norwegian Regional Ethical Committee
- 370 (Approval number 2014/930/REK nord)
- 371
- We thank the parents of the infants participating in this study and the nurses at the
- 373 participating centers for helping collect fecal samples
- 374
- 375
- 376
- 377
- 378
- 379

380

381

382 **REFERENCES**

383 1. Groer MW, Luciano AA, Dishaw LJ, et al. Development of the preterm 384 infant gut microbiome: a research priority. *Microbiome*. 2014;2:38. 2. 385 Pammi M, Cope J, Tarr PI, et al. Intestinal dysbiosis in preterm infants 386 preceding necrotizing enterocolitis: a systematic review and meta-387 analysis. Microbiome. 2017;5(1):31. 388 3. AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database of Systematic Reviews. 389 390 2014(4). 391 4. Aceti A, Gori D, Barone G, et al. Probiotics for prevention of necrotizing 392 enterocolitis in preterm infants: systematic review and meta-analysis. Ital 393 *J Pediatr.* 2015;41:89. 394 5. Sawh SC, Deshpande S, Jansen S, Reynaert CJ, Jones PM. Prevention of 395 necrotizing enterocolitis with probiotics: a systematic review and meta-396 analysis. PeerJ. 2016;4:e2429. 397 6. Lau CS, Chamberlain RS. Probiotic administration can prevent necrotizing 398 enterocolitis in preterm infants: A meta-analysis. J Pediatr Surg. 399 2015;50(8):1405-1412. 400 Olsen R, Greisen G, Schroder M, Brok J. Prophylactic Probiotics for 7. 401 Preterm Infants: A Systematic Review and Meta-Analysis of Observational 402 Studies. Neonatology. 2016;109(2):105-112. 403 8. Costeloe K, Bowler U, Brocklehurst P, et al. A randomised controlled trial 404 of the probiotic Bifidobacterium breve BBG-001 in preterm babies to prevent sepsis, necrotising enterocolitis and death: the Probiotics in 405 406 Preterm infantS (PiPS) trial. Health Technol Assess. 2016;20(66):1-194. 407 9. Tarnow-Mordi W, Soll RF. Probiotic supplementation in preterm infants: it is time to change practice. J Pediatr. 2014;164(5):959-960. 408 409 10. Viswanathan S, Lau C, Akbari H, Hoyen C, Walsh MC. Survey and evidence based review of probiotics used in very low birth weight preterm infants 410 411 within the United States. *J Perinatol.* 2016;36(12):1106-1111. 412 11. Esaiassen E, Cavanagh P, Hjerde E, et al. Bifidobacterium longum 413 Subspecies infantis Bacteremia in 3 Extremely Preterm Infants Receiving 414 Probiotics. Emerg Infect Dis. 2016;22(9):1664-1666. 415 12. Zbinden A, Zbinden R, Berger C, Arlettaz R. Case series of Bifidobacterium 416 longum bacteremia in three preterm infants on probiotic therapy. 417 Neonatology. 2015;107(1):56-59. 418 13. Kolacek S, Hojsak I, Berni Canani R, et al. Commercial Probiotic Products: 419 A Call for Improved Quality Control. A Position Paper by the ESPGHAN 420 Working Group for Probiotics and Prebiotics. J Pediatr Gastroenterol Nutr. 421 2017;65(1):117-124. 422 Vallabhaneni S, Walker TA, Lockhart SR, et al. Notes from the field: Fatal 14. 423 gastrointestinal mucormycosis in a premature infant associated with a 424 contaminated dietary supplement--Connecticut, 2014. MMWR Morb 425 Mortal Wkly Rep. 2015;64(6):155-156.

426	15.	Frost BL, Modi BP, Jaksic T, Caplan MS. New Medical and Surgical Insights
427		Into Neonatal Necrotizing Enterocolitis: A Review. JAMA Pediatr.
428		2017;171(1):83-88.
429	16.	Hsieh EM, Hornik CP, Clark RH, et al. Medication use in the neonatal
430		intensive care unit. <i>Am J Perinatol.</i> 2014;31(9):811-821.
431	17.	Esaiassen E, Fjalstad JW, Juvet LK, van den Anker JN, Klingenberg C.
432		Antibiotic exposure in neonates and early adverse outcomes: a systematic
433		review and meta-analysis. J Antimicrob Chemother. 2017.
434	18.	Cotten CM, Taylor S, Stoll B, et al. Prolonged duration of initial empirical
435		antibiotic treatment is associated with increased rates of necrotizing
436		enterocolitis and death for extremely low birth weight infants. <i>Pediatrics.</i>
437		2009;123(1):58-66.
438	19.	Gibson MK, Wang B, Ahmadi S, et al. Developmental dynamics of the
439		preterm infant gut microbiota and antibiotic resistome. <i>Nat Microbiol.</i>
440		2016;1:16024.
441	20.	Klingenberg C. Preterm Infant Gut (PINGU) - a Norwegian Multi Centre
442		Study (PINGU). <u>https://clinicaltrials.gov/ct2/show/NCT02197468</u> .
443		Accessed October, 2017.
444	21.	Hill CJ, Brown JR, Lynch DB, et al. Effect of room temperature transport
445		vials on DNA quality and phylogenetic composition of faecal microbiota of
446		elderly adults and infants. <i>Microbiome</i> . 2016;4(1):19.
447	22.	Truong DT, Franzosa EA, Tickle TL, et al. MetaPhlAn2 for enhanced
448		metagenomic taxonomic profiling. <i>Nat Methods.</i> 2015;12(10):902-903.
449	23.	McArthur AG, Waglechner N, Nizam F, et al. The comprehensive antibiotic
450		resistance database. Antimicrob Agents Chemother. 2013;57(7):3348-
451		3357.
452	24.	Kaminski J, Gibson MK, Franzosa EA, et al. High-Specificity Targeted
453		Functional Profiling in Microbial Communities with ShortBRED. PLoS
454		Comput Biol. 2015;11(12):e1004557.
455	25.	Klingenberg C. Manual of neonatology (Metodebok i Nyfødtmedisin). 5 ed:
456		Barne-og ungdomsavdelingen, Universitetsykehuset Nord-Norge; 2017.
457	26.	Abdulkadir B, Nelson A, Skeath T, et al. Routine Use of Probiotics in
458		Preterm Infants: Longitudinal Impact on the Microbiome and Metabolome.
459		Neonatology. 2016;109(4):239-247.
460	27.	Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis
461		of taxonomic and functional profiles. <i>Bioinformatics</i> . 2014;30(21):3123-
462		3124.
463	28.	Benjamini YH Y. Controlling the false discovery rate: a practical and
464	power	ful approach to multiple testing. <i>The Journal of the Royal Statistical Society</i>
465		Series B. 1995;57:289-300.
466	29.	Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic
467		data. <i>Genome Res.</i> 2007;17(3):377-386.
468	30.	Weng M, Walker WA. The role of gut microbiota in programming the
469		immune phenotype. J Dev Orig Health Dis. 2013;4(3):203-214.
470	31.	Hill CJ, Lynch DB, Murphy K, et al. Evolution of gut microbiota
471		composition from birth to 24 weeks in the INFANTMET Cohort.
472		<i>Microbiome.</i> 2017;5(1):4.

473	32.	Arboleya S, Binetti A, Salazar N, et al. Establishment and development of
474		intestinal microbiota in preterm neonates. FEMS Microbiol Ecol.
475		2012;79(3):763-772.
476	33.	Stewart CJ, Embleton ND, Marrs EC, et al. Temporal bacterial and
477		metabolic development of the preterm gut reveals specific signatures in
478		health and disease. <i>Microbiome</i> . 2016;4(1):67.
479	34.	Jacobs SE, Tobin JM, Opie GF, et al. Probiotic effects on late-onset sepsis in
480		very preterm infants: a randomized controlled trial. Pediatrics.
481		2013;132(6):1055-1062.
482	35.	Wang Y, Hoenig JD, Malin KJ, et al. 16S rRNA gene-based analysis of fecal
483		microbiota from preterm infants with and without necrotizing
484		enterocolitis. <i>Isme j.</i> 2009;3(8):944-954.
485	36.	Butel MJ, Suau A, Campeotto F, et al. Conditions of bifidobacterial
486		colonization in preterm infants: a prospective analysis. J Pediatr
487		Gastroenterol Nutr. 2007;44(5):577-582.
488	37.	Swidsinski A, Loening-Baucke V, Lochs H, Hale LP. Spatial organization of
489		bacterial flora in normal and inflamed intestine: a fluorescence in situ
490		hybridization study in mice. <i>World J Gastroenterol.</i> 2005;11(8):1131-1140.
491	38.	Dutta S, Ray P, Narang A. Comparison of stool colonization in premature
492		infants by three dose regimes of a probiotic combination: a randomized
493		controlled trial. <i>Am J Perinatol.</i> 2015;32(8):733-740.
494	39.	Costeloe K, Hardy P, Juszczak E, Wilks M, Millar MR. Bifidobacterium
495		breve BBG-001 in very preterm infants: a randomised controlled phase 3
496		trial. Lancet. 2016;387(10019):649-660.
497	40.	Gritz EC, Bhandari V. The human neonatal gut microbiome: a brief review.
498		Front Pediatr. 2015;3:17.
499	41.	Deshpande GC, Rao SC, Keil AD, Patole SK. Evidence-based guidelines for
500	4.0	use of problotics in preterm neonates. <i>BMC Med.</i> 2011;9:92.
501	42.	Siggers RH, Siggers J, Thymann T, Boye M, Sangild PT. Nutritional
502		modulation of the gut microbiota and immune system in preterm
503		neonates susceptible to necrotizing enterocolitis. J Nutr Biochem.
504	40	2011;22(6):511-521.
505	43.	Cilleborg MS, Boye M, Sanglid PT. Bacterial colonization and gut
506		development in preterm neonates. Early Hum Dev. 2012;88 Suppl 1:541-
507		49. Hall MA Cale CD Carticle CL E llea D Dallas CL Estates influencies the
508	44.	Hall MA, Cole CB, Smith SL, Fuller R, Rolles CJ. Factors influencing the
509		Childhard 1000 (F(2) 105 100
510	4 5	Cniianooa. 1990;65(2):185-188.
511	45.	Founy F, Guinane CM, Hussey S, et al. High-throughput sequencing reveals
512		the incomplete, short-term recovery of infant gut microbiota following
513		Antimizeral antibiotic treatment with ampicillin and gentamicin.
514	10	Antimicrob Agents Chemother. 2012;56(11):5811-5820.
515	46.	Rose G, Shaw AG, Sim K, et al. Antibiotic resistance potential of the healthy
516	4 77	preterm infant gut micropiome. <i>PeerJ.</i> 2017;5:e2928.
51/	47.	Founy F, Ugilvie LA, Jones BV, et al. Identification of aminoglycoside and
518		beta-lactam resistance genes from within an infant gut functional
519		metagenomic library. <i>PLoS Une.</i> 2014;9(9):e108016.

520	48.	von Wintersdorff CJ, Wolffs PF, Savelkoul PH, et al. The gut resistome is
521		highly dynamic during the first months of life. Future Microbiol.
522		2016;11(4):501-510.
523	49.	Moore AM, Patel S, Forsberg KJ, et al. Pediatric fecal microbiota harbor
524		diverse and novel antibiotic resistance genes. <i>PLoS One.</i>
525		2013;8(11):e78822.
526	50.	Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-
527		resistant pathogens. <i>Science.</i> 2016;352(6285):535-538.
528	51.	Ravi A, Estensmo ELF, Abee-Lund TML, et al. Association of the gut
529		microbiota mobilome with hospital location and birth weight in preterm
530		infants. Pediatr Res. 2017.
531		
532		
533		
534		
535		
F 26		
230		

537 538	Figure legends
539	Figure 1: Study flow diagram
540	
541	Figure 2 a-c. Relative abundance of dominant taxa (> 0.5%) at genus level.
542	Figure 2a. Relative abundance at 7 days
543	Figure 2b. Relative abundance at 28 days
544	Figure 2c. Relative abundance at 4 months
545	
546	Figure 3 a-d. Alpha diversity calculated by Shannon diversity index and beta diversity
547	calculated by non-metrical multidimensional scaling (NMDS) based on a matrix of Bray-
548	Curtis distances.
549	Figure 3a. Shannon diversity index of three groups of infants at three sampling points.
550	The inside bar represent median, the outer horizontal line of the box represents the 25^{th} and
551	the 75 th percentile. Error bars represent the standard error. Differences between groups at a
552	given time point and at different time points were tested with linear mixed model.
553	Figure 3b. Beta diversity (NMDS) at 7 days
554	Figure 3c. Beta diversity (NMDS) at 28 days
555	Figure 3d. Beta diversity (NMDS) at 4 months
556	
557	
558	

560 Table 1. Clinical background data

	Probiotic Extremely	Non-Probiotic Very Preterm	Full Term Control
	Preterm (PEP) Infants	(NPVP) Infants	(FTC) Infants
	(n= 31)	(n=35)	(n=10)
	005 (170)	1200 (220)	
Birth weight, g, mean (SD)	825 (178)	1290 (220)	3651 (463)
Gestational age at birth, weeks, mean (SD)	26(1)	29 (1)	40(1)
Gender; male/female	13/18	20/15	(3/7)
Route of delivery; Caesarean/vaginal	21/10	20/15	0/10
CRIB score, mean (SD)	11 (2)	5 (2)	-
Antenatal antibiotic exposure, <i>n</i>	8/31	12/35	0
Antibiotic exposure* first week of life, days, median (IQR), n	6 (4-7), 30	4 (3-5), 27	-
Antibiotic exposure after first week of life, days, median (IQR), n	6.5 (2.75-13), 22	10 (5.5-14), 5	
Ampicillin or Penicillin + Gentamicin after first week, median (IQR), n	6 (3-12), 16	9.5 (6-10), 4	-
Third-generation cephalosporin, median (IQR), n	7 (6-7), 7	6,1	-
Vancomycin, median (IQR), n	7 (7-14), 7	4 (4.5-4.5), 2	-
Meropenem, median (IQR), n	1	13, 1	-
Total days of antibiotic exposure, median (IQR), n	9.5 (6-18), 30	4 (3-6), 27	-
Probiotic supplementation, days, median (IQR)	46 (40-57)	-	-
Parenteral nutrition, days, median (IQR), n	9 (6-13), 31	5 (3.25-8), 16	-
Exclusive human milk nutrition until discharge	17/31	16/35	

* Only ampicillin or penicillin + gentamicin in first week of life

Table 2. Median abundance of antibiotic resistance genes among infants in each group

564

Antibiotic resistance	7 day	ys (n=60 samj	ples)			28 days	(n=64 san	nples)			4 months	s (n=60 sai	nples)		
genes encoding															
	PEP	NPVP	FTC	Р	FDR	PEP	NPVP	FTC	Р	FDR	PEP	NPVP	FTC	Р	FDR
	(n=20)	(n=30)	(n=10)		Р	(n=24)	(n=31)	(n=9)		Р	(n=24)	(n=29)	(n =7)		P
Class A Beta lactamase	0.61	4.2*	0.00*	0.001	0.020	0.00	0.00	0.00	0.080	0.586	1.43	1.0	0.00	0.443	1.327
Class C Beta lactamase	0.00	0.00	0.20	0.126	0.229	0.98	0.22	0.00	0.492	0.812	9.1	12.7	9.5	0.605	1.134
Aminoglycoside acetyltransferase	0.00	0.00	0.00	0.202	0.311	-	-	-	-	-	-	-	-	-	-
Aminoglycoside phosphotransferase	0.00	0.00	0.00	0.590	0.653	0.00	0.16	0.00	0.114	0.497	-	-	-	-	-
Aminoglycoside nucleotidyltransferase	0.00	0.00	0.00	0.765	0.765	0.00	0.00	0.00	0.296	0.426	0.00	0.00	0.00	0.584	0.814
Tetracycline efflux	0.00	0.00*	0.00	0.015	0.050	0.00	0.00	0.00	0.173	0.423	0.00	0.00	0.00	0.174	1.949
Tetracycline ribosomal protection	0.00	0.26	4.4*	0.047	0.118	0.52	3.7	1.77	0.397	0.615	6.4	23.4	23.4	0.407	1.041
Quinolone resistance†	9.0	21.6	5.3	0.062	0.138	9.81	7.6	0.77	0.133	0.470	9.2	9.4	7.1	0.501	1.186
Macrolide/MLS resistance	0.00	0.00	0.00	0.757	0.797	-	-	-	-	-	-	-	-	-	-
ABC efflux pump†	0.13	1.15	0.25	0.206	0.294	1.06	1.35	0.06*	0.013	0.414	0.70	0.96	0.83	0.766	0.887
RND antibiotic efflux	5.2	41.9*	38.4	0.034	0.097	37.7	53.7	4.1	0.170	0.683	94.0	116.7	90.3	0.674	0.936
MFS antibiotic efflux	1.16	113.3	29.0	0.339	0.342	85.8	119.1	16.0	0.056	0.489	105.2	119.5	84.7	0.614	0.839
Multidrug efflux pump activity	0.00	24.6	1.92	0.337	0.449	20.9	21.7	4.9	0.346	0.478	10.0	14.0	8.1	0.616	1.552
Multidrug resistance efflux pump	0.00	0.00	0.00	0.668	0.742	0.00	0.00	0.00	0.603	0.678	0.18	0.00	0.60	0.496	0.819
Gene modulating antibiotic efflux	5.6	41.0**	0.76	0.012	0.060	14.7	20.1	0.34	0.163	0.376	19.7	27.7	27.5	0.645	0.871
SMR antibiotic efflux	-	1.2	-	-	-	0.00	0.00	0.00	0.914	0.932	-	-	-	-	-
Chloramphenicol acetyltransferase	0.00	0.00	0.00	0.071	0.142	-	-	-	-	-	-	-	-	-	-
Antibiotic target [†]	0.48	0.00	0.00**	0.013	0.052	0.00	0.00	0.00	0.266	0.396	0.00	0.00	0.00	0.720	0.768
Gene modulating resistance	53.5	8.1**	39.2	0.003	0.030	37.6	27.8	44.6	0.419	0.419	37.5	45.8	46.2	0.678	1.286
rRNA methyltransferase [†]	0.00	10.6	10.6	0.128	0.213	6.0	8.8	1.72	0.008	0.464	4.1	5.4	4.4	0.665	0.887
Other ARG ⁺	5.3	16.7**	2.02	0.011	0.073	7.3	8.4	0.26	0.132	0.413	7.2	10.5	6.3	0.613	

565 Numbers are presented as median total reads normalized by the total number of reads in each sample.

566 Antibiotic resistance genes analyzed using ShortBRED.

567 PEP, probiotic extremely preterm infants; NPVP, non-probiotic very preterm infants; FTC, full-term control; FDR, false discovery rate

568 Comparisons between all three treatment groups by nonparametric Kruskal-Wallis test

569 Post hoc comparisons by non-parametric Mann Whitney U-test (versus PEP) (****P*<0.001, ** *P*<0.01, * *P*<0.05)

570 Comparison between different time points by generalized linear model with a Poisson family (†P<0.05)

571 Genes modulating antibiotic efflux: norA, baeR, marA, phoQ, ramA, soxR. Genes modulating resistance: WblE, WhiB. Other ARG: bacA

Fig. 1

Prot	piotic Extremely Preterm (PEP) Infants	Full term control (FTC) Infants	
	Included, N = 31	Included, N = 35	Included, N = 10
	Clinical base line data	Clinical base line data	Clinical base line data
1 week	31 samples	35 samples	10 samples
	Adequate DNA: 20	Adequate DNA: 30	Adequate DNA: 10
4 weeks	30 samples	33 samples	9 samples
	Adequate DNA: 24	Adequate DNA: 31	Adequate DNA: 9
4 months	26 samples	32 samples	8 samples
	Adequate DNA: 24	Adequate DNA: 28	Adequate DNA: 7

7 days of age

Fig. 2b

100-

٠

• 80-٠ . Relative abundance (%) 0 60-. ٠ 0 0 . 40-0 ٠ 0 0 0 20-0 ٠ ٠ 0 0 0 0-

> Probiotic extremely preterm (PEP) Non-Probiotic very preterm (NPVP) Full term control (FTC)

Fig. 3b

NMDS1

Fig. 3c

NMDS1

NMDS1

Online-Only Supplements

Probiotic Supplementation and Development of Preterm Infant Gut Microbiota and Antibiotic Resistome An Observational Multi-Center Study

Esaiassen E et al.

eMethods

Sampling procedure

We performed a pilot test where we compared the commercial fecal sampling kit (OMNIgen GUT kit, DNA Genotek, Ottawa, Canada) with a standard fecal sampling procedure using sterile Eppendorf tubes which were frozen at -70 C° immediately after fecal collection. We measured the quality of extracted DNA and the taxonomic composition after sequencing with paired samples obtained with both sampling methods. To further assess the preservative ability of the stabilization buffer we arranged a cocktail of different bacterial species and evaluated the microbial composition after various times of storage. The bacterial composition in the cocktail was based on a representative selection of Gram positive and Gram negative bacteria commonly found in the human gut microbiota of infants. Samples were analysed by metagenome sequencing using the Illumina sequencer (Miseq, Illumina Inc). Results showed that both sampling procedures displayed good concordance. Furthermore, the microbial composition was independent of the length of sample storage. Ease of use and the possibility of storage at ambient temperature for 7-14 days offered an important solution to logistical issues in our trial. Samples were transported to the laboratory for DNA extraction which was carried out preferentially within one week. Recently, two studies reported similar beneficial characteristics of the same sample kit as used in our study.^{1,2}

DNA extraction, library preparation, sequencing and assembly

Total metagenomic DNA was extracted using the NorDiag Arrow Stool DNA Extraction kit (NorDiag, Oslo, Norway). An extra beadbeating step was added to facilitate cell lysis as studies have shown that this can increase extraction of DNA from Gram positive bacteria.³ DNA was quantified using the Nanodrop 1000 and Qubit® 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA) along with the Qubit® dsDNA HR assay kit (Thermo Fisher Scientific, Waltham, MA, USA). DNA was then stored at -70°C.

The indexed paired-end libraries were prepared for whol genome sequencing using the Nextera XT Kit (Illumina, San Diego, CA, USA), according to the manufacturer's instructions.⁴ Fifty nanogram genomic DNA was tagmented at 55°C for 10 min. The tagmented DNA was amplified with two primers from Nextera DNA sample preparation Index Kit. PCR products were cleaned using Agencourt AMPure XP beads (Beckman Coulter, Indiana, USA). Purified PCR products were quantified using the Qubit® 2.0 (Invitrogen, Carlsbad, CA, USA), along with the Qubit® dsDNA HS assay kit (Thermo Fisher Scientific, Waltham, MA, USA). The fragment size distribution (500-1000 bp) was analyzed using the Agilent 2100 Bioanalyzer System (Agilent Technologies, Waldbronn, Germany). The samples were pooled at concentration of 4nM per sample. Eight to twelve samples were pooled per each sequencing run. Pooled samples was denatured with 0.2N NaOH, then diluted to 10pM with hybridization buffer. Subsequently, samples were submitted for v3 reagents with 2 × 300 cycles paired-end sequencing using the Illumina Miseq platform, according to the manufacturer's instructions. In total, 184 samples were sequenced to an average (range) sequence depth of 4.8 (1.8-12.6) million reads per sample for microbiota and functional analysis. Prior to all downstream data analysis the sequence quality was calculated using FastQC (v0.11.3)⁵. All samples were screened for human contamination using Deconseq⁶ with default parameters and build up 38 of the human genome as reference. Quality filtering of the read was performed using Trimmomatic v0.36⁷ with LEADING:3, TRAILING:3, MINLEN:75 as parameter settings. Assemblies were performed on the trimmed reads using MEGAHIT.⁸ Functional annotation was added using an in-house genome annotation pipeline, the META-pipe (Department of Chemistry, University of Tromsø, Norway [https://arxiv.org/abs/1604.04103]).

Calculating the relative abundance of species from shotgun-metagenomic sequencing

The relative abundance of species was calculated from the trimmed reads using MetaPhlAn 2.0.⁹ Relative abundance tables for each individual sample were merged. From the total samples, all genera with a lower average relative abundance than 0.5% were omitted from further analysis. To calculate longitudinal changes, sequences were reconstructed using the Lowest Common Ancestor (LCA) classifier.¹⁰

Calculating the relative abundance classes of antibiotic resistance genes (ARGs) <u>and</u> absolute reads of antibiotic resistance genes (ARGs) from shotgun-metagenomic sequencin

The prediction of genes presumed to confer antibiotic resistance was performed on the assembled metagenomes using Abricate [https://github.com/tseemann/abricate] against the resistance gene identifier in the Comprehensive Antibiotic Resistance Database (CARD; version 1.1.1; Department of Biochemistry and Biomedical Science, McMaster University, Canada [https://card.mcmaster.ca/home])¹¹ with the minimum identity threshold set to 75%. Because of the fragmented nature of the metagenome assemblies, and therefore presence of fragmented genes, multiple hits against the same antibiotic resistance gene were regarded as one hit. For all samples, this yielded a presence/absence table (eTable). Classes of antibiotic resistance genes in the CARD database and the specific genes included in each class are listed below

- Beta lactamase: *blaMIR*, *blaZ*, *blaACT*, *blaTEM*, *blaCMY*, *blaLEN*, *blaADC*, *blaACI*, *blaOXA*, *blaOXY*, *blaSHV*, *blaDHA*, *blaOKP*, *blaACC*, *blaSED*, *blaMOR*, *blaCMG*, *blaCFE*, *cfiA*, *cepA*, *cfxA*
- Methicillin resistance: mecA
- Aminoglycosides: aac(6')-aph(2), aac(6')-Ic, aac(6')-Im, aadA, aadB, aadD, aadE, ant(6)-Ia, aph(2)-Ib, aph(3)-Ia, aph(3)-III, spc, str, strA, strB
- Tetracyclines: tet(A), tet(B), tet(M), tet(K), tet(X), tet(O), tet(L), tet(U), tet(Q), tet(W), tet(S), tet(32), tet(34), tet(35), tet(37), tet(40), tet(41), Otr(A)
- Fluoroquinolones: QnrB, QnrD
- MLS; Macrolide: *erm*(*A*), *erm*(*B*), *erm*(*C*), *erm*(*F*), *erm*(*G*), *erm*(*T*), *erm*(*X*), *mph*(*A*), *mph*(*C*); Lincosamide: *lnu*(*B*), *lnu*(*C*); Streptogranin: *vat*(*B*), *vat*(*F*)
- ABC efflux: *lsa*(*A*),*lsa*(*B*), *lsa*(*C*), *msr*(*A*), *mrs*(*C*), *msr*(*D*), *ole*(*B*), *car*(*A*)

- RND efflux pumps: *oqxA*
- Efflux pumps: *vga*(*A*), *mef*(*A*)
- Multidrug efflux pumps: *norA*
- Chloramphenicol: cat, catA, catB, catS, cmlA, cml
- Fosfomycin: fos(A)
- Sulfonamides: *sul1*, *sul2*
- Antibiotic target: *dfrA*, *dfrG*
- Vancomycin: VanC, VanS, VanT, VanR, VanY
- Metronidazole: *nimB*

In order to obtain quantitative measures of the potential ARGs in each sample, the quality trimmed reads were analysed using Short, Better Representative Extract Dataset (ShortBRED)¹² against a formatted CARD database. ARGs with a total number of reads less than ten across all samples were omitted from further analysis. The identified absolute reads against ARGs were used for further analysis. Using (ShortBRED) we identified the antibiotic resistance gene classes and genes listed below:

- Class A Beta lactamase
- Class C Beta lactamase
- Aminoglycoside acetyltransferase
- Aminoglycoside phosphotransferase
- Aminoglycoside nucleotidyltransferase
- Tetracycline efflux
- Tetracycline ribosomal protection

- Quinolone resistance
- Macrolide/MLS resistance
- Adenosine triphosphate (ATP)-binding cassette (ABC) efflux pump
- Resistance/nodulation/division (RND) antibiotic efflux
- Major facilitator superfamily (MFS) antibiotic efflux
- Multidrug efflux pump activity
- Multidrug resistance efflux pump
- Genes modulating antibiotic efflux: norA, baeR, marA, phoQ, ramA, soxR
- Small multidrug resistance (SMR) antibiotic efflux
- Chloramphenicol acetyltransferase
- Antibiotic target
- Genes modulating resistance: *WblE*, *WhiB*
- rRNA methyltransferase
- Other ARG: *bacA*

Antibiotic therapy; broad- versus narrow-spectrum regimen

We defined regimens including third-generation cephalosporins or carbapenems as a broad-spectrum regimens when compared to regimens containing aminoglycosides for coverage against Gram-negative bacteria. This definition was based on previous reports indicating that empiric therapy containing a third-generation cephalosporin for Gram-negative coverage induces significantly more resistance than a regimen containing an aminoglycoside.¹³

eReferences

1. Hill CJ, Brown JR, Lynch DB, et al. Effect of room temperature transport vials on DNA quality and phylogenetic composition of faecal microbiota of elderly adults and infants. *Microbiome*. 2016;4(1):19. doi: 10.1186/s40168-016-0164-3.

2. Choo JM, Leong LE, Rogers GB. Sample storage conditions significantly influence faecal microbiome profiles. *Sci Rep.* 2015;5:16350. doi: 10.1038/srep16350.

3. Knudsen BE, Bergmark L, Munk P, et al. Impact of Sample Type and DNA Isolation Procedure on Genomic Inference of Microbiome Composition. *mSystems*. 2016;1(5). doi: 10.1128/mSystems.00095-16.

4. Illumina. Nextera® DNA Library Prep Reference Guide. USA: Illumina; 2016.

5. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

6. Schmieder R, Edwards R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. *PLoS One*. 2011;6(3):e17288. doi: 10.1371/journal.pone.0017288.

7. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*. 2014;30(15):2114-2120. doi: 10.1093/bioinformatics/btu170.

8. Li D, Luo R, Liu CM, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. *Methods*. 2016;102:3-11. doi: 10.1016/j.ymeth.2016.02.020.

9. Truong DT, Franzosa EA, Tickle TL, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. *Nat Methods*. 2015;12(10):902-903. doi: 10.1038/nmeth.3589.

10. Lanzen A, Jorgensen SL, Huson DH, et al. CREST--classification resources for environmental sequence tags. *PLoS One*. 2012;7(11):e49334. doi: 10.1371/journal.pone.0049334.

11. McArthur AG, Waglechner N, Nizam F, et al. The comprehensive antibiotic resistance database. *Antimicrob Agents Chemother*. 2013;57(7):3348-3357. doi: 10.1128/aac.00419-13.

12. Kaminski J, Gibson MK, Franzosa EA, Segata N, Dantas G, Huttenhower C. High-Specificity Targeted Functional Profiling in Microbial Communities with ShortBRED. *PLoS Comput Biol.* 2015;11(12):e1004557. doi: 10.1371/journal.pcbi.1004557.

de Man P, Verhoeven BA, Verbrugh HA, Vos MC, van den Anker JN. An antibiotic policy to prevent emergence of resistant bacilli. *Lancet.* 2000;355(9208):973-978.

Online-Only Tables

	7 days (n=60 samples)				28 day	rs (n=64 sar	nples)			4 montl	ns (n=60 sam	ples)			
Genus	PEP (n=20)	NPVP (n=30)	FTC (n=10)	Ρ	FDR P	PEP (n=24)	NPVP (n=31)	FTC (n=9)	p-value	FDR P	PEP (n=24)	NPVP (n=29)	FTC (n=7)	p- value	FDR P
Bifidobacterium	64.7	0.00***	43.9	<.001	<.001	36.7	33.5	74.1	0.088	0.156	38.3	49.6	71.2	0.243	0.555
Escherichia	0.00	0.27	0.02	0.107	0.245	1.76	2.10	0.00	0.351	0.511	12.1	15.2	10.10	0.377	0.754
Klebsiella	0.00	0.00	0.00	0.737	0.786	0.00	0.00	0.00	0.663	0.816	0.25	0.67	0.11	0.738	1.0
Enterobacter	0.00	0.00	0.00	0.125	0.222	0.00	0.00	0.00	0.225	0.360	0.00	0.00	0.00	0.110	0.440
Staphylococcus †	1.10	0.54	0.05	0.230	0.368	0.51	0.23	0.01*	0.038	0.076	0.00	0.00	0.00	0.472	0.839
Veilonella †	0.00	0.00*	0.75***	<.001	<.001	0.00	1.09*	1.38*	0.018	0.072	4.75	4.44	8.59	0.812	1.0
Enterococcus †	0.00	0.01	0.00	0.118	0.236	0.90	2.35	0.00*	0.003	0.016	0.39	1.53**	0.58	0.019	0.152
Bacteroides †	0.00	0.00	0.00	0.005	0.013	0.00	0.00	0.00	0.001	0.008	0.00	0.00	0.00	0.996	1.0
Morganella	0.00	0.00	0.00	0.368	0.535	0.00	0.00*	0.00	0.030	0.069	0.00	0.00	0.00	0.098	0.523
Streptococcus	0.00	0.00	1.45***	<.001	<.001	0.00	0.06*	0.26*	0.018	0.058	0.15	0.14	0.06	0.149	0.477
Akkermansia	0.00	0.00	0.00	1.0	1.0	0.00	0.00	0.00	1.00	1.0	0.00	0.00	0.00	0.171	0.456
Lactobacillus	0.00	0.00*	0.23	0.004	0.013	0.00	0.00	0.23	0.019	0.051	0.26	0.18	0.42	0.682	1.0
Prevotella †	0.00	0.00	0.00	0.716	0.818	0.00	0.00	0.00	0.435	0.580	0.00	0.00**	0.00	0.001	0.016
Acinetobacter	0.00	0.00	0.00	0.525	0.70	0.00	0.00	0.00	0.834	0.953	0.00	0.00	0.00	1.000	1.0
Haemophilus	0.00	0.00	0.14*	<.001	<.001	0.00	0.00	0.07**	<0.001	<0.001	0.00	0.00	0.00	0.996	1.0
Serratia	0.00	0.00	0.00	0.607	0.747	0.00	0.00	0.00	0.834	0.890	0.00	0.00	0.00	1.000	1.0

eTable 1. Median relative abundance (%) of dominant genera in infant gut microbiota at 7 days, 28 days and 4 months of age

PEP, probiotic extremely preterm; NPVP, non-probiotic very preterm; FTC, full term control; FDR, false discovery rate

Dominant taxa have an overall median relative abundance > 0.5 % at 7 days, 28 days and 4 months of age.

Overall comparison by all three treatment groups by non-parametric Kruskal-Wallis test

Post hoc comparisons by non-parametric Mann Whitney U-test (NPVP or FTC versus PEP) (****P*<0.001, ** *P*<0.05).

†Comparison between different time points by generalized linear model with a Poisson family (†*P*<0.05)

eTable 2. Influence of antibiotic exposure (broad versus narrow after first week of life*) on taxonomic composition in all preterm infants

	Micro Median	biota at 28 day relative abundar	s nce	Microbiota at 4 months Median relative abundance					
Bacterial genera	Broad (<i>n</i> =7)	Narrow (<i>n</i> =15)	Р	Broad (<i>n</i> =9)	Narrow (<i>n</i> =13)	Р	<i>P</i> FDR		
Bifidobacterium	14.4	28.9	0.783	14.3	41.5	0.096	0.512		
Escherichia	44.5	1.40	0.368	17.4	9.9	0.209	0.669		
Klebsiella	0.00	0.00	0.680	0.25	0.57	0.845	0.623		
Enterobacter	0.00	0.45	0.123	0.00	0.00	0.235	0.627		
Staphylococcus	0.42	0.08	0.783	0.00	0.00	1.00	1.00		
Veilonella	0.00	0.00	0.945	1.25	6.01	0.001	0.016		
Enterococcus	2.73	0.68	0.783	0.64	0.39	0.647	1.00		
Streptococcus	0.00	0.00	0.630	0.07	0.18	0.126	0.504		
Lactobacillus	0.00	0.00	0.891	0.00	0.87	0.071	0.568		

Median relative abundance of *Bacteroides*, *Morganella*, *Akkermansia*, *Prevotella*, *Acinetobacter*, *Haemophilus* and *Serratia* were < 0.001 at 28 days and four months of age and there were no statistical difference between groups.

Bold indicate significant difference between broad and narrow antibiotic exposure.

PEP, probiotic preterm; NPVP, non-probiotic preterm;

*We defined regimens including third-generation cephalosporins or carbapenems as a broad-spectrum regimen

FDR, false discovery rate

eTable 3. Influence of antibiotic exposure (broad versus narrow narrow after first week of life*) on taxonomic composition in probiotic supplemented extremely preterm infants

	Microbiota at 28 days Median relative abundance			N Me			
Bacterial genera	Broad (<i>n</i> =5)	Narrow (<i>n</i> =12)	P	Broad (<i>n</i> =7)	Narrow (<i>n</i> =11)	Р	<i>P</i> FDR
Bifidobacterium	14.39	32.50	0.574	14.31	45.96	0.035	0.187
Escherichia	44.54	0.69	0.160	33.06	9.88	0.179	0.477
Klebsiella	0.00	0.00	0.721	0.26	0.57	1.000	1.00
Enterobacter	0.00	0.52	0.195	0.00	0.00	0.143	0.572
Staphylococcus	0.42	0.36	0.879	0.00	0.00	1.000	1.000
Veilonella	0.00	0.00	0.506	0.96	6.01	0.004	0.064
Enterococcus	2.73	0.15	0.506	0.33	0.40	0.536	0.858
Streptococcus	0.54	0.00	0.442	0.07	0.14	0.285	0.651
Lactobacillus	0.00	0.00	0.959	0.00	1.21	0.004	0.032

Median relative abundance of *Bacteroides*, *Morganella*, *Akkermansia*, *Prevotella*, *Acinetobacter*, *Haemophilus* and *Serratia* were < 0.001 at 28 days and four months of age and there were no statistical difference between groups.

*We defined regimens including third-generation cephalosporins or carbapenems as a broad-spectrum regimen FDR, false discovery rate

Antibiotic group or	7 days				28 days		4 months		
resistance mechanisms*									
	PEP	NPVP	FTC	PEP	NPVP	FTC	PEP	NPVP	FTC
	<i>n</i> =20	<i>n</i> =30	<i>n</i> =10	<i>n</i> =24	<i>n</i> =31	<i>n</i> =9	<i>n</i> =24	<i>n</i> =29	<i>n</i> =7
Beta lactamases	10/20	24/30	3/10	19/24	22/31	6/9	18/24	25/29	4/7
MecA gene	9/20	11/30	-	5/24	5/31	-	-	-	-
Aminoglycoside	8/20	14/30	3/10	11/24	16/31	2/9	12/24	16/29	2/7
Tetracycline	9/20	22/30	8/10	17/24	30/31	9/9	23/24	29/29	7/7
Fluoroquinolones	-	1/30	-	1/24	-	-	3/24	4/29	-
Macrolides	7/20	5/30	2/10	6/24	2/31	-	2/24	-	-
MLS	3/20	9/30	3/10	4/24	11/31	3/9	8/24	15/29	4/7
ABC efflux pumps	6/20	7/30	-	16/24	24/31	4/9	17/24	23/29	7/7
RND efflux pumps	7/20	12/30	2/10	12/24	18/24	4/9	12/24	19/24	5/7
Efflux pumps	3/20	3/30	8/10	2/24	4/31	2/9	6/24	8/24	3/7
Multidrug Efflux	9/20	14/30	1/10	11/24	7/31	1/9	-	-	-
pump									
Chloramphenicol	3/30	9/30	-	6/24	7/31	-	9/24	3/29	-
Fosfomycine	18/20	21/30	3/10	22/24	25/31	5/9	20/24	27/29	4/7
Sulfonamides	2/20	3/30	-	6/24	7/31	-	10/24	9/29	2/7
Antibiotic target	1/20	1/30	-	4/24	4/31	-	6/24	3/29	3/7
Antibiotic inactivation	-	2/30	1/10	1/24	1/31	-	6/24	7/29	2/7
Vancomycin	-	-	-	-	-	-	5/24	8/29	3/7
Metronidazole	-	-	-	-	-	-	-	1/29	-

eTable 4. Distribution of classes of antibiotic resistance gene among infants in each group

PEP, probiotic extremely preterm; NPVP, non-probiotic very preterm; FTC, full term control;

eTable 5. Influence of antibiotic exposure (broad versus narrow after first week of life) on abundance of antibiotic resistance genes (ARGs) in all preterm infants

Antibiotic resistance gene (ARG)	At	ARGs at osolute counts/	28 days 'total abundan	ice	ARGs at 4 months Total abundance			
classes*	Broad (<i>n</i> =7)	Narrow (<i>n</i> =15)	Р	<i>P</i> FDR	Broad (<i>n</i> =9)	Narrow (<i>n</i> =13)	Р	<i>P</i> FDR
Class A Beta Lactamase	0.00	0.00	0.447	0.731	5.00	3.01	0.324	0.864
Class C Beta Lactamase	44.96	0.00	0.021	0.095	9.11	8.16	0.235	0.752
Aminoglycoside phosphotransferase	6.14	0.00	0.078	0.281	-	-	-	-
Aminoglycoside nucleotidyltransferase	0.93	0.00	0.008	0.072	0.00	0.00	0.794	0.851
Tetracycline efflux	52.29	0.00	0.014	0.084	7.92	0.00	0.235	0.94
Tetracycline ribosomal protection	5.97	0.00	0.210	0.540	11.68	2.17	0.393	0.886
Quinolone Resistance	29.75	9.43	0.298	0.671	9.40	8.34	0.357	0.816
ABC efflux pump	3.23	1.07	0.392	0.784	0.70	0.64	0.471	0.814
RND antibiotic efflux	312.10	37.73	0.875	0.875	94.00	84.96	0.393	0.63
MFS antibiotic efflux	272.36	117.02	0.490	0.68	119.50	107.51	0.404	0.59
Multidrug efflux pump activity	22.08	26.53	0.581	0.70	19.08	13.63	0.647	0.69
Multidrug resistance efflux pump	0.00	0.00	0.162	0.486	3.02	0.00	0.017	0.272
Gene modulating antibiotic efflux	75.30	15.53	0.490	0.73	19.65	20.86	0.393	0.63
SMR antibiotic efflux	0.00	0.00	0.447	0.805	-	-	-	-
Antibiotic target	1.70	0.00	0.002	0.030	2.36	0.00	0.096	0.512
Gene modulating resistance	16.25	22.83	0.535	0.69	9.68	39.10	0.043	0.344
rRNA methyltransferase	8.59	9.07	0.581	0.65	8.41	5.56	0.601	0.67
Other ARG	24.40	12.15	0.680	0.72	7.21	7.36	0.601	0.74

FDR, false discovery rate

eTable 6. Influence of antibiotic exposure (broad versus narrow after first week of life) on abundance of antibiotic resistance genes (ARGs) in probiotic supplemented extremely preterm (PEP) infants

Antibiotic resistance genes (ARGs)		ARGs at 28 d	days	ARGs at 4 months				
classes*	<u> </u>							
	Broad (<i>n</i> =5)	Narrow (<i>n</i> =12)	Ρ	PFDR	Broad (<i>n</i> =7)	Narrow (<i>n</i> =11)	Ρ	PFDR
Class A Beta Lactamase	0.00	0.00	0.799	0.846	1.43	3.01	0.596	0.867
Class C Beta Lactamase	45,96	0.00	0.009	0.162	9.11	9.52	0.328	0.875
Aminoglycoside Phosphotransferase	6.14	0.00	0.082	0.369	-	-	-	-
Aminoglycoside Nucleotidyltransferase	0.93	0.00	0.104	0.312	0.00	0.00	0.860	
Tetracycline Efflux	29.55	0.00	0.019	0.171	7.92	7.92	0.375	0.857
Tetracycline Ribosomal Protection	6.49	0.00	0.082	0.369	11.68	28.48	0.246	0.787
Quinolone Resistance	29.75	7.08	0.506	0.828	9.40	9.40	0.425	0.85
ABC efflux pump	3.23	0.43	0.279	0.628	0.70	1.10	0.479	0.852
RND Antibiotic Efflux	312.10	19.81	0.799	0.900	94.00	93.09	0.536	0.858
MFS Antibiotic Efflux	272.36	79.67	0.506	0.759	70.92	111.28	0.860	0.917
Multidrug Efflux Pump Activity	22.08	24.71	0.879	0.879	19.08	6.55	0.647	0.863
Multidrug Resistance Efflux Pump	0.00	0.00	0.234	0.602	3.02	3.02	0.069	0.368
Gene Modulating antibiotic efflux	75.30	13.81	0.328	0.656	19.65	24.88	0.008	0.128
SMR Antibiotic Efflux	0.00	0.00	0.506	0.759	-	-	-	-
Antibiotic Target	1.70	0.00	0.064	0.030	2.36	0.00	0.151	0.604
Gene Modulating Resistance	16.25	33.15	0.442	0.756	9.68	60.81	0.043	0.344
rRNA Methyltransferase	5.15	6.23	0.799	0.846	8.41	2.85	0.930	0.930
Other ARG	24.40	7.31	0.506	0.700	7.21	7.21	0.724	0.891

Aminoglycoside acetyltransferase, Macrolide resistance genes, Chlorampehicol acetyltransferase were only present at 7 days of age.

FDR, false discovery rate

eTable 7. Influence of antibiotic exposure (yes versus no after first week of life) on abundance of antibiotic resistance genes in all preterm infants

Antibiotic resistance genes (ARGs) classes		ARGs at 4 months						
	Yes	No	Р	<i>P</i> FDR	Yes	No	Р	<i>P</i> FDR
	(<i>n</i> =22)	(<i>n</i> =33)			(<i>n</i> =22)	(<i>n</i> =31)		
Class A Beta Lactamase	0.00	0.00	0.128	0.576	4.01	0.56	0.786	1
Class C Beta Lactamase	4.37	0.13	0.459	0.826	8.81	12.19	0.829	1
Aminoglycoside Phosphotransferase	0.00	0.00	0.216	0.648	-	-	-	-
Aminoglycoside Nucleotidyltransferase	0.00	0.00	0.019	0.342	0.00	0.00	0.408	1
Tetracycline Efflux	0.00	0.00	0.034	0.306	0.00	0.00	0.037	0.592
Tetracycline Ribosomal Protection	0.37	3.03	0.128	0.576	5.35	25.76	0.213	1
Quinolone Resistance	12.09	6.46	0.171	0.616	8.87	9.24	0.914	1
ABC efflux pump	1.10	1.40	0.705	0.846	0.67	0.91	0.957	0.957
RND Antibiotic Efflux	49.55	53.63	0.655	0.91	89.47	111.20	0.928	1
MFS Antibiotic Efflux	133.57	114.97	0.693	0.891	109.40	90.19	0.357	1
Multidrug Efflux Pump Activity	25.20	26.53	0.399	1	14.23	11.09	0.448	1
Multidrug Resistance Efflux Pump	0.00	0.00	0.806	0.91	0.45	0.00	0.144	1
Gene Modulating antibiotic efflux	17.89	17.66	0.447	0.894	20.25	24.63	0.829	1
SMR Antibiotic Efflux	0.00	0.00	0.869	0.92	-	-	-	-
Antibiotic Target	0.00	0.00	0.939	0.939	0.00	0.00	0.594	1
Gene Modulating Resistance	22.28	29.18	0.525	0.86	19.42	24.63	0.357	1
rRNA Methyltransferase	8.83	7.71	0.612	0.918	5.93	5.01	0.570	1
Other ARG	12.32	8.32	0.418	0.94	7.28	10.37	0.914	1

FDR, false discovery rate

eTable 8. Influence of antibiotic exposure (yes versus no after first week of life) on abundance of antibiotic resistance genes in probiotic supplemented extremely preterm infants

Antibiotic resistance genes (ARGs) classes*		ARGs at 28 days			ARGs at 4 months				
	Yes (<i>n</i> =17)	No (<i>n</i> =7)	Р	Yes (<i>n</i> =18)	No (<i>n</i> =6)	Р	<i>P</i> FDR		
Class A Beta Lactamase	0.00	0.00	0.534	2.22	2.00	0.820	0.875		
Class C Beta Lactamase	0.98	16.08	0.576	9.32	6.63	0.581	0.845		
Aminoglycoside Phosphotransferase	0.00	0.00	0.455	-	-	-	-		
Aminoglycoside Nucleotidyltransferase	0.00	0.00	0.383	0.00	0.00	0.581	0.775		
Tetracycline Efflux	0.00	0.00	0.576	0.64	0.00	0.199	0.637		
Tetracycline Ribosomal Protection	0.00	2.53	0.318	5.56	30.78	0.626	0.786		
Quinolone Resistance	9.43	12.40	0.576	9.46	3.63	0.224	0.597		
ABC efflux pump	0.78	1.91	0.288	0.90	0.33	0.280	0.560		
RND Antibiotic Efflux	37.73	154.33	0.664	104.33	53.24	0.280	0.630		
MFS Antibiotic Efflux	85.74	99.33	1.0	109.40	40.02	0.033	0.264		
Multidrug Efflux Pump Activity	22.89	26.53	0.260	14.23	4.73	0.022	0.352		
Multidrug Resistance Efflux Pump	0.00	0.00	0.901	0.45	0.00	0.415	0.664		
Gene Modulating antibiotic efflux	14.66	25.21	0.951	22.27	11.44	0.280	0.498		
SMR Antibiotic Efflux	0.00	0.00	0.494	-	-	-	-		
Antibiotic Target	1.70	0.00	0.534	0.00	0.00	0.770	0.880		
Gene Modulating Resistance	28.73	50.26	0.349	29.54	33.83	0.871	0.871		
rRNA Methyltransferase	6.79	5.97	0.951	5.93	1.70	0.040	0.213		
Other ARG	7.33	11.17	0.951	7.28	3.36	0.119	0.476		

Aminoglycoside acetyltransferase, Macrolide resistance genes, Chloramphenicol acetyltransferase were only present at 7 days of age. FDR, false discovery rate