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I  ABSTRACT 
 

Breitfussins are a group of a closely related heterocyclic compounds. They consist of a 
tetracyclic structure with an indole, an oxazole and a pyrrole. The breitfussins exhibit 
interesting biological activity and analogues synthesis and biological evaluation is ongoing. 
Phorbazoles have a structural similarity with breitfussins in which a phenol replaces the 
indole. As a part of this, synthesis of phorbazoles, breitfussins and analogues is underway in 
the Bayer group. 

This thesis contains a description for the work done to synthesis a small library of a small 
group of phorbazoles analogues and one breitfussins analogue. 

During the synthesis of the phorbazoles analogues, an isocyanide based oxazole synthesis 
was performed using TosMIC. Iodination of the oxazole was tested with different 
approaches to obtain 2,4-diiodinated and 2-iodinated oxazole derivatives. For introducing a 
Pyrrole on the oxazole, a Suzuki-Miyaura cross coupling reaction was performed. As a final 
step, selective de-protections were performed to obtain the diversity of the analogues.  

The breitfussins analogue was formed in 2 steps from the commercially available starting 
material, methyl-1H-indole-3-carboxylate 13. 
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III  ABBREVIATIONS 
 

NP                Natural product 

NMR            Nuclear Magnetic Resonance 

TLC              Thin layer chromatography 

HRMS          High-resolution mass spectroscopy 

DCM            Dichloromethane 

THF              Tetrahydrofuran 

EA                Ethylacetate 

DMSO         Dimethylsulphoxide 

DME            Dimethoxy ethane 

LiHMDS       Lithium hexamethyldisilazane 

Boc               tert-butyloxycarboxyl 

1H NMR       Proton Nuclear Magnetic Resonance 

13C NMR      C-13 nuclear magnetic resonance 

DBU             1,8-diazabicyclo[5.4. 0]undec-7-ene 

TFA              Trifluoroacetic acid 

TosMIC        Tosylmethylisocianide 

EE                 Ethoxy ethyl 

DDQ             2,3-Dichloro-5,6-dicyanobenzoquinone 

DMP            Dess–Martin periodinane 

DCC             N,N'-dicyclohexylcarbodiimide 

TIPS             Triisopropylsilyl ether 

DMPU         1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone 

TMP            2,2,6,6-Tetramethylpiperidine 

MEK            Mitogen-activated protein kinase 

rt                  Room temperature 

eq.               equivalent  

 

 

https://en.wikipedia.org/wiki/Dicyclohexylcarbodiimide


 

viii 

 

IV  LIST OF FIGURES, TABLES AND SCHEMES 
 
Figure 1. Breitfussin A and Phorbazole C ................................................................................... 1 

Figure 2. Structure of target analogues of phorbazoles ............................................................ 2 

Figure 3. Structure of target analogue of breitfussins ............................................................... 2 

Figure 4. Breitfussins, A and B .................................................................................................... 5 

Figure 5. Oxazole containing natural products .......................................................................... 7 

Figure 6. TosMIC structure ......................................................................................................... 9 

Figure 7. Oxadiazole containing drugs ..................................................................................... 17 

Figure 8. The structure of the target breitfussins analogue .................................................... 20 

Figure 9. The 1H NMR peaks integration of the di and mono-iodinated derivatives mixture, 4a 
and 5a, respectively ................................................................................................................. 26 

Figure 10. The integration of the two CH₃ peaks of the tosyl group for the mono and di-iodo 
oxazoles products obtained from 2,4-diiodination of the 2-tosylated oxazole derivative 3b 27 

Figure 11. The total protons count for products obtained from 2,4-diiodination of the 2-
tosylated oxazole derivative 3b ............................................................................................... 27 

 

Table 1. Summary of the performed iodinations on the oxazole ............................................ 29 

Table 2. Attempts of iodination using TMPMgCl₂.LiCl base ..................................................... 31 

 

Scheme 1. Phorbazole C retrosynthesis ..................................................................................... 3 

Scheme 2. Total synthesis of phorbazole C ................................................................................ 4 

Scheme 3. Total synthesis of Breitfussins, A and B .................................................................... 5 

Scheme 4. Retrosynthesis of the breitfussins precursor described in the formation of 
breitfussin B by late stage halogenation .................................................................................... 6 

Scheme 5. Synthesis of a simplified model of the breitfussins from tryptamine ...................... 7 

Scheme 6. Mechanism of Schöllkopf oxazole synthesis ............................................................ 8 

Scheme 7. Van leusen reaction .................................................................................................. 8 

Scheme 8. Mechanism of Van leusen oxazole synthesis ........................................................... 9 

Scheme 9. Robinson-Gabriel oxazole synthesis reaction ........................................................... 9 

Scheme 10. Mechanism of Robinson-Gabriel oxazole synthesis ............................................. 10 

Scheme 11. Synthesis of substituted oxazoles reported by Wipf ............................................ 11 

Scheme 12. Mechanism of reaction of the acyclic tautomer of lithiated oxazole .................. 12 

Scheme 13. Lithiation/iodinations  by Vedejs and Luchetta .................................................... 12 

Scheme 14. Lithiation/iodinations by Pandey and et al. ......................................................... 13 

Scheme 15. Successive metalations of the oxazole using TMP metal bases ........................... 14 

Scheme 16. The palladium catalytic cycle ................................................................................ 15 

Scheme 17. Mechanism of tosylation of the hydroxyl group .................................................. 16 

Scheme 18. mechanism of acid aided removal of the Boc group ............................................ 16 

Scheme 19. Removal of the Boc group using phosphoric acid ................................................ 16 

Scheme 20. Removal of the Boc group using neat TFA ........................................................... 17 

Scheme 21. Removal of the Boc group using TFA/DCM (1:1) .................................................. 17 

Scheme 22.  Bioisosteric replacement of hydroxymate with oxadiazole ................................ 18 

Scheme 23. Oxadiazole synthesis from carbohydrazide and carboxylic acid using POCl₃ ...... 18 

Scheme 24. The proposed retrosynthesis for phorbazoles analogues .................................... 19 



 

ix 

 

Scheme 25. The general reaction scheme for phorbazoles analogues ................................... 20 

Scheme 26. The proposed retrosynthesis for the Breitfussin analogue .................................. 21 

Scheme 27. The general synthetic procedure for the Breitfussin analogue............................ 21 

Scheme 28. Tosylation reaction ............................................................................................... 23 

Scheme 29. Modified TosMIC procedure for oxazoles synthesis ............................................ 24 

Scheme 30. Standard TosMIC procedure for oxazoles synthesis ............................................ 24 

Scheme 31. Electron donation of the methoxy group ............................................................. 25 

Scheme 32. Electron withdrawal of the tosyloxy group .......................................................... 25 

Scheme 33. Attempted Synthesis of 2,4-iodinated oxazole derivatives by Lithiation ............ 25 

Scheme 34. Attempted Synthesis of 2-iodinated oxazole derivatives by lithiation ................ 28 

Scheme 35. Synthesis of 2-iodinated oxazole derivatives using TMPMgCl₂.LiCl base............. 30 

Scheme 36. The performed Suzuki-Miyaura coupling reaction ............................................... 32 

Scheme 37. Boc group deprotection ........................................................................................ 33 

Scheme 38. De-iodination reaction .......................................................................................... 34 

Scheme 39. De-tosylation reaction .......................................................................................... 34 

Scheme 40. De-tosylation and de-iodination reaction ............................................................ 35 

Scheme 41. Synthesis of the carbohydrazide derivative ......................................................... 35 

Scheme 42. Synthesis of the 1,3,4-oxadiazole derivative from the carbohydrazide ............... 36 

Scheme 43. The analogues obtained from the starting material, 3-hydroxybenzaldehyde 1a
 .................................................................................................................................................. 37 

Scheme 44. The analogues obtained from the starting material, 2-hydroxybenzaldehyde 1b
 .................................................................................................................................................. 37 

Scheme 45. The total synthesis of the breitsussins analogue 15 ............................................ 38 

Scheme 46. Summary of the performed oxazoles synthesis ................................................... 38 

Scheme 47. The attempted 2,4-diiodination ........................................................................... 38 

Scheme 48. The attempted 2-iodination ................................................................................. 39 

Scheme 49. Summary of the performed Suzuki-Miyaura coupling ......................................... 39 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 

 

V  TABLE OF CONTENTS 
 

I        Abstract…………………………………………………………………………………………………………………………………….iii 

II       Acknowledgements……………………………………………………………………………………………………..….….……..v 

III      Abbreviations…………………………………………………………………………………………………………….….…….…..vii 

IV      List of figures, Tables and Schemes………………………………………………………………………………….………viii 

V       Table of contents……………………………………………………………………………………………………………………….x 

 
1 INTRODUCTION AND AIM OF THE THESIS .......................................................................... 1 

2 CHEMICAL BACKGROUND .................................................................................................. 3 

2.1 Previous synthesis of phorbazoles and breitfussins .................................................... 3 

2.1.1 Total synthesis of phorbazole C ........................................................................... 3 

2.1.2 Total synthesis of breitfussin A and B .................................................................. 5 

2.1.3 Synthesis of breitfussin B by late stage bromination ........................................... 6 

2.2 Oxazoles synthesis ....................................................................................................... 7 

2.2.1 Isocyanide based oxazole synthesis ..................................................................... 8 

2.2.2 Oxazole synthesis by Cyclodehydration ............................................................... 9 

2.3 Functionalization of the oxazole ring ........................................................................ 11 

2.3.1 Lithiations of the oxazole ................................................................................... 11 

2.3.2 Metalation by TMP bases of Mg and Zn ............................................................ 13 

2.3.3 Carbon-carbon coupling of the oxazoles ........................................................... 14 

2.4 Protection and de-protection .................................................................................... 15 

2.4.1 Protecting and deprotection a phenolic OH group ............................................ 15 

2.4.2 De-protection of the Boc group ......................................................................... 16 

2.5 Oxadiazoles ................................................................................................................ 17 

2.5.1 1,3,4-oxadiazole ................................................................................................. 18 

3 RETROSYNTHESIS AND SYNTHETIC STRATEGY ................................................................. 19 

3.1 Phorbazoles analogues .............................................................................................. 19 

3.2 Breitfussins analogue................................................................................................. 20 

4 RESULTS AND DISCUSSION ............................................................................................... 23 

4.1 Phorbazoles analogues .............................................................................................. 23 

4.1.1 Tosyl protection of the hydroxybenzaldehyde .................................................. 23 

4.1.2 Oxazole synthesis ............................................................................................... 23 

4.1.3 Iodination of the oxazole ................................................................................... 25 



 

xi 

 

4.1.4 Introduction of 2-pyrrole through Suzuki coupling reaction ............................. 31 

4.1.5 Boc group deprotection ..................................................................................... 33 

4.1.6 Analogue diversity by selective de-protection and de-iodination ..................... 33 

4.2 Breitfussins analogue................................................................................................. 35 

4.2.1 Synthesis of the carbohydrazide derivative ....................................................... 35 

4.2.2 1,3,4-Oxadiazole synthesis ................................................................................. 36 

5 CONCLUSION .................................................................................................................... 37 

6 REFRENCES ....................................................................................................................... 41 

7 EXPERIMENTAL PROCEDURES .......................................................................................... 43 

7.1 Synthesis of phorbazoles analogues .......................................................................... 44 

7.1.1 General procedure for protection of the hydroxybenzaldehyde with tosyl group
 44 

7.1.2 Modified procedure for oxazole synthesis by TosMIC. ...................................... 45 

7.1.3 Standard procedure for oxazole synthesis by TosMIC ....................................... 46 

7.1.4 General procedure for 2,4-iodination of the oxazole by lithiation .................... 47 

7.1.5 General procedure for 2-iodination of the oxazole by lithiation ....................... 48 

7.1.6 General procedure for TMPMgCl•LiCl based oxazole synthesis ........................ 49 

7.1.7 General procedure for the Suzuki coupling on the oxazole ............................... 50 

7.1.8 Boc group de-protection .................................................................................... 52 

7.1.9 De-iodination ...................................................................................................... 53 

7.1.10 De-tosylation ...................................................................................................... 54 

7.1.11 De-iodination and de-tosylation ........................................................................ 54 

7.2 Synthesis of the breitfussins analogue ...................................................................... 56 

7.2.1 Synthesis of 1H-indole-3-carbohydrazide (14) ................................................... 56 

7.2.2 Synthesis of 2-(1H-indol-3-yl)-5-(1H-pyrrol-2-yl)-1,3,4-oxadiazole (15) ............ 56 

8 Appendices ....................................................................................................................... 57 

 

 

 

 

 

 



 

xii 

 

 

 

 

 

 



 

 

 

1 INTRODUCTION AND AIM OF THE THESIS 
Natural products are primary and secondary metabolites produced by living organisms 
through metabolic pathways. Primary metabolites are required for life as they are involved 
in essential cellular functions including cellular structure, energy production, growth, etc. 
Secondary metabolites are not essential for life. However, they have a wide range of 
functions and give the organism a competitive function and an evolutionary advantage1,2. 

Many NPs have medicinal activities. NPs are often used as a starting point for developing 
new drugs. The NP can be used itself as a medicine, like penicillin, which was the first 
antibiotic drug, isolated from the mold, Penicillium notatum. Synthetic analogues of the NP 
with structural variations are usually prepared to improve the pharmacodynamics and 
pharmacokinetics of drug candidates3,4. 

Our research group has been interested in a NP class called the breitfussins, which exhibit 
interesting bioactivity. Breitfussin A (Figure 1) and B are NPs that were isolated from the 
Arctic hydrozoan Thuiaria breitfussi 5. They are members of a group of a closely related 
heterocyclic compounds. Breitfussins consist of a tetracyclic structure with an indole, an 
oxazole and a pyrrole. The oxazole-pyrrole moiety is rare in natural products6. 

In addition, one other group of NPs having the oxazole-pyrrole ring system is described in 
the literature, the phorbazoles7. Phorbazoles are a family of four compounds, first isolated 
by Kashman et al. 8 from the sponge phorbas clathrata collected in south Africa in 1994 
(Figure 1). 

                                                                            

 

Figure 1. Breitfussin A and Phorbazole C 

Due to the interesting bioactivities of the breitfussins, our group is interested in the 
synthesis of analogues. The aim of the thesis was: 

   -  To synthesize analogues related to the phorbazole structure and an analogue related to 
the breitfussins structure. 

The target phorbazoles analogues have a structural variation represented in the R₂ and R₁ 
groups. The R₁ being a hydroxyl, Tosyloxy or a methoxy group on different positions, the 
ortho and the meta positions on the phenyl ring (Figure2). 

 

https://en.wikipedia.org/wiki/Penicillium
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Figure 2. Structure of target analogues of phorbazoles 

The target breitfussins analogue consists of an  un-substituted tetracyclic structure of an 
indole, an oxadiazole and a pyrrole (Figure 3). 

 

Figure 3. Structure of target analogue of breitfussins 
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2 CHEMICAL BACKGROUND 

2.1   Previous synthesis of phorbazoles and breitfussins 

2.1.1 Total synthesis of phorbazole C 

Leibscher and co-workers reported the first total synthesis of the marine NP, Phorbazole C8.  

The synthetic strategy was based on the retrosynthesis shown in Scheme 1. 

 

 

Scheme 1. Phorbazole C retrosynthesis 

Two key steps were involved in this strategy, the first one was the formation of an amide A2 
starting from the aminoethanol A3 and the dichloropyrrole-carboxylic acid A4 and the 
second step was cyclodehydration based oxazole ring formation from acylaminoketone A2. 

The corresponding forward synthesis starting from 4-hydroxybenzaldehyde is shown in 
scheme 2. The central oxazole was achieved by a cyclodehydration late in the synthesis.  
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Scheme 2. Total synthesis of phorbazole C 
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2.1.2 Total synthesis of breitfussin A and B 

The first total synthesis of breitfussins, A and B (Figure 4) was described by Pandey et al. in 
the Bayer group6. 

 

Figure 4. Breitfussins, A and B 

 

Based on modification of a functionalized oxazole, two palladium-catalyzed cross-couplings 
were applied to introduce an indole and a pyrrole onto an oxazole core. Selective 
lithiation/iodination was carried on a common indole-oxazole derivative. 2,4-diiodinated or 
2-iodinated oxazoles were obtained and used as precursors for synthesis of breitfussin A and 
B, respectively6. 

They were able to synthesize breitfussin A and B as shown in scheme 3. 

 

Scheme 3. Total synthesis of Breitfussins, A and B 
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2.1.3 Synthesis of breitfussin B by late stage bromination 

Jason and co-workers9 proposed the formation of breitfussins A and B through selective late 
stage halogenation of a breitfussin precursor. Synthesis of the oxazole core in the 
breitfussin model was based on the retrosynthesis shown in scheme 4.  

  

Scheme 4. Retrosynthesis of the breitfussins precursor described in the formation of 
breitfussin B by late stage halogenation 

The Synthesis of a simplified model of the breitfussins was performed. Tryptamine was 
reacted with 2-(trichloroacetyl)pyrrole to form an amide. The amide was subjected to a 
DDQ-promoted oxidation to afford the ketone, which was used to form the oxazole through 
a subsequent Robinson-Gabriel reaction (Scheme 5). 
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Scheme 5. Synthesis of a simplified model of the breitfussins from tryptamine 

2.2 Oxazoles synthesis   

Oxazole is a heterocyclic aromatic five-membered ring with two hetero-atoms, a nitrogen 
and an oxygen and both are separated by one carbon atom.  

Many NPs contain one or more oxazole rings as a part of their structure and many of them 
have an interesting biological activity. The total synthesis of some NPs containing oxazole 
has been described in the literature for example, Bengazole A which is a bisoxazole 
containing NP with antifungal activity and Muscoride A which is also an NP that contains a 
bisoxazole as a part of its structure and has a weak antibiotic activity (Figure 5)10,11. 

 

                         

Figure 5. Oxazole containing natural products 
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There are various methods described in the literature for the synthesis of oxazoles and some 
of them are highlighted in the following sections. 

2.2.1 Isocyanide based oxazole synthesis 

This section includes a description for two isocyanide dependent methods for the synthesis 
of 5-substituted oxazoles, Schöllkopf and Van Leusen. 

Schöllkopf oxazole synthesis 

Schöllkopf oxazole synthesis involves the reaction of α-metalated isocyanide with acyl 
chlorides or esters to give 5-substituted oxazole derivative12. 

The proposed mechanism suggests that the oxazole is formed by acylation of the α-
metalated isocyanide followed by an oxygen lone pair attack on the isocyanide in a 
cyclization step and a proton migration from C-4 to C-2 (Scheme 6 A). Another developed 
synthesis method based on Schöllkopf synthesis in which, an EWG-substituted isocyanides is 
used instead of the metalated isocyanide and reacted with acid chlorides in presence of 
immobilized base to give 4,5 disubstituted oxazoles directly12 (Scheme 6 B).  

 

 

Scheme 6. Mechanism of Schöllkopf oxazole synthesis 

Van Leusen oxazole synthesis 

In the Van Leusen oxazole synthesis, the non-toxic isocyanide derivative, 
tosylmethylisocyanide (TosMIC) is used as a precursor in the synthesis of 5-substituted 
oxazoles from the corresponding aldehydes or acyl chlorides (Scheme 7)11. 

 

Scheme 7. Van leusen reaction 

TosMIC structure involves an isocyano group, which can undergo nucleophilic addition 
reactions at the terminal carbon, an acidic α-carbon atom and a sulfinyl group which serves 
as a good leaving group and it also enhances the acidity of the α-carbon (Figure 6)13,14. 

 

K₂CO₃/Methanol, Δ 
 

 

https://www.google.no/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwin1LeC7KnMAhWMB5oKHaIqDUgQFggvMAM&url=https%3A%2F%2Fen.wiktionary.org%2Fwiki%2F%25CE%2594&usg=AFQjCNHpR2JqMbC-2JkrN1wIPLhiR1BNoQ&sig2=_60f6oIyV4Q0tniWKiHi7w
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Figure 6. TosMIC structure 

The mechanism of the reaction involves first, a deprotonation of the α-carbon of the TosMIC 
by a base. The formed carbanion attacks the aldehyde carbonyl group creating a negative 
charge on the oxygen which in part cyclizes through a nucleophilic addition on the terminal 
carbon of the isocyano group. Presence of a proton in the β-position to the sulfinyl group 
then allows the base to eliminate the sulfinyl group and a double bond is formed between 
carbons number 4 and 5, giving the oxazole as shown in scheme 815. 

 

Scheme 8. Mechanism of Van leusen oxazole synthesis 

2.2.2 Oxazole synthesis by Cyclodehydration 

This is the most common method for oxazoles synthesis and it occurs through a dehydration 
process, also an oxidation process may be required16. In this section a common 
cyclodehydration based method for 2,4,5-substituted oxazole synthesis is described, 
Robinson-Gabriel oxazole synthesis. 

Robinson-Gabriel oxazole synthesis 

The Robinson-Gabriel synthesis forms an oxazole by the cyclodehydration of 2-acylamino-
ketone in presence of dehydrating agent (Scheme 9) 17. 

 

Scheme 9. Robinson-Gabriel oxazole synthesis reaction 

https://en.wikipedia.org/wiki/Ketone
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Concentrated sulfuric acid is a classical dehydrating agent but there is also several other 

dehydrating agents can be used including thionyl chloride, polyphosphoric acid, anhydrous 

hydrogen fluoride and many others18. 

The reaction mechanism involves firstly, intramolecular cyclization of the 2-acylamidoketone 

where the oxygen of the carbonyl group from the amide side forms a bond with the carbon 

of the other carbonyl group and therefore it is the one included in the oxazole ring as it has 

been determined to be more lewis basic by labeling studies. At the end dehydration occurs 

to give the oxazole derivative (Scheme 10)19. 

 

 

Scheme 10. Mechanism of Robinson-Gabriel oxazole synthesis 

There have been some modification described for the Robinson-Gabriel oxazole synthesis by 
different research groups, for example Wipf et al. 20 reported the synthesis of substituated 
oxazoles using Dess-Martin reagent 21 to oxidize the side chain of β-hydroxy amides to β-
keto amide from readily available amino acid derivatives. The intermediate β-keto amide 
was then cyclohydrated with triphenylphosphine/iodine in presence of Et₃N. Several 
mechanisms for the ring closure and formation of the oxazole can be envisioned. Since the 
reaction only occurs in presence of the base Et₃N, they proposed an enolization of the 
ketone and formation of the phosphonium salt B3. From the phosphonium salt, 2 pathways 
were proposed for ring closure. The first pathway by intramolecular addition of the amide 
onto the vinylphosphonium to form B4, especially when R₃ is EWG. The second pathway 
through the formation of acylimino carbene B6 (Scheme 11). 

https://en.wikipedia.org/wiki/Dess-Martin_periodinane
https://en.wikipedia.org/wiki/Amino_acid
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Scheme 11. Synthesis of substituted oxazoles reported by Wipf 

2.3  Functionalization of the oxazole ring 

The target scaffolds for the project is an oxazole with and without an iodine at the 4-
position. This section discusses some of the previous studies performed to introduce 2- and 
4-substitutions on the oxazole. 

2.3.1  Lithiations of the oxazole 

The usual lithiation site on oxazoles is the 2-position where the most acidic proton is carried. 
The 2-lithiation will lead to that the subsequent addition of the electrophile takes place on 
C2. However, many efforts have been done to get regioselective substitutions on the oxazole 
ring at other positions and some of them are highlighted in this section.  

Lithiation by Vedejs and Luchetta 

Vedejs and Luchetta22 reported the synthesis of a 4-halogenated oxazole with no 
substitution at 2-position as they were interested in performing a palladium-mediated cross 
coupling at 4-position of the oxazole. In a previous study,  Hodges et al. 23 found that the 
major product of reaction between lithiated oxazole at 2-position and some aldehydes is the 

CH₂Cl₂, 22 ⁰C 
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C4-substituted oxazole. After that, they investigated the reaction using different aldehydes 
in different temperatures. The resulting product ratios were dependent on the temperature 
and the electrophile. It was proposed that the C4 substitution occurs through the reaction of 
the dominant acyclic tautomer followed by proton transfer and cyclization (Scheme 12)22. 

 

Scheme 12. Mechanism of reaction of the acyclic tautomer of lithiated oxazole 

On this basis, Vedejs and Luchetta suggested that direct halogenation at C4 is possible if the 
reaction conditions were selected for the acyclic tautomer. They used LiHMDS in THF and 
reported the synthesis of  the 4-iodinated compound as a major product. Also they got a 
mixture of 2- iodinated and 2,4-diiodinated compounds(Scheme 13)22,24. 

 

Scheme 13. Lithiation/iodinations  by Vedejs and Luchetta 

They reported that the experiments were difficult to reproduce but they obtained a larger 
ratio of the 4-iodinated to the 2-iodinated derivative when they made a modification in the 
procedure and added 40-50 volume % of DMPU before the addition of the base (LiHMDS). 

 

 

 

 

1.LiHMDS/THF, -78⁰C 

2. I₂ 

1. THF/DMPU,                
-78⁰C, 1h 

2. I₂ 

LiHMDS/THF, -78⁰C 
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Lithiation by Pandey et al. 

Pandey et al.6 investigated the introduction of iodo-substituents on C2 and C4 of the oxazole 
using metalation/iodination strategy. After screening of different bases (LiHMDS, NaHMDS) 
and electrophiles (1,2-diiodoethane,iodine), they found that iodination position is highly 
dependent on the temperature of the iodination step. Using LiHMDS (3 eq.) as a base at    
−78 °C followed by iodination using iodine at the same temperature, the 4-iodo derivative 
D2  was obtained as the major product with 79% yield and 2,4-diiodo derivative D3 as a 
minor product. By subsequent lithiation/iodination of the 4-iodo oxazole D2 the 2,4-diiodo 
derivative D3 was obtained in 65%  yield. When they added the iodine at −40 °C, the 2-iodo 
derivative D4 was obtained as a major product in 65% yield and also the 2,4-diiodinated 
derivative D3 was obtained as a minor product (Scheme 14). 

 

 

Scheme 14. Lithiation/iodinations by Pandey and et al. 

 

2.3.2  Metalation by TMP bases of Mg and Zn 

There have been always some difficulties and limitations for the lithiation of heterocyclic 
compounds including ring fragmentation25 . To overcome such problems, Knochel and co-
workers26 developed a general synthesis method to form a highly functionalized 2,4,5-
substituted oxazoles starting from the oxazole. A set of new sterically hindered TMP-bases 
complexed by LiCl was reported. 

They have been able to step-wisely magnesiate or zincate the oxazole and react it with 
different electrophiles in 2,4,5-positions. The regioselectivity order for the metalation was 

LiHMDS, -78 ⁰C 
Then I₂, -78 ⁰C 

LiHMDS, -78 ⁰C to -40 ⁰C 
Then I₂, -40 ⁰C 

LiHMDS, -78 ⁰C 
Then I₂, -78 ⁰C 
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C2 first then C5 then C4 (Scheme 15). The formed zincated or magnesiated oxazole species 
were stable towards fragmentation and readily reactive towards various electrophiles.  

 

Scheme 15. Successive metalations of the oxazole using TMP metal bases 

2.3.3 Carbon-carbon coupling of the oxazoles 

The synthetic strategy suggests the introduction of a 2-pyrrole ring through a carbon-carbon 
bond with C2 of the oxazole. Different cross couplings can be applied on the oxazole 
including Suzuki-Miyaura, Negishi, Sonogashira and Stille16 .This Section describes the 
Suzuki-Miyaura coupling approach. 

 Suzuki-Miyaura coupling reaction 

The Suzuki-Miyaura coupling reaction is a palladium catalyzed cross coupling where 
a boronic acid interacts with an alkylhalide in presense of a base using palladium(0) complex 
as a catalyst27-29.  

The catalytic cycle for the palladium catalyzed reaction is shown in scheme 16.  

    

 

https://en.wikipedia.org/wiki/Boronic_acid
https://en.wikipedia.org/wiki/Halide
https://en.wikipedia.org/wiki/Palladium
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Scheme 16. The palladium catalytic cycle 

The first step is an oxidative addition in which, the palladium is added to the alkylhalide 
forming an organopalladium species. Then the base replaces the halide forming an 
organopalladium base complex. Simultaneously, the base forms a borate complex with the 
boronic acid. The two complexes undergo transmetalation where the base group from the 
organopalldium complex is exchanged with the R group from the borate complex. The final 
step is reductive elimination restoring the palladium catalyst30 31. 

2.4  Protection and de-protection 

A good protecting agent is the one, which can be easily inserted, easily removed and inert to 
conditions of the reaction. The following sections focus on protecting and de-protecting of a 
phenolic OH group, also the possible ways of Boc group de-protection. 

2.4.1  Protecting and deprotection a phenolic OH group 

Several alternatives can be used as a protecting agent for protecting a phenolic oxygen 
including: 

- Silylethers ( Triisopropylsilyl ether (TIPS) 32  and tert-Butyldimethylsilyl ether(TBDMS) 33). 

- Ethers (Methyl ether 34 and Benzyl ether 35) 

- Acetals (Methoxymethyl acetal (MOM) 36 and [2-(Trimethylsilyl)ethoxy]methyl acetal (SEM) 
37 ) 

-Sulphonates (p-toluenesulfonylchloride (TsCl) 38 and methanesulfonylchloride (MsCl) 39) 

Protection and deprotection of the p-toluenesulphonylchlroride(TsCl) 

A general mechanism for the reaction of the Tosyl group with a hydroxyl group is shown in 
scheme 17. 

http://en.wikipedia.org/wiki/4-Toluenesulfonyl_chloride
http://en.wikipedia.org/wiki/Methanesulfonyl_chloride
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Scheme 17. Mechanism of tosylation of the hydroxyl group 

The reaction mechanism is an addition elimination. In presence of a weak base, like pyridine 
to neutralize the formed HCl during the reaction, the lone pair on the oxygen of the hydroxyl 
groups attacks the Sulfur atom of the sulphonyl group creating a negative charge on one of 
the oxygens. The oxygen lone pair in turn attacks the sulfur atom leading to the chloride ion 
to leave40. 

De-protection of the tosyl group can be achieved by using a nucleophilic base like hydroxide 
or alkoxide ions41. 

2.4.2 De-protection of the Boc group 

Tert-butyloxycarbonyl (Boc group) is a protecting group used mainly to protect amines. It is 
easily removed in presence of strong acids (Scheme 18)16. 

 

Scheme 18. mechanism of acid aided removal of the Boc group 

Several alternatives can be used in that concern. Aqueous phosphoric acid is a good choice 
for de-protection of the Boc group (Scheme 19) and many other protecting groups with high 
yields. It is environmentally benign and the reaction conditions are mild and has good 
selectivity in the presence of other acid sensitive groups42. 

 

Scheme 19. Removal of the Boc group using phosphoric acid 

https://en.wikipedia.org/wiki/Protecting_group
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Other alternative could be trifluoroacetic acid either neat (Scheme 20)43 or with DCM in 1:1 
ratio (Scheme 21)44. 

 

Scheme 20. Removal of the Boc group using neat TFA  

 

Scheme 21. Removal of the Boc group using TFA/DCM (1:1) 

2.5 Oxadiazoles 

Oxadiazole is a heterocyclic aromatic five-membered ring with two nitrogen atoms, one 
oxygen atom and two carbon atoms. Oxadiazoles have four different regioisomeric forms; 
three of them are stable, 1,3,4-oxadiazole, 1,2,4-Oxadiazole and 1,2,5-oxadiazole, and the 
last one, 1,2,3-oxadiazole, is unstable. Stable oxadiazoles rings exist in many 
pharmacologically active compounds including the market launched antiretroviral drug, 
raltegravir. Also some oxadiazole containing drugs in late stage of clinical trial like zibotentan 
has anti-cancer activity.45,46  

 

Figure 7. Oxadiazole containing drugs 

In drug design, oxadiazole can be used as a bioisoster for esters and amides to improve 
certain property. Warmus and co-workers47 reported bioisisteric replacement of 
hydroxamate moiety with an oxadiazole in a previously reported potent and efficient MEK 
inhibitor, PD-184352 (CI-1040) leading to more metabolic stability and efficiency          
(Scheme 22).  
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Scheme 22.  Bioisosteric replacement of hydroxymate with oxadiazole 

2.5.1 1,3,4-oxadiazole 

1,3,4-oxadiazole is an important moiety both; chemically and biologically and is widely used 
in drug development. Several methods for the synthesis of 2,5-substituted 1,3,4-oxadiazole 
are described in the literature. One common synthesis method is highlighted in this section. 

Reaction of acylhydrazide with carboxylic acid in presence of POCl₃ 

Zhang et al. 48 synthesized three series of indole-based 1,3,4-oxadiazole derivative through 
the reaction of 1H-indole-3-carbohydrazide with carboxylic acid in presence of Phosphorous 
oxychloride POCl₃. In a similar way Amir and co-workers 49 reported using POCl₃ in the 
synthesis of 2,5-disubstituted 1,3,4-oxadiazole. POCl₃ is widely used as dehydrating agent 
and it works mainly with alcohols. 

The reaction mechanism can be envisioned to be consisting of two parts. The first part as an 
amide formation through a nucleophilic attack on the carboxylic acid by the hydrazide and 
elimination of a water molecule (Scheme 23 A). The second part is quite similar to Robinson-
Gabriel oxazole synthesis, but with a small difference represented in the α-C to the nitrogen 
which is a nitrogen in the oxadiazole case (Scheme 23 B).  

 

 

 

 

Scheme 23. Oxadiazole synthesis from carbohydrazide and carboxylic acid using POCl₃ 
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3 RETROSYNTHESIS AND SYNTHETIC STRATEGY 

3.1 Phorbazoles analogues 

The structure of target analogues 12 consist of a common core of 2,5-substituted oxazole. The 
2- substituent on the oxazole is a pyrrole ring and the 5- substituent is a phenyl ring. The 
analogues diversity arises from the variation of the R₁ and R₂ groups. The first part of the 
retrosynthesis is based on the total synthesis of breitfussins A and B6 in which, The first 
disconnection removes the pyrrole ring, revealing compound 4 or 5 which are the 2,4-
diiodinated and the 2-iodinated oxazole derivatives, respectively. The second disconnection 
removes the iodides revealing the 5-substituted oxazole 3. Based on different approach for 
the oxazole synthesis, the final disconnection removes the oxazole revealing 2, the 2 or 3-

substituted benzaldehyde (Scheme 24). 

 

 

Scheme 24. The proposed retrosynthesis for phorbazoles analogues 

Based on the retrosynthesis, the forward synthetic plan was designed as follows; the starting 
material is a benzaldehyde substituted at meta or ortho positions. For the hydroxyl 
substituted benzaldehyde, the first step is protection of the hydroxyl with a tosyl group. 
After this the two groups of compounds follow the same procedure towards the targeted 
analogues. The oxazole is formed through a TosMIC reaction. The third step is iodination of 
the oxazole in which 2 approaches were considered, 2,4-diiodination and iodination on 
position number 2 only. The final building step is introducing the pyrrol ring by the formation 
of a C-C bond between 2-pyrrole and the oxazole moiety through a Suzuki-Miyaura coupling 
reaction (Scheme 25).  
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Scheme 25. The general reaction scheme for phorbazoles analogues 

 

3.2 Breitfussins analogue 

The structure of the targeted breitfussin analogue consists of the unsubsituted breitfussin 
skeleton with a modification in the core oxazole, in which the C-H at the 4-position is 
substituted with a nitrogen to form a 1,3,4-oxadiazole (Figure 8) 

 

Figure 8. The structure of the target breitfussins analogue 

First disconnection reveals a pyrrole with carbonyl substitution at the 2-position.The 
remaining part is a carbohydrazide derivative of the indole 14. Further disconnection 
removes the hydrazine revealing the indole carboxylate 13 , which is commercially available 
and used as a starting material for the synthesis (Scheme 26). 
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Scheme 26. The proposed retrosynthesis for the Breitfussin analogue 

The first step is a nucleophilic substitution on the carboxylate group of the starting material 
Methyl-1H-indole-3-carboxylate 13 with hydrazine to form the carbohydrazide of the indole 
14. This is then used in the second step where it is condensed with pyrrole-2-carboxylic acid 
to form an asymetric dicarbohydrazide. This is dehydratively cyclized to form the central 
1,3,4-oxadiazole ring in the same reaction vessel 15 (Scheme 27). 

 

Scheme 27. The general synthetic procedure for the Breitfussin analogue 
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4 RESULTS AND DISCUSSION 

4.1  Phorbazoles analogues 

4.1.1 Tosyl protection of the hydroxybenzaldehyde 

 

 

Scheme 28. Tosylation reaction 

The phenolic oxygen carries an acidic proton, which needs to be protected to avoid 
problems in the Lithiation step. Tosyl group was used as a protecting group. A modified 
literature synthesis was performed 50 using Et₃N in DCM, and DMAP as a nucleophilic 
catalyst (Scheme 28). DMAP is a highly basic catalyst and it is employed in nucleophilic 
catalysis of a variety of reactions51. 

The reaction was performed on the commercially available 3-hydroxy and 2-hydroxy 
benzaldehydes 1a and 1b, respectively. No starting material was observed on TLC after 1 
hour of stirring at 0 ⁰C. The products were easily crystallized out using 15% water/ethanol. 
The corresponding tosylated benzaldehydes, 2a and 2b were obtained in 88 % and 93 % 
yields, respectively. 

4.1.2 Oxazole synthesis 

A van Luesen oxazole synthesis was used to synthesis the oxazole moiety in which TosMIC 
was used as a precursor. Two groups of compounds were subjected to the reaction with 
different conditions. 

Oxazole formation with tosyloxy substituted benzaldehyde 

The standard procedure uses TosMIC in presence of K₂CO₃ as a base and methanol as a 
refluxing solvent 52, which are the same conditions used for removing the tosyl group 41 16. A 
modification has been done on the standard procedure in which, DBU is used as a base and 
DME as a solvent (Scheme 29). DBU is a non-nucleophilic base 53. DME was chosen as a 
solvent over methanol to avoid nucleophilic attack on the Tosyl group.  

TsCL, Et₃N, DMAP, 0 ⁰C /DCM , 1h 
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Scheme 29. Modified TosMIC procedure for oxazoles synthesis 

3-tosylated benzaldehyde 2a was refluxed with TosMIC and K₂CO₃ in DME for 3 hours and no 
starting material was observed on TLC. The corresponding oxazole derivative 3a was isolated 
in 61% yield after column chromatography purification. 

With the 2-tosylated benzaldehyde 2b, the reaction was performed 2 times under the same 
conditions. In the first attempt, the reaction was run for 3 hours and the crude showed a 
minute amount of starting material on TLC. In the second attempt, the reaction was left to 
run for overnight and no starting material was observed on the TLC afterwards. The 
corresponding oxazole derivative 3b was isolated after column chromatography purification. 
The yield from the first batch was 33% and the second one was 40 %.  

Oxazole formation with methoxy substituted benzaldehyde 

The methoxy benzaldehydes 2c and 2d were also subjected to the van Leusen oxazole 
synthesis using the standard procedure 52 ,with potassium carbonate as a base and 
methanol as refluxing solvent (Scheme 30). 

 

Scheme 30. Standard TosMIC procedure for oxazoles synthesis 

After running the reaction for16 hours using the commercially available 2-methoxy 
benzaldehyde 2c, no starting material was observed on TLC from the crude. The 
corresponding oxazole derivative 3c was isolated after column chromatography purification 
in 44 % yield.  

The reaction was run for 3 hours on 2-methoxybenzaldehyde 2d. The TLC showed a plenty of 
the starting material so more TosMIC was added (0.1 eq.) and the reaction was left to run 
for overnight. After that the reaction was complete. The corresponding oxazole derivative 3d 
was isolated in 30% yield after column chromatography purification.  

Discussion 

It was observed from the previous set of reactions that a better yield is obtained from the 
meta substituted starting material than the ortho substituted ones. This may be rationalized 
if we take the steric hindrance effect into account. 

TosMIC, K₂CO₃ / Methanol 

Reflux 80 ⁰C, 16h 

TosMIC, DBU / DME 

Reflux 80 ⁰C, 2-3h 
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It was also observed that the tosyloxy substituted starting materials give better yields than 
the methoxy substituted ones. This can be explained by the electronic effects, as the more 
electrophilic carbonyl group is more reactive to nucleophilic attack. Since the oxygen of 
methoxy group is more electron donating than the oxygen of the Tosyloxy group, the tosyl 
protected compound will react better (Scheme 31 and 32). 

 

 

Scheme 31. Electron donation of the methoxy group 

 

 

Scheme 32. Electron withdrawal of the tosyloxy group 

 

4.1.3 Iodination of the oxazole 

The four previously synthesized oxazoles were subjected to iodinations with the aim to 
achieve both selective 2,4-diiodination and 2-iodination. Two approaches were applied, 
iodination by lithiation and TMPMgCl•LiCl based iodination. 

4.1.3.1 2,4-Diiodination of the oxazole by lithiation 

As a previous work by our research group showed that dominant 2,4-diiodination of the 
oxazole can be achieved by using 3 eq. of the base at -78 ⁰C and adding 3 eq. of iodine at the 
same temperature (Scheme 33). The reaction was performed on the tosylated oxazole 
derivatives 3a and 3b. 

 

Scheme 33. Attempted Synthesis of 2,4-iodinated oxazole derivatives by Lithiation 

I₂(3eq.), -78 ⁰C, 1h 

LiHMDS(3 eq.)/THF, -78 ⁰C, 30 min 
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The 3-tosylated oxazole derivative 3a was stirred with 3 eq. of  LiHMDS for 30 minutes at       
-78 ⁰C. 3 eq. of the iodine as an electrophilic source for the iodide substitution was added at 
the same temperature as a solution in dry THF. The TLC was checked after 1h of stirring with 
iodine and it showed 2 closely packed spots of new compounds and traces of the starting 
material. After flash column purification, two fractions were collected. The first fraction was 
the 2,4-diiodo oxazole derivative 4a and the second fraction was a mixture of 4a and the 2-
iodinated oxazole derivative 5a in 3.3:1 ratio, respectively. The ratio was calculated 
according to the integration of the 1H NMR peaks of the mixture. The calculated yield for 4a 
and 5a is 62% and 13%, respectively. 

 

Figure 9. The 1H NMR peaks integration of the di and mono-iodinated derivatives mixture, 4a 
and 5a, respectively 

The 2-tosylated oxazole derivative 3b was reacted under the same conditions as 3a (see 
above). After 1h of stirring with iodine the TLC showed no starting material and one new 
clear spot appeared. After column chromatography purification the NMR showed that the 
product was a mixture of 2-iodo and 2,4-diiodo oxazole derivatives with ratio 2.2:1, 
respectively. The ratio was estimated based on the integration of the two CH₃ peaks of the 
tosyl group in the NMR spectra (Figure 8). The total protons count also supports the 
estimated ratio (Figure 9). According to the estimated ratio, the calculated yield of the 
mono-iodinated derivative is 50 % and that of the 2,4-iodnated is 23%.    
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Figure 10. The integration of the two CH₃ peaks of the tosyl group for the mono and di-iodo 
oxazoles products obtained from 2,4-diiodination of the 2-tosylated oxazole derivative 3b   

 

 

Figure 11. The total protons count for products obtained from 2,4-diiodination of the 2-
tosylated oxazole derivative 3b 
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4.1.3.2    2-Iodination of the oxazole 

Regioselective 2-iodination of the oxazole through lithiation was reported by Pandey et. al. 6 
during the total synthesis of breitfussins A and B. The same procedure was used with the 
methoxy oxazole derivatives 3c and 3d (Scheme 34). 

 

Scheme 34. Attempted Synthesis of 2-iodinated oxazole derivatives by lithiation 

The  procedure is similar to the one used for the 2,4-iodination of oxazole but the difference 
is that the iodine is added with less equivalents and at a higher temperature, around -40 ⁰C.  

The reaction was performed on 0.5 g scale of the 3-methoxy oxazole derivative 3c. The TLC 
showed a considerable amount of the starting material in addition to 2 new spots, which 
were believed to belong to the mono and diiodinated compounds. Separation was 
attempted by column chromatography and 4 fractions were collected. The first fraction was 
the 2,4-diiodinated derivative 4c. The second fraction was a mixture of 2 co-eluted 
compounds, presumably according to the 1H NMR data the 2 and 4-iodinated derivatives 5c 
and 5’c, respectively. The third fraction was a mixture of 4c, 5c and 5’c. The last fraction was 
the starting material in 22% recovered. Based on the NMR data, the calculated yields of the 
2,4-diiodinated 4c, 2-iodinated 5c and 4-iodinated 5’c are 30%, 6% and 6%, respectively. 

The reaction was carried on 250 mg scale of the 2-methoxy oxazole derivative 3d. The TLC 
showed traces of the starting material and one new spot. After column chromatography 
purification the corresponding 2-iodo oxazole derivative 5d was separated in 81% yield. 

 

 

 

 

 

 

LiHMDS(3 eq.)/THF, -78 ⁰C, 
30 min 

I₂(1.2equ.), -40 ⁰C, 1h 
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Table 1. Summary of the performed iodinations on the oxazole 

 

entry Starting material I₂ 
eq. 

Temp. 
of I₂ 

addition 

The products yield 

2,4-
diiodinated 

2-iodinated 4-iodinated 

a 

 

3 - 78 ⁰C 4a 
62% 

 

5a 
13% 

- 

b 

 

3 - 78 ⁰C 4b 
23% 

5b 
50% 

- 

c 

 

1.2 - 40 ⁰C 4c 
30% 

5c 
6% 

5’c 
6% 

d 

 

1.2 - 40 ⁰C - 5d 
81% 

- 

 

 

 

 

 

 

 

 

 

LiHMDS(3 eq.)/THF, -78 ⁰C, 
30 min 

I₂(eq.), temp, 1h 
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4.1.3.3 Iodination of the oxazole using TMPMgCl•LiCl as a base 

The original regioselective oxazole functionalization using TMP metal bases was proposed by 
Knochel and co-workers 26. A modification on the procedures was carried by members of our 
research group. It was found that the reaction works faster upon addition of 0.5 M Licl in 
THF prior to the addition of the iodine (Scheme 35). 

  

Scheme 35. Synthesis of 2-iodinated oxazole derivatives using TMPMgCl₂.LiCl base  

The reaction was tested using different equivalents of iodine on a small scale of the oxazole 
derivatives, 3b, 3c and 3d. TMPMgCl•LiCl was used as a base at - 40 ⁰C. From the 1H NMR 
data of each reaction the product ratios were estimated (table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMPMgCl•LiCl (2 eq.) /THF,  
- 40 ⁰C , 30 min 

0.5 M LiCl (3 eq.), I₂ / THF 
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Table 2. Attempts of iodination using TMPMgCl₂.LiCl base 

 

entry Starting material I₂ 
equivalents 

Products ratio 

di-iodo Mono-iodo Starting 
material 

a  

 

2 1 6 1.5 

1.5 1 7 7 

1.1 1 5 3.5 

b 

 

2 - - - 

c 

 

2 - - - 

 

For the methoxy substituted oxazoles 3c and 3d, there was a close ratios between the 
starting material, the mono and the diiodinated derivatives. It was hard to assign the 1H 
NMR peaks from the crude to the corresponding compounds. 

4.1.4  Introduction of 2-pyrrole through Suzuki coupling reaction 

Pandey et al. 6 reported a Suzuki coupling on a di-iodo oxazole derivative during the total 
synthesis of breitfussins A and B. The same procedure was applied on a set of previously 
synthesized compounds in order to introduce the 2-pyrrole ring on C2 of the oxazole 
(Scheme 36). 

   

TMPMgCl•LiCl (2 eq.) /THF,  
- 40 ⁰C , 30 min 

0.5 M LiCl (3 eq.), I₂(eq.) / THF 
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Scheme 36. The performed Suzuki-Miyaura coupling reaction 

Suzuki coupling occurs between two partners, a halogenated one, which undergoes 
oxidative addition with palladium and the other one which is carried on the boronic acid. In 
our strategy, the oxazole was the halogenated partner. 

Coupling of the diiodinated oxazole with 3-tosyloxy substitution 4a 

The reaction was performed on the 2,4-iodo oxazole derivative 4a and stirred for 2 hours at 
50  ⁰C but the reaction was not complete. After the mixture was left to be stirred for 
overnight at rt, no starting material was observed on TLC. The corresponding oxazole-pyrrole 
derivative 6a was isolated in 60 % yield after column chromatography purification.  

Coupling of a mixture of di- and monoiodinated oxazole with 2-tosyl substitution 4b and 
5b 

The coupling was also performed on un-separated mixture of 2,4-diiodo oxazole 4b and 2-
iodo oxazole 5b of 1:2.2 ratio, respectively. After the reaction was run for overnight at 50 ⁰C, 
only a minute amount of the starting material was observed on the TLC. The two coupled 
products, 6b and 7b, were separated after column purification. The separation was hard and 
not complete, as the two products were closely eluted, so a mixture of both was also 
obtained. The yields were calculated to be 58% and 55% of 6b and 7b, respectively 

Discussion 

In a previous work by our research group, they were not able to couple the mono-2-
iodinated oxazole with indole substitution. The performed coupling reactions in this thesis 
indicate that, for ary-substituted oxazole, the 2-mono-iodinated as well as the diiodinated 
oxazole are feasible substrates in the coupling. 

 

 

 

 

PdCl₂(dppf).CH₂Cl₂ , Dioxan/Water 

 N-Boc-2-pyrroleboronic, Cs₂Co₃, 50 ⁰C, 16h 
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4.1.5  Boc group deprotection 

Removal of Boc group using equal volumes of TFA acid and DCM was performed (Scheme 
37). The same procedure was used by Johnson 54 for Boc group deprotection from an indole 
and a piprazine. 

 

 

Scheme 37. Boc group deprotection 

The previously coupled 4-iodooxazole with 3-tosyloxy substitution 6a was Boc-deprotected 
using equal volumes of TFA and DCM. After 2 hours of stirring the starting material was 
observed on the TLC. The reaction was left to stir for overnight and after that no starting 
material was left. In turn a new spot very closely eluted to the starting material was noticed 
which gave a different color upon staining. The corresponding phorbazoles analogue 8a was 
isolated after column chromatography purification in 68 % yield. 

The pyrrole-oxazole with 2-tosyloxy substitution 7b was stirred with TFA/DCM mixture for 
16 hours. After this, no starting material was seen on the TLC. The corresponding 
phorbazoles analogue 9b was obtained in 67 % yield. 

The reaction was performed on a mixture of the 2-tosylated pyrrole-oxazole derivatives 6b 
and 7b. After 16 hours of stirring the 2 spots of the starting material disappeared and 2 new 
spots were noticed which were believed to belong to corresponding Boc-deprotected 
species 8b and 9b. The crude was not purified and further used in deiodination and 
detosylation reaction. 

4.1.6  Analogue diversity by selective de-protection and de-iodination 

4.1.6.1 De-iodination 

Alkyl or arylhalides can be reduced by different methods. Metallic zinc is excellent for 
replacing a halogen with a hydrogen in acidic medium. Usually the zinc reductions takes 
place in a hot or a refluxing solvent55.   

TFA/DCM (1:1), 0 ⁰C, 16h 
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Scheme 38. De-iodination reaction 

The 3-tosylated iodinated analogue 8a was heated at reflux with Zinc and hydrochloric acid 
in ethanol (Scheme 38). After short time, a white fluffy powder appeared in the solution 
which turned into yellowish precipitate after 30 minutes of stirring. EA was added but the 
solid did not dissolve. After that, acetone was added and the solid dissolved. No starting 
material was seen on the TLC and a new spot was observed. Upon addition of water the 
product crystallized out as grey crystals which was isolated revealing the corresponding de-
iodinated analogue 9a in 53% yield.  

4.1.6.2 De-tosylation 

 

Scheme 39. De-tosylation reaction 

The tosyl group is easily removed by refluxing with nucleophilic base. Mostly no purification 
is needed since the aqueous work up is enough to get rid of de-protected tosyl group which 
goes to the water phase. 

 The reaction was performed on the 3-tosylated derivative 8a. It was refluxed in ethanol with 
the base. The product had very minor impurities after the aqueous workup. The phorbazoles 
analogue 10a was obtained in 92 % yield (Scheme 39). 

4.1.6.3 De-ioination and de-tosylation 

It is the same reaction used for the de-tosylation but in addition, 10 eq. of zinc were added 
for reduction and replacing the iodine with a hydrogen (Scheme 40) 

1 M HCl, Zn (10 eq.)/EtOH, reflux, 1h 
 

20% NaOH /EtOH, reflux, 10 min 
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Scheme 40. De-tosylation and de-iodination reaction 

The reaction was performed on the 3-tosylated iodinated analogue 8a. The TLC checked 
after 1 and 3 hours, both showed the starting material in a considerable amount. After 5 
hours only traces of the starting material was left. During the reaction a large amount of 
white crystals was formed which was filtered off before the aqueous workup. The crude was 
not purified. The NMR and MS data showed that the 3-hydroxy substituted analogue 11a 
was obtained with some minor impurities. 

In the same way, a crude mixture of the un-separated analogues, 8b and 9b was refluxed in 
ethanol with sodium hydroxide and zinc for 5 hours. The TLC showed no starting material. 
After aqueous workup, a grayish crude was obtained. The 2-hydroxy substituted analogue 
was precipitated out of an EA solution of the crude, when it was left for some time. 

4.2 Breitfussins analogue  

4.2.1  Synthesis of the carbohydrazide derivative  

 

 

Scheme 41. Synthesis of the carbohydrazide derivative 

Zhang48 reported the synthesis of the target compound 14 in 95% yield by refluxing the 
starting material with hydrazine hydrate (95%) in ethanol. The reaction was performed for 
two times. First attempt by refluxing 13 in ethanol with the hydrazine hydrate 80% but it did 
not work. In the Second attempt, the starting material was stirred at 80 ⁰C with excess of 
neat hydrazine hydrate 80% for 16 hours. The TLC did not show any starting material. Upon 
addition of a small amount of ethanol and cooling down, a white solid precipitated out of the 
solution, which was filtered and washed with ethanol revealing 14 in 48% yield. 

 

 

20% NaOH, Zn (10n eq.) /EtOH, reflux, 
5h 
 

Hydrazine hydrate(80%), 
80 ⁰C, 16h 
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4.2.2  1,3,4-Oxadiazole synthesis 

 

 

Scheme 42. Synthesis of the 1,3,4-oxadiazole derivative from the carbohydrazide 

According to the procedure by Zhang48, the carbohydrazide 14 was dissolved in POCl₃ and 
refluxed with the commercially available pyrrole-2-carboxylic acid for 5 hours and then 
stirred under vacuum to remove the POCl₃. A deep red colored solid was left after 
evaporation of the POCl₃. The crude was purified by column chromatography and the 
corresponding oxadiazole derivative 15 was obtained in 61% yield (Scheme 42). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pyrrole-2-carboxylic acid, 
POCl₃, reflux, 5h 
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5  CONCLUSION 
This thesis describes my efforts to synthesis a small library of phorbazoles and breitfussins 
analogues. The synthesis of 6 phorbazoles analogues was successful from the commercially 
available starting materials, 3-hydroxybenzaldehyde 1a and 2-hydroxybenzaldehyde 1b.  

4 analogues were prepared from 1a: 8a, 9a, 10a and 11a (scheme 43)  

 

Scheme 43. The analogues obtained from the starting material, 3-hydroxybenzaldehyde 1a  

 

2 analogues were prepared from 1b: 9b and 11b (Scheme 44) 

 

Scheme 44. The analogues obtained from the starting material, 2-hydroxybenzaldehyde 1b 

The synthesis of one breitfussins analogue 15 in two steps was successful using methyl-1H-
indole-3-carboxylate 13 as a starting material (Scheme 45). 
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Scheme 45. The total synthesis of the breitsussins analogue 15 

A van Leusen based oxazole synthesis was followed to form the oxazole core in the 
phorbazoles analogues. The reaction was performed on 4 compounds, the 3- and 2-
tosyloxybenzaldehydes 2a and 2b, respectively and the 3- and 2-methoxybenzaldehydes, 2c 
and 2d, respectively. The tosyloxy substituted starting materials give better yields than the 
methoxy substituted ones and the 3-substitution is more favored in both cases (Scheme 46). 

 

Scheme 46. Summary of the performed oxazoles synthesis  

Iodination by lithiation was performed with aim to obtain selective 2,4-diiodination and 2-
iodination on the oxazole. The 2,4-iodination approach was performed on 3- and 2-tosylated 
oxazole derivatives, 3a and 3b, respectively. The 2,4-iodinated derivative was obtained as a 
major product from 3a but the 2-iodinated derivative was the major product with 3b 
(Scheme 47). 

 

Scheme 47. The attempted 2,4-diiodination 

The 2-iodination approach was performed on the 3- and 2-methoxy oxazole derivatives, 3c 
and 3d, respectively. The 2-iodinated derivative was the only product obtained from 3c, 
while the 2,4-diiodinated was the major product with 3d (Scheme 48). 

I₂(3eq.), -78 ⁰C, 1h 

LiHMDS(3 eq.)/THF, -78 ⁰C, 30 min 
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Scheme 48. The attempted 2-iodination 

Coupling was performed on 2-iodinated and 2,4-diiodinated oxazole species with tosylated 
phenyl substitution on C5 and both are feasible substrates for the coupling in contrast to 
what was observed before with the C5 indole substitution (Scheme 49). 

 

Scheme 49. Summary of the performed Suzuki-Miyaura coupling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LiHMDS(3 eq.)/THF, -78 ⁰C, 
30 min 

I₂(1.2equ.), -40 ⁰C, 1h 
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7 EXPERIMENTAL PROCEDURES 
All reagents were purchased from Sigma Aldrich Co. and used as received. Dry THF was 
obtained from a sodium/benzophenone still. Column chromatography was performed using 
silica gel 35-70 micron from DAVISIL. Reactions were monitored by TLC using Merck KGaA, 
60 F254 silica gel plates and visualized by UV and stains. 

NMR spectra were recorded on 400 MHz Bruker Advance III equipped with a 5 mm 
SmartProbe BB/1H using CDCl₃, DMSO-d6 or Acetone-d6 as a solvent. The reference values 
for CDCl₃ were 7.26 and 77.02 for 1H and 13C-NMR spectra respectively. DMSO-d6 reference 
values were 2.50 and 40.23 for 1H and 13C-NMR spectra respectively. Acetone-d6 reference 
values were 2.05 and 29.98 for 1H and 13C-NMR spectra respectively. Some NMR spectra 
may contain peaks from residual solvents, mainly EA and acetone. All the NMR spectra were 
processed with MestReNova-10.0.2. 

HRMS spectra were recorded on a Thermo scientific electron LTQ Orbitrap XL +Electrospray 
ion source using methanol as a solvent. 

Evaporation of volatile solvents was performed by a Buchi rotavapor evaporator with an 
integrated vacuum pump. 
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7.1 Synthesis of phorbazoles analogues 

7.1.1 General procedure for protection of the hydroxybenzaldehyde with 
tosyl group 

 

 

 

Compound 1 and 0.4 mol % of DMAP were dissolved in DCM (10 mL per 1 g of compound 1). 
Et₃N (4.5 mL per 1 g of 1) was added and the solution was cooled with stirring to 0 ⁰C. 
Tosylchloride was suspended in DCM (2 mL per 1 g tosylchloride) and added dropwise to the 
solution. The mixture was stirred for 1 hour. A proper amount of water was added. The 
organic layer was separated, washed 2 times with 1 M HCl and 2 times with brine solution, 
dried over MgSO₄, filtered and the solvent evaporated. The crude was purified by 
recrystallization using 15 % ethanol/water and dried.  

7.1.1.1   3-Formylphenyl-4-methylbenzenesulfonate (2a) 

 

3-Formylphenyl-4-methylbenzenesulfonate 2a (20.3 g, 73 mmol, 89 %) was prepared from         
3-hydroxybenzaldehyde 1a (83 mmol) as pale yellow crystals. TLC; Rf =0.33 (30% 
EA/heptane). 

1H NMR (CDCl₃, 400 MHz) δ = 9.93 (S,1H) , 7.78 (d, J = 7.6 Hz ,1H) , 7.72 (d, J = 
7.6 Hz, 2H), 7.49 (t, J= 8 Hz, 1H) , 7.47 (s, 1H), 7.33 (d, J= 8 Hz , 2H) , 7.30 (m, 1H), 2.46 (s, 3H). 
13C NMR (CDCl₃, 400 MHz) δ = 190.6, 150.2, 145.8, 137.9, 132.0, 130.4, 129.9, 128.5, 128.4, 
128.2, 123.0, 21.7. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₄H₁₁O₄S [M+H]⁺ 275.0378, found 
275.0383.  

 

 

 

 

TsCL, Et₃N, DMAP, 0 ⁰C /DCM , 1h 
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7.1.1.2   2-Formylphenyl-4-methylbenzenesulfonate (2b) 

 

2-Formylphenyl-4-methylbenzenesulfonate 2b (21 g, 76 mmol, 93 %) was prepared from            
2-hydroxybenzaldehyde 1b (83 mmol) as pale yellow crystals. TLC; Rf =0.33 (30% 
EA/heptane). 1H NMR (CDCl₃, 400 MHz) δ = 9.99 (S,1H), 7.87 (dd, J = 2,8 Hz, 1H) , 7.71 (d, J = 
8 Hz, 2H), 7.59 (m, 1H) , 7.40 (t, j=8 Hz, 1H), 7.34 (d, J = 8 Hz, 2H) , 7.22 (d, j = 8 Hz, 1H), 2.46 
(s, 3H). 13C NMR (CDCl₃, 400 MHz) δ = 187.3, 151.2, 146.3, 135.3, 131.4, 130.1, 129.3, 128.6, 
128.5, 127.5, 123.8, 21.8. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₄H₁₁O₄S 275.0378, found 
275.0384. 

7.1.2 Modified procedure for oxazole synthesis by TosMIC. 

  

 

Compound 2 and 1.1 eq. of TosMIC were dissolved in DME (5 mL per 1 g of 2). 1.1 eq. of DBU 
was added and the mixture was refluxed for 2-3 hours. Water was added and the organic 
layer was separated and washed 3 times with brine solution, dried over MgSO₄, filtered and 
the solvent was evaporated. The crude was purified by column chromatography using 
EA/pentane as eluent in an appropriate ratio to yield the corresponding oxazole derivatives. 

7.1.2.1   3-(Oxazol-5-yl)phenyl-4-methylbenzenesulfonate (3a) 

 

3-(Oxazol-5-yl)phenyl 4-methylbenzenesulfonate 3a (13.9 g, 44 mmol, 61%) was prepared 
from 3-formylphenyl-4-methylbenzenesulfonate 2a (72 mmol) as a yellow solid. TLC; Rf =0.2 
(30% EA/ heptane).1H NMR (CDCl₃, 400 MHz) δ = 7.90 (S,1H), 7.74 (d, J = 8 Hz, 2H) , 7.53 (d, J 
= 8 Hz, 1H), 7.32 (m, 5H) , 6.94 (d, j=8 Hz, 1H), 2.45 (s, 3H). 13C NMR (CDCl₃, 400 MHz) δ = 
150.8, 150.1, 150.0, 145.6, 132.2, 130.3, 129.8, 129.4, 128.5, 122.9, 122.5, 122.3, 118.4, 
21.7. HRMS calculated for C₁₆H₁₄O₄NS [M+H]⁺ 316.0643, found 316.0639. 

TosMIC, DBU / DME 

Reflux 80 ⁰C, 2-3h 
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7.1.2.2    2-(Oxazol-5-yl)phenyl-4-methylbenzenesulfonate (3b) 

 

 2-(Oxazol-5-yl)phenyl-4-methylbenzenesulfonate 3b (2.3 g, 7.3 mmol, 40 %) was prepared 
from 2-formylphenyl-4-methylbenzenesulfonate 2b (18 mmol) as a brown solid. TLC; Rf =0.2 
(30% EA/heptane).1H NMR (CDCl₃, 400 MHz) δ = 7.82 (S, 1H), 7.65 (m, 1H) , 7.62 (d, J = 8 Hz, 
2H), 7.43 (s, 1H), 7.36 (m, 1H) 7.31 (m, 2H), 7,20 (d, j = 8, 2H), 2.38 (s, 3H). 13C NMR (CDCl₃, 
400 MHz) δ = 150.1, 146.3, 145.7, 145.6, 132.2, 129.5, 129.3, 128.3, 127.2, 127.0, 126.0 
122.6, 121.5, 21.6. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₄O₄NS 316.0643, found 
316.0647.  

7.1.3 Standard procedure for oxazole synthesis by TosMIC 

  

Compound 2 and 1.1 eq. of TosMIC were dissolved in anhydrous methanol (8 mL per 1 g of 
2). 1.1 eq. of k₂CO₃ was added and the mixture was refluxed for 16 hours. Water was added 
and the organic layer was separated, washed 3 times with brine solution, dried over MgSO₄, 
filtered and the solvent was evaporated. The crude was purified using column 
chromatography to yield the corresponding oxazole derivatives. 

7.1.3.1    5-(3-Methoxyphenyl)oxazole (3c) 

 

5-(3-Methoxyphenyl)oxazole 3c (2.26 g, 13 mmol, 44 %) was prepared from                                   
3-methoxybenzaldehyde 2c (29 mmol) as a brown solid. TLC; Rf =0.34 (35% EA/heptane). 1H 
NMR (CDCl₃, 400 MHz δ = 7.89 (S, 1H), 7.33 (s, 1H), 7.31 (d, J = 8 Hz, 1H), 7.23 (d, J = 8 Hz, 
1H), 7.17 (t, J = 2.6 Hz, 1H) , 6.87 (dd, j = 2.6, 8 Hz, 1H), 3.84 (s, 3H). 13C NMR (CDCl₃, 400 
MHz δ = 159.9, 151.3, 150.3, 130.0, 128.9, 121.7, 116.8, 114.2, 109.7, 55.2. HRMS (ESI) m/z: 
[M+H]⁺ calculated for C₁₀H₁₀O₂N 176.0711, found 176.704. 

 

TosMIC, K₂CO₃ / Methanol 

Reflux 80 ⁰C, 16h 
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7.1.3.1   5-(2-Methoxyphenyl)oxazole (3d) 

 

5-(2-Methoxyphenyl)oxazole 3d (1 g, 5.7 mmol, 30 %) was prepared from                                       
2-methoxybenzaldehyde 2d (19 mmol) as a brown oil. TLC; Rf =0.37 (35% EA/heptane).1H 
NMR (CDCl₃, 400 MHz) δ = 7.89 (S,1H), 7.78 (d, J = 8 Hz, 1H) , 7.56 (s, 1H), 7.30 (t, J = 8 Hz, 
1H), 7.04 (t, J = 8 Hz, 1H) , 6.97 (d, j = 8 Hz, 1H), 3.95 (s, 3H). 13C NMR (CDCl₃, 400 MHz) δ = 
155.6, 149.4, 147.9, 129.2, 126.0, 125.4, 120.7, 116.9, 110.8, 55.4. HRMS (ESI) m/z: [M+H]⁺ 
calculated for C₁₀H₁₀O₂N 176.0711, found 176.704. 

7.1.4 General procedure for 2,4-iodination of the oxazole by lithiation 

 

Compound 3 was dissolved in dry THF (1 mL per 1 mmol of 3) and cooled to -78 ⁰C.  3 eq. of 
freshly prepared LiHMDS (1 M in THF) were added dropwise to the solution followed by 
stirring for 30 minutes. 3 eq. of Iodine were dissolved in dry THF (2 mL per 1 g Iodine) and 
added slowly to the reaction mixture at -78 ⁰C. The mixture was stirred for 1 hour and then 
left to be heated to rt. After that it was quenched with 10 % Na₂S₂O₃ solution and extracted 
with EA. The organic layer was separated, washed 3 times with brine solution, dried over 
MgSO₄, filtered and the solvent evaporated. The crude was purified by column 
chromatography using EA/pentane as eluent in an appropriate ratio to yield the 
corresponding iodinated derivatives. 

 

 

 

 

 

I₂(3 eq.), -78 ⁰C , 1h 

LiHMDS(3 eq.)/THF, -78 ⁰C, 30 min 
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7.1.4.1   3-(2,4-Diiodooxazol-5-yl)phenyl-4-methylbenzenesulfonate (4a) 

        

3-(2,4-Diiodooxazol-5-yl)phenyl-4-methylbenzenesulfonate 4a (3.46 g, 6.1 mmol, 62%) was 
prepared from 3-(oxazol-5-yl)phenyl 4-methylbenzenesulfonate 3a (9.84 mmol) as a yellow 
solid. TLC; Rf =0.22 (30% EA/heptane). 1H NMR (CDCl₃, 400 MHz) δ = 7.82 (d, J = 7.6 Hz, 1H), 
7.74 (d, J = 8 Hz, 2H), 7.54 (s, 1H), 7.40 (t, J = 8 Hz, 1H), 7.34 (d, J = 8 Hz, 2H), 7.06 (d, j = 8 Hz, 
1H), 2.46 (s, 3H). 13C NMR (CDCl₃, 400 MHz) δ = 155.4, 149.7, 145.6, 132.2, 130.1, 129.9, 
128.6, 127.7, 124.3, 123.5, 119.7, 101.5, 80.3, 21.8. HRMS (ESI) m/z: [M+K]⁺ calculated for 
C₁₆H₁₁O₄NI₂KS 605.8135, found 605.8129. 

7.1.4.2   2-(2,4-Diiodooxazol-5-yl)phenyl-4-methylbenzenesulfonate 4b and 2-
(2-iodooxazol-5-yl)phenyl-4-methylbenzenesulfonate (5b) 

 

A mixture (2.7 g) of 2-(2,4-diiodooxazol-5-yl)phenyl-4-methylbenzenesulfonate 4b (1 g, 1.7 
mmol, 23%) and 2-(2-iodooxazol-5-yl)phenyl-4-methylbenzenesulfonate 5b (1.7 g, 4 mmol, 
50%) was prepared as a pale yellow solid from 2-(oxazol-5-yl)phenyl-4-
methylbenzenesulfonate 3b (8 mmol). TLC; Rf =0.44 (30% EA/pentane). 

7.1.5 General procedure for 2-iodination of the oxazole by lithiation 

 

1 eq. of 3 was dissolved in dry THF (1 mL per 1 mmol of 3) and cooled to -78 ⁰C.  3 eq. of freshly 
prepared LiHMDS (1 M in THF) were added dropwise to the solution followed by stirring for 
30 minutes. 1.2 eq. of Iodine were dissolved in dry THF (2 mL per 1 g Iodine) and added slowly 
to the reaction mixture at -40 ⁰C. The mixture was stirred for 1 hour and then left to be heated 
to rt. After that it was quenched with 10 % Na₂S₂O₃ solution and extracted with EA. the organic 
layer was separated, washed 3 times with brine solution, dried over MgSO₄, filtered and the 

LiHMDS(3 eq.)/THF, -78 ⁰C, 30 min 

I₂(1.2 eq.), -40 ⁰C , 1h 
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solvent evaporated. The crude was purified by column chromatography using EA/pentane as 
eluent in an appropriate ratio to yield the corresponding iodinated derivatives. 

7.1.5.1  2,4-Diiodo-5-(3-methoxyphenyl)oxazole (4c) 

 

2,4-Diiodo-5-(3-methoxyphenyl)oxazole 4c (376 mg, 0.86 mmol, 30 %) was prepared from 5-
(3-methoxyphenyl)oxazole 3c (2.8 mmol) as a yellowish crystalline solid. TLC; Rf =0.56 (35% 
EA/heptane).1H NMR (CDCl₃, 400 MHz) δ = 7.50 (d, j=8 Hz, 1H), 7.45 (s, 1H), 7.37 (t, J = 8 Hz, 
1H), 6.96 (d, j = 8 Hz, 1H), 3.87 (s, 3H). 13C NMR (CDCl₃, 400 MHz) δ = 159.6, 156.9, 129.9, 
127.3, 118.4, 115.6, 111.2, 100.8, 79.5, 55.4. HRMS (ESI) m/z: [M+K]⁺ calculated for 
C₁₀H₇O₂NI₂K 465.8203, found 465.8190. 

7.1.5.2 2-Iodo-5-(2-methoxyphenyl)oxazole (5d) 

 

2-Iodo-5-(2-methoxyphenyl)oxazole 4h (350 mg, 1.16 mmol, 81%) was prepared from 5-(2-
methoxyphenyl)oxazole 3d (1.4 mmol) as a yellowish crystalline solid. TLC; Rf =0.42 (35% 
EA/heptane). 1H NMR (CDCl₃, 400 MHz) δ = 7.73 (d, j=8 Hz, 1H), 7.46 (s, 1H), 7.31 (t, J = 8 Hz, 
1H), 7.04 (t, J = 8 Hz, 1H), 6.97 (d, j = 8 Hz, 1H), 3.95 (s, 3H). 13C NMR (CDCl₃, 400 MHz) δ = 
155.3, 154.2, 129.6, 129.2, 126.0, 120.8, 116.1, 110.8, 99.1, 55.4. HRMS (ESI) m/z: [M+K]⁺ 
calculated for C₁₀H₈O₂NIK 339.9236, found 339.9230. 

7.1.6 General procedure for TMPMgCl•LiCl based oxazole synthesis 

 

Compound 3 was dissolved in dry THF and cooled to -40 ⁰C approximately. Two equivalents 
of TMPMgCl•LiCl were added and the mixture stirred for 30 minutes before addition of 
three equivalents of 0.5 M LiCl solition in THF followed by dropwise addition of the iodine in 
appropriate eq., dissolved in THF (2 mL THF per 1 g iodine). 

TMPMgCl•LiCl (2 eq.)/THF, - 40 ⁰C , 
30 min 
 

0.5 M LiCl (3 eq.), I₂ / THF, - 13 ⁰C, 1h 
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7.1.7 General procedure for the Suzuki coupling on the oxazole 

 

compound 4 was dissolved in degassed dioxane. Then 1.4 eq. of N-Boc-2-pyrroleboronic 
acid, 3 eq. of Cesium carbonate and degassed water were added, respectively. 0.1 eq. of the 
catalyst, PdCl₂(dppf).CH₂Cl₂ was last added and the mixture was degassed again and heated 
with stirring on oil bath for 2-5 hours at 50 ⁰C. Water and EA were then added and the 
organic layer separated, washed 3 times with brine solution, dried over MgSO₄, filtered and 
the solvent was evaporated. Column chromatography was carried to purify the crude using 
EA/pentane in an appropriate ratio to give the corresponding product. 

7.1.7.1   tert-butyl-2-(4-iodo-5-(3-(tosyloxy)phenyl)oxazol-2-yl)-1H-pyrrole-1-
carboxylate (6a) 

 

tert-butyl-2-(4-iodo-5-(3-(tosyloxy)phenyl)oxazol-2-yl)-1H-pyrrole-1-carboxylate 6a (280 mg, 
0.46 mmol, 60 %) was prepared from 3-(2,4-diiodooxazol-5-yl)phenyl-4-
methylbenzenesulfonate 4a ( 0.76 mmol) as a yellowish oil. TLC; Rf =0.37 (30% EA/heptane). 
1H NMR (CDCl₃, 400 MHz) δ = 7.89 (d, J = 8 Hz, 1H), 7.74 (d, J = 8 Hz, 2H), 7.63 (s, 1H), 7.45 
(m, 1H), 7.39 (t, J = 8 Hz, 1H), 7.32 (d, J = 8 Hz, 2H), 7.04 (d, j = 8 Hz, 1H), 6.76 (q, J = 2.6 Hz, 
1H), 6.30 (t, J = 4 Hz, 1H),  2.42 (s, 3H), 1.45 (s, 9H). 13C NMR (CDCl₃, 400 MHz) δ = 155.7, 
150.1, 149.8, 148.2, 145.6, 132.3, 130.3, 129.8, 129.6, 128.5, 124.7, 123.6, 122.5, 122.1, 
120.6, 119.0, 118.1, 111.0, 84.6, 27.7, 21.7. 

 

 

 

PdCl₂(dppf).CH₂Cl₂ , Dioxan/Water 

 N-Boc-2-pyrroleboronic, Cs₂Co₃, 50 ⁰C, 2-5h 
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7.1.7.2   tert-butyl-2-(4-iodo-5-(2-(tosyloxy)phenyl)oxazol-2-yl)-1H-pyrrole-1-
carboxylate (6b) 

 

tert-butyl-2-(4-iodo-5-(2-(tosyloxy)phenyl)oxazol-2-yl)-1H-pyrrole-1-carboxylate 6b (230 mg, 
0.4 mmol, 58 %)) was prepared from 2-(2,4-diiodooxazol-5-yl)phenyl-4-
methylbenzenesulfonate 4b (0.65 mmol). TLC; Rf =0.38 (35% EA/heptane). 1H NMR (CDCl₃, 
400 MHz) δ = 7.61 (d, J = 8 Hz, 1H), 7.56 (d, J = 8 Hz, 1H), 7.48 (t, J = 8 Hz, 1H), 7.42 (d, J = 8 
Hz, 3H), 7.35 (t, J = 8 Hz, 1H), 7.09 (d, j = 8 Hz, 2H), 6.77 (q, J = 2 Hz, 1H), 6.31 (t, J = 4 Hz, 1H),  
2.32 (s, 3H), 1.44 (s, 9H). 13C NMR (CDCl₃, 400 MHz) δ = 156.7, 148.0, 147.4, 146.4, 145.4, 
131.9, 131.0, 130.7, 129.7, 127.9, 127.0, 125.3, 124.5, 121.0, 119.8, 119.3, 111.0, 85.0, 83.0, 
27.6, 21.7. HRMS (ESI) m/z: [M+K]⁺ calculated for C₂₅H₂₃O₆N₂IKS 644.9958, found 644.9953. 

7.1.7.3   tert-butyl 2-(5-(2-(tosyloxy)phenyl)oxazol-2-yl)-1H-pyrrole-1-
carboxylate (7b) 

 

tert-butyl-2-(5-(2-(tosyloxy)phenyl)oxazol-2-yl)-1H-pyrrole-1-carboxylate 7b (75 mg, 0.15 
mmol) was prepared from a 1 g mixture of 2-(2,4-diiodooxazol-5-yl)phenyl-4-
methylbenzenesulfonate 4b and 2-(2-iodooxazol-5-yl)phenyl-4-methylbenzenesulfonate 5b. 
TLC; Rf =0.33 (35% EA/heptane). 1H NMR (CDCl₃, 400 MHz) δ = 7.68 (m, 3H), 7.49 (s, 1H), 7.43 
(m, 1H), 7.40 (m, 1H), 7.30 (m, 2H), 7.23 (d, j = 8 Hz, 2H), 6.70 (q, J = 2 Hz, 1H), 6.28 (t, J = 4 
Hz, 1H),  2.37 (s, 3H), 1.40 (s, 9H). 13C NMR (CDCl₃, 400 MHz) δ = 155.0, 148.2, 146.1, 145.6, 
145.5, 132.5, 129.7, 129.0, 128.4, 127.4, 127.1, 126.6, 124.7, 122.5, 121.7, 120.7, 119.0, 
111.0, 84.6, 27.6, 21.7. HRMS (ESI) m/z: [M+K]⁺ calculated for C₂₅H₂₄O₆N₂KS 519.0992, found 
519.0986 
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7.1.8 Boc group de-protection 

  

 

6a or 7b was dissolved in DCM (5 mL per 1 g of 6a) and cooled to 0 ⁰C. TFA (5 mL per 1 g of 
6a) was added dropwise then 50 microliters of water were added and the reaction mixture 
was stirred for 16 hours. The mixture was quenched with aqueous solution of NHCO₃. The 
organic layer was separated and washed 3 times with brine solution, dried over MgSO₄, 
filtered and the solvent evaporated. Column chromatography was carried to purify the crude 
using EA/pentane in appropriate ratio to yield the corresponding product. 

7.1.8.1   3-(4-Iodo-2-(1H-pyrrol-2-yl)oxazol-5-yl)phenyl-4-
methylbenzenesulfonate (8a) 

 

3-(4-Iodo-2-(1H-pyrrol-2-yl)oxazol-5-yl)phenyl-4-methylbenzenesulfonate 8a (198 mg, 0.4 
mmol, 67.7 %) was prepared from tert-butyl-2-(4-iodo-5-(3-(tosyloxy)phenyl)oxazol-2-yl)-1H-
pyrrole-1-carboxylate 6a (0.57 mmol). TLC; Rf =0.45 (30% EA/heptane). 1H NMR (CDCl₃, 400 
MHz) δ = 9.17 (s, 1H), 7.90 (d, J = 8 Hz, 1H), 7.76 (d, J = 8 Hz, 2H), 7.60 (s, 1H), 7.39 (t, J = 8 
Hz, 1H), 7.34 (d, J = 8 Hz, 2H), 7.03 (d, j = 8 Hz, 1H), 6.98 (s, 1H), 6.88 (s, 1H),  2.45 (s, 3H). 13C 
NMR (CDCl₃, 400 MHz) δ = 157.3, 149.8, 146.8, 145.6, 137.1, 132.3, 130.0, 129.9, 128.8, 
128.6, 124.0, 122.5, 122.2, 119.4, 119.0, 111.6, 110.8, 21.8. HRMS (ESI) m/z: [M+K]⁺ 
calculated for C₂₀H₁₅O₄N₂IKS 544.9434, found 544.9426. 

 

 

 

TFA/DCM,0 ⁰C- rt , 16 h 
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7.1.8.2   2-(2-(1H-pyrrol-2-yl)oxazol-5-yl)phenyl 4-methylbenzenesulfonate 
(9b) 

 

 

2-(2-(1H-pyrrol-2-yl)oxazol-5-yl)phenyl 4-methylbenzenesulfonate 9b (40 mg, 0.1 mmol, 
67%)  was prepared as a grey solid from 7b (75 mg, 0.15 mmol) TLC; Rf =0.44 (3% 
EA/heptane). 1H NMR (DMSO-d6, 400 MHz) δ = 11.96 (s, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.67 (d, 
J = 7.6 Hz, 2H), 7.42 (m, 5H), 7.23 (d, j = 7.6 Hz, 1H), 7.04 (s, 1H), 6.79 (s, 1H), 6.24 (s, 1H), 
2.31 (s, 3H). 13C NMR (DMSO-d6, 400 MHz) δ = 156.7, 146.8, 145.3, 144.4, 132.1, 130.7, 
130.0, 128.8, 128.5, 127.8, 127.5, 123.3, 123.0, 122.1, 119.9, 111.4, 110.4, 21.8. HRMS (ESI) 
m/z: [M+K]⁺ calculated for C₂₀H₁₆O₄N₂KS 419.0467, found 419.0456. 

7.1.9   De-iodination 

 

3-(4-Iodo-2-(1H-pyrrol-2-yl)oxazol-5-yl)phenyl-4-methylbenzenesulfonate 8a (0.1 mmol) was 
dissolved in 4.5 mL of EtOH. 0.25 mL HCL and 10 eq. of Zn were added, respectively. The 
mixture was heated at reflux for 30 minutes. Water and acetone were added and the 
product crystallized out of the solution. 3-(2-(1H-pyrrol-2-yl)oxazol-5-yl)phenyl-4-
methylbenzenesulfonate 9a (20 mg, 0.05 mmol, 53 %) was obtained as a grey solid. TLC; Rf 

=0.12 (30% EA/heptane). 1H NMR (CDCl₃, 400 MHz) δ = 9.55 (s, 1H), 7.76 (d, J = 8 Hz, 2H), 
7.54 (d, J = 8 Hz, 1H), 7.35 (m, 3H), 7.28 (d, j = 7.6 Hz, 2H), 7.01 (s, 1H), 6.93 (d, J = 8 Hz, H), 
6.25 (s, 1H), 2.46 (s, 3H). 13C NMR (CDCl₃, 400 MHz) δ = 156.7, 148.4, 145.6, 144.4, 132.3, 
130.2, 129.8, 129.6, 128.6, 123.5, 122.4, 121.8, 120.1, 117.9, 110.8, 110.6, 100.0, 21.7. 
HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₀H₁₅O₄N₂S 379.0752, found 379.0751. 

 

 

HCl, Zn(10 equ.), EtOH, Reflux, 30 min 
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7.1.10    De-tosylation 

 

 

3-(4-Iodo-2-(1H-pyrrol-2-yl)oxazol-5-yl)phenyl-4-methylbenzenesulfonate 8a (0.1 mmol) was 
dissolved in 4.5 mL of EtOH. 0.5 mL 20% NaOH solution was added. The mixture was stirred 
for 10 minutes at 70 ⁰C. Water and Ethyl acetate were added and the organic layer was 
separated and washed 2 times with 20 mL brine solution, dried over MgSO₄, filtered and the 
solvent evaporated. 3-(4-iodo-2-(1H-pyrrol-2-yl)oxazol-5-yl)phenol 10a (32 mg, 0.09 mmol, 
92%) was obtained as a grey solid. TLC; Rf =0.37 (30% EA/pentane). 1H NMR (acetone-d6, 400 
MHz) δ = 11.12 (s, 1H), 8.69 (s, 1H), 7.54 (d, J = 8 Hz, 2H), 7.35 (t, J = 8 Hz, 1H), 7.10 (s, 1H), 
6.91 (d, j = 8 Hz, 1H), 6.88 (s, 1H), 6.29 (s, 1H). 13C NMR (acetone-d6, 400 MHz) δ = 158.6, 
148.9, 130.9, 129.7, 123.5, 123.3, 120.2, 118.0, 116.8, 113.3, 112.0, 111.0, 80.7. HRMS (ESI) 
m/z: [M+H]⁺ calculated for C₁₃H₈O₂N₂I 350.9630, found 350.9633. 

7.1.11    De-iodination and de-tosylation 

 

 

8a or 8b was dissolved in EtOH (90 mL per 1 g of 8a or 8b). 20% NaOH solution (10 mL per 1 
g of 8a or 8b) was added. The mixture was stirred and 10 eq. of Zn was added and the 
mixture was stirred at reflux for 5 hours. 

 

 

 

 

 

20 % NaOH, EtOH, 70 ⁰C, 10 min 

20 % NaOH, Zn(10 eq),EtOH, Reflux , 5h 



 

55 

 

7.1.11.1 3-(2-(1H-pyrrol-2-yl)oxazol-5-yl)phenol (11a) 

 

 

3-(2-(1H-pyrrol-2-yl)oxazol-5-yl)phenol 11a (10 mg, 0.04 mmol, 40 %) was prepared as a grey 
solid from 3-(4-iodo-2-(1H-pyrrol-2-yl)oxazol-5-yl)phenyl-4-methylbenzenesulfonate 8a (0.1 
mmol, 50 mg) TLC; Rf =0.15 (30% EA/pentane). 1H NMR (DMSO-d6, 400 MHz) δ = 11.92 (s, 
1H), 9.65 (s, 1H), 7.62 (s, 1H), 7.26 (t, J = 7.8 Hz, 1H), 7.21 (d, J = 7.6 Hz, 1H), 7.15 (s, 1H), 7.00 
(s, 1H), 6.76 (d, J = 7.6 Hz, 2H), 6.22 (s, 1H). HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₃H₉O₂N₂ 
225.0664, found 225.0669. 

7.1.11.2 2-(2-(1H-pyrrol-2-yl)oxazol-5-yl)phenol (11b) 

 

2-(2-(1H-pyrrol-2-yl)oxazol-5-yl)phenol 11b (80 mg, 0.3 mmol) was prepared as a dark grey 
solid from a crude mixture of 8b and 9b.  TLC; Rf =0.25 (35% EA/pentane).1H NMR (DMSO-
d6, 400 MHz) δ = 11.91 (s, 1H), 10.38 (s, 1H), 7.78 (d, J = 8 Hz, 1H), 7.52 (s, 1H), 7.17 (t, J = 8 
Hz, 1H), 6.96 (m, 3H), 6.78 (s, 1H), 6.22 (q, j = 2 Hz, 1H). 13C NMR (DMSO-d6, 400 MHz) δ = 
155.4, 154.3, 146.7, 129.3, 126.6, 125.7, 122.7, 120.4, 120.0, 116.4, 115.7, 110.6, 110.2. 
HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₃H₉O₂N₂ 225.0664, found 225.0670. 
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7.2 Synthesis of the breitfussins analogue 

7.2.1 Synthesis of 1H-indole-3-carbohydrazide (14) 

 

(500 mg, 3 mmol) of methyl-1H-indole-3-carboxylate 13 were added to a small excess of 
hydrazine hydrate(50 mmol) and heated at 80 ⁰C for 16 hours. A small amount of ethanol 
were added and the solution left to cool down. The product crystallized out as a white solid 
which was then filtered and washed with ethanol to give (240 mg, 1.45 mmol, 48 %) of 1H-
indole-3-carbohydrazide 14 as white solid. TLC; Rf =0.55 (acetone).1H NMR (DMSO-d6, 400 
MHz) δ = 11.50 (S,1H), 9.13 (s, 1H), 8.13 (d, J =7.6 Hz, 1H), 7.95 (s, 1H), 7.41 (d, j = 7.6 Hz, 
1H), 7.10 (m, 2H), 4.30 (s, 2H). HRMS (ESI) m/z: [M+H]⁺ calculated for C₉H₈ON₃ 174.0667, 
found 174.0671. 

 

7.2.2 Synthesis of 2-(1H-indol-3-yl)-5-(1H-pyrrol-2-yl)-1,3,4-oxadiazole (15) 

 

(230 mg, 1.3 mmol) of 1H-indole-3-carbohydrazide 8 and 1.3 mmol of Pyrrole-2-carboxylic 
acid were dissolved in POCl₃ (6 mL) and heated at reflux for 5 hours. After that, the mixture 
was stirred under vacuum to evaporate POCl₃. The residue was dissolved in EA and extracted 
with saturated NaHCO₃ solution. The resulting solution was washed 3 times with brine 
solution, dried over MgSO₄, filtered and the solvent was evaporated. Column 
chromatography was carried to purify the crude using (20-60 % acetone/pentane) to give 2-
(1H-indol-3-yl)-5-(1H-pyrrol-2-yl)-1,3,4-oxadiazole 9 (200 mg, 0.8 mmol, 61%) as a pale red 
solid. TLC; Rf =0.88 (acetone). 1H NMR (DMSO-d6, 400 MHz) δ = 12.17 (S,1H), 12.00 (S,1H), 
8.17 (d, j = 8 HZ, 2H), 7.54 (d, j = 8 Hz, 1H) 7.27 (p, j = 8 Hz, 2H), 7.10 (s, 1H), 6.88 (s, 1H), 6.29 
(s, 1H). 13C NMR (DMSO-d6, 400 MHz) δ = 160.9, 157.9, 137.1, 128.6, 124.8, 123.9, 123.5, 
121.8, 121.0, 116.4, 113.1, 112.2, 110.5, 100.2. HRMS (ESI) m/z: [M+Na]⁺ calculated for 
C₁₄H₁₀ON₄Na 273.0752, found 273.0743. 

 

 

Hydrazine hydrate(80%), 
80 ⁰C, 16h 

Pyrrole-2-carboxylic acid, POCl₃, 
reflux, 5h 
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8 APPENDICES 

Appendix 1: 3-formylphenyl-4-methylbenzenesulfonate (2a) 
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2a_neg #5 RT: 0.12 AV: 1 NL: 2.54E8
T: FTMS - p ESI Full ms [160.00-550.00]
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Appendix 2: 2-formylphenyl-4-methylbenzenesulfonate (2b) 
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2b_neg #5 RT: 0.13 AV: 1 NL: 2.12E8
T: FTMS - p ESI Full ms [160.00-550.00]
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Appendix 3: 3-(oxazol-5-yl)phenyl-4-methylbenzenesulfonate (3a) 
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3a_posc #5 RT: 0.14 AV: 1 NL: 2.11E8
T: FTMS + p ESI Full ms [160.00-550.00]
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Appendix 4: 2-(oxazol-5-yl)phenyl-4-methylbenzenesulfonate (3b) 
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3b_pos #5 RT: 0.12 AV: 1 NL: 1.57E7
T: FTMS + p ESI Full ms [160.00-550.00]
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Appendix 5: 5-(3-methoxyphenyl)oxazole (3c) 
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3c_pos #5 RT: 0.13 AV: 1 NL: 3.94E7
T: FTMS + p ESI Full ms [100.00-450.00]
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Appendix 6: 5-(2-methoxyphenyl)oxazole (3d) 
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3d_160513120900 #1-5 RT: 0.01-0.13 AV: 5 NL: 3.85E7
T: FTMS + p ESI Full ms [130.00-450.00]
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Appendix 7: 3-(2,4-diiodooxazol-5-yl)phenyl-4-methylbenzenesulfonate (4a) 
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4a_pos #5 RT: 0.12 AV: 1 NL: 3.00E7
T: FTMS + p ESI Full ms [200.00-700.00]
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Appendix 8: 2,4-diiodo-5-(3-methoxyphenyl)oxazole (4c) 
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4c_pos #2 RT: 0.05 AV: 1 NL: 6.64E6
T: FTMS + p ESI Full ms [200.00-700.00]
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Appendix 9: 2-iodo-5-(2-methoxyphenyl)oxazole (5d) 
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5d_pos #6 RT: 0.14 AV: 1 NL: 3.14E7
T: FTMS + p ESI Full ms [200.00-700.00]
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Appendix 10: tert-butyl 2-(4-iodo-5-(3-(tosyloxy)phenyl)oxazol-2-yl)-1H-pyrrole-1-
carboxylate (6a) 
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Appendix 11: tert-butyl 2-(4-iodo-5-(2-(tosyloxy)phenyl)oxazol-2-yl)-1H-pyrrole-1-
carboxylate (6b) 
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6B_pos #1-5 RT: 0.01-0.11 AV: 5 NL: 9.87E7
T: FTMS + p ESI Full ms [200.00-800.00]
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Appendix 12: tert-butyl 2-(5-(2-(tosyloxy)phenyl)oxazol-2-yl)-1H-pyrrole-1-carboxylate 
(7b) 
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7B_pos #5 RT: 0.14 AV: 1 NL: 1.02E8
T: FTMS + p ESI Full ms [200.00-700.00]
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C 25 H 24 O 6 N 2 K S

644.9944
419.0463

C 20 H 16 O 4 N 2 K S
617.0959567.1188

268.0584

C 11 H 14 O 2 N 2 K Na



 

81 

 

Appendix 13: 3-(4-iodo-2-(1H-pyrrol-2-yl)oxazol-5-yl)phenyl-4-methylbenzenesulfonate 
(8a) 
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8a_posb #5 RT: 0.13 AV: 1 NL: 1.48E7
T: FTMS + p ESI Full ms [200.00-700.00]
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C 20 H 15 O 4 N 2 I K S

419.0460

C 20 H 16 O 4 N 2 K S

519.0984

257.9355

C 3 H 8 O 4 I Na

582.8978

336.8893

C 12 H 4 I K Na
634.8146 678.8045
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Appendix 14: 3-(2-(1H-pyrrol-2-yl)oxazol-5-yl)phenyl 4-methylbenzenesulfonate (9a) 
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ABAM_044_neg #5 RT: 0.15 AV: 1 NL: 7.26E6
T: FTMS - p ESI Full ms [200.00-600.00]
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C 20 H 15 O 4 N 2 S

225.0670

C 13 H 9 O 2 N 2

409.3104 551.0945
315.1139

C 20 H 15 O 2 N 2 473.3994

350.9637
C 20 H O 4 N S

597.4156
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Appendix 15: 2-(2-(1H-pyrrol-2-yl)oxazol-5-yl)phenyl 4-methylbenzenesulfonate (9b) 
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9b_pos #5 RT: 0.11 AV: 1 NL: 1.12E7
T: FTMS + p ESI Full ms [200.00-700.00]
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631.1118495.2338 557.0931232.9352

C 11 O N K S 301.1407 605.9907

668.9705

390.8969
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Appendix 16: 3-(4-iodo-2-(1H-pyrrol-2-yl)oxazol-5-yl)phenol (10a) 
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ABAM_042_neg #5 RT: 0.17 AV: 1 NL: 6.14E6
T: FTMS - p ESI Full ms [200.00-600.00]
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257.9420

C 8 H 5 O N I
529.4626306.9738

C 12 H 8 N 2 I
249.0783 473.4000 555.1151372.9452 426.9534

207.1662

325.1844
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Appendix 17: 3-(2-(1H-pyrrol-2-yl)oxazol-5-yl)phenol (11a) 
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11a_neg #5 RT: 0.13 AV: 1 NL: 1.70E8
T: FTMS - p ESI Full ms [150.00-450.00]
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409.3110354.1498333.0049 429.2182233.1545
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Appendix 18: 2-(2-(1H-pyrrol-2-yl)oxazol-5-yl)phenol 
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11b_neg #1-5 RT: 0.00-0.11 AV: 5 NL: 4.61E7
T: FTMS - p ESI Full ms [130.00-450.00]
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C 13 H 9 O 2 N 2 = 225.0670
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C 12 H 12 O N 2 K = 239.0592

0.4032 mmu

205.1600
C 14 H 21 O = 205.1598

0.1950 mmu

247.0488

C 13 H 8 O 2 N 2 Na = 247.0489

-0.1207 mmu
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Appendix 19: 1H-indole-3-carbohydrazide 
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14_neg #5 RT: 0.12 AV: 1 NL: 4.49E7
T: FTMS - p ESI Full ms [130.00-450.00]
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C 9 H 8 O N 3
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C 9 H 7 O N 2 205.1599
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297.0471

313.0783

371.0658

331.1198258.9628 445.0846389.0763

284.9551
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Appendix 20: 2-(1H-indol-3-yl)-5-(1H-pyrrol-2-yl)-1,3,4-oxadiazole (15) 
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ABAM_040_b #5 RT: 0.13 AV: 1 NL: 2.18E7
T: FTMS + p ESI Full ms [200.00-600.00]
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C 14 H 11 O N 4 393.2965 497.3948337.0374 447.0639


