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Summary  

Autophagy is an evolutionary conserved degradative pathway, where damaged or surplus 

cytosolic components are sequestered into double membrane vesicles, autophagosomes, which 

become degraded through the lysosomal system. The autophagy is a dynamic process, which is 

depended of transport of autophagosomes along microtubule, to become degraded by 

lysosomes. One of the proteins involved in this transport process is FYVE and Coiled-coil [CC] 

domain containing protein 1 (FYCO1). FYCO1 is involved in transporting autophagosomes 

and late endosomes along microtubules, in the plus-end direction, by interacting with kinesin. 

FYCO1 interacts with membranes through phosphatidylinositol-3 phosphate via its FYVE 

domain. It is regulated by RAB7 interaction, via its coiled-coil region, and involved in 

autophagy through its interaction with LC3, via its LIR-region. No interaction partners or roles 

for the N-terminal RUN domain or the C-terminal GOLD domain have been revealed. 

Interestingly, patients with autosomal-recessive congenital cataracts have been identified with 

a mutation, L1376P, in the GOLD domain of FYCO1. This mutation has been suggested to link 

FYCO1 and human lens development and transparency together. The major aim for this study 

was to identify putative interaction candidates for the GOLD domain and examine the effect 

L1376P mutation had on the GOLD domain. From our mass spectrometry study, the GOLD 

domain may seem to be involved in protein-protein interactions. 182 proteins co-precipitated 

together with the insolated GOLD domain, but it is unknown if these interact with the GOLD 

domain directly or indirectly. Of these proteins, TUBA4A, DNAJA1, TXNDC5, NIPSNAP1, 

NIPSNAP2 (GBAS), ARF4, VPS4A, RUVBL2 and MON1B were selected for further 

examination. The GOLD domain showed different distribution when co-expressed with 

TUBA4A and VPS4A. TUBA4A was showed to be located at the centrosome in association 

with the GOLD domain. TUBA4A redistribute the GOLD domain to centrosomes. In addition, 

VPS4A was observed to localize as aggregates, and it was shown in this study that the GOLD 

domain may be redistributed to these VPS4A structures. It is still unclear if these interactions 

with the GOLD domain are indirect or direct. In addition, we studied the L1376P mutation of 

the GOLD domain. This mutation dramatically changes the subcellular distribution of an over-

expressed GFP-GOLD domain construct from diffuse to many small aggregate-like structures. 

If this mutation has a similar effect on the full-length FYCO1 this may perhaps affect the 

transparency of the lens of carriers of this mutation.  
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1 Introduction  

1.1 The cytoskeleton 

Eukaryotic cells are composed of a dynamic network of protein filaments known as the 

cytoskeleton. The cytoskeleton is important for cellular shape, motility and spatial organization 

of cytosolic components. It is divided into three major classes: actin filaments, microtubules 

(MT) and intermediate filaments (Fletcher and Mullins, 2010, Bershadsky and Vasiliev, 2012). 

Actin filaments are helical polymers of actin protein. They are highly concentrated beneath the 

plasma membrane, and are important for cellular shape and movement (Blanchoin et al., 2014). 

MT are long, hollow cylinders made of tubulin protein (α-tubulin and β-tubulin), which 

assembles into linear protofilaments. MT are highly dynamic structures due to their ability to 

quickly become polymerized and depolymerized. MT are polar structures that have plus and 

minus ends with differing polymerization and depolymerization rates. They are crucial for 

neural polarity (Conde and Caceres, 2009) as well as for intracellular transport of organelles 

(Vale et al., 1985). The transport along MT requires motor proteins and two set of motor 

proteins: kinesins and dyneins. Actin filaments and MT can both bind and hydrolyze nucleoside 

triphosphates and generate a force by assemble head-to tail polarization, which contribute to 

the movements (Conde and Caceres, 2009, Mourino-Perez et al., 2016). The intermediate 

filaments are ropelike fibers, made of intermediate filament proteins. Intermediate filaments 

are linked to adhesive structures, such as desmosomes (connects cells together) and provide 

mechanical strength (Herrmann and Aebi, 2004) 

1.2 Vesicle and organelle movement by motor proteins on MT 

Intracellular vesicles and organelles are transported along MT by the motor proteins kinesins 

and dyneins (Hirokawa, 1998). Movement along MT is dependent on a cycle of association and 

dissociation of ATP. Most kinesins transport vesicles and organelles along MT in a plus-end 

manner (anterograde transport), and move along MT at a steady and slow rate. Kinesin-1 is a 

plus-end heterotetramer with two heavy chains and two light chains, whit each heavy chain 

containing an N-terminal nucleotide-binding motor domain (Cardoso et al., 2009). Two light 

chain dyneins are minus-end directed MT motor proteins and interact with dynactin to start the 

transportation. Dyneins are the largest and the fastest among the known molecular motor 

proteins and move through association and dissociation of ATP (Allan, 2011). Motor proteins 

are involved in vesicular transport, which is important for cellular homeostasis.  
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1.3 Rab GTPase family  

Rab proteins are master regulators in the endocytic pathway, regulating transport between 

organelles of endocytic- and secretory pathways with high specificity. The small monomeric G 

proteins (guanine nucleotide binding proteins) are Ras like GTPases, that mediate endosome 

targeting, by regulating docking and tethering. Through the Rab proteins intrinsic GTPase 

activity, they function as molecular switches by hydrolyzing guanosine-5` triphosphate (GTP) 

to guanosine-5 diphosphate (GDP (Stenmark, 2009). Rab proteins are important for linking 

membranous compartments to molecular motor proteins allowing for long distance transport of 

organelles along microtubule or actin tracks (Hammer Iii and Wu, 2002). A link has been 

discovered between different Rab proteins and autophagosomes in the regulation of autophagy 

(Ao et al., 2014).  

1.3.1 Regulation of autophagosome maturation by Rab GTPases 

The fusion- and transporting mechanisms of autophagosomes are regulated by Rab GTPases 

(Ao et al., 2014). One of the Rabs involved in autophagy is Rab7. It has been shown to regulate 

autophagosome formation (Lin et al., 2012) and maturation (Hyttinen et al., 2013). Rab7 is 

present on both late endosomes and autophagosomes. Rab7 is important for the fusion process 

via its binding to the homotypic fusion and protein sorting (HOPS) tethering complex. HOPS 

promotes tethering of membranes such as endosomes, vacuoles, autophagosome and lysosomes 

(Wang et al., 2011).  

 

Rab7 regulates MT transport direction through recrutment of effectors such as FYVE and 

coiled-coil domain containing 1 (FYCO1) (Pankiv et al., 2010) and oxysterol-binding protein 

related protein 1L (ORP1L)/ Rab-interacting lysosomal protein (RILP) (Cantalupo et al., 2001, 

van der Kant et al., 2013). The vesicles transported along MT in a plus- end-direction are bound 

to kinesin through FYCO1s coiled-coil (CC) region, and are regulated through the FYCO1 

interaction with Rab7 (Pankiv et al., 2010, Raiborg et al., 2015). In contrast, vesicles transported 

along MTs in a minus-end direction, are controlled and regulated by the production of the single 

multiprotein complex composed of dynein and HOPS complex. Through a combination of 

regulation and recruitment of HOPS complex and dynein motor proteins, MT minus- end 

transport and fusion can be regulated by the multiprotein complex, Rab7-RILP-ORP1L (van 

der Kant et al., 2013).  
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1.4 Cellular degradative systems 

Cellular homeostasis is obtained by degradation systems regulating the quality and the quantity 

of cytosolic components, such as organelles and proteins. Eukaryotic cells have two main 

intracellular degradation systems: the proteasome and the lysosomal pathway (Pickart and 

Cohen, 2004, Saftig and Klumperman, 2009). Proteasomal degradation serves as a protein 

quality control. Short-lived and misfolded proteins are ubiquitinated and transported into the 

proteasomes, by chaperones, where they are degraded (Adams, 2003). Protein aggregates are 

degraded by the lysosomal degradation pathway. Lysosomes are the terminal part of the 

endocytic pathway, and contain high levels of acidic content in addition to hydrolytic enzymes.  

Damaged or surplus proteins and organelles from the intracellular space are targeted for 

lysosomal degradation, as well as macromolecules obtained from the extracellular space (Saftig 

and Klumperman, 2009). Autophagy is the main intracellular degradation system and targets 

proteins and organelles for lysosomal degradation (Mizushima and Komatsu, 2011). There are 

three major classes of autophagy: macroautophagy, microautophagy and chaperone-mediated-

autophagy (CMA) (Figure 1.1). Macroautophagy is the major and most studies category of 

autophagy. Macroautophagy degrades proteins and organelles through the fusion of the double 

membrane autophagosome with the lysosome (Mizushima and Komatsu, 2011). In 

microautophagy, cytoplasmic components are engulfed by the lysosome through invagination 

of the lysosomal membrane (Li et al., 2011). In chaperone-mediated autophagy, substrates are 

directly translocated into lysosomes by the chaperone protein Hsc70 (heat shock cognate 70) 

and the lysosomal transmembrane protein, Lamp- 2A (Orenstein and Cuervo, 2010).  
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 Figure 1.1: Autophagy classification. Autophagy is divided into three major classes: macroautophagy, 

microautophagy and chaperone-mediated-autophagy (CMA). Macroautophagy creates a double membrane 

structure (autophagosome) around the substrate, which is marked for degradation, by an autophagy receptor (i.e 

p62, NBR1). Degradation initiates once an autophagosome fuses with a lysosome. In microautophagy, the 

lysosome itself engulfs substrates, where it becomes degraded. Chaperone-mediated- autophagy (CMA) degrades 

ubiquitin-marked substrates, which becomes delivered into the lysosome with the help from chaperone-protein 

Hsc70 (Heat shock protein 70) and lysosomal transmembrane protein (Lamp-2A). All three autophagy classes 

produce degradation products such as, amino acids, which is used in anabolic processes. Figure adopted from 

(Mizushima and Komatsu, 2011). 
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1.4.1 Macroautophagy (hereafter autophagy) 

Autophagy is an evolutionary conserved degradation pathway, where damaged or surplus 

cytosolic components are degraded through the lysosomal system. The degrading process is 

vital to maintain homeostasis, turnover and quality control of cellular compartments, and in 

avoiding accumulation of damaged and surplus compartments and proteins, which can become 

toxic for the cell. Nutrient deprivation, hypoxia, reactive oxygen species, damaged DNA, 

protein aggregates, damaged organelles, or intracellular pathogens are stress factors that can 

induce the autophagy process to reduce toxicity. Autophagy serves as a dynamic recycling 

system. It is important during starvation for the formation of new cellular building blocks 

(Mizushima and Komatsu, 2011). Autophagy sequesters marked substrates by enclosing them 

into a double-membrane vesicle called an autophagosome. The vesicle contents then become 

degraded through fusion with a lysosome. Autophagy can be both selective and unselective. In 

unselective autophagy, the bulk degradation process is important for cell energy homeostasis, 

whereas selective autophagy is important in organelle and protein quality control, in the defense 

against microbes, and for innate immunity and antigen presentation (Johansen and Lamark, 

2011, Mizushima and Komatsu, 2011). Autophagy is a multistep process requiring 

transcriptional and translational regulation to start initiation and formation of autophagosomes 

that matures and becomes degraded.  

1.4.2 The molecular machinery of autophagosome formation 

The autophagic process is divided into initiation-, formation-, maturation- and degradation 

(Figure 1.2) (Mizushima et al., 2011, Mizushima and Komatsu, 2011). The autophagic process 

is regulated of autophagy-related (ATG/Atg) proteins. The ATG/Atg proteins are essential for 

the autophagic process. So far, at least 35 ATG genes have been identified, through yeast 

genetic studied, and 15 of these are core ATG genes, which are essential for the different 

autophagy pathways (Nakatogawa et al., 2009). Atg proteins are activated by different stress 

factors and make up different complexes.  

 

The autophagosome formation is regulated by different signaling pathways, including growth 

factors, such as IGF1, and hormones. These signals further regulate the proteins in the pathway. 

For example, the mammalian target of rapamycin complex 1 (mTORC1) is known to inhibit 

the autophagy initiation. mTORC1 and AMPK regulates autophagy by phosphorylating of the 

ULK1 kinase,. They do this by directly phosphorylating ULK1 at different positions, which 

induces different effects. AMPK phosphorylates and activates ULK1, while mTORC1 

phosphorylates and inactivates ULK1 (Kim et al., 2011). The autophagosome transport and 
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fusion is dependent on different regulators, which regulate adaptor proteins to bind to 

membranes and motor proteins.  

 

In figure 1.2 the autophagy process is described for the mammalian system. Induction of the 

phagophore begins with the activation of the Unc-51- like kinase (ULK) complex 1/2. ULK 1/2 

is activated together with FIP200, Atg13 and Atg101. This complex regulates the class III 

phosphatidylinositol 3-kinase (PI3K) complex (Vps34, Vps15, Beclin1, Atg14L and Ambra-

1). Vacuolar protein sorting protein 34 (Vps34) produces phosphatidylinositol 3-phosphate 

(PI3P) by phosphorylating the phosphatidylinositol’s. PI3P serves as an affinity membrane 

binding tag and recruits PI3P binding motifs (e.g.FYVE, Phox (PX) or PROPPIN- domains) 

(Lemmon, 2008). The formation of PI3P by PI3K initiates the nucleation step and formation of 

a cup-shaped double-membrane structure, known as the phagophore. The phagophore is 

established from either endoplasmic reticulum (ER), mitochondria, the Golgi apparatus or the 

plasma membrane (Tooze and Yoshimori, 2010, Mizushima et al., 2011, Hailey et al., 2010, 

Ravikumar et al., 2010). PI3Ps recruits different effectors, such as WIPI 1/2 (WD-repeat PI3P 

effector protein). WIPI2 binds directly to Atg16L, which is bound to the conjugate Atg5-Atg12 

(Dooley et al., 2014). The Atg12 conjugation system (Atg12, Atg7, Atg10, Atg5 and Atg16) 

interacts with the LC3 conjugation system (LC3A/B/C or GABARAP; GABARAPL1 and 

GABARAPL2/GATE-16) (Atg8 in yeast). LC3 becomes processed by Atg4 (cysteine protease) 

and the E2-like protein Atg3 is recruited by the Atg12 conjugate system, and lipidated LC3-I 

to LC3-II. LC3-II is conjugated to the lipid phophatidylethanolamine (PE) by the E1-like 

enzyme Atg7, which binds to the phagophore (Mizushima et al., 2001) (formation step). This 

conjugation results in the LC3 insertion into the inner and outer phagophore. LC3 serves as a 

receptor for selective autophagic receptors (i.e SQSTM1/p62 and NBR1) (Noda et al., 2010). 

These receptors direct marked substrates for degradation by their interaction with LC3. The 

phagophore become closed into an autophagosome. This autophagosome becomes fused with 

the lysosome and becomes an autolysosome (Johansen and Lamark, 2011)(maturation step). 

The substrates are degraded by lysosomal hydrolases, and are subsequently recycled back to 

the cytoplasm by permeases (Johansen and Lamark, 2011, Mizushima et al., 2011) (degradation 

step). 
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Figure 1.2: The overall mechanism of the mammalian autophagy process. Unc-51- like kinase (ULK) 

complex 1/2 becomes initiated by different stress factors and regulates the Class III phosphatidylinositol 3-kinase 

(PI3K) complex. Class III PI3K complex induces the formation of the nucleation site where the phosphatidyl-

inositol becomes phosphorylated to PI3P. The formation of double membrane structure, phagophore, develops and 

WIPI proteins can be recruited. LC3 from the LC3-cpnjugation system attaches to the outer and inner side of the 

phagophore. Atg12--Atg5-Atg16L conjugate systems continues the formation of the phagophore. Derivative 

substrates are subsequentlys delivered to autophagy receptor, such as p62 or NBR1, which bind to LC3 on the 

inner side of the phagophore. The phagophore closes and becomes the autophagosome. The matured 

autophagosome fuses with the lysosome, and becomes the autolysosome. Here, all substrates become degraded.  
 

1.5 FYVE and coiled- coil domain containing 1 (FYCO1)  

FYCO1 is found as a single copy gene in humans, located in the putative tumor suppressor 

region on chromosome 3p21.3, called the"common eliminated region 1 ", C3CER1 (Kiss et al., 

2002) is 1478 amino acids (aa) long and contains an N-terminal RUN (RPIP8, UNC-14, and 

NESCA) domain, a long coiled-coil (CC) region, a FYVE (Rab1, YOTB, Vac1 and EEA1) 

domain, a LIR (LC3 interacting Region) region, and a C-terminal GOLD (Golgi dynamics) 

domain (Figure 1.3) (Pankiv et al., 2010).  

 

 

 
Figure 1.3: Domain architecture of human FYCO1. FYCO1 is divided into RUN-, Coiled-coli-, FYVE-, 

LIR region and GOLD domain.  Kinesin- 1 binding requires the Coiled-coil, Rab7 requires the N-terminal part of 

FYVE-domain, PI3P requires the FYVE domain and LC3 binds to FYCO1`s LIR domain between amino acids 

1276-1394.  
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There are proteins that share domain similarity with FYCO1 (Figure 1.3), and these proteins 

share similarities with their domain architecture as well. Two asuch proteins are presented in 

figure 1.4: the RUN and FYVE domain contain proteins (RUFY) and Early Endosome 

Antigen1 (EEA1) (Figure 1.4) (Rose et al., 2005). These are both associated with vesicles 

(Kitagishi and Matsuda, 2013). The PI3P lipid-binding domain (FYVE domain) on the C-

terminus of the central 850aa CC region is common for all three proteins (Gaullier et al., 1998).  

 

 

  

Figure 1.4: The alignment of the two homologue proteins of FYCO1. RUN-domain, RUN and 

FYVE domain contain protein 1(RUNFY1) and Early Endosome Antigen1 (EEA1).  Recreated from Pankiv et 

al (Pankiv et al., 2010).  

 

1.5.1 The functional role of FYCO1 

Previous study of FYCO1 revealed its role in transport of vesicles such as late endosomes (LE), 

autophagosomes and autolysosomes (Pankiv et al., 2010). The function of its RUN domain is 

still unknown, however it is predicted, through knowledge about similar proteins (RUFY 1-4), 

that it may facilitates interaction between FYCO1 proteins and Rab, and Rap proteins 

(Callebaut et al., 2001, Recacha et al., 2009). The RUN-domain of RUFY proteins have been 

suggested to be involved in membrane trafficking and cell polarity. This could suggest that 

proteins containing a RUN- domain can interact with filamentous networks, such as actin or 

MT (Kitagishi and Matsuda, 2013). FYCO1 dimerizes by its long CC region (Pankiv et al., 

2010). The FYVE domain interacts with PI3P, which is essential for its membrane recruitment 

(Gaullier et al., 1998). In addition, the C-terminal part of the CC region (FYCO1990-1233) 

(adjacent to FYVE domain) is found to interact with Rab7, which is responsible for LE and 

lysosome membrane recruitments (Pankiv et al., 2010). These vesicles contain p62/SQSTM1, 

which co-localizes with the lysosome marker LAMP1 and Atg5. This reveals the presence of 

FYCO1 on the outer membrane of autophagosomes and autolysosomes (Pankiv et al., 2010). 

The LIR region of FYCO1 (1276-1294 amino acids) was found to be essential for LC3B 
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interactions (Pankiv et al., 2010). FYCO1 was previously thought to have membrane tethering 

functions, and a mechanism for its selective autophagosomal membranes recruitment. 

However, more recently, FYCO1 was identified as an LC3 and Rab7 effector protein, which 

enables the MT plus-end directed transport of vesicles (Figure 1.5) (Pankiv et al., 2010).   

 

 

Figure 1.5: Illustration of the supposed role of 

FYCO1. A model of the proposed function of FYCO1 in 

vesicle trafficking along microtubule. The figure is 

obtained from Pankiv et al (Pankiv et al., 2010). 
 

 

 

 

 

 

 

 

 

 

 

Congenital cataracts (CC) is the cause of vision loss in approximately one third of infants born 

blind (Robinson et al., 1987). Interestingly, mutations in FYCO1 have been identified, which 

could be a cause of autosomal-recessive congenital cataracts (arCC). Most of the mutations 

resulted in truncated forms of the protein and caused termination of the peptide chain before 

the GOLD domain. One of these mutations is a homozygous single base change from leucine 

to proline in exon 16, position 1376, which is located in the GOLD domain. This mutation was 

identified to affect the transparency of the lens. This highlights a role for FYCO1 in human lens 

development and transparency (Chen et al., 2011). Another study revealed a direct recruitment 

of FYCO1 to Dectin-1 phagosomes by LC3 (Ma et al., 2014). FYCO1 co-localize with LC3B 

to Dectin-1 phagosomes and facilitates the maturation of early p40phox+ (early endosome 

marker) phagosomes into LAMP1+ phagosomes (Ma et al., 2014). Interestingly, FYCO1 is 

found to be working together with the ER-protein, protruding, in mediating microtubule-

dependent transport of LE via ER-endosome contact sites, which results in cell protrusions and 

neurite outgrowth (Raiborg et al., 2015). In the same year, Olsvik showed that FYCO1 contains 

a C-terminal LIR domain. This LIR domain contains an acidic residue on position 8 and a 

hydrophobic residue on position 9, which were found to be important for its efficient binding 
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to LC3B. Therefore this LIR-domain facilities the efficient maturation of autophagosomes 

during basal autophagy conditions (Olsvik et al., 2015). In previous studies, the expression of 

FYCO1 resulted in accumulation of lysosomes at the cell periphery, which is part of the 

indication of its lysosomal transport abilities (Johnson et al., 2016). Today, the function of the 

GOLD domain of FYCO1 is still unknown, but further studies may hopefully reveale its role. 

1.5.2 The GOLD domain 

The Golgi complex plays a key role in the modification and sorting of proteins received from 

the ER. Several eukaryotic golgi- and lipid-traffic proteins are involved in these processes and 

have a GOLD (Golgi dynamics) domain. The size of the GOLD domain is between 90 and 150 

amino acids long and is conserved in other proteins, as such as p24 family proteins, Sec14-like 

proteins and GCP60 (Anantharaman and Aravind, 2002). The predicted structure of the GOLD 

domain of FYCO1 was obtained from Phyre2 database (Kelley et al., 2015) was showed to be 

composed of six to seven compact all- β-strands (Figure 1.6) (Anantharaman and Aravind, 

2002). 

 

 

 

GOLD domain containing proteins 

p24 family proteins are highly conserved type 1 transmembrane proteins (TMED1), containing 

a GOLD domain (Schuiki and Volchuk, 2012). The p24 family consists of heterotetramer 

proteins, which contain a GOLD domain in their N-terminus, next to the CC-region. Ten p24 

proteins have been identified in in most vertebrates (whereas one is a pseudogene in humans) 

and they are divided into the four subclasses: p24α, β, γ and δ (Strating et al., 2009, Schuiki and 

Volchuk, 2012). They have a central role in protein transport from ER to Golgi. In addition to 

retrieval of escaped cargo and recycling of essential components via the retrograde pathway 

(Schuiki and Volchuk, 2012). The GOLD domain of p24γ2 was thought to interact with 

Figure 1.6: Graphic illustration of the GOLD 

domain of FYCO1. A graphic illustration over the two 

dimensional structure of the β-barrell strands of the 

GOLD domain, obtained from Phyre2 (Kelley et al., 

2015)The predicted structure of the GOLD domain of 

FYCO1 was showed to be composed of six to seven 

compact all- β-strands. 
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glycosylphosphatidylinositol-anchored proteins (GPI-AP). However, recent studies showed 

that the GOLD domain is not involved in GPI recognition. Instead, the motifs in the membrane-

adjacent α-helical region of p24γ2 were found to be involved in the integration of these proteins 

into coat protein complex II-coated transport vesicles. These findings suggest that the function 

of the GOLD domain still is unclear for p24 (Theiler et al., 2014).  

 

The GOLD domain has been identified in other proteins, such as Sec14-like proteins, 

Transmembrane emp24 domain containing protein 1 (TMED1/p24 family protein gamma-1) 

and Golgi adaptor acyl coenzyme A (acyl-CoA) binding domain protein 3 (ACBD3/GCP60). 

A multiple sequence alignments from Clustal Omega (Sievers et al., 2011, Goujon et al., 2010) 

shows which amino residues are conserve through their GOLD domain (Figure 1.7). The amino 

acids composition of the different GOLD domains differs from each of the proteins. These 

GOLD domain proteins are often found together with fatty acid -, lipid- or sterol binding 

domains such as CRAL-TRIO, FYVE, pleckstrin homology (PH), acetyl CoA- and oxysterol 

binding domain (Anantharaman and Aravind, 2002).  

 

 

 

Figure 1.7: Alignment of the protein sequences of GOLD domain containing proteins. A multiple 

alignment was obtained from Clustal Omega (Sievers et al., 2011, Goujon et al., 2010). The sequence alignment 

is of the GOLD domain of FYCO1, SEC14-like protein 2, ADCBD3/ GCP60 and TMED1 (type 1 transmembrane 

proteins, p24 family). * (asterisk) indicates positions which have a single, fully conserved residue. . (period) 

indicate conservation between groups with weakly similar properties-scoring ≤0.5 in the Connet PAM 250 matrix 

and : (colon) indicates conservation between groups of strongly similar properties - scoring > 0.5 in the Gonnet 

PAM 250 matrix. Color description of the residues: The magenta are basic-H residues, the red are small (small + 

hydrophobic and aromatic) residues, blue are acidic residues, green are hydroxyl + sulfyfryl + amino residues and 

grey are unusual amino/imino acids(European Bioinformatics Institute (EMBL-EBI), 2016).  
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Sec14-like proteins are involved in secretion. SEC14-like domain of supernatant protein factor 

(SPF) are involved in the sterol endo-synthesis. SPF is found in complex with 2,3- 

oxidosqualene. This ligand binding was enabled by the removal of its GOLD domain. These 

results suggest that its GOLD domain acts as a regulator (Christen et al., 2015). The GCP60 

protein is a peripheral protein, which interacts with the cytoplasmic C-terminal part of the Golgi 

integral membrane protein Giantin (Sohda et al., 2001). 

 

The functional role of the GOLD domain 

The complete function of the GOLD domain is still unknown, but a protein-protein interaction 

function was identified in some GOLD domain containing proteins (Anantharaman and 

Aravind, 2002).  

 

Previous studies have shown that the GOLD domain functions as a cargo binding site and that 

the GOLD domain is involved in more than only protein-protein interactions. There is evidence 

that GOLD domain containing proteins are involved in assembly of membrane-associated 

complexes and regulate the cargo assembly into membranous vesicles, as revealed by 

Anantharam and Aravind (Anantharaman and Aravind, 2002). The GOLD domain was 

previously observed in sugar- and lipid-binding proteins (Gaskell et al., 1995).  

 

Therefore, it was predicted that the GOLD domain function of FYCO1 is related to the GOLD 

domain function of other similar proteins. However, the GOLD domains can have different 

functions due to their composition of the amino acids, and where it is located inside the protein. 

The multiple sequence alignment (Figure 1.7) showed that GOLD domains are not identical in 

their amino acids distribution.   
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1.5 Mass spectrometry as a tool for protein identification 

Proteomics is defined as the large-scale study of the structure and function of proteins. Mass 

spectrometry (MS) has become one of the most used methods for identification and analysis of 

complex protein samples. MS-based proteomics has become easier to use for protein study, due 

to the ability to use gene and genome sequence databases (Aebersold and Mann, 2003). MS 

groups individual ions according to their mass and their total charge, carried out on ionized 

analyte in a gas-phase, and consists of an ion source, a mass analyzer and a detector (Figure 

1.8).  

 

 

 

Figure 1.8: Illustration of the major components of a mass spectrometer. The ionization starts at the 

ion source, where the ions are transferred through the m/z analyzer, the detector and then the mass-to-charge-ratio 

is calculated in the computer.  

 

 

The entire system works in a vacuum. Before applying the protein samples for identification, 

all proteins have to be digested into small peptide fragments. This digestion is done by proteases 

most commonly trypsin. Trypsin is a serine protease that specifically cleaves peptide bonds at 

the C-terminal side of lysine- and arginine-residues (Olsen et al., 2004). These peptides are 

fractionated by a liquid-chromatograph (LC) and can be ionized by an electrospray ionization 

(ESI) (Fenn et al., 1989). The soluble protein sample is converted into a gas phase when it is 

sent into MS. The liquid-chromatography-MS (LC-MS) is used to measure the mass of each 

protein peptide. LC-MS/MS (Tandem MS) fragment peptides through collision-induced 

dissociation (CID) or high energy collision dissociation (HCD) (Vogeser and Parhofer, 2007). 

LC-MS/MS is used as an analytical tool to identify protein-sequences based on the molecular 

mass of the particle and/or fragments in a complex sample, and is today the most used method 

in MS-based proteomics to analyze complex peptide mixture (Aebersold and Mann, 2003).  
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Protein identification is generally done through the use of already known protein sequences 

from a protein databases. Universal protein resource (UniProt) (Consortium, 2015) was used as 

the database for protein identification in the current study (UniProt, 2016). Each MS/MS 

spectrum uses their fragment spectrums to identify a specific protein. All of these spectrums 

have to correlate with the same protein. The value of the confidence depends on the correlation 

with the peptide amounts. The high heterogeneity produced by MS/MS data makes up for the 

limitation of its protein identification. Peptide fragments are identified through a database that 

compares the peptide fragments and a software is subsequently used to collect the protein data 

and develop a list over all protein candidates identified by LC-MS/MS. In the current study, 

Proteome Discover 2.1 Software (Thermo Scientific™) was used for protein identification.  
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1.6 Aims of study 

The initial aim of this study was to reveal and identify new protein interaction candidates for 

the RUN- and the GOLD domain of FYCO1. This would give us a greater insight over the 

complete function of FYCO1. However, RUN domain was excluded, because of technical 

problems and time limitations. Therefore, the GOLD domain became the major focus. A 

mutation in the GOLD domain (L1376P) was observed in patients with autosomal-recessive 

congenital cataracts. We were interesting if this mutation affected the expression level and the 

cellular localization of the isolated GOLD domain.  

 

By addressing the following questions, we hope to obtain a better understanding and 

determination of the full-length FYCO1s ability to interact with other proteins through its 

GOLD domain and how the mutation affects the localization and expression of the isolated 

GOLD domain in cells. 

 

 Is the GOLD domain involved in protein-protein interactions?  

 Which proteins do the GOLD domain interact with?  

 Are these direct or indirect interactions?  

 Does the transiently transfected GOLD domain redistribute some of the co-transfected 

putative protein partners?  

 How does the L1376P mutation affect the expression and localization of the isolated 

GOLD domain?  
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2. Materials and methods  

2.1 Materials  

Table 2.1: Plasmids and expression constructs 

Vectors Description Source 

Gateway cloning vectors 

pDest-EGFP-C1 Mammalian EGFP fusion expression 

vector; CMV promoter, Ampicillin 

resistant. Located at the N-terminal end. 

(Lamark et al., 2003) 

pDest-mCherry-C1 Mammalian mCherry fusion expression 

vector; backbone as pDest-EGFP-C1 

Ampicillin resistant. Located at the N-

terminal end. 

(Pankiv et al., 2007) 

pDest-myc-C1 Mammalian myc-tag fusion expression 

vector; CMV promoter ant T7 promoter, 

Ampicillin resistant. Located at the N-

terminal end. 

(Lamark et al., 2003) 

 

Vectors Description Source 

cDNA constructs made by site-directed mutagenesis and  

Gateway® LR reaction 

pENTER-FYCO1 

(1333-1478) 

Gateway® Entry vector for the GOLD 

domain of FYCO1 

(Pankiv et al., 2010) 

pENTER-FYCO1 

(1333-1478) L1376P 

Made by site-directed-mutagenesis of 

pENTER- FYCO (1333-1478) 

In this study 

pDONOR221-

RUVBL2 

Gateway® Entry vector Harvard Plasmid 

Repository 

pDONOR221-TUBA4 Gateway® Entry vector Harvard Plasmid 

Repository 

pDONOR221-DNAJA Gateway® Entry vector Harvard Plasmid 

Repository 
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pDONOR221-ARF4 Gateway® Entry vector Harvard Plasmid 

Repository 

pDONOR221-

TXNDC5 

Gateway® Entry vector Harvard Plasmid 

Repository 

 

Vectors Description Source 

Other vectors 

pDestEGFP-VPS4  (Bishop and 

Woodman, 2000) 

pDest-Myc-MO1B  In this study 

pDest-Myc-GBAS  In this study 

pDest-Myc-

NIPSNAP1 

 In this study 

pDestEGFP-

FYCO1(1-1478)  

Full-length FYCO1 (Pankiv et al., 2010) 

pGEX-4T-1 Bacterial GST fusion expression vector 

with a tac promoter. Used as an control  

In this study 

EGFP-KDEL ER marker In this study 

 

Table 2.2: cDNA constructs made by Gateway® LR reaction (this study) 

Vectors Description 

cDNA construct used in this study, made by Gateway® LR reaction  

pDest-15-FYCO1(1333-1478) From pENTR- FYCO1( 1333-1748) 

pDest-EGFP-FYCO1(1333-1378) From pENTR- FYCO1( 1333-1748) 

pDest-EGFP-FYCO1(1333-1378) L1376P From pENTR- FYCO1( 1333-1748) 

L1376P 

pDest-mCherry-FYCO1(1333-1378) From pENTR- FYCO1( 1333-1748) 
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pDest-mCherry-FYCO1(1333-1378) L1376P From pENTR- FYCO1( 1333-1748) 

L1376P 

pDest-myc- RUVBL2 From pDONOR221-RUVBL2 

pDest-myc-TUBA4A From pDONOR221-TUBA4A 

pDest-myc-DNAJA1 From pDONOR221-DNAJA1 

pDest-myc-TXNDC5 From pDONOR221-TXNDC5 

pDest-myc- ARF4 From pDONOR221-ARF4 

pDest-mCherry-RUVBL2 From pDONOR221-RUVBL2 

pDest-mCherry-TUBA4A From pDONOR221-TUBA4A 

pDest-mCherry-TXNDC5 From pDONOR221-TXNDC5 

 

Table 2.3: Primers for site-directed mutagenesis  

cDNA clone Primer name Sequence  

pENTER-

FYCO1 

(1333-1478) 

L1376P 

pENTER-FYCO1 

(1333-1478) L1376P 

primer forwar 

5`-CCAGCACCTACAGCCCGATCCCCATCACTGTGG-3` 

pENTER-FYCO1 

(1333-1478) L1376P 

primer reverse 

5`-CCACAGTGATGGGGATCGGGCTGTAGGTGCTGG-3` 

 

Note: In this study all plasmid constructs made by site-directed mutagenesis or gateway® LR 

reaction were verified by restriction digestion and/or DNA sequencing.  
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Table 2.4: Sequencing primers 

Primer name  Primer sequence Information 

M13 Forward 5`-GTTTTCCCAGTCACGACGTTGTA-3` Used in this study to sequence 

inserts in pDONOR221 

M13 Reverse 5`-GCGGATAACAATTTCACACAGGA-3` Used in this study to sequence 

inserts in pDONOR221 

ENTR 3` 5`-GATTTTGAGACACGGGCCA-3` Used in this study to sequence 

inserts in pENTR223 

ENTR 5` 5`-GTTAGTTACTTAAGCTCGG-3` Used in this study to sequence 

inserts in pENTR223 

GST-C1  5`- CATGGTCCTGCTGGAGTTCGTG-3` Used in this study to sequence 

inserts in pDest-EGFP 

 

 Table 2.5: Restriction enzymes 

 

 

 

 

 

 

 

Table 2.6: Antibodies (Ab) used for Immune fluorescence and IP 

 Antibody Supplier Dilution 

Primary Ab Rabbit anti- GFP (#ab-

290) 

Abcam 1:2000 

Mouse anti-γ-tubulin 

#T6557 

Sigma   1:2000 

Mouse anti- myc 

#MM-0169 

Medimabs  1:200 

DRAQ5™ BioStatus 1:2000 

Secondary Ab Alexa Fluor® 647  Life technology 1:1000 

Enzyme name Recognition 

sequence (5`-3`) 

Concentration 

(U/ml) 

Reaction 

buffer 

Supplier 

BsrGI TGTACA 10.000  Neb 2.1 New England 

Biolabs 

HindIII- HT AAGCTT 20.000  Cutsmart New England 

Biolabs 

SacI GACGCTC 20.000  Cutsmart New England 

Biolabs 
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Goat-anti mouse  

Alexa Fluor® 555 

Goat-anti mouse 

Life technology 1:1000  

 

 Table 2.7: Bacteria strains and growth medium  

 

 

 

 

 

 

Table 2.8: Concentration of antibiotic in bacterial 

growth medium 

 

 

 

 

 

 

  

Bacteria strains 

Escherichia. coli  Description 

DH5α E.coli strain used for storage of 

plasmids 

SoluBL21 (DE3)  Strain used for protein 

expression 

Antibiotic Concentration (µg/ml) 

Ampicillin (amp)  100  

Kanamycin (kan) 50 

Spectinomycin 50 

Gentamycin  10 



21 

Table 2.9: Cell lines and their growth medium and buffers 

Cell line Description Full Growth 

medium (FM) 

HEK 293 Flp-In™ T-

REx cells (Invitrogen 

# R78007) 

 

Human embryonic kidney cells with Flp-In™ T-REx 

system. This cell line is design for rapid generation of a 

stable expression of a protein of interest by an Flp-In™ 

expression vector and a tetracycline-inducible expression 

of a gene of interest from a specific genomic location 

(Invitrogen, 2010). 

 

Dulbecco′s 

Modified Eagle′s 

Medium 

(DMEM) 

(Sigma,D6046) 

10% Fetal bovine 

serum (FBS) 

(Merck) 

100 µg/ml 

Pencillin 

100 µg/ml 

Streptomycin 

HEK 293 Flp-In ZnF- 

FYCO1  

#12 

Human embryonic kidney cells  

These cells are knockout for full-length FYCO1 by Zink 

finger system. 

Published in our recent JBC paper (Olsvik et al., 2015) 

  

Dulbecco′s 

Modified Eagle′s 

Medium 

(DMEM) 

(Sigma,D6046) 

10% Fatal bovine 

serum (FBS) 

(Merck) 

100 µg/ml 

Pencillin 

100 µg/ml 

Streptomycin 

HEK 293 Flp-In   

ZnF-FYCO1 #12 

GFP-FYCO1  

 

Human embryonic kidney cells  

These cells are stably expressing GFP-FYCO1 controlled 

by tetracycline. .Tetracycline turn on the GFP-FYCO1 

expression. 

Dulbecco′s 

Modified Eagle′s 

Medium 

(DMEM) 

(Sigma,D6046) 
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Published as above 10% Fetal bovine 

serum (FBS) 

(Merck) 

100 µg/ml 

Pencillin 

100 µg/ml 

Streptomycin 

HeLa 

 (ATCC® CCL-2™) 

Human cervical carcinoma cells 

 

Minimum 

Essential Medium 

Eagle (MEM) 

(Sigma, M4655) 

10% Fetal bovine 

serum (FBS) 

(Merck) 

100 µg/ml 

Pencillin 

100 µg/ml 

Streptomycin 

 

 

B-3  

(ATCC® CRL-

11421™) 

Human lens cells Minimum 

Essential Medium 

Eagle (MEM) 

(Sigma, M4655) 

20% Fetal bovine 

serum (FBS) 

(Merck) 

100 µg/ml 

Pencillin 

100 µg/ml 

Streptomycin 
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A        B       C   

Figure 2.1: Molecular weight ladder for DNA and proteins: A: 1 kb DNA ladder (Neb, #N3232L). B: 

SeeBlue®Plus2 Pre- Stained Protein Standard (Thermofisher scientific, # LC5925) for visualize proteins on SDS-

PAGE gel. C: Unstained protein ladder (10-250 kDa) (Neb, # P7703S) for 10- 20% SDS-PAGE. 
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2.2 Methods 

2.2.1 Overview of the study 

In the first part of the project, we sought to identify protein interactors binding to the GOLD 

domain of FYCO1 (amino acids 1333-1478), using affinity purification coupled to mass 

spectrometry (MS). Recombinant GOLD domain (1333-1478) of FYCO1 fused with a GST-

tag was expressed in competent E.coli strain, soluBL21™ (AMS Biotechnology). The GST-

GOLD domain was purified through pulldown with Glutathione sepharose beads. The 

interaction study was done using extracts from HeLa and HEK293 Flp-In T-REx cells. These 

cells were grown in full media, and lysed for in vitro pulldown assay. The pulldown assay was 

done with GST-bound GOLD domain to detect protein-interactors. The possible protein-

interaction-candidates were obtained by proteomics studies. In the second part of the study, 

these possible new protein-interaction-candidates were further studied through in vivo and in 

vitro study. 

2.2.2 Transformation of competent bacteria cells 

Bacteria transformation is the genetic alternation of bacteria, where competent bacteria take up 

naked DNA from the extracellular environment. This DNA becomes integrated into the genome 

or maintained as a plasmid. Transformation can occur naturally by closely related bacterias, but 

this process occurs at a slow rate. Certain bacteria can become competent by chemical or 

mechanical exposure. This treatment weakens the cellular membranes, which increases the 

efficiency of DNA uptake. Competent cells can be prepared through calcium chloride (CaCl2) 

or rubidium chloride (RbCl) treatment. Bacterias used in the current study are CaCl2 competent 

and prepared by laboratory technicians. 

The transformation procedure can be done by two commonly used methods, by either 

electroporation or heat shock. Both methods make pores in the plasma membrane for DNA 

uptake. In this current study, the heat shock procedure was used.  

Two different E.coli strains were used during this study: DH5α (Bethesda Research 

Laboratories Inc.) and SoluBL21 (DE3) (AMS Biotechnology (AMSBIO) (see description in 

the table 2.7). 
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Bacteria transformation procedure 

1. Competent bacteria cells were thawed on ice. 

2. 50 µl bacteria cells were mixed together with 100-150 ng plasmid (DNA of interest). 

The tubes were flicked 4-5 times to mix (do not vortex). 

3. The transformation mixture was held on ice for 20-30 minutes.  

4. The transformation mixture was incubated at 37⁰C (water bath) for 2 minutes.  

5. The transformation mixture was held on ice for 2 minutes. 

6. 500 µl catabolite repression (SOC) (room temperate) medium was added to the 

transformation mixture and incubated at 37⁰C for 1 hour with shaking.  

7. LB-agar plates (with required antibiotics) was moved from 4⁰C to room temperature.  

8. 250 µl of the transformation mixture were plated into the LB-agar plates with 

appropriate antibiotic and grown overnight at 37⁰C. 

9. The following day, three colonies were transferred into three cylinders with 5 ml LB 

media with appropriate antibiotics and regrown overnight for plasmid purification. 

Freezing stocks were made from these overnight cultures. 

 

Procedure for freezing down bacteria cells 

1. One colony was transfer to 5 ml pre-warmed LB medium with appropriate antibiotics 

and incubated overnight at 37⁰C. 

2. 1.2 ml overnight bacteria culture was mixed with 300 µl sterilized 50% Glycerol 

(Sigma). This was divided into tubes and store at -70⁰C. Always keep on ice. 

 

 

 

  

Super optimal broth with 

Catabolite repression (SOC) media 

20 g Bacto Trypton 

5 g Bacto yeast extract 

10 ml 250mMKCl 

5 g MgCl2 

20 mM glucose 

dH2O to 1 L 

pH adjusted to 7.5 with NaOH 

LB (Luria-Bertani)-  agar plate  

10 g Bacto Trypton 

5 g Bacto yeast extract 

10 g NaCl 

15g Agar 

dH2O to 1 L 

pH adjusted to 7.5 with NaOH 

 

LB medium  

10 g Bacto Trypton 

5 g Bacto yeast extract  

10 gNaCl 

dH2O to 1 L 

pH adjusted to 7.5 with NaOH 

Antibiotic: 

100 µg/ml Ampicillin  

50 µg/ml Kanamycin 
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2.2.3 Plasmid purification  

Plasmids from bacteria cells were purified by GenElute™ Plasmid Miniprep system (Sigma, 

#PLN350). Through this purification system, plasmid DNA is purified by an alkaline 

denaturation of high molecular weight chromosomal DNA, wherein the closed circular plasmid 

DNA remains double stranded, and through neutralization it becomes a part of the supernatant. 

The chromosomal DNA renatures and remains as pellet in the tube, while small and large 

plasmid DNA in the supernatant is extracted (Birnboim and Doly, 1979). The plasmid DNA is 

absorbed onto a silica membrane in the presence of high salts, where it is washed. After 

washing, the bound plasmid DNA becomes eluted in a Tris-EDTA buffer (Sigma). 

Procedure for GenElute™ Plasmid Miniprep kit (Sigma Aldrich)  

1. Cells were pelleted from 1-3 ml overnight culture by centrifuge at ≥12.000xg for 1 

minute. The supernatant was discarded. 

2. Cells were suspend cells inn 200 µl resuspension Solution by pipetting.  

3. 200 µl Lysis solution was added and the tubes were invert gently to mix. The reaction 

mixture were incubated for ≤ 5minutes. 

4. 350 µl Naturalization Solution (S3) was added to the solution.  

5. The cell solution was pelleted by centrifugation at ≥12.000xg for 10 minutes. 

6. 500 µl Column preparation Solution was added to the binding column in a collection 

tube. It was centrifuged at ≥12.000xg for 10minute. The flow- through was discarded. 

7. The cleared lysate from step 5 was transferred into the binding column. 

8. The binding column was centrifuged for 1minute. The flow- through was discarded. 

9. For optimal (EndA+ strains only) wash: 500µl Optional Wash Solution was added to the 

binding column. Centrifuged for 1 minute. The flow- through was discarded. 

10. 750µl Wash Solution was added to the binding column. Centrifuged for 1 minute. The 

flow- through was discarded. 

11. The empty binding column was centrifuged for 1-3minute  

12.  The purified plasmid DNA was eluted by transferring binding column into a new 

collection tube. 

13. 50-100µl Elution Solution was added to the binding column. The tube were incubated 

for 1-5minutes. Centrifuged for 1 minute.  

14. The DNA concentration was measured.  
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2.2.4 Measurement of DNA concentrations 

DNA concentration (ng/µl) from the DNA purification was measured by a Nanodrop 

2000/2000c Spectrophotometer (Themo scientific). Elution buffer was set as blank. The 

absorbance spectrum for nucleic acids are at 260 nm, and therefore the DNA concentration was 

quantified at this absorbance. However, proteins have absorption at 280nm, and peptide bonds 

absorbs at 230 nm. Protein and peptide bonds contaminate DNA samples and therefore the 

purity indication of the DNA samples are measured by the 260/280 nm and 260/230 nm ratios. 

DNA samples are pure when the ratio 260/280 nm is between 1.7-1.9 and the ration of 260/230 

is between 2.0-2.2.  

2.2.3 Agarose gel electrophoresis to identify DNAAgarose gel electrophorese separates DNA 

fragments based on their size. A 6X loading buffer is added to the DNA samples. The loading 

buffer makes the DNA sink into the well and their viability when they migrates through the gel. 

DNA fragments migrate through the agarose gel matrix, composed of agarose (here used 0.7%), 

a linear polysaccharide (originally extracted from seaweed), which together polymerizes into a 

compact network with different size of the pores (depending on the agarose concentration). 

These pores alter the migration speed of each DNA fragment. This migration is depend on the 

ions in the minigel-buffer, which carries the current through the electric field. This current 

creates the movement of DNA through the gel. DNA fragment migrates toward the positive 

pole (anode), due to their negative charge. The degree of migration depends on the size and the 

conformation of DNA fragment, but also together with the agarose concentration and the 

voltage. DNA fragment becomes visualized by a GelRed™ Nucleic Acid Gel stain (10000X) 

(Biotum) and the use of UV trans-illuminator UVP (BioDoc-it™ imaging system).  

Agarose gel Procedure 

0.7% agarose gel solutions was made by adding 0.7g SeaKem® LE Agarose (Lonza) in 100 ml 

minigelbuffer (1X), this solution was microwaved and gently shaken until all agarose powder 

were dissolved. The solution was poured into a chamber and the wells were placed into the 

solution. The solution was incubates for around 30 min at room temperature. The solution 

became polymerized and transformed into a gel. The gel was transferred into a tray, with 

minigelbuffer (1X) covering the gel. 
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2.2.5 Restriction enzyme digestion  

Restriction enzyme digestion is used to verify the DNA insert after DNA cloning. Recognition 

cutting of restriction sites on each side of the DNA insert is done to verify that the right insert 

has been cloned into the vector of interest. According to the restriction sites, one or two 

restriction enzymes are used for this approach. One restriction enzyme linearizers the vector. 

The band size that appear on the gel can be compared with the band size of vector without the 

insert. However, the insert can be cut out by two restriction enzymes. These two enzymes cut 

on each side of the insert or in a known site inside the insert. The verification is done when the 

digestion mix is run on an agarose gel, where the DNA construct and vectors is separated by 

size. If the band size correlates with the known size of the given insert appears, the cloning 

procedure has been successful. 

Restriction enzyme digestion protocol 

1. The following components of the reaction digestion mixture were mixed in a 1.5 ml 

Eppendorf tube: 

700 ng DNA construct 

1.5 µl Restriction buffer (From table 5) 

0.5 µl of each restriction enzyme (From table 5) 

dH2O to a final volume of 20 µl 

2. The digestion mixture was incubated a 37 ⁰C for 1 hour.  

3. The reaction was inactivated by adding 4 µl of 6X loading buffer and run on a 0.7% 

agarose gel.  

4. Bands were visualized by GelRed™ Nucleic Acid Gel stain (Biotum). 

  

6X gel loading buffer 

0.25% Bromphenol Blue (Merck) 

60 mM EDTA pH 8.0 

0.6% SDS  

40%(W/v) sucrose 

Sterile filtered 

 

Minigelbuffer (1X) 

193.76 g Tris 

27.33 g NaOAc 

14.9g EDTA 

dH2O to 2 liters 

pH adjusted to 8.0 with acetic 

acid 
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2.2.6 Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) is used for cloning and amplifies the DNA sequences of 

interest. This method can be used in many different arrays of biochemical processes. Some of 

these can be DNA amplification, real-time quantification of nucleic acids, mutagenesis, 

sequencing, microRNA analysis, single nucleotide polymorphism (SNP) genotyping and viral 

quantification. 

The basis for every PCR reaction is the heat stabile DNA polymerase, free deoxynucleotides 

(dNTPs), DNA- primers and a suitable buffer. The PCR reaction consist of different steps. The 

first step break and denatures the double stranded DNA (dsDNA) helix by a heat shock (94-98 

⁰C). In the second step, the temperature is lowered (50-60 ⁰C) and the primers can anneal to the 

5`end of the single stranded DNA (ssDNA) (the temperature is depended on the melting 

temperature of the primer). In the third step, the temperature is raised to the optimum 

temperature (around 70 ⁰C) of the DNA polymerase. The DNA polymerase binds to the ssDNA 

and extends the ssDNA through the primers from 5`to 3` and attaches complementary dNTPs 

to the original DNA strand as a template. Step 1 to 3 are repeated multiple times and the target 

sequence is amplified at an exponential manner. The temperature is then lowered (4 ⁰C), as the 

final reaction step. 

2.2.6.1 PCR based Site-direct mutagenesis 

PCR based site- direct mutagenesis is a technique used to create mutations in the DNA sequence 

by PCR reaction. The designed primers contain a desired mutation. These primers are used as 

template for synthesizing the complementary strand with the mutation. Throughout this work 

the QuickChange® Site-Directed Mutagenesis Kit, instruction manual (Stratagene, #200518) 

was used to insert the wanted mutation.  

  

6X gel loading buffer 

0.25% Bromphenol Blue (Merck) 

60 mM EDTA pH 8.0 

0.6% SDS  

40%(W/v) sucrose 

Sterile filtered 
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Site-directed mutagenesis protocol 

1. The following were added in a PCR tube and mixed:  

1.5 µl of 10X reaction buffer 

1 µl (10ng) of dsDNA template (pENTER- FYCO1(1332-1478)) 

0.5 µl DMSO (sigma) 

1 µl (10 µM) Primer forward (From table 3) 

1 µl (10 µM) Primer revers (From table 3) 

2.5 µl dNTP mix (Sigma) 

dH2O to a final volume of 25 µl 

2. 0.5 µl pfuTurbo DNA polymerase (2.5U/ µl) (Agilent Technologies, #600254-52) were 

added to the mixture  

3. The reaction was placed in a PCR cycler (Eppendorf AH diagnostics) with the following 

PCR program (Table 2.10). 

 

 Table 2.10: PCR program for target with a size of 4kb. 

 

 

 

 

 

 

 

 

  

 

 

  

Numbers of Cycles Temperature (⁰C) Time  

1 96 30 seconds 

18 96 30 seconds 

55 (primer Tm - 5⁰C) 1 minute 

68 2 minutes/kb  

Hold 4 ∝ 

10X Reaction Buffer 

100nM KCl 

100mM (NH4)2SO4 

200mM Tris-HCl (pH 8.8) 

20mM MgSO4 

1% Triton® X-100 

1 mg/ml nuclease-free bovine 

serum albumin (BSA) 
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2.2.6.2 PCR based DNA sequencing  

DNA sequencing is used to verify the precise order of nucleotides in the DNA, often used after 

cloning and mutagenesis. BigDye®3.1 kit (Applied Biosystems) was used with different 

primers according to their vectors.  

Procedure 

1. The following reagents were mixed into PCR tubes and held on ice.  

200-500 ng Plasmid 

1 µl BigDye Terminator v3.1 mix 

2 µl of 5X BigDye sequencing buffer 

1 µl Sequence primer (From table 4) 

dH2O to final volume of 10 µl 

2. The reagent mix were placed into a PCR cycler and run with following PCR program (Table 

2.11).  

3. The finished reagent mix was delivered to the core sequencing facility. 

 

 Table 2.11: PCR program for DNA sequencing  

 

 

 

 

 

 

 

  

Numbers of Cycles Temperature 

(⁰C) 

Time  

1 96 1 minute 

33 96 30 seconds 

50 15 seconds 

60 4 minutes 

Hold 4 ∝ 
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2.2.7 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

SDS PAGE is a technique used to separate and identify proteins according to their size. These 

proteins are treated with an anionic detergent, SDS. SDS denatures secondary structures and 

non- disulfide liked tertiary structures and unfolding proteins (Shapoiro et al. 1976, weber and 

Osborn 2969). It also applies negative charge to the proteins, which makes them migrate 

towards the positive field. It is the glycerol in the SDS- loading buffer that enables the samples 

to sink into the well. Smaller proteins run longer than larger proteins. 

10% acrylamide gel procedure 

The following components were mixed in each Erlenmeyer flask.  

10% Separation gel (protein size identification for proteins between 25 kDa to 80 kDa).  

1. 4.9 ml dH2O 

2. 2.5 ml 40% Acrylamid (Applichem) 

3. 2.5 ml  4X Separation gel buffer 

4. 100 µl APS (Ammonuium peroxidsulfate) (Merck) 

5. 10µl TEMED (N,N,N',N'-Tetramethylethylenediamine) (Sigma) 

4 % concentration gel  

1. 6.4 ml dH2O 

2. 1.0 ml 40% Acrylamid (Applichem) 

3. 2.5 ml 4X concentration gel buffer 

4. 100 µl APS ( Merck) 

5. 10µl TEMED (Sigma) 

 

 

 

 

 

 

 

 

 

 

  

4X Separating gel buffer 

181.65 g Tris- base 

4g SDS 

dH2O to 1 liter 

pH adjusted to 6.8 with HCl 

 

4X Concentrating gel buffer  

60.55 g Tris- base 

4g SDS 

dH2O to 1 liter 

pH adjusted to 6.8 with HCl 
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2.2.7.1 Coomassie blue staining for polyacrylamide gels 

Coomassie blue (also known as brilliant blue) stain is used to visualize proteins after separation 

by SDS-PAGE. It creates electrostatic interactions with protonated basic amino acids and 

hydrophobic associations with aromatic residues inside polyacrylamide gels. This staining is 

compatible for MS.  

Procedure 

1. SDS- PAGE gel was removed out of the electrophoresis apparatus and into a 15cm 

plate. 

2. Fix solution was added for 10 minutes, discard fix solution.  

3. Staining solution (Coomassie Brilliant Blue R-250 (Thermo Scientific™) was added for 

1 hour. Coomassie Brilliant Blue R-250 was poured back to its tube.  

4. Destaining solution I was added for around 20 min. Destaining solution I was collected 

in a flask. 

5. Destaining solution II was added until adequately destained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fix solution  

400 ml MeOH 

100 ml Acetic 

acid 

500 ml dH2O 

Staining solution  

62.5 ml Stain stock (2 g 

Coomassie Brilliant Blue R-250)  

250 ml MeOH 

50 ml Acetic acid 

dH2O to 500 ml 

Destaining solution I 

500 ml MeOH 

100 ml Acetic acid 

dH2O to 1 liter 

Destaining solution II 

50 ml MeOH 

70 ml Acetic acid 

dH2O to 1 liter 
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2.2.8 GATEWAY cloning technology 

Gateway® cloning technology is a cloning technique where the gene of interest (GOI) is clone 

into a vector, by recombination. The gateway cloning technique is based on the site-specific 

recombinant properties of bacteriophage lambda in E.coli, with the properties of switching 

between a lytic and a lysogenic life cycle. The site- specific integration of phage lambda into 

the host genome is gone in the latter life cycle (Hartley et al., 2000). These properties enables 

fast in-frame cloning. There are recombinant sequences called Gateway attachment (att) sites, 

where the GOI can be inserted. Two set of registered enzyme mixes are used in this cloning 

technique. These are called BP Clonase and LR Clonase. This Gateway method is divided into 

two steps. First, generation of Gateway entry clones. Here are specific Gateway attB1 and attB2 

sequences added to the 5` and 3`end of a GOI. These sequences are produced by a gene specific 

PCR primers. This sequence is inserted into a special Gateway plasmid called donor vector, 

done by BP Clonase enzyme mix. This mix catalyses the recombination and insertion of the 

attB sequence PCR product into the attP recombinant site in the Gateway donor vector called 

Gateway entry clone (pENTR, used for storage of gene constructs) which contain a Gateway 

attL recombinant site. In the second step, the gene cassette in the Gateway entry vector can be 

transferred into a Gateway destination vector (pDest) by LR Clonase enzyme mix. This pDest 

vector contain a Gateway attR recombinant sequence and other elements, as promoters and/or 

epitope tags, which alter the gene properties.  

LR reaction procedure 

The reaction mix was made in a 1.5 ml Eppendorf tube.  

1. The following components were mixed and incubated at 25⁰C (water bath) overnight or 

(2-3 hours): 

100 ng pENTER cDNA construct  

150 ng pDest vector 

0.5 µl LR (enzyme) (Invitrogen) 

TE buffer was added up to a total volume of 10 µl  

2. LR mixture was incubated with 1µl protease K (Biolabs) at 37⁰C for 10 minutes. 

3. 5 µl of the gateway mix was transformated into DH5α chemically competent E.coli cells 

for plasmid amplification and purification. 

All gateway constructs were verified by restriction digestion and runned on an agarose gel 

electrophoresis to identify the right construct.   



35 

 

 

 

 

2.2.9 GST pull-down assay 

Glutathione S-transferase (GST) pull-down assay is a method used to study protein-protein 

interactions. These interactions are based on the proteins capability to bind to protein of interest. 

In this assay, the protein of interest must be linked to a GST-tag. GST-tagged proteins are 

expressed in large amount in E.coli by DNA recombinant technology (section 2.2.9.1). These 

proteins have high affinity for glutathione and can be purified by affinity chromatography on 

glutathione-Sepharose™ 4 Fast Flow beads (GE Healthcare).  Their interaction partners can be 

studied by an incubation of the GST-protein of interest together with a complex putative protein 

mixture. Any protein-interaction complexes can be recovered by centrifugation and washing 

and resolved by SDS-PAGE (Vikis and Guan, 2004). Verification of the putative protein 

interaction partners can be done by MS analyzation. Protein bands are cut-out and sent to the 

MS facility core for identification. However, in vitro translation of putative interaction partners 

by TNT® T7 Coupled Reticuloyte Lysate System (Promega) with radioactively labeled (e.g. 

[35S]-methionine) can be verified by autoradiography. Additional, unlabeled putative 

interaction partners can be verified by immunoprecipitation (IP) assay. 

During this study, GST pulldown- assay were done with both in vitro and in vivo translated 

protein interaction partners for the GOLD domain of FYCO1 (amino acids 1333-1478) fused 

to a GST-tag.  

2.2.9.1 Production of GST-fused proteins in E.coli 

The GOLD domain of FYCO1 was cloned into a pDest15- vector. This resulted in a GST-tag 

(220 amino acids) on the N-terminal part of the GOLD domain. pDest15 vector is a gateway 

vector for construction of GST fusion proteins. It contains a glutathione S-transferase- tag 

(GST-tag) and T7 promoter. SoluBL21 (DE3) E.coli strains are improved strains for producing 

soluble proteins with GST-tag under control of a T7 promoter. The transcription of the gene is 

induced upon adding isopropyl-β-D-thiogalactopyranoside (IPTG). IPTG inhibits a repressor 

(Lac repressor), which is bound to the T7 promoter. This repressor will fall off when IPTG 

bind. The T7 promoter becomes available for the T7 RNA polymerase, which binds and 

transcribes the target gene.  

Tris-EDTA (TE) buffer 

10mM Tris/HCl, pH 7.4 (adjusted with HCl) 

1mM EDTA pH 8.0 
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Protein expression procedure 

SoluBL21 (DE3) cells containing the required plasmid were plated out on an agar- plate with 

the required antibiotic. Each plasmid contains an antibiotic resistant gene, which enables the 

cells to grow on antibiotic plates.  

1. One colony was inoculated into 5 ml pre-warmed LB-media with amp and grown over-

night (approximately 16 hours).  

2. The over- night bacteria culture was transferred into 100 ml pre-heated 2xYT-media 

with ampicillin and grown for 2-3 hours at 37⁰C with shaking until it had an OD600nm 

value between 0.6-0.9.  

3. This pre-culture was induced by 50 µl 1M IPTG (Promega) 

4. The culture was incubated for 3-4 hours at room temperature (approximately 25⁰C) with 

shaking.  

5. The culture was pelleted by centrifugation at 5000 xg for 10minutes at 4⁰C.  

6. The supernatant was discard, and the bacteria pellet was kept on ice 

7. 4 ml of lysis buffer was added to the bacteria pellet.  

8. 10 % Triton X-100 (Sigma) was added and the bacteria solution was divided into tubes 

before they were frozen down at -70⁰C, to the next day.  

 

 

 

 

 

 

 

 

 

 

  

2xYT medium  

16 g Bacto trypon 

5 g Bacto yeast extract 

5 g NaCl 

dH2O to1 lire 

pH adjusted to 7.5 with NaOH 

20 mM glucose 

Supplemented with  appropriate 

antibiotics 

 

 

NETN buffer  
20mM Tris-HCl pH8.0 
100mM NaCl (2M) 
0.5% NP40 (Nonidet p 40 

Substrate) (sigma) (10%) 
1mM EDTA (0.5M) 
dH2O to final volume 

Lysis buffer 

50mM Tris- HCl pH 8 

250nM NaCl  

1mM EDTA 

1mM DTT 

0.35 mg/ml lysozyme 

 

LB medium  

10 g Bacto Trypton 

5 g Bacto yeast extract  

10 gNaCl 

dH2O to 1 L 

pH adjusted to 7.5 with NaOH 

Antibiotic: 

100 µg/ml Ampicillin  

50 µg/ml Kanamycin 
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Protein harvesting procedure 

1. The tubes with the lysed bacteria were thawed on ice. 

2. The cells were sonicated (Vibra-cell™, Sonics) at 40% amplitude, 3 times for 20 

seconds with 10 seconds pause in between.  

3. The sonicated solution was centrifuge at high speed for 10 minutes.  

4. The supernatant (periplasmic components, containing soluble proteins) was kept for 

protein purification  

 

2.2.9.2 Protein purification by GST-pulldown assay 

In this study, the pDest15-GOLD domain was bound to glutathione-sepharose beads by affinity 

chromatography. GST has a very strong affinity for glutathione and results in a strong binding 

between GST-fusion proteins and Glutathione Sepharose™ 4 Fast Flow beads (GE healthcare). 

Glutathione Sepharose™ 4 Fast Flow beads (GE healthcare) are dissolved in 20 % ethanol. 

Procedure 

1. 200 µl of Glutathione Sepharose™ 4 Fast Flow beads (GE healthcare) were taken out.  

2. The ethanol was discarded and the beads were washed three times with cooled NETN 

buffer. 

3. Protein lysate were added together with the beads and incubate the mix at 4⁰C for 1hour, 

rotating.  

4. The beads were spanned down and washed three times with 1X PBS (10X # 70011-050 pH 

7.4, Gibco /life technologies).  

5. The concentration of beds were adjusted to 50 % with 1X PBS (10X # 70011-050 pH 7.4, 

Gibco /life technologies) 

6. The beads were stored in 50% NETN buffer.  

7. 10 µl protein beads were taken out for verification by SDS-PAGE.  
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2.2.9.3 GST-pulldown assay for examine new protein interaction candidates for the 

GOLD domain 

Through this GST-Pulldown assay, protein interaction candidates from HEK293 T-REx Flp-

In - and HeLa cell lysates (section 2.2.10.4) were investigated. These cells were incubated 

together with both GST-GOLD proteins– and GST (negative control) bound to glutathione-

sepharose beads.  

Procedure  

1. Cell lysate from HEK293 Flp-In T-REx- and HeLa cells (~106-107 cells) (section 

2.2.10.4) were incubated together with 15 µl empty and washed glutathione-sepharose 

beads (50:50 NETN buffer) for 30 minutes at 4⁰C, rotating.  

2. The cell lysate were transferred to 15-20 µl washed (two times with NETN buffer) GST-

GOLD protein beads and GST beads and incubated for ~3 hours at 4 ⁰C, rotating. 

3. The GST-GOLD and GST beads were washed 5-6 times with NETN buffer. Discard 

buffer. 

4. 15 µl SDS-loading buffer were mixed with the beads and boiled for 3-5 minutes and 

centrifuged by a table centrifuge. SeeBlue®Plus2 Pre- Stained Protein Standard 

(Thermo Scientific™ # LC5925) ladder was used (Figure 1B).  

5.  The protein samples were separated by a SDS-PAGE (section 2.2.7).  

6. All protein bands were cut and sent to mass spectrometry (section 2.2.15) 

 

2.2.9.4 In vitro transcription and translation of proteins coupled to a GST-pulldown 

assay 

Direct protein-protein interaction using TNT™ T7 Coupled reticulocyte Lysate System (RTL) 

(Promega) where the in vitro transcribed and translated proteins were radioactive labeled, [35S]-

methionine). Here, direct interaction between the in vitro translated protein-interaction 

candidates and GST-GOLD were tested.  

Procedure from the Promega kit:  

The components of the reaction mixture (Promega kit) were mixed in a 1.5 µl eppendorf tube. 

One reaction mixture is enough for five samples. The reaction mixture was multiplied when 

more samples were made. 

1.  Following components (Promega kit)  for one reaction mixture were mixed:  

25 µl reticulocyte lysate 

4 µl TNT buffer 
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1µl amino acids mix minus methionine  

1µl [35S] - Methionine 

1µl TNT polymerase T7  

2. 1 µg DNA and dH2O were added to the total reaction mixture (32 µl) to the total of 50 

µl. 

3. The reaction mixtures were incubated at 30⁰C for 60-90 minutes.  

4. To verify the translation, 3 µl of the in vitro translation were taken out for each sample, 

mixed with 18 µl 2X SDS- loading buffer with 10 % DTT (1M) and boiled for 3-5 

minutes (Input).  

5. The rest of each in vitro translated protein sample were pre-incubated with 15 µl of 

empty GST-beads (washed with cooled NETN buffer) together with 100 µl of cooled 

NETN (containing protease inhibitor) for 30 minutes at 4 ⁰C, rotating.  

6. ~100 µl of each in vitro translated protein samples were incubated with 15-20 µl 50% 

GST-GOLD beads (washed with cooled NETN buffer) for 1 hound at 4 ⁰C, rotating.  

7. The beads were centrifuged by a table centrifuge, and washed five times with cooled 

NETN buffer.  

8. All of the NETN buffer were discard and 15 µl of 2X SDS- loading buffer with 10 % 

DTT (1M) (Sigma) were added. The samples were boiled for 3-5 minutes.  

9.  15 µl of the GST-pulldown and 3.5 µl of the pre-incubation (5 % input) reaction 

mixture was loaded on a 10% thin SDS-PAGE gel.  

 

2.2.9.4.1 Autoradiography: Detection of radioactive proteins in polyacrylamide gels  

The SDS-PAGE gel was transferred on a filter paper, covered with a sheet of plastic foil and 

dried in a GelDryer (BioRad, Model 583) at 80⁰C for 45`-1 hour. The dried gel was transferred 

inside a film cassette with a phosphor imaging plate (Fujifilm Science Lab) on top. The film 

was scanned the next day with FUJI BAS-5000. All images were detected by Image Gauge 

V.4.0 (Fujifilm Science Lab).  
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2.2.10 Mammalian cell culture  

Throughout this study putative protein interaction for the GOLD domain of FYCO1 were 

studied by use of mammalian cells from human cervix HeLa cells, human embryonal kidney 

(HEK) 293 Flp-In T-rex cells and human lens cells (B-3) (Table 2.9). 

2.2.10.1 Growth condition 

All mammalian cell cultures were grown in their full medium (FM) (Table 2.9) and kept in 

incubators with a temperature of 37⁰C, 95% air and 5% Carbon dioxide (CO2).  

2.2.10.2 Cell splitting 

Mammalian cells were kept in their full growth medium (FM), passage every third day (with a 

confluence between 80%), by dividing them 1/5, 1/10 or 1/20 (depends on the next splitting 

event)* into new flasks. The optimal confluence for transfection, freezed down or before 

pulldown assay is 70%. New cells were taken up after passage number 10 and 20, according to 

the cell-type. 

Cell passage procedure 

1. The FM of the cells were discarded. 

2. The cells were washed with room temperature 1X PBS (10X # 70011-050 pH 7.4, Gibco 

/life technologies) one time. Discard PBS. 

3. 0.5-1.5 ml pre-heated Trypsin-EDTA (Sigma) was added to the cells and incubated at 

37⁰C for 3-5 minutes. Or until they are detached to the surface.  

4. 5 ml pre-heated FM was added to the cells. The cells were suspend 5-10 times. 

NETN buffer  
20mM Tris-HCl pH8.0 
100mM NaCl (2M) 
0.5% NP40 (Nonidet p 40 

Substrate) (sigma) (10%) 
1mM EDTA (0.5M) 
dH2O to final volume 

 

Protease inhibitor: 

1 Complete protease inhibitor 

cocktail tablet (Roche) in 10 ml 

NETN buffer 
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5. Cells were transferred to a new flask with pre-heated FM. Split cells in a relation of 1:2, 

for each incubation day. 

 

*Alternation: B3 cells grow slower than the other cell lines and therefor have to split 1:5.  

2.2.10.3 Taking up cells and freeze them down 

Uptake of mammalian cell procedure  

All cells are stored in liquid nitrogen. Cells were taken up from the nitrogen tank and thawed 

gently. They were added into pre-heated FM in 75cm2 flask. They were either spanned down 

or incubated between 3-4 hours, before the FM was changed. This was done to avoid DMSO 

(sigma) to affect the cells (DMSO is toxic for the cell). Cells were incubated at normal condition 

and spitted with a confluence of 80%.  

2.2.10.3.1 Freezing down mammalian cells 

Cells were freezed down with a confluence of 70%. Important to keep the cells on ice during 

the procedure.  

Procedure:  

1. Cells were passage to get a less confluence than normal passage procedure.  

2. Cells were spanned down and re-suspended gently the pellet with cold freezing mixture 

(10% DMSO (Sigma) and 90%FBS ( Merck)) 

3. The cells were divide into 2 ml freezing tubes and stored in the nitrogen tank.  

 

2.2.10.4 Mammalian cell lysis 

4 x 106 cells/ml were seeded out on 15cm plates. 2ml of the lysed cells were incubated into the 

GST-pulldown assay. Cells were seeded out in a density and lysed to obtain all proteins for 

pulldown assay. The lysed cells were added together with beads containing bound GOLD 

domain.  

Cell lysis procedure 

1. The cells were washed two times in 1X PBS (10X # 70011-050 pH 7.4, Gibco /life 

technologies)  1ml cold cell lysisbuffer (with protease and phosphatase inhibitors) were 

added to the 15cm cell-plates. The plates were incubated for 20 minutes at 4⁰C, shaking. 

2. The cells were scraped and the lysates were transferred to a 2 ml Eppendorf tubes. 

Centrifuge it at 16000xg at 4⁰C. 

3. The clear lysates were transferred /used in a pulldown assay.  
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2.2.10.5 Mammalian cell transfection 

Cell transfection can be done by different transfection reagent. Transit®-LT1 (Mirus) and 

Metafectene®Pro (Biontex) were used in this study and are both liposome based transfection 

reagents. These reagents containing lipids, which capsulate DNA. The lipid capsulated DNA is 

taken up by the cell through endocytosis. 

Transfection procedure  

Cells were counted by a Bûrkner counting chamber. 7000-10 000 cells were seeded out into 8 

wells plates for microscopy one day before the transfection. The cell confluency were around 

70% before transfection. Cells were transfect the next day with the transfection mixture. 0.1µg 

DNA/well were added into the transfection mixture and incubate for 15-20 minutes at room 

temperature. FM were changed and 200 µl transfection mix were added to the wells. The cells 

were incubated at 37⁰C, with 95% air and 5% Carbon dioxide (CO2) over night.  Cells were 

Fixated the next day with 100% MeOH.  

Transfection mixture:  

26µl DEM/ well (÷p/s, ÷ FBS) and 0.5µl Transit®-LT1 (Mirus) / Metafectene®Pro (Biontex)/ 

well were mixed and incubate for 3-5 minutes at room temperature.   

Cell Lysisbuffer  
20mM Tris-HCl pH8.0 
100mM NaCl (2M) 
0.5% NP40 (Nonidet p 40 

Substrate) (sigma) (10%) 
1mM EDTA (0.5M) 
dH2O to final volume 

In 10 ml buffer 

1 tablet complete EDTA-free 

protease inhibitor (Roche) 

1:100 phosphatase cocktail sett II 

inhibitor (Calbiochem®) 
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2.2.11 Fluorescence microscope 

A fluorescence microscope is an optical microscope, which uses fluorescence to study organic 

or inorganic substances. Fluorescence is define as an atoms ability to absorb light energy 

(excited) from a specific wavelength. The electron jumps to a higher energy level, a short-lived 

excited state. Here, the electron loose energy and goes back to the ground state, thereby emitting 

a photon. The emitted fluorescence can be used to generates an image (Lichtman and 

Conchello, 2005).A confocal microscope is one type of fluorescence microscope.  

2.2.11.1 Confocal microscope  

Confocal microscopes are specialized fluorescence microscope, which have high sensitivity, 

high signal to noise ratio and great specificity in excitation and emission detection. In addition, 

the lateral and vertical resolution is higher than in normal fluorescence microscope. The 

features are obtained by spatial filtering techniques, which eliminate out- of focus light and 

increase the brightness in fluorescence image of thick specimens.  Thick specimens can be 

optically sliced and be used to construct a 3D image. Confocal microscope employs point-by-

point illumination or point scanning.Two pinholes eliminates the out- of focus fluorescence 

emission light, and together with the point scanning generates images with great optical 

resolution. In laser scanning confocal microscopy (LSCM) the light source is a laser. LSCM is 

widely used today as an essential tool for biomedical imagining applications. This laser passes 

first through the first pinhole, called light source pinhole aperture. This pinhole is situated in a 

conjugate plane (confocal), with a scanning point on the specimen. A dichromatic mirror reflect 

the excited light rays, which becomes focused by the objective lens before it reaches the 

specimen in a focal plane. The fluorescence light becomes emitted from the specimen and 

passes through the objective lens, where it becomes focused. The focused light passes back 

through the dichromatic mirror and focused as a confocal point at the detector pinhole aperture.  

The light becomes detected by the photodetector (Wright and Wright, 2002).  

2.2.12 Cell fixing and staining 

Cell preparation for confocal microscopy is important and cells can be fixed by either methanol, 

acetone, ethanol, paraformaldehyde (PFA) or formalin. Methanol fixation was used during this 

study and is a more sensitive fixation and lower the risk to destroy specific cellular structures 

(e.g. ER).  
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Methanol fixation procedure 

1. Cells were fixed in -20⁰C methanol (100%) for 10 minutes. Collect the methanol. 

2. The cells were washed 3 times with ice-cold 1X PBS (10X # 70011-050 pH 7.4, Gibco 

/life technologies). 

3. The cells were stored in 1X PBS (10X # 70011-050 pH 7.4, Gibco /life technologies) 

 

2.2.12.1 Immunofluorescence staining procedure 

1. 200 µl block solution (3% goat serum in 1X PBS (10X # 70011-050 pH 7.4, Gibco /life 

technologies) were added onto the cells on the confocal wells.  

2. Incubate the cells with the blocking solution for minimum 30 minutes shaking at room 

temperature. 

3. 150 µl of the primary Antibody (Ab) (in 1% goat serum in 1X PBS (Gibco /life 

technologies # 70011-050 pH 7.4)) solution were added to each confocal well and 

incubated for minimum 30 minutes, shaking at room temperature. 

4. Wash the wells 6 times with ice-cold 1X PBS (Gibco /life technologies # 70011-050 pH 

7.4) 

5. 150 µl of the secondary Ab (in 1% goat serum in 1X PBS ((Gibco /life technologies # 

70011-050 pH 7.4)) (corresponding alexa-flour) solution were added into each confocal 

cell and incubated for minimum 30minutes, shaking at room temperature. It were keep 

dark. 

6. Keep the cells with 1X PBS (Gibco /life technologies # 70011-050 pH 7.4) at 4⁰C. 

 

2.2.13 GFP- trap /Immunoprecipitation  

Green fluorescent protein (GFP) tags are used to study proteins localization and dynamics. In 

addition, GFP fused proteins can be used for immune precipitation assays, enzyme activity 

measurements, ChIP analysis and MS, through a GFP –trap® system (Chromtek). This assay 

is used to analyze GFP proteins and their interaction candidates. GFP-Trap is composed of GFP 

binding proteins coupled to monovalent matrix (e.g. magnetic agarose beads, agarose beads, 

96-multiwell plate or magnetic particles). However, agarose beads were used in this study.   
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GFP –Trap and immune precipitation Procedure 

1. HEK294 Flp-In ZnF FYCO1 #12 and HEK294 Flp-In ZnF FYCO1#12  GFP-FYCO1 

cells were seeded out with a density of ~320.000 cells/ 6cm well.  

2. The cells were transfected with 4 µl Metafect® pro (Biontex) together with 300 µl 

DMEM (minus FBS and antibiotics), overnight.  

3. The gene expression of GFP- FYCO1 from the HEK294 Flp-In ZnF FYCO1 #12  GFP-

FYCO1 cells were induced by 1 µg/ml Tetracycline (Sigma). 

4. Harvest cells, all FM was aspirated and the cells were washed with 1X PBS.  

5. The cells were lysed by adding 300 µl RIPA buffer (+ inhibitors). Cells were incubated 

at 4⁰C, shaking for ~30 min.  

6. The cells lysate were scraped and centrifuged at 500g for 5 minutes.  

7. The cell lysate supernatant were kept on ice.  

8. 15 µl of supernatant were taken out as the input sample. Add 2X SDS-loading buffer 

(10% 1M DTT) to the input. Boil for 3-5 minutes. 

9. 12 µl 50% GFP-Trap® Agarose beads were prepared by washing them in 1X RIPA 

buffer. 

10. Each cell lysate supernatant were loaded on to 12 µl 50% GFP-Trap® Agarose beads 

and incubated  for 2 hour at 4 ⁰C, rotating.  

11. The beads were washed 3 times with 1X RIPA buffer.  

12. 15 µl 2X SDS-loading buffer were added to the beads and boiled for 3-5 minutes. 

13. The bound proteins from the beads were loaded onto a SDS- PAGE. 

 

2.2.14 Western Blot (WB)  

WB is a method where proteins are transferred from a gel to a membrane (e.g. nitrocellulose or 

polyvinylidene fluoride (PVDF)) by using an electric field. First, proteins are separated by SDS-

PAGE. Next, proteins are blotted to the membrane. After the blotting, the membrane is blocked 

with 5% milk to prevent any unspecific binding of antibodies to the surface of the membrane. 

Lastly, the membrane become incubated with primary antibodies, which is specific for the 

protein of interest. Next, the membrane is incubated with a secondary antibody (e.g. 

Fluorescence dye), to recognize the protein of interest.  
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WB Procedure 

1. The PVDF membrane was first sought in transfer buffer before the SDS-PAGE gel was 

added. The protein gel was blotted to the membrane by Trans-Blot® Turbo™ (BioRad). 

2. After the blotting, the membrane were blocked with a blocking buffer (5% milk 

(Normilk AS) in TBST for 1 hour at room temperature.  

3. Primary antibody was incubated overnight. 

4. The membrane was washed 3 times for 10 minutes each time with TBST buffer  

5. The secondary antibody were incubated for 1 hour at room temperature and washed 3 

times for 10 minutes each time with TBST buffer.  

6. The membrane signals were detected by a Lumi-Imager F1™ (Boehringer Mannheim), 

which captures the chemiluminescent image.  

 

 

 

 

 

 

 

 

 

2.2.15 Protein identification by Liquid chromatography-tandem mass spectrometry 

(LC-MS/MS) 

The identification of new protein-interaction for the GOLD domain of FYCO1 were tested by 

cell lysate pulldown assay followed by protein-identification by MS. Recombinant GOLD 

domain fused to GST was expressed in E. coli  and bound to GST-beads. A pulldown assay 

with cell lysate from HeLa and HEK293 T-REx Flp-In cells were incubated together with the 

GST-GOLD domain- and GST protein beads (section 2.2.9.3).   

RIPA buffer 

50mM Tris pH 7.5 

150mM NaCl 

1mM EDTA 

1% NP40 

0.25 % Triton- X100 

TBST buffer 

10 mM Tris pH8  

150 mM NaCl 

1 mL Tween-20 

dH2O to total 1 L 

Transfer buffer 

1.88 g Tris base 

23.25 g Glycin 

150 ml methanol (100%) 

850 ml dH2O 
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Procedure 

1. Proteins from the GST-pulldown assay were resolved on SDS-PAGE (10% acrylamide 

gel) to the bands are in the separation gel (15-20 minutes at 30mA). 

2. The buffer was poured from the container, leaving the gel in the tray. 

3. All gel bands containing proteins were exited with a scalpel. Be careful for 

contamination of keratin.  

4. The gel piece were transferred to a protein LoBind Eppendorf tube.  

5. The protein gel-pieces were delivered to our proteomic core facility, Tromsø University 

Proteomics Platform (TUPP).  

TUPP prepared the protein gel-pieces for analysis. These protein gels were subjected in 

a gel reduction, alkylation and trypsin digestion (6 ng/μl trypsin (V511A, Promega, 

Wisconsin, USA). OMIX C18 tips (Varian, Inc., Palo Alto, CA, USA) were used for 

sample clean-up and concentration. 0.1% formic acid was added to the peptide mixture 

and loaded onto a Thermo Fisher Scientific EASY-nLC1000 system and EASY- Spray 

column (C18, 2 µm, 100 Å, 50 µm,50 cm). Next, peptides became fractionated through 

a 2-100% acetonitrile gradient in 0.1% formic acid over 50 minutes at a flow rate of 200 

nl/min (Shevchenko et al., 2007). Lastly, peptides become fragmented through a Q-

Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer (© 2015 Thermo Fisher 

Scientific Inc) (Figure 2.2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Illustration of the Q-Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer 

(© 2015 Thermo Fisher Scientific Inc). The LC- eluate is loaded and travels through the capillary, S- lens, 

bent flatapole, the quadrupole further through the C-Trap, where the ions goes up to the orbitrap, where the ions 

are trapped and analyzed Each peptide fragment of interest is sent into the HCD, where they return to C-trap and 

ends up in orbitrap, where the peptides becomes fragmented and produces MS/MS spectrums (Michalski et al., 

2011).  
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2.2.15.1 Protein identification and processing of the peptide-fragment spectrums  

Data from the Q-Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer (Thermo 

Scientific™) was collected in data dependent mode using a Top10 method. Next, these data 

were processed through Proteome Discoverer™ software (Thermo Scientific™), which is a 

software used for identification of peptide spectrums obtained from MS. All fragmented 

peptide-spectrums were searched up against already known protein sequences from Homo 

Sapiens. This was done through the proteomic database, Uniprot (Consortium, 2015, UniProt, 

2016) using the Sequest HT program. The fragment mass tolerance was set to 0.02 Da and the 

peptide mass tolerance used in this search were 10ppm. First, peptides were filtrated and 

identified through a false discovery rate (FDR) set to 1%. Next, peptides bound to unspecific 

to GST proteins (negative control), where excluded. Lastly, keratin proteins were excluded. 

Keratin is one of the most normal contaminations in MS.  
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3 Results 

3.1 Establishing the GST-pulldown assay followed by MS, to identify putative 

protein interaction partners for the GOLD domain of FYCO1 

The idea was to perform an unbiased GST pulldown-MS study in order to identify putative 

interaction proteins for the GOLD domain of FYCO1. An overview of the study is illustrated 

in figure 3.1. As a starting point we had a plasmid ready for bacterial expression of the GOLD 

domain (amino acids 1333-1478 of FYCO1) fused to GST (we named this plasmid pDest15-

GOLD). This plasmid contains a T7 promoter (Figure 3.2). This T7 promoter makes the plasmid 

able to be transcribed by the viral RNA polymerase. Therefore GST-GOLD became expressed 

in E.coli strain containing a viral T7 RNA polymerase.  

The GST-GOLD was further purified from E.coli extract using glutathione-sepharose beads. 

GST-GOLD bound to beads was then incubated with mammalian cell extracts and GST 

pulldown experiments performed to isolate putative GOLD interaction proteins. HEK293 T-

REx Flp-In- and HeLa cells were used for this approach. The GOLD domain interacting 

proteins were separated by SDS-PAGE and identified by LC-MS/MS (Figure 3.1). The 

experiment was repeated eleven times and the results are therefore highly representative.  

Next, cDNA for Specific putative GOLD interaction proteins were ordered and cloned into 

different desired vectors. Interacting abilities were tested by in vitro and in vivo pulldowns and 

by confocal imagining. 
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Figure 3.1: An illustration of the work-flow over the different steps to LC-MS/MS.  

 

Figure 3.2: A plasmid map over pDest15`- GOLD. In this plasmid the GOLD domain of FYCO1 fused to 

GST is expressed from T7RNA polymerase promoter.   
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3.2 Identification of the GOLD domain interaction candidates 
The GST-tag on the GOLD domain was used for the purification, through its affinity for glutathione- 

sepharose beads. The GST-GOLD was produced and purified. GST-GOLD is located as a 40 kDa band, 

without any other unspecific bands. The same was true for GST (25 kDa) (Figure 3.3).  

 

 

Figure 3.3: Affinity purification of GST-GOLD with glutathione-Sepharose™ 4 Fast Flow beads 

(GE Healthcare). Glutathione S-transferase (GST) pull-down assay were used to purify the GST-GOLD domain 

(40 kDa) and GST (25 kDa). Protein samples before expression and protein after the purification were loaded on 

an SDS-PAGE. Unstained protein ladder (10-250 kDa) (Neb, # P7703S) was used as the Molecular Weight (MW) 

ladder. 

 

Next, a GST-pulldown experiments were performed where ~107 cells (HEK293 Flp-In T-REx 

and HeLa cells) were incubated with the GST or GST-GOLD protein-beads. Protein interaction 

candidates were co-precipitated together with GST-GOLD domain. These protein candidates 

were loaded onto LC-MS/MS and the protein identification was done using Proteome 

Discoverer™ 2.1 software (Thermo Scientific™). This software is a search engine, which uses 

the obtained mass spectrometry data to identify proteins from peptide sequence database 

(Perkins et al., 1999). In the current study UniProt (Consortium, 2015, UniProt, 2016) was used 

as the peptide sequence database.  

MW MW 
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The identified proteins from all the eleven experiments were run in parallel with GST, as a 

negative control, to exclude unspecific binding. All of the obtained protein candidates were 

filtered by specific criteria’s (Table 3.1). From these eleven experiments, all protein peptides 

were sorted into protein groups. In total, 182 proteins were identified (Appendix). How 

representative their co-precipitations were according to their obtained PSM value. #PSM is the 

match between our obtained spectrum and the highest-scoring peptide. In addition, 22% of the 

protein groups were only identified in HEK293 T-Rex Flp-In cells. However, 28% of the 

protein groups were only identified in HeLa cells. These results shown us that the protein 

distribution between these two cell lines were relative the same and the experiments were 

therefore merged. The cellular localization of each protein were obtained by the ProteinCenter 

software in the Proteome software Discovery program (Thermo Scientific™). The data shows 

that a highly number of the proteins were known to interact with membranes (22.8%) (Figure 

3.4). These proteins were of high interesting, due to FYCO1s membrane interacting function. 

In addition, some of these proteins were also found distributed in the nucleus, the cytoplasm, 

Golgi apparatus, mitochondrion and endoplasmic reticulum (ER) (Figure 3.4).  

 

Table 3.1: Protein filtration criteria’s in Proteome software Discovery (Thermo 

Scientific™). 

Criteria’s Description  

False discovery rate (FDR), below 1% The ratio between false PSM and the 

number of PSM obtained above the score 

threshold (1%).  

Not bound to GST-beads Proteins are not co-precipitated with GST-

beads 

Keratin excluded  Keratin is one of the most normal 

contaminations in MS and were here 

excluded. 
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Figure 3.4: The known distribution (%) of protein interaction candidates in different cellular 

components. Distribution (%) of the protein-interaction candidates in different cellular compartments: 

membrane, nucleus, cytoplasm, cytosol, Golgi apparatus, mitochondrion, endoplasmic reticulum (ER) and in other 

components were calculated by the 182 proteins obtained from the ProteinCenter software from Proteome software 

Discovery (Thermo Scientific™).  

 

Next, a cut-off value for the 182 interaction candidates were set. All protein candidates should 

be co-precipitated in at least six of the eleven experiments. From the cut-off, 30 putative 

interacting proteins were selected from how many times they were co-precipitated together with 

the GOLD domain of total eleven experiments (Table 3.2). These were also sorted according 

to their peptide spectrum matches (#PSM), since #PSM is a relative indication of the number 

of identified peptide spectrum matches for each protein and describe the identification of the 

incident level of a protein interaction (Figure 3.5).  
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Table 3.2: Putative interacting proteins (30) were separated according to the number of positive 

identifications throughout the eleven experiments.  

Protein name  Gene ID Number of positive 

identified/ total 

experiments 

# PSM 

Tubulin, alpha-4A chain TUBA4A  11/11 338 

DnaJ homolog subfamily A member 1 DNAJA1  10/11 212 

ADP/ATP translocase 2 SLC25A5  10/11 199 

Thioredoxin domain-containing protein 5 TXNDC5  9/11 123 

DnaJ homolog subfamily A member 2 DNAJA2  9/11 116 

ATP synthase subunit alpha, mitochondrial ATP5A1  9/11 109 

Pyrroline-5-carboxylate reductase 2 PYCR2  9/11 97 

Carbamoyl-phosphate synthase, mitochondrial CPS1  9/11 71 

Guanine nucleotide-binding protein subunit beta-2-like 1 GNB2L1  9/11 58 

Protein NipSnap homolog 1 NIPSNAP1  8/11 73 

DnaJ homolog subfamily A member 3, mitochondrial DNAJA3  8/11 36 

D-3-phosphoglycerate dehydrogenase PHGDH  8/11 35 

DnaJ homolog subfamily B member 11 DNAJB11  8/11 31 

2’,3’-cyclic-nucleotide 3’-phosphodiesterase CNP  8/11 28 

ATP synthase subunit gamma, mitochondrial ATP5C1  8/11 26 

Cytochrome b-c1 complex subunit 2, mitochondrial UQCRC2  8/11 23 

60kDa heat shock protein, mitochondrial HSPD1  7/11 34 

Mitochondrial import inner membrane 50 TIMM50  7/11 27 

RuvB-like 2 RUVBL2  7/11 9 

Delta(24)-sterol reductase DHCR24  7/11 8 

Calcium-binding mitochondrial carrier protein Aralar 2 SLC25A6  6/11 169 

Cytochrome c1, heme protein, mitochondrial CYC1  6/11 34 

Heterogeneous nuclear ribonucleoprotein U HNRNPU  6/11 32 

ADP- ribosylation factor 4 ARF4  6/11 31 

Protein NipSnap homolog 2 GBAS  6/11 18 

Vacuolar protein sorting-associated protein 4A VPS4A  6/11 18 

Heterogeneous nuclear ribonucleoproteins A2/B1 HNRNPA2B1  6/11 14 

Lysophosphatidylcholine acyltransferase 1 LPCAT1  6/11 12 

DNA eplication licensing factor MCM7 MCM7  6/11 11 

Ras-related protein Rap-1b RAP1B  6/11 8 
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Figure 3.5: The 30 selected protein-interaction candidates arranged by their #PSM. These 

candidates are sorted by their #PSM value, from highest to lowest. A: Tubulin, alpha-4A chain (TUBA4A), DnaJ 

homolog subfamily A member 1 (DNAJA1, ADP/ATP translocase 2 (SLC25A5), Calcium-binding mitochondrial 

carrier protein Aralar2 (SLC25A6), Thioredoxin domain-containing protein 5 (TXNDC5), DnaJ homolog 

subfamily A member 2 (DNAJA2), ATP synthase subunit alpha, mitochondrial (ATP5A1), Pyrroline-5-

carboxylate reductase 2 (PYCR2), Protein NipSnap homolog 1 (NIPSNAP, carbamoyl-phosphate synthase, 

mitochondrial (CPS1), Guanine nucleotide-binding protein subunit beta-2-like 1 (GNB2L1), DnaJ homolog 

subfamily A member 3, mitochondrial (DNAJA3), D-3-phosphoglycerate dehydrogenase (PHGDH), 60kDa heat 

shock protein, mitochondrial (HSPD1), Cytochrome c1, heme protein, mitochondrial (CYT1), Heterogeneous 

nuclear ribonucleoprotein U (HNRNPU), DnaJ homolog subfamily B member 11 (DNAJB11) and ADP- 

ribosylation factor 4 (ARF4). B: 2’,3’-cyclic-nucleotide 3’-phosphodiesterase (CNP), Mitochondrial import inner 

membrane (TIMM50), ATP synthase subunit gamma, mitochondrial (ATP5C1), Cytochrome b-c1 complex 

subunit 2, mitochondrial (UQCRC2), Vacuolar protein sorting-associated protein 4A (VPS4A), Protein NipSnap 

homolog 2 (NipSnap2/GBAS), Heterogeneous nuclear ribonucleoproteins A2/B1(HNRNPA2B1), 

Lysophosphatidylcholine acyltransferase 1 (LPCAT1), DNA eplication licensing factor MCM7 (MCM7), RuvB-

like 2(RUVBL2), Delta(24)-sterol reductase (DHCR24) and Ras-related protein Rap-1b (RAP1B).  
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3.3 Comparison of this study with a previously reported IP-MS study with full-length 

FYCO1 

An unbiased interaction study of full-length FYCO1 has previously been published by Christian 

Behrends in 2010 (Behrends et al., 2010). In this study, proteins from HEK293 cell lysates were 

tested for their interacting capabilities for full-length FYCO1 by immune-precipitation and LC-

MS/MS identification. This study sought to create an organized network of the human 

autophagy system. A list of 333 putative interaction candidates for full-length FYCO1 were 

here identified (Behrends et al., 2010). The result from this study was compared with our 

results. Ten protein interaction candidates for the GOLD domain were overlapping with the 

protein candidates from the Behrends list (Figure 3.6). The proteins are arranged by their 

obtained #PSM from our study. Seven of the ten proteins showed a high PSM value. The 

remaining three have lower PSM values, but were ranged higher in Behrends list (Figure 3.6).   

 

 

Figure 3.6: Ten protein interaction candidates identified in experiments with 

immunoprecipitation of full-length FYCO1 and the GST pulldown with the isolated GOLD 

domain. These protein candidates were found in the co-precipitation with both full-length FYCO1 and for the 

GOLD domain. They are here arranged according to their #PSM obtained in our study. These putative proteins 

are: Tubulin, alpha-4A chain (TUBA4A), ADP/ATP translocase 3 (SLC25A6), ATP synthase subunit alpha, 

mitochondrial (ATP5A1), Heterogeneous nuclear ribonucleoprotein U (HNRNPU), Heterogeneous nuclear 

ribonucleoproteins A2/B1 (HNRNPA2B1), Vacuolar fusion protein CCZ1 homolog B (CCZ1B), RuvB-like 2 

(RUVBL2), nuclease-sensitive element-binding protein 1 (YBX1), Vacuolar fusion protein MON1 homolog B 

(MON1B) and Uncharacterized protein C18orf8 (C18orf8).   
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3.4 Selection of nine potential GOLD domain interacting proteins for further studies 

From the 30 protein interaction candidates, nine proteins were selected for further studies 

(Table 3.3). These nine candidates were chosen according to the reported function and 

localization, but also based on other reasons related to activities within our research group and 

if cDNA were available or not. Further verification assays were used to look at their level of 

direct and indirect interactions to the GOLD domain.  

 

Tubulin, alpha-4A chain (TUBA4A) 

TUBA4A was pulled down in all eleven LC-MS/MS experiments and had the highest #PSM 

value (338) among the 30 selected candidates. For this reason, TUBA4A was chosen for further 

studies. However, Crapome (a database used to identify the distribution level of proteins form 

other proteomics experiments) identified TUBA4A as a protein frequently co-precipitated in 

different affinity interaction assays (e.g. immune precipitation with GST-, FLAG- epitope tags) 

(data not shown). It is showento be distributed in the cytoplasm, cytoskeleton, cytosol and 

extracellular environment (information obtained by ProteinCenter software (Thermo 

Scientific). MT are composed of α- and β- tubulin. Here TUBA4A is one of the isoforms of α-

tubulin. MT are involved in intracellular transport, cell motility, mitosis and maintain of cell 

polarity and shape (Conde and Caceres, 2009). FYCO1 is known to interact with MT through 

motor proteins (Raiborg et al., 2015, Pankiv et al., 2010). The GOLD domain can have an 

interaction towards TUBA4A. 

  

DnaJ homolog subfamily A member 1 (DNAJA1)  

DNAJA1 was pulled down in ten of eleven (91%) LC-MS/MS experiments. Its high #PSM 

value (212) makes it one of the best interaction candidates for the GOLD domain. In addition, 

DNAJA1 is not often co-precipitated in protein interaction studies (Crapome database) (data 

not shown). This increases its chance to be involved in the interaction with the GOLD domain. 

DNAJA1 is distributed in the cytoplasm, cytosol, ER, on membranes, mitochondrion and in the 

nucleus (information obtained by ProteinCenter software (Thermo Scientific). It is known to 

work as a co-chaperone of heat shock protein 70 (Qiu et al., 2006).   
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Thioredoxin domain-containing protein 5 (TXNDC5)  

TXNDC5 was pulled down in nine of eleven (82%) LC-MS/MS experiments. It makes a good 

putative interaction candidate by having one of the best identification rates and a high #PSM 

value (123). In addition, TXNDC5 is not often seen to co-precipitate in protein-interaction 

studies (Crapome database) (data not shown). TXNDC5 is present in ER and in the plasma 

membrane (information obtained by ProteinCenter software (Thermo Scientific) and is found 

to interact with the insulin-sensing receptor, AdiporR1. This suggest that TXNDC5 is involved 

in adiponectin receptor biology and signaling (Charlton et al., 2010).  

 

NipSnap homolog 1 (NIPNSNAP 1) and NipSnap homolog 2 (NIPSNAP2 /GBAS)  

NIPSNAP1 and GBAS are homologs of each other and share similarities in structure and 

function. NIPSNAP1 was pulled down in eight of eleven (73%) LC-MS/MS experiments and 

GBAS was pulled down in six of eleven (54%) LC-MS/MS experiments. The chance of 

interaction to the GOLD domain is higher for NIPSNAP1 than GBAS. This is due to a higher 

#PSM value for NIPSNAP1 (73) than GBAS (18). The protein function and localization is still 

debated, however it is thought to either be in the matrix or in the inner membrane of the 

mitochondrion. The possibility for interaction with the GOLD domain is reduced, if they are 

localized inside the mitochondria. Although, the proteins may interact with the full-length 

FYCO1 through its GOLD domain before or during their transport into the mitochondrion. 

NIPSNAP1 and GBAS has also been examined in our research group, and were therefore 

included in this study.  

 

RuvB-like 2 (RUVBL2)  

RUVBL2 was pulled down in seven of eleven (63%) LC-MS/MS experiments with a #PSM 

value of 9. It was included due to the interest of our research group. It is also interesting that it 

was found to co-precipitate together with TUBA4A (Biogrid3.4 (thebiogrid.org)) and that it 

came down together with mTOR by affinity capture-MS (Biogrid3.4 (thebiogrid.org)). It is an 

ATPase DNA helicase and involved as a regulator of ER stress-induced gene transcription 

(Marza et al., 2015). However, it is localized on membranes and in the cytoplasm (information 

obtained by ProteinCenter software (Thermo Scientific), which can make it available for 

FYCO1.  
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Vacuolar protein sorting-associated protein 4A (VPS4A)  

VPS4A was pulled down in six of eleven (54%) MS experiments with a #PSM value of 18. It 

was included due to the interest of our research group, and because of its function.VPS4A is 

known to interact with Ras-binding proteins and ESCRT-III complex (Zheng et al., 2012), and 

is involved in intracellular protein trafficking, as the transport of LE proteins (Scheuring et al., 

2001). These features gives VPS4A an interesting opportunity to interact with the full-length 

FYCO1, and from our results, through the GOLD domain. 

 

ADP- ribosylation factor 4 (ARF4)  

ARF4 was also included as one of the nine interaction candidates, being pulled down in six of 

eleven (54%) LC-MS/MS experiments and got a #PSM value of 30. Its identification rate and 

#PSM value makes it a likely interaction candidate. Since ARF4 already has been used in our 

laboratory, it could easily be tested against the GOLD domain. In addition, ARF4 is rarely 

identified in different affinity interaction assays (e.g. immune precipitation with GST-, FLAG- 

epitope tags) (Crapome database) (data not shown). ARF proteins belong to the Ras superfamily 

of small GTPases, which regulate vesicle traffic and organelle structures. Regulation of 

organelle structure has been shown to be done by recruiting  coat proteins, modulating structure 

of actin at the membrane surfaces and to regulate phospholipid metabolism (D'Souza-Schorey 

and Chavrier, 2006). ARF proteins may work together in the ER–Golgi system and at the 

plasma membrane (Donaldson and Jackson, 2011). These functions increase the chance for 

ARF proteins to interact with the FYCO1, and therefore the GOLD domain. 

 

Vacuolar fusion protein MON1 homolog B (MON1B)  

According to our result, by its low interaction rate (9%) and low #PSM value (4), MON1B is 

not one of the high interaction candidates for the GOLD domain. However, MON1B was 

included as a possible interaction candidate, due to its already known putative interaction 

against the full-length protein, FYCO1 (Behrends et al., 2010) and the interest of our research 

group. It is known that MON1B creates a complex with CCZ1. This complex functions as a 

GEF for Rab7. Rab7 becomes activated and associates strongly to PI3P positive membranes 

(Cabrera et al., 2014) and is shown to interact with the FYCO1 (Pankiv et al., 2010). MON1B 

is therefore a biased putative interaction candidate, which can have an interaction with full-

length FYCO1 through FYCO1s GOLD domain.  
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Table 3.3: Putative protein interaction candidates (9) for the GOLD domain 

selected for further study 

Protein name Gene ID Number of 

positive 

identified/ total 

experiments 

#PSM Size 

(kDa) 

Localization* 

Tubulin alpha-4A chain TUBA4A 11/11 338 49.9 - Cytoplasm 

- Cytoskeleton 

- Cytosol 

DnaJ homolog subfamily A 

member 1 

DNAJA1 10/11 212 44.9 - Cytoplasm 

- Cytosol 

- ER 

- Membrane 

- Mitochondrion 

- Nucleus 

Thioredoxin domain-

containing protein 5 

TXNDC5 9/11 123 47.6 - ER 

- Organell 

lumen 

Protein NipSnap homolog 1 NIPSNAP1 8/11 73 33.3 - Membrane 

- Mitochondrion 

RuvB-like 2 RUVBL2 7/11 9 51 - Cytoplasm 

- Membrane 

- Nucleus 

Protein NipSnap homolog 2  GBAS 6/11 18 33.7 - Membrane 

- Mitochondrion 

ADP-ribosylation factor 4 ARF4 6/11 31 20 - Cytoplasm 

- Cytosol 

- Golgi 

- Membrane 

- Nucleus 

Vacuolar protein-assosiated 

protein 4A 

VPS4Q 6/11 18 48.8 - Cytoplasm 

- Cytosol 

- Endosome 

- Membrane 

- Nucleus 

- Vacuole 

MON1 homolog B MON1B 1/11 4 59 - Cytoplasm 

* Information obtained from ProteinCenter software from Proteome software 

Discovery 2.1 (Thermo Scientific™)  
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3.5 According to the in vitro pulldown assay, DNAJA1 may be the strongest direct 

interaction candidate for the GOLD domain  

Behrends and his co-workers showed earlier that TUBA4A, RUVBL2 and MON1B were 

observed to precipitate together with full-length FYCO1 (Behrends et al., 2010). Interestingly, 

these came also down in our interaction study, with the isolated GOLD domain of FYCO1. To 

examine their direct interaction abilities towards the GOLD domain, these proteins and the six 

other protein candidates were obtain through cDNA from our own plasmid archive (ARF4, 

GBAS, NIPSNAP1, MON1B and VPS4A) or ordered from the Harvard PlasmID collection 

(Harvard, 2016) (TUBA4A, DNAJA1, TXNDC5 and RUVBL2).The gateway pENTR cDNA 

plasmid constructs were obtained for five of the nine proteins chosen for further studies. These 

five, TUBA4A, DNAJA1, RUVBL2, ARF4 and TXNDC5 cDNAs were cloned into pDest-

Myc vector, which contains a T7 promoter and a myc-tag (Lamark et al., 2003).  GBAS, 

NIPSNAP1 and MON1B were already cloned into this pDest-Myc vectors. VPS4A was not 

available as a pENTR construct, Due to time limitations, VPS4A was not tested. However, the 

eight candidates were in vitro transcribed and translated in a reticulocyte lysate System 

(Promega) together with radioactive 35S- methionine. First, these in vitro transcribed proteins 

were incubated with empty glutathione-Sepharose beads, to exclude unspecific binding. Next, 

their protein interacting abilities for the GOLD domain were tested by a GST-pulldown assay. 

This was performed by incubating them together with GST-GOLD bound on glutathione-

Sepharose beads. In parallel, these protein candidates were incubated with GST-beads, to 

exclude their unspecific binding to GST (bound to glutathione-Sepharose beads). GST works 

here as a negative control. Their interactions were identified by measuring their radioactive 

methionine content. The binding intensity is due to the measured radioactive methionine, which 

is shown as dark bands on the autoradiography. The strength is dependent on the interaction-

strength towards the GST-GOLD domain. Unspecific interactions were excluded by the GST 

control.  

 

The data presented in figure 3.7 shows the in vitro binding between the bacterial expressed 

GST-GOLD domain and in vitro translated protein candidates. The bands on the 

autoradiography indicating 5% input indicate an efficient in vitro translation of most of the 

candidates, except for TXNDC5. TXNDC5 gave no in vitro translationand product. (Figure 

3.7C). Interaction against GBAS, MON1B and ARF4 were all tested three times. These data 

are therefore more significant than the other. NIPSNAP1, TUBA4A, DNAJA1 and RUVBL2 

were all tested once and additional experiments must be included to make any conclusion about 

their direct interaction to the GOLD domain.  
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Two strong bands were observed in most of the inputs. These two bands, are two different forms 

of the protein. The ribosome can bind to more than one start codon and make a truncated form 

of the protein, which makes these two bands. The largest band (upper) is the full-length form 

of the protein fused to myc-tag, whereas the smaller (lower band) is most likely a product 

without a myc-tag or a truncated form (Figure 3.7A). Therefore all bands found in the input 

were included in the interaction strength quantitation (Figure 3.8). Additional bands found only 

after the pulldown (not found in the input) as seen for DNAJA1, can be due to cleaved proteins 

(Figure 3.7C).  

 

Figure 3.8 shows the quantification of the interaction intensity towards the GOLD domain. In 

total, all interacting toward the GOLD domain were below 5 % (compared to the 5 % input). 

An interaction value below 5 % is define as a very weak interaction. However from our 

quantification results (Figure 3.8), regarding to the GST-control and comparing with the 5% 

input, DNAJA1 seems as the protein with the best interaction toward the GOLD domain. This 

was also observed in the autoradiograph (Figure 3.7C). GBAS is quantified as the second best 

interaction candidate. RUVBL2 and TUBA4A did not show any unspecific interaction against 

GST, which can make their observed weak binding specific (Figure 3.7C). While, NIPSNAP1, 

ARF4, MON1B were not observed to have a direct interaction against the GOLD domain.  
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Figure 3.7: In vitro interaction study of the protein-interaction candidates, MON1B, GBAS, 
NIPSNAP1, ARF4, TXNDC5, DNAJA1, TUBA4A and GBAS. Autoradiograph of the GST pulldown 

assay between the GOLD domain fused to GST and immobilized on glutathione-sepharose beads and myc-tagged 

-MON1B, -GBAS, -NIPSNAP1, -ARF4, -TXNDC5, -DNAJA1, -TUBA4A  and -RUVBL2 produced by in vitro 

translation in presence of 35S-methionine. The in vitro translated proteins were incubated together with GST 

immobilized on glutathione- sepharose beads to exclude unspecific binding. The interaction/binding between 

GST-GOLD and in vitro translated protein-candidates are in regarding to a 5 % input and are resolved by SDS-

PAGE, stained by coomassie blue and detected by autoradiography (Fuji BAS-5000). Unstained protein ladder 

(10-250 kDa) (Neb, # P7703S) was used as the Molecular Weight (MW) ladder A: Autoradiograph of GST-GOLD 

and in vitro translated MON1B, GBAS and NIPSNAP1. B: Autoradiograph of GST-GOLD and in vitro translated 

ARF4, MON1B and GBAS. C: Autoradiograph of GST-GOLD and in vitro translated TXNDC5, DNAJA1 and 

TUBA4A. D: Autoradiograph of GST-GOLD and in vitro translated RUVBL2.  
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Figure 3.8: Quantitation of binding to GST-GOLD domain in in vitro GST-pulldown assay. The 

percentage (%) pulldown values (y-axis) are the mean values from each of the interaction bands from the in vitro 

translated proteins pulled down (x-axis). The quantifications are relative to the GST control and the results were 

developed by using Image Gauge software 4.0 (Fuji). 

 

 

3.6 TXNDC5 precipitates together with the GOLD domain in vivo 

Next, an indirect interaction study was done by an in vivo GFP-Trap assay with immune-

precipitation against the myc-tagged protein candidates (Figure 3.9). Due to time limitations, 

only five of the interaction candidates, cloned into a myc-vector, were tested. These five were, 

RUVBL2, TUBA4A, TXNDC5, DNAJA1 and MON1B. This experiment was only done once. 

Each of these interaction candidates were transiently co-transfected together with the GOLD 

domain fused to a green fluorescent protein (GFP) into HEK293 Flp-In ZnF-FYCO1 knockout 

for FYCO1 #12 (HEK293 Flp-In ZnF-FYCO1 #12) by METAFECTENE® PRO system (Figure 

3.9A) (Olsvik et al., 2015). In addition, HEK293 Flp-In ZnF-FYCO1 #12 cells, stably 

expressing GFP-FYCO1, were transiently transfected with the same five Myc-tagged protein 

candidates (Figure 3.9B). In regard to the unspecific binding, the results showed TXNDC5 as 

the only possibly candidate that showed an interaction with the GOLD domain (Figure 3.9A). 

However, as previously known, Behrends showed earlier that endogenous TUBA4A, RUVBL2 

and MON1B were observed to precipitate together with full-length FYCO1 (Behrends et al., 

2010). Through our previous in vitro pulldown experiments, none of these seems to have a 

strong direct interaction towards the GOLD domain. This is true for their interaction in the IP 

as well. In this in vivo pulldown experiment relative to the unspecific binding, none of these 

candidates were observed to precipitate together with the GOLD domain. However, MON1B 

precipitate together with the full-length FYCO1 (Figure 3.9B).   
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Figure 3.9: Immune-precipitation of GFP-tagged GOLD domain and FYCO1 co-expressed with 

Myc- tagged -RUVBL2, -TUBA4A, TXNDC5, -DNAJA1 and –MON1B. Unstained protein ladder (10-

250 kDa) (Neb, # P7703S) was used as the Molecular Weight (MW) ladder. Signals were detected by Lumi-

ImagerF1™ (Boehringer Mannheim) A: HEK293 Flp-In ZnF-FYCO1 #12 lysates were pulled down with GFP-

GOLD (GFP-trap). Myc-tagged proteins were immuno-precipitated with Myc-antibodies (upper panel). GFP-

tagged GOLD domain (lower panel) was immune precipitated with GFP antibodies. B: HEK293 Flp-In ZnF-

FYCO1 #12 stably expressing GFP-FYCO1 lysates were pulled down with GFP-FYCO1 (GFP-trap). Myc-tagged 

proteins were immuno-precipitated with Myc-antibodies (upper panel). GFP-tagged FYCO1 domain was immune 

precipitated with GFP antibodies (lower panel).  



66 

3.7 Expression of the GOLD domain in cells reveals a diffuse localization pattern  

Next, the cDNA for the GOLD domain was gateway-cloned into a pDest-mCherry-C1 tagged 

vector. This vector express the GOLD domain as a fusion with the red fluorescent protein 

mCherry. The GOLD domain has previously been cloned into a pDestEGFP-C1 with a GFP-

tag, so this was not done in this study. To examine differences in the expression level between 

the empty mCherry- and GFP vectors, these were transiently transfected into HEK293 Flp-In 

ZnF-FYCO1 #12 cells and examined by confocal microscopy. These were compared with the 

transiently transfected mCherry-GOLD and GFP-GOLD constructs (Figure 3.10). All cell-

transfections were performed using TransIT®-LT1 reagent (Mirusbio) system. Cells were fixed 

with methanol (100%) for 24 hours after transfection. Live cell imaging was done the following 

day after the transfection. All images were taken using laser scanning confocal microscope 780 

(LSM780) (Zeiss).  

 

In figure 3.10 the expression of the wildtype GOLD domain was compared tp the expression 

of the empty pDestEGFP (EGFP/GFP) - and pDest-mCherry (mCherry)-vectors. GFP and 

mCherry alone are diffusely expressed throughout the cell, with no specific structures seen. 

However, the GOLD domain is also diffusely expressed over the whole cell, but with somewhat 

stronger perinuclear localization. The perinuclear localization is shown as a “line” around the 

nucleus. This may indicate ER structures, but have to stain for this structure. In addition we 

looked at the expression level and localization of full-length FYCO1 in HEK293 Flp-In ZnF-

FYCO1 #12 cells stably expressing GFP-FYCO1. FYCO1 makes clear rings, both perinuclear 

and in the peripheral part of the cell (Figure 3.10).    
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Figure 3.10: Examine the expression differences between the empty EGFP- and mCherry- tags 

and the EGFP-GOLD domain, mCherry-GOLD domain and full-length GFP-FYCO1. HEK293 

Flp-In ZnF-FYCO1 #12 cells were transiently transfected with EGFP- and mCherry-tags, EGFP-GOLD domain, 

mCherry-GOLD domain and full-length GFP-FYCO1.The empty GFP- and mCherry –tag are both totally 

diffused expressed (upper image). EGFP-GOLD and mCherry-GOLD shoes both diffuse expression throughout 

the cell. The arrows point out structures which may be ER structures, found around the nucleus (middle images). 

The GFP-FYCO1 was observed to make ring structures (marked as arrows), both perinuclear and in the 

peripheral (lower image). All cells were fixed with methanol (100%). Scale bar 20µm. 
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3.8 Generally difficult to examine co-localization together with the GOLD domain, 

because of its diffuse localization.  

Confocal microscopy was used to check for co-localization of the GOLD domain and putative 

interaction partners in cells. To examine these protein interactions by confocal microscopy, all 

proteins were expressed in a fluorescent tag or a myc-tag capable for labeling with an antibody, 

which can be visualized by an antibody. In this study, three of the protein interaction candidates 

(TUBA4A, RUVBL2, TXNDC5) were first gateway-cloned into mCherry-C1 vectors. The 

other candidates were expressed with a myc-C1 tag (MON1B and DNAJA1) or a GFP-C1 tag 

(VPS4A). All the tags were expressed on the N-terminal part of the proteins. NIPSNAP1 and 

GBAS have their N-terminus end processed before it becomes inserted into the mitochondrial 

membrane. Therefore, they need to be cloned into a C-terminal mCherry-tag. NIPSNAP1 and 

GBAS were therefore not included due to time limitation. ARF4 is another protein that was 

depend on its N-terminal end. ARF4 normally become myriosylated on its N-terminus, which 

is important for its binding capabilities to membranes (Antonny et al., 1997). ARF4 was not 

cloned into a vector containing a C-terminal fluorescence tag. Therefore, NIPSNAP1, GBAS 

and ARF4 were not included in this assay.  

 

Next, protein interaction candidates were either transiently transfected alone or transiently co-

transfected together with the GOLD domain in HEK293 Flp-In ZnF-FYCO1 #12 cells 

(TUBA4A, TXNDC5, RUVBL2, VPS4A, MON1B and DNAJA1). In addition, some of the 

protein interaction candidates (TUBA4A, TXNDC5, RUVBL2 and MN1B) were co-

transfected into HEK293 Flp-In ZnF-FYCO1 #12 cells stably expressing GFP-FYCO1. All 

cells were kept in their full growth medium (Dulbecco′s Modified Eagle′s Medium (DMEM) 

(Sigma, D6046), 10% FBS (Merck), 100U/ml Penicillin and100g/ml Streptomycin), seeded out 

with a cell concentration of ~  7000 cells/ well. The transient transfection was done the 

following day. The expression of FYCO1 in HEK293 Flp-In ZnF-FYCO1 #12 cells stably 

expressing GFP-FYCO1 was induces by tetracycline. Fixed with methanol (100%) was done 

the day after transfection.  
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Several of the protein interactions were examine for their co-localization with the GOLD 

domain or with the full-length FYCO1 by confocal microscope. The results showed still a 

diffused cellular expression and localization of GFP- and mCherry- GOLD domain for most of 

the co-transfected experiments. These co-localizations were examined by a line-plot 

measurement (Zen Blue software, Zeiss). The local co-localization can be measured through 

this type of plot, where an arrow through a structure can measure the intensity of the color 

channels (EGFP (green lines) and mCherry (red lines) (see Table 2.6) and the graphs can be 

examined by comparing their intensity.  

 

TUBA4A redistributes the GOLD domain to the centrosomes 

TUBA4A was identified by MS as one of the highest ranked protein interaction candidates to 

the GOLD domain. In addition, it is shown to be a protein interaction candidate for the full-

length FYCO1 (Behrends et al., 2010). HEK293 Flp-In ZnF-FYCO1 #12 cells was transiently 

co-transfected with mCherry-TUBA4A and EGFP-GOLD domain (Figure 3.11). When 

expressed alone, TUBA4A was observed diffusely through the cell, with a large perinuclear 

puncta/aggregate perinuclear at the centrosome (Figure 3.11A and C). However, when 

expressed alone, the GOLD domain does not associate with centrosomes (Figure 3.11B). When 

the GOLD domain was co-expressed together with TUBA4A, TUBA4A redistributed the 

GOLD domain to the centrosome. They were observed to be localizes on centrosomes by 

staining for anti-γ –tubulin, which is a centrosome marker (Figure 3.11C). These co-

localizations were verified by a line-plot measurement (two lower images) (Figure 3.11C). This 

suggests an interaction between TUBA4A and the GOLD domain in cells. In addition, full-

length FYCO1 co-expressed with TUBA4A showed structures that could be observed to co-

localize with what likely are the centrosome. This must, however, be verified by centrosome 

staining. However, the localization and distribution of TUBA4A was observed to be changed 

after the co-expressing with full-length FYCO1. TUBA4A is shown to locate to similar rings 

as FYCO1 (Figure 3.11D). 
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Figure 3.11: TUBA4A redistributes the GOLD domain to the centrosomes 
A: HEK293 ZnF-FYCO1 #12 cells were transiently transfected with mCherry-TUBA4A. Scale bare 20 µm 

B: HEK293 ZnF-FYCO1 #12 cells were transiently transfected with EGFP-GOLD and stained for anti- γ-

Tubulin. Scale bare 20 µm. C: HEK293 ZnF-FYCO1 #12 cells were transiently co-transfected with 

mCherry-TUBA4A and EGFP-GOLD. The cells were stained for anti- γ-Tubulin. Scale bare 5 µm. Co-

localization is measured by a line-plot (lower image), where the intensity of EGFP (green line), mCherry 

(red line) and anti-Tubulin (grey line) were compared. D: HEK293ZnF-FYCO1 #12 cells stably expressing 

GFP-FYCO1 were transiently transfected with mCherry-TUBA4A. Scale bare 20 µm. Co-localization is 

measured by a line-plot (lower image) where the intensity of EGFP-FYCO1 and mCherry-TUBA4a were 

compared.  All cells were fixed with methanol (100%).  
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TXNDC5 seems to be concentrated on ring structures formed by FYCO1  

HEK293 Flp-In ZnF-FYCO1 #12 cells were transiently transfected with mCherry-TXNDC5, 

EGFP-KDEL and EGFP-GOLD (Figure 3.12A-C). When expressed alone, TXNDC5 is 

diffusely expressed over the whole cell and EGFP-KDEL shows clear ER structure (Figure 

3.12A). KDEL is a C-terminal Lys-Asp-Glu-Leu ER retention signal sequence fused to GFP, 

and is used as an ER marker (Figure 3.12A) (Munro and Pelham, 1987). Human Protein Atlas 

(Uhlen et al., 2015) was used to identify the location of TXNDC5, TXNDC5 are known to be 

localized to ER structures (ProteinAtlas). The co-expression of TXNDC5 together with KDEL 

does not change the distribution of TXNDC5 or KDEL. ER structures can easily be damaged 

and the cell structures were examined in live cells. TXNDC5 is dynamic, but does not have the 

same dynamics as the KDEL structures (data not shown) (Figure 3.12B). TXNDC5 does not 

co-localize with KDEL. This was also observed by the line-plot (Figure 3.12B). In figure 3.12C 

the HEK293 Flp-In ZnF-FYCO1 #12 cells are fixed. The fixation influenced the KDEL 

structures, and it was not possible to see the KDEL expression. However, TXNDC5 is observed 

to be localized perinuclear as a line around nucleus. This is a similar localization as the GOLD 

domain (Figure 3.10). TXNDC5 is not as much localized in the nucleus as it was observed in 

the live cells. TXNDC5 share same cytosolic distribution as the GOLD domain (Figure 3.12C). 

Through the observation and the line-plot measurements, TXNDC5 is partial associated with 

the GOLD domain (Figure 3.12C). TXNDC5 was co-expressed in HEK293 Flp-In ZnF-FYCO1 

#12 cells stably expressing GFP-FYCO1 (Figure 3.12D).The result shows us that TXNDC5 is 

making clear rings where FYCO1 is located (Figure 3.12D). 
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Figure 3.12: TXNDC5 seems to be concentrated on ring structures formed by FYCO1  
A: HEK293 ZnF-FYCO1 #12 cells are transfected with mCherry-TXNDC5 (left) and with GFP-KDEL 

(right). These images are of live cells. Scale bar 20µm. B: HEK293 ZnF-FYCO1 #12 Co-transfection with 

mCherry-TXNDC5 and EGFP-KDEL. These images are of live cells. The co-localization in measured by a 

line-plot (lower image), where the intensity of EGFP (green line) and mCherry (red) were compared. Scale 

bare 20µm C: Co-transfection with mCherry-TXNDC5 and the EGFP-GOLD domain. These cells are fixed 

with methanol (100%). The co-localization in measured by a line-plot (lower image), where the intensity of 

EGFP (green line) and mCherry (red line) were compared. Scale bare 5µm. D: HEK293 Flp-In ZnF-FYCO1 

#12 cells stably expressing GFP-FYCO1 Transfected with mCherry- TXNDC5. The co-localization in 

measured by a line-plot (lower image), where the intensity of EGFP (green line) and mCherry (red line) were 

compared. These cells are fixed with methanol (100%). Scale bar 20µm. 
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RUVBL2 is diffuse, but has a similar perinuclear distribution as the GOLD domain  

HEK293 Flp-In ZnF-FYCO1 #12 cells were transiently transfected with RUVBL2 and the 

GOLD domain (Figure 3.13). When expressed alone, RUVBL2 is distributed mainly in the 

cytoplasm, but also observed in the nucleus (Figure 3.13A). When the GOLD domain was 

expressed together with RUVBL2, RUVBL2 seems to get a more early ER structure, and less 

localized in the nucleus (Figure 3.13B). RUVBL2 is diffuse, but has a perinuclear distribution 

similar to the GOLD domain. The line-plot shows a co-localization between RUVBL2 and the 

GOLD domain (lower image) (Figure 3.13B).  

This is due to the diffuse expression of both the GOLD domain and RUVBL2. In addition, 

RUVBL2 became transfected into HEK293 Flp-In ZnF-FYCO1 #12 cells stably expressing 

GFP-FYCO1. This result shows that RUVBL2 are distributes in the cytosol and makes clear 

rings where FYCO1 is observed. According to the line-plot, the association between RUVBL2 

and FYCO1 is not clear (Figure 3.13C).  
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 Figure 3.13: RUVBL2 shows expression similarities with the GOLD domain and locsted to ring 

structures made by full-length FYCO1. A: HEK293 Flp-In ZnF-FYCO1 #12 cells transfected with 

mCherry- RUVBL2. This image was taken of live cells. Scale bar 20µm. B:  HEK293 Flp-In ZnF-FYCO1 #12 

cells co-transfected with mCherry-RUVBL2 and the EGFP- GOLD domain. Cells were fixated with methanol 

(100%). Scale bar 20µm. The co-localization between RUVBL2 and the GOLD domain was measured by a line-

plot (lowest image), where the intensity between the EGFP (green line) and mCherry (red line) levels were 

compared. C: HEK293 Flp-In ZnF-FYCO1 #12 stably expressing GFP-FYCO1 co-transfected with RUVBL2. 

Cells were fixated with methanol (100%). Scale bar 20µm. 
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VPS4A affect the expression and localization of the GOLD domain  

Overexpressed VPS4A is known from earlier studies to make aggregated puncta’s (Bishop and 

Woodman, 2000). In our results, shown in figure 3.14, VPS4A puncta’s are localized 

perinuclear. These puncta’s became smaller when they are co-expressed together with the 

GOLD domain (Figure 3.14B). The localization of the GOLD domain seemed to be affected 

by VPS4. The GOLD domain was observed to obtain a more VPS4A-like expression 

distribution in the cell when it was co-expressed with VPS4A. The co-localization between 

these VPS4A puncta and the dense GOLD structures was measured by a line-plot (lower image) 

(Figure 3.14B). Our line-plot results showed that it is observed a co-localization between 

VPS4A and the GOLD domain, but the intensity does not rise in the larger perinuclear puncta. 

More experiments are needed to clarify the issue of co-localization between VPS4A and the 

isolated GOLD domain as well as FYCO1.  
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Figure 3.14: VPS4A seems to affect the expression and localization of the GOLD domain. A: 
HEK293 Flp-In ZnF-FYCO1 #12 cells transfected with EGFP-VPS4. Scale bare 20 µm. B: HEK293 Flp-In ZnF-

FYCO1 #12 cells co-transfected with EGFP-VPS4A and mCherry-GOLD. Scale bare 20 µm. The co-localization 

level was measured by a line-plot (Lower image), where the intensity of EGFP (green line) and mCherry (red line) 

are compared. All cells were fixed with methanol (100%). 

 

 

Diffuse expression of MON1B in cytoplasm showed a partly overlap with the GOLD 

domain.  

MON1B was diffusely expressed in the cytoplasm, and not highly expressed inside the nucleus. 

The expression level and localization of the GOLD domain does not seem to be affected by 

MON1B. Transfection efficiency for the myc-MON1B alone was weak and not possibly to be 

observed. MON1B does not change the expression level or localization of the GOLD domain, 

but it is uncertain if MON1B expression level is influenced by the GOLD domain, since 

MON1B expression is examined alone. By the observation from the images and the line-plot 

measurements, MON1B seems to overlap with the GOLD domain were they have a higher 

expression level (Figure 3.15).   
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Next, the association of MON1B together with full-length FYCO1 was examined in HEK293 

Flp-In ZnF-FYCO1 #12 cells stably expressing GFP-FYCO1. Our results shows that MON1B 

localized not to the FYCO1 rings, as for some of the other protein candidates (e.g. TUBA4A, 

TXNDC5 and RUVBL2) (Figure 3.15). However, the line-plot shows that the expression level 

of full-length FYCO1 is much stronger than for MON1B (Figure 3.15).More experiments are 

needed to clarify the issue of co-localization between MON1B and the isolated GOLD domain 

as well as FYCO1. 
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Figure 3.15: Diffuse expression of MON1B in cytoplasm showed a partly overlap with the GOLD 

domain in specific areas in the cell. HEK293 Flp-In ZnF-FYCO1 #12 cells and HEK293 Flp-In FYCO1 #12 

cells stably expressing GFP-FYCO1 were used. All cells were fixated with methanol (100%) and stained for anti-

Myc. A: HEK293 Flp-In ZnF-FYCO1 #12 cells were co-transfected with myc-MON1B and EGFP-GOLD domain. 

Scale bar 20 µm. B: MON1B seems to partly overlap with the GOLD domain, shown by an arrow. Scale bare 5 

µm. Any co-localization was measured by a line plot (lower image) at specific localization, where the intensity of 

EGFP (green line) and myc-tag (red line) were compared. C: Transfection of myc-MON1B in HEK293 Flp-In 

ZnF-FYCO1 #12 cells stably expressing GFP-FYCO1 were done. Any co-localization was measured by a line plot 

(lower image) at specific localization, where the intensity of EGFP (green line) and myc-tag (red line) were 

compared.  Scale bare 5 µm.   
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Low transfection efficiency made it difficult to look at the expression level of DNAJA1 

together with the GOLD domain. 

The transfection of DNAJA1 alone into HEK293 Flp-In ZnF-FYCO1 #12 cells was not possible 

to achieve, and the co-transfection together with the GOLD domain was weak (Figure 3.16). It 

was difficult to examine their co-localization. The result from a line-plot measurements, 

showed a much higher expression level of EGFP-GOLD than for myc-DNAJA1. Therefore, 

co-localization between myc-DNAJA1 and EGFP-GOLD domain was difficult to examine 

(Figure 3.16).  

 

 

 

Figure 3.16: Low transfection efficiency made it difficult to look at the expression level of DNAJA1 

together with the GOLD domain. HEK293 Flp-In ZnF-FYCO1 #12 cells were co-transfected with myc-

DNAJA1 with EGFP- GOLD domain (upper image).  Any co-localization was measured by a line plot (lower 

image) at specific localization, where the intensity of EGFP (green line) and myc-tag (red line) were compared. 

Scale bar 20µm. All cells were fixated with methanol (100%) and stained for anti-Myc-DNAJA1. 
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3.9 The L1376P mutation affect the expression level of the GOLD domain  

Next, the cell expression differences of the wildtype GOLD- and the mutant GOLD (L1376P) 

domain was compared. The mutant form of the GOLD domain (L1376P) in the full-length 

FYCO1 did not show any differences in cellular localization (Chen et al., 2011). Therefore it 

was interesting to see if the mutation in the isolated GOLD domain changed the cellular 

localization. The wild type GOLD domain and the mutant GOLD domain (L1376P) were 

transiently transfected into HeLa cells, human B3 lens cells and HEK293 Flp-In ZnF-FYCO1 

#12 cells (Figure 3.17). The GOLD domain is diffusely expressed throughout the cell in all of 

the cells types examined in this study. However, the mutant GOLD domain (L1376P) has a 

dramatic aggregated expression appearance distrunctly different from the wild type. This is 

observed in all of the cell types examined in this study (Figure 3.17). 
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Figure 3.17: Expression of 

wild type EGFP-GOLD and 

mutant EGFP-GOLD 

(L1376P)-domain. B3 cells 

transiently transfected with wild 

type EGFP-GOLD and mutant 

EGFP-GOLD (L1376P)-domain. 

These cells were fixated with 

methanol (100%). Scale bare 20 

µm. HeLa cells transfected with 

wild type EGFP-GOLD and 

EGFP-GOLD (L1376P)-domain. 

Live cell imagining was used for 

these cells. Scale bar 20µm. In the 

lowest line HEK Flp-In ZnF- 

FYCO1 #12 cells were transient 

transfected with GFP-GOLD and 

GFP –GOLD (L1376P).  
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2.3 FYCO1 surrounds micronuclei like structures in human B3 lens epithelial 

cells  

Human B3 lens cells were transiently transfected with GFP-FYCO1 and the nucleus was 

visualized with DRAQ5. This revealed an interesting feature about FYCO1. FYCO1 appears 

to take up micronuclei, DNA-like structures (Figure 3.18). These w observed in approximately 

one time in each cell. Interestingly, this phenomenon did not appear in other cell lines, such as 

HeLa and HEK293 Flp-In ZnF-FYCO1 #12 (not shown). Obviously, more work is needed to 

validate and study this phenomenon further. 

 

 

 

Figure 3.18: Part of the cellular DNA appears to be integrated into FYCO1 structures. Confocal 

images of B3 cells transfected with EGFP-FYCO1. The nucleus was visualized with DRAQ5. All cells were 

fixated with methanol (100%).Scale bares 20 µm, 5 µm and 2 µm. 
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4 Discussion 

The initial aim for this study was to identify putative interaction partners for the GOLD domain 

and the RUN domain of FYCO1. Unfortunately, as a result of technical problems and time 

limitations, we early ended up to exclude the study of the RUN domain. Instead, the focus was 

on the identification of protein interaction partners for the GOLD domain. In general, GOLD 

domains are located in several other proteins with diverse function, as ER to Golgi transport 

and Golgi dynamics (Anantharaman and Aravind, 2002). For p24 family proteins, the GOLD 

domain is located at the luminal side of ER, and it was thought that the GOLD domain interacted 

with luminal cargoes. A recent study reveal that one specific cargo 

(glycosylphosphatidylinositol-anchored proteins (GPA-AP) interact with p24 proteins through 

their α-helical region instead of its GOLD domain, which was the first prediction (Theiler et 

al., 2014). However, the GOLD domain of FYCO1 is located at the C-terminus and it has been 

supposed that it may be involved in protein interactions. Still, it has not been examined whether 

the GOLD domain can interact with other proteins. However, Pankiv et at earlier suggested that 

the GOLD domain of FYCO1 could have intramolecular interaction possibilities, which could 

have an inhibitory effect on its interaction with lipids (Pankiv et al., 2010). In addition, in a 

recent study the GOLD domain of SEC14-like domain of supernatant protein factor (SPF) was 

thought to acts as a regulator, through its intramolecular interaction abilities, which would 

change its conformation. This occurs to favor ligand binding and release during different 

synthetic steps (Christen et al., 2015). This led our thought towards the GOLD domain as an 

intramolecular regulator of FYCO1, which may regulate the binding capabilities of FYCO1 to 

other proteins. However, the GOLD domain can still be involved in protein-protein interactions, 

and we have examined the presence of possible interaction candidates.    
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The results obtained from the mass spectrometry identified putative interaction proteins that 

were co-precipitated together with the GOLD domain. Our study revealed 182 proteins as direct 

or indirect protein interaction candidates for the GOLD domain. The results are highly 

representative, due to our eleven mass spectrometry experiments, wherein unspecific 

interactions of GST have been excluded. A stringent identification cut-off was set to 

identification in six or more experminets. Here, 30 putative proteins precipitated together with 

the GOLD domain in six or more experiments. Nine protein interaction candidates, TUBA4A, 

DNAJA1, TXNDC5, NIPSNAP1, RUVBL2, GBAS, ARF4, VPS4A and MON1B were 

selected for further study. From these nine six were identified to interact with membranes 

(DNAJA1, NIPSNAP1, RUVBL2, GBAS, ARF4 and VPS4A) (Table 3.3). These results were 

interesting, since FYCO1 is known to be a membrane-associated transport protein through 

different effector proteins (Pankiv et al., 2010). TUBA4A, RUVBL2 and MON1B were 

proteins which came down both in an of the interaction study of full-length FYCO1 (Behrends 

et al., 2010) and in our study of the GOLD domain. These proteins we considered to have the 

highest change of having a positive interaction capability to FYCO1 through the GOLD 

domain. MON1B was ranked as one of the best candidates. However, this was not observed in 

our results, MON1B came down in only one of the eleven experiments and its PSM value of 

nine, was the lowest one compared to the other nine selected candidates. However, in the 

Behrends interaction study, TUBA4A and RUVBL2 were ranked lower than MON1B 

(Behrends et al., 2010). From our study, TUBA4A was the candidate with the highest PSM 

value (338) and ranked as the best interaction candidate for GOLD.  

In this current study, some of the candidates were tested for direct- and indirect interactions 

through in vitro (NIPSNAP1, GBAS, ARF4, DNAJA1, TUBA4A, RUVBL2 and MON1B) and 

in vivo (RUVBL2, TUBA4A, TXNDC5, DNAJA1 and MON1B) interaction assay for their 

interaction towards the GOLD domain and full-length FYCO1. From our in vitro and in vivo 

pulldown results, all of the tested protein interaction candidates were shown to have a very 

weak interaction affinity towards the GOLD domain.  

Our MS results does not separate direct- and indirect protein interactions, proteins that co- 

precipitated with the GOLD domain can interact with the GOLD domain both directly and 

indirectly. This may be the explanation for the weak interaction through the in vitro and in vivo 

protein interaction assays. In addition, indirect interactions may sometimes be excluded through 

the transient co-overexpression of two proteins (exogenous). The protein interactions are often 

through protein complexes. In these types of binding assays, we examine the binding efficiency 

of the transiently co-overexpressed proteins (exogenous). This high amount of exogenous 



86 

protein would have a higher chance to interact and bind to each other than the endogenous 

proteins. The level of endogenous proteins would be much lower than the co-transfected 

proteins. Therefore, indirect interactions of the exogenous proteins, which are dependent on a 

third endogenous protein, may be excluded because of the low protein level of the third protein 

compared to the transiently co-transfected proteins. However, this is not a completely safe 

assumption and direct interactions can only be rigorously tested by using purified proteins. 

Further, some protein-protein interactions can be dependent on the proteins post-translational 

modifications (PTMs). The PTMs would affect the protein interacting network (Duan and 

Walther, 2015). PTMs would not be found in in vitro assays, and PTMs may not always be 

present on transient transfection proteins, due to available enzymes, which prossess the PTMs. 

Hence, it is possible that selected protein interaction candidates can interact with the GFP- 

GOLD domain in cells even if our interactions assays does not convincingly indicate a direct 

interaction.  

Next, we were interested in examining the expression and localization of the selected protein 

candidates in human cells together with the GOLD domain and the full-length FYCO1. To 

examine this, an in vivo assay was used to identify their possible co-localization by confocal 

microcopy. The transient co-transfection of the GOLD domain together with the candidates 

makes it possible to examine their co-localization. The transient co-transfection increases the 

expression level of the protein of interest, and it would be easier to identify co-localization for 

these compared to the endogenous cellular proteins. To examine the co-localization of specific 

structures or localization, a line-plot was used. In this line- plot, it could be easier to verify if it 

was any association or co-localization. This measurement was done by comparing the intensity 

of the different fluorescent channels (GFP, mCherry, Alexa Fluor® 647, Alexa Fluor® 488 

(green) and Alexa Fluor® 555 (red)). Unfortunately, the GOLD domain was highly diffusely 

localized in cells. However, its expression was stronger in a line around the cellular nucleus, 

which can indicate early ER structures (was not verified in this study). These ER structures can 

be identified by an ER marker or by treating the cells with Brefeldin A (BFA). BFA inhibits 

the secretion of proteins from ER to the Golgi apparatus through the prevention of the formation 

of COPI-mediated transport vesicles (Orcl et al., 1991). This drug can be used to identify any 

localization arrangement of the GOLD domain. A Golgi marker would also help to look at the 

localization pattern of the GOLD domain. However, none of these treatments were done to the 

GOLD domain in this study, but must be done for further study. In this study, the two protein 

interaction candidates, TUBA4A and VPS4A, changed the localization of the GOLD domain 

(Figure 11C and 14B).  
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TUBA4A came down in all of the eleven experiments, including full-length FYCO1. It was 

therefore supposed that TUBA4A may be a specific interactor of the GOLD domain of full-

length FYCO1. In the further studies, TUBA4A was observed to be located at the centrosomes. 

TUBA4A seems to affect the localization of the GOLD domain and it was observed a 

redistribution of the GOLD domain to the centrosomes (Figure 3.11C) in association with 

TUBA4A. TUBA4A may directly or indirectly associate with the GOLD domain through a 

protein complex.  

VPS4A localized diffusely and into some perinuclear puncta/aggregates (Figure 3.14A). These 

puncta could be part of endosomes. This can be confirmed by staining for endosome markers 

(not done in this study). Rab5 can be used as an early endosome marker. Rab5 is known to be 

involved in regulating the motility of early endosomes on microtubules (Nielsen et al., 1999). 

Rab7 can be used as a late endosome marker, since Rab7 is known to regulate late endosome 

trafficking (Vanlandingham and Ceresa, 2009) (not used in this study). However, VPS4A was 

observed to affect the localization of the GOLD domain. The diffuse expression of the GOLD 

domain was changed somewhat into diffuse pattern that also contained some VPS4A-positive 

puncta. This observation could be seen in the line-plot (Figure 3.14B).  

 

The expression or localization level of full-length FYCO1 is not affected by either of the 

protein candidates  

Due to time limitation, only TUBA4A, TXNDC5, RUVBL2 and MON1B were transiently 

transfected into HEK293 Flp-In ZnF-FYCO1 #12 cells (knockout for FYCO1) stably 

expressing GFP-FYCO1. However, through our study MON1B did not seem to make as clear 

FYCO1 rings (Figure 3.15C) as the other protein candidates. The other protein candidates, 

TUBA4A, TXNDC5 and RUVBL2 showed similar features as FYCO1 (Figure 3.11D, 3.12D 

and 3.13C). However, TXNDC5 is reported to mainly be located in ER structures 

(ProteinAtlas). The rings of full-length FYCO1 is known to be from the ER membrane (Raiborg 

et al., 2015). Our results did not show any ER localization for TXNDC5 by an ER marker, 

KDEL (Figure 11B). However, ER is distributed throughout the cell, seen as different structures 

and in our study. TXNDC5 seemed to be one associated best with FYCO1 structures through 

the line-plot (Figure 3.12D). For further experiments, another ER marker or inhibitors as BFA 

can be used to examine if TXNDC5 is localized on other part of the ER.  
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The L1376P mutation caused aggregation of the GOLD domain. 

Mutations in FYCO1, including the GOLD domain mutation L1376P, have earlier been 

identified to cause autosomal-recessive congenital cataract (Chen et al., 2011). Here, we found 

that the mutant variant of the GOLD domain (L1376P) changed the expression pattern of the 

GOLD domain. The mutant variant was more aggregated than the wild type (Figure 3.17). This 

can suggest a misfolding of the GOLD domain, which can influence the export ability of 

FYCO1 in the lens. Mutations in FYCO1 have earlier been identified to cause autosomal-

recessive congenital cataract (Chen et al., 2011). Our observed expression differences between 

wild type GOLD domain and mutant GOLD domain (L1376P) may be speculated to be 

associated with vision loss in patients with autosomal recessive congenital cataracts. By these 

obtained results and already known information about this mutation, the GOLD domain may 

be involved in the transparency of the lens. Maybe through a regulation of protein interactions.  

In further work, staining against structures, such as p62, ubiquitin and stress granules would be 

interesting to understand the localization of the wild type GOLD versus the mutant GOLD 

domain. 

 

FYCO1 surrounds micronuclei-like structures in human B3 lens epithelial cells 

Another interesting feature of FYCO1 was the observed micronucleus-like, DNA- containing 

structures inside FYCO1 rings (Figure 3.18). This phenomenon was observed in human B3 lens 

cells. However, this phenomena have been shown for the endosomal sorting complex required 

for transport -III (ESCRT-III) subunit CHMP4B (Sagona et al., 2014). CHMP4B seems to share 

some similar features with FYCO1, such as mutations found in patients with a form for cataract. 

The mutation of CHMP4B has been shown to inhibit the localization of CHMP4A to 

micronuclei (Sagona et al., 2014). For further study, it would be interesting to investigate if 

micronuclei can be found inside the rings of the FYCO1 L1376P mutant. This result may reveal 

new insight in what degradation cargoes FYCO1 is transporting. Since VPS4A is involved with 

ESCRT-III filament turnover (Raiborg and Stenmark, 2009) it must be studied if VPS4A, 

CHMP4B and FYCO1 act together somehow in these micronuclei-like structures.   
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4.1 Conclusion and further perspective 

Our results suggest that the GOLD domain can interact with other proteins, such as TUBA4A 

VPS4A and TXNDC5. TUBA4A and VPS4Awere observed in our study to affect the 

localization and expression level of the transiently transfected GOLD domain. It is still unclear 

if these interactions are direct or indirect. TUBA4A redistribute the GOLD domain to 

centrosomes, where they all are associated together. In addition, VPS4A redistribute the GOLD 

domain into VPS4A-containing structures. However, TXNDC5 immune-precipitated together 

with the GOLD domain in vivo, and MON1B immune-precipitated together with the full-length 

FYCO1, which Behrends et al. have shown earlier (Behrends et al., 2010). This suggest an 

interaction possibility towards the GOLD domain and full-length FYCO1 respectively. 

However, further studies with additional bindings assay have to be performed to firmly 

conclude about the GOLD domain interactions focused on here 

 

Next, we found the GOLD domain to be diffusely expressed throughout the cells. However, in 

our current study, the mutated GOLD domain (L1376P) formed multiple small aggregates. As 

previously shown by Chen and colleagues, mutations in FYCO1 have been shown to form 

truncated proteins and cause termination of the peptide chain before the GOLD domain. The 

mutation L1376P was identified to affect the transparency of the lens. It would be interesting 

to further examine the role of the GOLD domain mutation in full-length FYCO1 in vivo. Will 

we observe micronuclei inside FYCO1 rings in human B3 cells with the L1376P mutant? Is 

there any role for FYCO1 in DNA degradation during lens transparency?  
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6 Appendix:  

Table 6.1 LC-MS/MS data over the 182 Proteins co-precipitated with the GOLD domain 

from HEK293 T-Rex Flp-In (HEK293) and HeLa cells. GST is used as negative control 

 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

Q
9

B
V

A
1
 

T
u
b

u
li

n
 b

et
a-

2
B

 c
h

ai
n

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

U
B

B
2

B
 P

E
=

1
 

S
V

=
1
 

T
U

B
B

2
B

 

 

1
9
 

4
1
1
 

3
 

4
9
,9

2
1
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
7

1
U

3
6
 

T
u
b

u
li

n
 

al
p

h
a-

1
A

 

ch
ai

n
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

U
B

A
1

A
 P

E
=

1
 

S
V

=
1
 

T
U

B
A

1
A

 

 

2
2
 

4
1
7
 

1
 

5
0
,1

0
4
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
6

8
3
6

6
 

T
u
b

u
li

n
 

al
p

h
a-

4
A

 

ch
ai

n
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

U
B

A
4

A
 P

E
=

1
 

S
V

=
1
 

T
U

B
A

4
A

 

 

2
0
 

3
3
8
 

4
 

4
9
,8

9
2
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
3

1
6
8

9
 

D
n

aJ
 

h
o

m
o
lo

g
 

su
b

fa
m

il
y
 A

 

m
em

b
er

 1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
D

N
A

JA

1
 P

E
=

1
 S

V
=

2
 

D
N

A
JA

1
 

 

1
7
 

2
1
2
 

1
7
 

4
4
,8

3
9
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

6
C

3
6
 

P
y

rr
o

li
n
e-

5
-

ca
rb

o
x

y
la

te
 

re
d
u

ct
as

e 
2
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
P

Y
C

R
2

 

P
E

=
1
 S

V
=

1
 

P
Y

C
R

2
 

 

1
1
 

9
7
 

1
0
 

3
3
,6

1
6
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

F
5

H
5

D
3
 

T
u
b

u
li

n
 

al
p

h
a-

1
C

 

ch
ai

n
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

U
B

A
1

C
 P

E
=

3
 

S
V

=
1
 

T
U

B
A

1
C

 

 

2
2
 

4
3
5
 

2
 

5
7
,6

9
3
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

5
1
4

1
 

A
D

P
/A

T
P

 

tr
an

sl
o

ca
se

 2
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

L
C

2
5

A

5
 P

E
=

1
 S

V
=

7
 

S
L

C
2
5

A
5
 

 

1
6
 

1
9
9
 

6
 

3
2
,8

3
1
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
4

2
6
7

7
 

4
0

S
 

ri
b
o

so
m

al
 

p
ro

te
in

 S
2
7

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

P
S

2
7

 

P
E

=
1
 S

V
=

3
 

R
P

S
2
7
 

 

3
 

2
6
 

1
 

9
,4

5
5
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

B
U

F
5
 

T
u
b

u
li

n
 b

et
a-

6
 c

h
ai

n
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

U
B

B
6

 

P
E

=
1
 S

V
=

1
 

T
U

B
B

6
 

 

1
6
 

1
6
3
 

9
 

4
9
,8

2
5
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

F
8

V
V

M
2
 

P
h

o
sp

h
at

e 

ca
rr

ie
r 

p
ro

te
in

, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

L
C

2
5

A

3
 P

E
=

3
 S

V
=

1
 

  

 

1
2
 

9
0
 

1
2
 

3
6
,1

3
8
 

M
ed

iu
m

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



97 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

P
1

2
2
3

6
 

A
D

P
/A

T
P

 

tr
an

sl
o

ca
se

 3
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

L
C

2
5

A

6
 P

E
=

1
 S

V
=

4
 

S
L

C
2
5

A
6
 

 

1
5
 

1
6
9
 

1
 

3
2
,8

4
5
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
1

2
2
3

5
 

A
D

P
/A

T
P

 

tr
an

sl
o

ca
se

 1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

L
C

2
5

A

4
 P

E
=

1
 S

V
=

4
 

S
L

C
2
5

A
4
 

 

1
3
 

1
3
1
 

1
 

3
3
,0

4
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

B
P

W
8
 

P
ro

te
in

 

N
ip

S
n

ap
 

h
o

m
o
lo

g
 1

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
N

IP
S

N
A

P
1

 P
E

=
1
 

S
V

=
1
 

N
IP

S
N

A
P

1
 

 

1
1
 

7
3
 

1
1
 

3
3
,2

8
9
 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

P
6

2
8
2

9
 

6
0

S
 

ri
b
o

so
m

al
 

p
ro

te
in

 L
2
3

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

P
L

2
3

 

P
E

=
1
 S

V
=

1
 

R
P

L
2
3
 

 

5
 

2
9
 

5
 

1
4
,8

5
6
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
1

8
0
8

5
 

A
D

P
-

ri
b
o

sy
la

ti
o

n
 

fa
ct

o
r 

4
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

R
F

4
 

P
E

=
1
 S

V
=

3
 

A
R

F
4
 

 

7
 

3
1
 

5
 

2
0
,4

9
8
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
6

3
1
7

3
 

6
0

S
 

ri
b
o

so
m

al
 

p
ro

te
in

 L
3
8

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

P
L

3
8

 

P
E

=
1
 S

V
=

2
 

R
P

L
3
8
 

 

2
 

2
 

2
 

8
,2

1
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

O
6

0
8
8

4
 

D
n

aJ
 

h
o

m
o
lo

g
 

su
b

fa
m

il
y
 A

 

m
em

b
er

 2
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
D

N
A

JA

2
 P

E
=

1
 S

V
=

1
 

D
N

A
JA

2
 

 

1
3
 

1
1
6
 

1
3
 

4
5
,7

1
7
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
0

Y
M

V
8
 

4
0

S
 

ri
b
o

so
m

al
 

p
ro

te
in

 S
2
7

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

P
S

2
7

L
 

P
E

=
3
 S

V
=

1
 

  

 

3
 

2
2
 

1
 

1
1
,3

3
8
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
8

N
B

S
9
 

T
h

io
re

d
o

x
in

 

d
o

m
ai

n
-

co
n

ta
in

in
g

 

p
ro

te
in

 5
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

X
N

D
C

5
 P

E
=

1
 S

V
=

2
 

T
X

N
D

C
5
 

 

1
4
 

1
2
3
 

1
4
 

4
7
,5

9
9
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

P
2

5
7
0

5
 

A
T

P
 s

y
n

th
as

e 

su
b
u
n

it
 a

lp
h
a,

 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

T
P

5
A

1
 

P
E

=
1
 S

V
=

1
 

A
T

P
5

A
1
 

 

1
8
 

1
0
9
 

1
8
 

5
9
,7

1
4
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

B
4

D
M

U
0
 

P
y

rr
o

li
n
e-

5
-

ca
rb

o
x

y
la

te
 

re
d
u

ct
as

e 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
P

Y
C

R
1

 

P
E

=
2
 S

V
=

1
 

P
Y

C
R

1
 

 

8
 

4
4
 

7
 

3
5
,9

5
8
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

M
ed

iu
m

 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



98 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

P
6

3
2
4

4
 

G
u

an
in

e 

n
u
cl

eo
ti

d
e-

b
in

d
in

g
 

p
ro

te
in

 

su
b
u
n

it
 b

et
a-

2
-l

ik
e 

1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
G

N
B

2
L

1
 P

E
=

1
 S

V
=

3
 

G
N

B
2

L
1
 

 

1
3
 

5
8
 

1
3
 

3
5
,0

5
5
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
5

3
H

1
2
 

A
cy

lg
ly

ce
ro

l 

k
in

as
e,

 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

G
K

 

P
E

=
1
 S

V
=

2
 

A
G

K
 

 

1
2
 

4
4
 

1
2
 

4
7
,1

0
7
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
6

8
4
3

1
 

H
is

to
n
e 

H
3
.1

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
H

IS
T

1
H

3
A

 P
E

=
1

 

S
V

=
2
 

H
IS

T
1

H
3

F
; 

H
IS

T
1

H
3
C

; 

H
IS

T
1

H
3

D
; 

H
IS

T
1

H
3

G
; 

H
IS

T
1

H
3

H
; 

H
IS

T
1

H
3
B

; 

H
IS

T
1

H
3

A
; 

H
IS

T
1

H
3

E
; 

H
IS

T
1

H
3

I;
 

H
IS

T
1

H
3

J 

 

3
 

3
1
 

1
 

1
5
,3

9
4
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

P
8

4
2
4

3
 

H
is

to
n
e 

H
3
.3

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
H

3
F

3
A

 

P
E

=
1
 S

V
=

2
 

H
3

F
3

A
; 

H
3

F
3

A
P

4
; 

H
3

F
3
B

 

 

3
 

3
0
 

1
 

1
5
,3

1
9
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

B
S

D
7
 

C
an

ce
r-

re
la

te
d

 

n
u
cl

eo
si

d
e-

tr
ip

h
o

sp
h
at

as

e 
O

S
=

H
o
m

o
 

sa
p
ie

n
s 

G
N

=
N

T
P

C
R

 

P
E

=
1
 S

V
=

1
 

N
T

P
C

R
 

 

6
 

2
9
 

6
 

2
0
,7

 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

6
8
9

9
 

H
is

to
n
e 

H
2
B

 

ty
p

e 
1

-J
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
H

IS
T

1
H

2
B

J 
P

E
=

1
 

S
V

=
3
 

H
IS

T
1

H
2
B

J 

 

4
 

4
8
 

1
 

1
3
,8

9
6
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
6

1
2
0

4
 

A
D

P
-

ri
b
o

sy
la

ti
o

n
 

fa
ct

o
r 

3
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

R
F

3
 

P
E

=
1
 S

V
=

2
 

A
R

F
3
 

 

5
 

1
8
 

3
 

2
0
,5

8
8
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

6
4
9

3
 

C
y
cl

in
-

d
ep

en
d
en

t 

k
in

as
e 

1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
C

D
K

1
 

P
E

=
1
 S

V
=

3
 

C
D

K
1
 

 

9
 

1
3
 

9
 

3
4
,0

7
4
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
3

Z
C

Q
8
 

M
it

o
ch

o
n

d
ri

a

l 
im

p
o

rt
 i

n
n
er

 

m
em

b
ra

n
e 

tr
an

sl
o

ca
se

 

su
b
u
n

it
 

T
IM

5
0

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

IM
M

5

0
 P

E
=

1
 S

V
=

2
 

T
IM

M
5
0
 

 

7
 

2
7
 

7
 

3
9
,6

2
2
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

Q
9

U
B

S
4
 

D
n

aJ
 

h
o

m
o
lo

g
 

su
b

fa
m

il
y
 B

 

m
em

b
er

 1
1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
D

N
A

JB

1
1
 P

E
=

1
 

S
V

=
1
 

D
N

A
JB

1
1
 

 

8
 

3
1
 

8
 

4
0
,4

8
9
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

K
7

E
L

C
2
 

4
0

S
 

ri
b
o

so
m

al
 

p
ro

te
in

 S
1
5

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

P
S

1
5

 

P
E

=
3
 S

V
=

1
 

R
P

S
1
5
 

 

2
 

8
 

2
 

1
7
,7

1
2
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



99 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

O
7

5
3
9

6
 

V
es

ic
le

-

tr
af

fi
ck

in
g

 

p
ro

te
in

 

S
E

C
2
2
b

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

E
C

2
2
B

 

P
E

=
1
 S

V
=

4
 

S
E

C
2
2
B

 

 

5
 

7
 

5
 

2
4
,5

7
8
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
0

1
8
1

3
 

6
-

p
h
o

sp
h
o

fr
u
ct

o
k
in

as
e 

ty
p
e 

C
 O

S
=

H
o

m
o
 

sa
p
ie

n
s 

G
N

=
P

F
K

P
 

P
E

=
1
 S

V
=

2
 

P
F

K
P

 

 

1
3
 

5
9
 

1
0
 

8
5
,5

4
2
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

8
5
7

4
 

C
y
to

ch
ro

m
e 

c1
, 
h
em

e 

p
ro

te
in

, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
C

Y
C

1
 

P
E

=
1
 S

V
=

3
 

C
Y

C
1
 

 

7
 

3
4
 

7
 

3
5
,3

9
9
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

Q
9

2
7
4

3
 

S
er

in
e 

p
ro

te
as

e 

H
T

R
A

1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
H

T
R

A
1
 

P
E

=
1
 S

V
=

1
 

H
T

R
A

1
 

 

9
 

2
2
 

9
 

5
1
,2

5
5
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
1

0
8
0

9
 

6
0
 k

D
a 

h
ea

t 

sh
o
ck

 p
ro

te
in

, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
H

S
P

D
1

 

P
E

=
1
 S

V
=

2
 

H
S

P
D

1
 

 

1
3
 

3
4
 

1
3
 

6
1
,0

1
6
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

6
E

Y
1
 

D
n

aJ
 

h
o

m
o
lo

g
 

su
b

fa
m

il
y
 A

 

m
em

b
er

 3
, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
D

N
A

JA

3
 P

E
=

1
 S

V
=

2
 

D
N

A
JA

3
 

 

8
 

3
6
 

8
 

5
2
,4

5
6
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

6
7
0

2
 

P
ro

te
in

 S
1
0
0

-

A
9

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

1
0
0

A
9

 

P
E

=
1
 S

V
=

1
 

S
1

0
0

A
9
 

 

3
 

4
 

3
 

1
3
,2

3
4
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
0

Y
3
6

8
 

D
o

li
ch

o
l-

p
h
o

sp
h
at

e 

m
an

n
o

sy
lt

ra
n

sf
er

as
e 

(F
ra

g
m

en
t)

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
D

P
M

1
 

P
E

=
4
 S

V
=

1
 

  

 

6
 

3
4
 

6
 

3
3
,3

0
7
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

J3
K

P
F

3
 

4
F

2
 c

el
l-

su
rf

ac
e 

an
ti

g
en

 h
ea

v
y

 

ch
ai

n
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

L
C

3
A

2
 

P
E

=
4
 S

V
=

1
 

S
L

C
3

A
2
 

 

1
2
 

3
5
 

1
2
 

6
8
,0

5
9
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

Q
5

3
G

Q
0
 

E
st

ra
d

io
l 

1
7

-

b
et

a-

d
eh

y
d

ro
g
en

as

e 
1
2

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
H

S
D

1
7

B
1
2

 P
E

=
1
 

S
V

=
2
 

H
S

D
1

7
B

1
2
 

 

5
 

9
 

5
 

3
4
,3

0
2
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

O
4

3
1
7

5
 

D
-3

-

p
h
o

sp
h
o
g

ly
ce

ra
te

 

d
eh

y
d

ro
g
en

as

e 
O

S
=

H
o
m

o
 

sa
p
ie

n
s 

G
N

=
P

H
G

D
H

 

P
E

=
1
 S

V
=

4
 

P
H

G
D

H
 

 

9
 

3
5
 

9
 

5
6
,6

1
4
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



100 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

P
3

6
5
4

2
 

A
T

P
 s

y
n

th
as

e 

su
b
u
n

it
 

g
am

m
a,

 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

T
P

5
C

1
 

P
E

=
1
 S

V
=

1
 

A
T

P
5

C
1
 

 

6
 

2
6
 

6
 

3
2
,9

7
5
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
6

0
4
6

8
 

P
ro

te
in

 

tr
an

sp
o

rt
 

p
ro

te
in

 S
ec

6
1

 

su
b
u
n

it
 b

et
a 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

E
C

6
1
B

 

P
E

=
1
 S

V
=

2
 

S
E

C
6
1
B

 

 

2
 

1
2
 

2
 

9
,9

6
8
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
4

6
7
7

7
 

6
0

S
 

ri
b
o

so
m

al
 

p
ro

te
in

 L
5
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

P
L

5
 

P
E

=
1
 S

V
=

3
 

R
P

L
5
 

 

6
 

1
3
 

6
 

3
4
,3

4
1
 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d

 

P
4

9
2
0

7
 

6
0

S
 

ri
b
o

so
m

al
 

p
ro

te
in

 L
3
4

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

P
L

3
4

 

P
E

=
1
 S

V
=

3
 

R
P

L
3
4
 

 

2
 

4
 

2
 

1
3
,2

8
4
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
6

2
4
2

4
 

6
0

S
 

ri
b
o

so
m

al
 

p
ro

te
in

 L
7
a 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

P
L

7
A

 

P
E

=
1
 S

V
=

2
 

R
P

L
7

A
 

 

5
 

1
3
 

5
 

2
9
,9

7
7
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
6

1
2
5

4
 

6
0

S
 

ri
b
o

so
m

al
 

p
ro

te
in

 L
2
6

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

P
L

2
6

 

P
E

=
1
 S

V
=

1
 

R
P

L
2
6
 

 

3
 

1
1
 

3
 

1
7
,2

4
8
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

O
1

4
9
4

9
 

C
y
to

ch
ro

m
e 

b
-c

1
 c

o
m

p
le

x
 

su
b
u
n

it
 8

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
U

Q
C

R
Q

 

P
E

=
1
 S

V
=

4
 

U
Q

C
R

Q
 

 

2
 

2
 

2
 

9
,9

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
4

6
7
8

3
 

4
0

S
 

ri
b
o

so
m

al
 

p
ro

te
in

 S
1
0

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

P
S

1
0

 

P
E

=
1
 S

V
=

1
 

R
P

S
1
0
 

 

4
 

1
4
 

4
 

1
8
,8

8
6
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
6

8
0
3

2
 

A
ct

in
, 
al

p
h

a 

ca
rd

ia
c 

m
u

sc
le

 1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

C
T

C
1

 

P
E

=
1
 S

V
=

1
 

A
C

T
C

1
 

 

7
 

7
1
 

1
 

4
1
,9

9
2
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

Q
5

V
T

6
6
 

M
O

S
C

 

d
o

m
ai

n
-

co
n

ta
in

in
g

 

p
ro

te
in

 1
, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
M

A
R

C
1
 

P
E

=
1
 S

V
=

1
 

M
A

R
C

1
 

 

4
 

9
 

4
 

3
7
,4

7
6
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

F
8

V
Y

N
9
 

A
D

P
-

ri
b
o

sy
la

ti
o

n
 

fa
ct

o
r-

li
k

e 

p
ro

te
in

 1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

R
L

1
 

P
E

=
3
 S

V
=

1
 

  

 

3
 

4
 

3
 

2
1
,7

6
4
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



101 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

P
0

0
3
8

7
 

N
A

D
H

-

cy
to

ch
ro

m
e 

b
5
 r

ed
u
ct

as
e 

3
 O

S
=

H
o

m
o
 

sa
p
ie

n
s 

G
N

=
C

Y
B

5
R

3
 P

E
=

1
 S

V
=

3
 

C
Y

B
5

R
3
 

 

4
 

5
 

4
 

3
4
,2

1
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
4

8
5
9

4
 

S
er

p
in

 B
4
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

E
R

P
IN

B
4
 P

E
=

1
 

S
V

=
2
 

S
E

R
P

IN
B

4
 

 

7
 

8
 

7
 

4
4
,8

2
5
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
6

2
8
4

7
 

4
0

S
 

ri
b
o

so
m

al
 

p
ro

te
in

 S
2
4

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

P
S

2
4

 

P
E

=
1
 S

V
=

1
 

R
P

S
2
4
 

 

2
 

5
 

2
 

1
5
,4

1
3
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

Q
9

N
P

7
2
 

R
as

-r
el

at
ed

 

p
ro

te
in

 R
ab

-

1
8
 O

S
=

H
o

m
o

 

sa
p
ie

n
s 

G
N

=
R

A
B

1
8
 

P
E

=
1
 S

V
=

1
 

R
A

B
1

8
 

 

4
 

4
 

4
 

2
2
,9

6
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
3

1
3
2

7
 

C
ar

b
am

o
y
l-

p
h
o

sp
h
at

e 

sy
n
th

as
e 

[a
m

m
o
n

ia
],

 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
C

P
S

1
 

P
E

=
1
 S

V
=

2
 

C
P

S
1
 

 

2
2
 

7
1
 

2
2
 

1
6
4

,8
3

5
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
2

2
6
9

5
 

C
y
to

ch
ro

m
e 

b
-c

1
 c

o
m

p
le

x
 

su
b
u
n

it
 2

, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
U

Q
C

R
C

2
 P

E
=

1
 S

V
=

3
 

U
Q

C
R

C
2
 

 

8
 

2
3
 

8
 

4
8
,4

1
3
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
2

2
6
2

6
 

H
et

er
o

g
en

eo
u

s 
n
u

cl
ea

r 

ri
b
o

n
u

cl
eo

p
ro

te
in

s 
A

2
/B

1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
H

N
R

N
P

A
2

B
1

 P
E

=
1
 

S
V

=
2
 

H
N

R
N

P
A

2
B

1
 

 

5
 

1
4
 

5
 

3
7
,4

0
7
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

O
7

5
3
2

3
 

P
ro

te
in

 

N
ip

S
n

ap
 

h
o

m
o
lo

g
 2

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
G

B
A

S
 

P
E

=
1
 S

V
=

1
 

G
B

A
S

 

 

5
 

1
8
 

5
 

3
3
,7

2
1
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
6

2
3
0

4
 

S
m

al
l 

n
u

cl
ea

r 

ri
b
o

n
u

cl
eo

p
ro

te
in

 E
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

N
R

P
E

 

P
E

=
1
 S

V
=

1
 

S
N

R
P

E
 

 

1
 

2
 

1
 

1
0
,7

9
7
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

P
6

1
2
2

4
 

R
as

-r
el

at
ed

 

p
ro

te
in

 R
ap

-

1
b
 O

S
=

H
o

m
o

 

sa
p
ie

n
s 

G
N

=
R

A
P

1
B

 

P
E

=
1
 S

V
=

1
 

R
A

P
1

B
 

 

3
 

8
 

3
 

2
0
,8

1
2
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

5
1
0

9
 

P
ro

te
in

 S
1
0
0

-

A
8

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

1
0
0

A
8

 

P
E

=
1
 S

V
=

1
 

S
1

0
0

A
8
 

 

2
 

6
 

2
 

1
0
,8

2
8
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



102 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

Q
1

6
7
9

5
 

N
A

D
H

 

d
eh

y
d

ro
g
en

as

e [u
b
iq

u
in

o
n
e]

 

1
 a

lp
h
a 

su
b
co

m
p
le

x
 

su
b
u
n

it
 9

, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
N

D
U

F
A

9
 P

E
=

1
 S

V
=

2
 

N
D

U
F

A
9

 

 

7
 

1
6
 

7
 

4
2
,4

8
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
6

1
0
0

6
 

R
as

-r
el

at
ed

 

p
ro

te
in

 R
ab

-

8
A

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

A
B

8
A

 

P
E

=
1
 S

V
=

1
 

R
A

B
8

A
 

 

4
 

1
1
 

2
 

2
3
,6

5
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
8

6
7
9

0
 

V
ac

u
o

la
r 

fu
si

o
n
 p

ro
te

in
 

C
C

Z
1

 

h
o

m
o
lo

g
 B

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
C

C
Z

1
B

 

P
E

=
1
 S

V
=

1
 

C
C

Z
1

; 

C
C

Z
1
B

 

 

8
 

1
3
 

8
 

5
5
,8

3
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

K
7

E
R

0
0
 

P
h

en
y
la

la
n

in
e

--
tR

N
A

 l
ig

as
e 

al
p

h
a 

su
b
u
n

it
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
F

A
R

S
A

 

P
E

=
4
 S

V
=

1
 

  

 

5
 

1
1
 

5
 

6
2
,3

5
6
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

9
5
4

3
 

2
',3

'-
cy

cl
ic

-

n
u
cl

eo
ti

d
e 

3
'-

p
h
o

sp
h
o
d

ie
st

er
as

e 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
C

N
P

 

P
E

=
1
 S

V
=

2
 

C
N

P
 

 

7
 

2
8
 

7
 

4
7
,5

4
9
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
5

0
4
1

6
 

C
ar

n
it

in
e 

O
-

p
al

m
it

o
y

lt
ra

n

sf
er

as
e 

1
, 

li
v

er
 i

so
fo

rm
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
C

P
T

1
A

 

P
E

=
1
 S

V
=

2
 

C
P

T
1

A
 

 

1
0
 

1
9
 

1
0
 

8
8
,3

1
1
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
4

8
0
4

7
 

A
T

P
 s

y
n

th
as

e 

su
b
u
n

it
 O

, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

T
P

5
O

 

P
E

=
1
 S

V
=

1
 

A
T

P
5

O
 

 

3
 

3
 

3
 

2
3
,2

6
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

5
0
8

9
 

A
rg

in
as

e-
1

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

R
G

1
 

P
E

=
1
 S

V
=

2
 

A
R

G
1
 

 

4
 

4
 

4
 

3
4
,7

1
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
0

8
1
8

8
 

P
ro

te
in

-

g
lu

ta
m

in
e 

g
am

m
a-

g
lu

ta
m

y
lt

ra
n

s

fe
ra

se
 E

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

G
M

3
 

P
E

=
1
 S

V
=

4
 

T
G

M
3
 

 

8
 

1
4
 

8
 

7
6
,5

8
4
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

M
ed

iu
m

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

Q
9

U
N

3
7
 

V
ac

u
o

la
r 

p
ro

te
in

 

so
rt

in
g

-

as
so

ci
at

ed
 

p
ro

te
in

 4
A

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
V

P
S

4
A

 

P
E

=
1
 S

V
=

1
 

V
P

S
4

A
 

 

6
 

1
8
 

6
 

4
8
,8

6
7
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
0

0
8
3

9
 

H
et

er
o

g
en

eo
u

s 
n
u

cl
ea

r 

ri
b
o

n
u

cl
eo

p
ro

te
in

 U
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
H

N
R

N
P

U
 P

E
=

1
 

S
V

=
6
 

H
N

R
N

P
U

 

 

7
 

3
2
 

7
 

9
0
,5

2
8
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



103 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

Q
1

5
3
6

6
 

P
o

ly
(r

C
)-

b
in

d
in

g
 

p
ro

te
in

 2
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
P

C
B

P
2

 

P
E

=
1
 S

V
=

1
 

P
C

B
P

2
 

 

4
 

2
8
 

3
 

3
8
,5

5
6
 

M
ed

iu
m

 

M
ed

iu
m

 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
5

1
1
5

3
 

R
as

-r
el

at
ed

 

p
ro

te
in

 R
ab

-

1
3
 O

S
=

H
o

m
o

 

sa
p
ie

n
s 

G
N

=
R

A
B

1
3
 

P
E

=
1
 S

V
=

1
 

R
A

B
1

3
 

 

3
 

7
 

1
 

2
2
,7

6
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

2
4
9

9
 

A
T

P
-

d
ep

en
d
en

t 

R
N

A
 h

el
ic

as
e 

D
D

X
1

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
D

D
X

1
 

P
E

=
1
 S

V
=

2
 

D
D

X
1

 

 

6
 

9
 

6
 

8
2
,3

8
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d

 

Q
1

5
3
6

5
 

P
o

ly
(r

C
)-

b
in

d
in

g
 

p
ro

te
in

 1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
P

C
B

P
1

 

P
E

=
1
 S

V
=

2
 

P
C

B
P

1
 

 

4
 

2
6
 

3
 

3
7
,4

7
4
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

U
JS

0
 

C
al

ci
u

m
-

b
in

d
in

g
 

m
it

o
ch

o
n
d

ri
al

 

ca
rr

ie
r 

p
ro

te
in

 

A
ra

la
r2

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

L
C

2
5

A

1
3
 P

E
=

1
 

S
V

=
2
 

S
L

C
2
5

A
1

3
 

 

6
 

1
8
 

6
 

7
4
,1

2
9
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
1

8
6
2

1
 

6
0

S
 

ri
b
o

so
m

al
 

p
ro

te
in

 L
1
7

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

P
L

1
7

 

P
E

=
1
 S

V
=

3
 

R
P

L
1
7
 

 

2
 

6
 

2
 

2
1
,3

8
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

M
ed

iu
m

 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
3

S
Y

B
4
 

S
E

R
P

IN
B

1
2

 

p
ro

te
in

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

E
R

P
IN

B
1
2

 P
E

=
2
 

S
V

=
1
 

S
E

R
P

IN
B

1
2
 

 

4
 

5
 

4
 

4
8
,4

1
5
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
3

7
2
6

8
 

S
q

u
al

en
e 

sy
n
th

as
e 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
F

D
F

T
1

 

P
E

=
1
 S

V
=

1
 

F
D

F
T

1
 

 

4
 

4
 

4
 

4
8
,0

8
4
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
5

7
0
8

8
 

T
ra

n
sm

em
b

ra

n
e 

p
ro

te
in

 3
3
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

M
E

M
3

3
 P

E
=

1
 S

V
=

2
 

T
M

E
M

3
3
 

 

2
 

4
 

2
 

2
7
,9

6
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

O
1

5
4
2

7
 

M
o
n
o

ca
rb

o
x
y

la
te

 

tr
an

sp
o

rt
er

 4
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

L
C

1
6

A

3
 P

E
=

1
 S

V
=

1
 

S
L

C
1
6

A
3
 

 

3
 

9
 

3
 

4
9
,4

3
7
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

Y
3

I0
 

tR
N

A
-

sp
li

ci
n
g

 

li
g

as
e 

R
tc

B
 

h
o

m
o
lo

g
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

T
C

B
 

P
E

=
1
 S

V
=

1
 

C
2
2
o

rf
2

8
; 

R
T

C
B

 

 

5
 

6
 

5
 

5
5
,1

7
5
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



104 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

O
7

5
6
6

3
 

T
IP

4
1

-l
ik

e 

p
ro

te
in

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

IP
R

L
 

P
E

=
1
 S

V
=

2
 

T
IP

R
L

 

 

3
 

3
 

3
 

3
1
,4

2
4
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
6

Z
V

X
7
 

F
-b

o
x

 o
n
ly

 

p
ro

te
in

 5
0

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
N

C
C

R
P

1
 P

E
=

1
 S

V
=

1
 

N
C

C
R

P
1
 

 

2
 

2
 

2
 

3
0
,8

2
8
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

D
6

R
B

Z
0
 

H
et

er
o

g
en

eo
u

s 
n
u

cl
ea

r 

ri
b
o

n
u

cl
eo

p
ro

te
in

 A
/B

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
H

N
R

N
P

A
B

 P
E

=
4

 

S
V

=
1
 

  

 

2
 

5
 

1
 

3
5
,6

6
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

O
9

5
5
7

3
 

L
o
n

g
-c

h
ai

n
-

fa
tt

y
-a

ci
d

--

C
o

A
 l

ig
as

e 
3

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

C
S

L
3
 

P
E

=
1
 S

V
=

3
 

A
C

S
L

3
 

 

6
 

1
7
 

6
 

8
0
,3

6
8
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
3

B
L

Z
8
 

P
ro

b
ab

le
 

A
T

P
-

d
ep

en
d
en

t 

R
N

A
 h

el
ic

as
e 

D
D

X
1

7
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
D

D
X

1
7

 

P
E

=
4
 S

V
=

1
 

  

 

6
 

2
6
 

1
 

8
0
,3

8
9
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
8

N
F

3
7
 

L
y

so
p
h
o

sp
h

at

id
y

lc
h
o

li
n

e 

ac
y
lt

ra
n

sf
er

as

e 
1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
L

P
C

A
T

1
 P

E
=

1
 S

V
=

2
 

L
P

C
A

T
1
 

 

4
 

1
2
 

4
 

5
9
,1

1
3
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
3

1
1
5

1
 

P
ro

te
in

 S
1
0
0

-

A
7

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

1
0
0

A
7

 

P
E

=
1
 S

V
=

4
 

S
1

0
0

A
7
 

 

1
 

1
 

1
 

1
1
,4

6
4
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

6
9

X
5
 

E
n
d

o
p

la
sm

ic
 

re
ti

cu
lu

m
-

G
o

lg
i 

in
te

rm
ed

ia
te

 

co
m

p
ar

tm
en

t 

p
ro

te
in

 1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
E

R
G

IC
1

 

P
E

=
1
 S

V
=

1
 

E
R

G
IC

1
 

 

2
 

3
 

2
 

3
2
,5

7
1
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

O
7

5
2
5

1
 

N
A

D
H

 

d
eh

y
d

ro
g
en

as

e [u
b
iq

u
in

o
n
e]

 

ir
o
n

-s
u
lf

u
r 

p
ro

te
in

 7
, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
N

D
U

F
S

7
 P

E
=

1
 S

V
=

3
 

N
D

U
F

S
7

 

 

2
 

5
 

2
 

2
3
,5

4
8
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

E
9

P
K

2
5
 

C
o

fi
li

n
-1

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
C

F
L

1
 

P
E

=
4
 S

V
=

1
 

  

 

2
 

3
 

2
 

2
2
,7

1
4
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
1

4
7
3

9
 

L
am

in
-B

 

re
ce

p
to

r 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
L

B
R

 

P
E

=
1
 S

V
=

2
 

L
B

R
 

 

4
 

1
1
 

4
 

7
0
,6

5
8
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



105 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

Q
9

Y
3
0

5
 

A
cy

l-

co
en

zy
m

e 
A

 

th
io

es
te

ra
se

 

9
, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

C
O

T
9
 

P
E

=
1
 S

V
=

2
 

A
C

O
T

9
 

 

4
 

9
 

4
 

4
9
,8

7
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
1

7
8
5

8
 

6
-

p
h
o

sp
h
o

fr
u
ct

o
k
in

as
e,

 l
iv

er
 

ty
p

e 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
P

F
K

L
 

P
E

=
1
 S

V
=

6
 

P
F

K
L

 

 

5
 

2
4
 

2
 

8
4
,9

6
4
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
6

2
8
7

3
 

G
u

an
in

e 

n
u
cl

eo
ti

d
e
-

b
in

d
in

g
 

p
ro

te
in

 

G
(I

)/
G

(S
)/

G
(

T
) 

su
b

u
n
it

 

b
et

a-
1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
G

N
B

1
 

P
E

=
1
 S

V
=

3
 

G
N

B
1
 

 

2
 

9
 

2
 

3
7
,3

5
3
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

P
0

1
8
5

7
 

Ig
 g

am
m

a-
1

 

ch
ai

n
 C

 

re
g

io
n

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
IG

H
G

1
 

P
E

=
1
 S

V
=

1
 

IG
H

G
1

 

 

2
 

3
 

2
 

3
6
,0

8
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
5

5
2
0

9
 

N
u

cl
eo

so
m

e 

as
se

m
b

ly
 

p
ro

te
in

 1
-l

ik
e 

1
 O

S
=

H
o

m
o
 

sa
p
ie

n
s 

G
N

=
N

A
P

1
L

1
 

P
E

=
1
 S

V
=

1
 

N
A

P
1

L
1
 

 

2
 

2
 

2
 

4
5
,3

4
6
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
1

4
1
0

3
 

H
et

er
o

g
en

eo
u

s 
n
u

cl
ea

r 

ri
b
o

n
u

cl
eo

p
ro

te
in

 D
0

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
H

N
R

N
P

D
 P

E
=

1
 

S
V

=
1
 

H
N

R
N

P
D

 

 

2
 

1
1
 

1
 

3
8
,4

1
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
4

1
0
9

1
 

E
u
k

ar
y
o
ti

c 

tr
an

sl
at

io
n

 

in
it

ia
ti

o
n
 

fa
ct

o
r 

2
 

su
b
u
n

it
 3

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
E

IF
2

S
3
 

P
E

=
1
 S

V
=

3
 

E
IF

2
S

3
 

 

3
 

5
 

3
 

5
1
,0

7
7
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
5

V
V

8
9
 

M
ic

ro
so

m
al

 

g
lu

ta
th

io
n

e 
S

-

tr
an

sf
er

as
e 

3
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
M

G
S

T
3

 

P
E

=
4
 S

V
=

1
 

M
G

S
T

3
 

 

1
 

1
 

1
 

1
8
,4

0
5
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

O
6

0
5
0

6
 

H
et

er
o

g
en

eo
u

s 
n
u

cl
ea

r 

ri
b
o

n
u

cl
eo

p
ro

te
in

 Q
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

Y
N

C
R

IP
 P

E
=

1
 

S
V

=
2
 

S
Y

N
C

R
IP

 

 

5
 

1
2
 

5
 

6
9
,5

6
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

Q
7

L
1

V
2
 

V
ac

u
o

la
r 

fu
si

o
n
 p

ro
te

in
 

M
O

N
1

 

h
o

m
o
lo

g
 B

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
M

O
N

1
B

 

P
E

=
1
 S

V
=

1
 

M
O

N
1
B

 

 

3
 

4
 

3
 

5
9
,1

8
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
1

5
6
4

5
 

P
ac

h
y
te

n
e 

ch
ec

k
p
o

in
t 

p
ro

te
in

 2
 

h
o

m
o
lo

g
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

R
IP

1
3

 

P
E

=
1
 S

V
=

2
 

T
R

IP
1
3
 

 

3
 

3
 

3
 

4
8
,5

2
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



106 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

P
1

1
1
6

6
 

S
o

lu
te

 c
ar

ri
er

 

fa
m

il
y

 2
, 

fa
ci

li
ta

te
d
 

g
lu

co
se

 

tr
an

sp
o

rt
er

 

m
em

b
er

 1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

L
C

2
A

1
 

P
E

=
1
 S

V
=

2
 

S
L

C
2

A
1
 

 

2
 

3
 

2
 

5
4
,0

4
9
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
5

3
9
8

5
 

M
o
n
o

ca
rb

o
x
y

la
te

 

tr
an

sp
o

rt
er

 1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

L
C

1
6

A

1
 P

E
=

1
 S

V
=

3
 

S
L

C
1
6

A
1
 

 

2
 

4
 

2
 

5
3
,9

0
9
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

K
7

E
R

Q
8
 

U
n

ch
ar

ac
te

ri
z

ed
 p

ro
te

in
 

(F
ra

g
m

en
t)

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

P
E

=
3
 

S
V

=
1
 

  

 

2
 

2
 

2
 

3
1
,3

7
2
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

P
3

1
9
4

4
 

C
as

p
as

e-
1
4

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
C

A
S

P
1
4

 

P
E

=
1
 S

V
=

2
 

C
A

S
P

1
4
 

 

2
 

2
 

2
 

2
7
,6

6
2
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
6

2
3
1

8
 

S
m

al
l 

n
u

cl
ea

r 

ri
b
o

n
u

cl
eo

p
ro

te
in

 S
m

 D
3
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

N
R

P
D

3
 P

E
=

1
 S

V
=

1
 

S
N

R
P

D
3
 

 

1
 

1
 

1
 

1
3
,9

0
7
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
1

5
2
3

3
 

N
o

n
-P

O
U

 

d
o

m
ai

n
-

co
n

ta
in

in
g

 

o
ct

am
er

-

b
in

d
in

g
 

p
ro

te
in

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
N

O
N

O
 

P
E

=
1
 S

V
=

4
 

N
O

N
O

 

 

3
 

1
4
 

2
 

5
4
,1

9
7
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
1

5
8
8

4
 

P
ro

te
in

 

F
A

M
1
8

9
A

2
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
F

A
M

1
8

9
A

2
 P

E
=

1
 

S
V

=
3
 

F
A

M
1
8

9
A

2
 

 

1
 

4
 

1
 

4
9
,6

7
1
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

Y
2
3

0
 

R
u
v

B
-l

ik
e 

2
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
R

U
V

B
L

2
 P

E
=

1
 S

V
=

3
 

R
U

V
B

L
2
 

 

3
 

9
 

3
 

5
1
,1

2
5
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
3

3
9
9

3
 

D
N

A
 

re
p

li
ca

ti
o
n

 

li
ce

n
si

n
g
 

fa
ct

o
r 

M
C

M
7

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
M

C
M

7
 

P
E

=
1
 S

V
=

4
 

M
C

M
7
 

 

5
 

1
1
 

5
 

8
1
,2

5
7
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

Q
0

1
6
5

0
 

L
ar

g
e 

n
eu

tr
al

 

am
in

o
 a

ci
d

s 

tr
an

sp
o

rt
er

 

sm
al

l 
su

b
u
n

it
 

1
 O

S
=

H
o

m
o
 

sa
p
ie

n
s 

G
N

=
S

L
C

7
A

5
 

P
E

=
1
 S

V
=

2
 

S
L

C
7

A
5
 

 

2
 

5
 

2
 

5
4
,9

7
4
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
3

5
6
1

3
 

B
as

ig
in

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
B

S
G

 

P
E

=
1
 S

V
=

2
 

B
S

G
 

 

2
 

3
 

2
 

4
2
,1

7
4
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



107 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

Q
6

IA
N

0
 

D
eh

y
d

ro
g
en

a

se
/r

ed
u
ct

as
e 

S
D

R
 f

am
il

y
 

m
em

b
er

 7
B

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
D

H
R

S
7

B
 P

E
=

1
 

S
V

=
2
 

D
H

R
S

7
B

 

 

2
 

3
 

2
 

3
5
,0

9
7
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

B
4

D
R

6
1
 

P
ro

te
in

 

tr
an

sp
o

rt
 

p
ro

te
in

 S
ec

6
1

 

su
b
u
n

it
 a

lp
h
a 

is
o

fo
rm

 1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

E
C

6
1

A

1
 P

E
=

2
 S

V
=

1
 

S
E

C
6
1

A
1
 

 

2
 

5
 

2
 

5
2
,9

1
5
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
0

2
9
7

8
 

M
it

o
ch

o
n

d
ri

a

l 
2

-

o
x
o
g

lu
ta

ra
te

/

m
al

at
e 

ca
rr

ie
r 

p
ro

te
in

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

L
C

2
5

A

1
1
 P

E
=

1
 

S
V

=
3
 

S
L

C
2
5

A
1

1
 

 

2
 

3
 

2
 

3
4
,0

4
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

P
1

0
9
0

9
 

C
lu

st
er

in
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
C

L
U

 

P
E

=
1
 S

V
=

1
 

C
L

U
 

 

2
 

2
 

2
 

5
2
,4

6
1
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
8

W
W

C
4
 

U
n

ch
ar

ac
te

ri
z

ed
 p

ro
te

in
 

C
2
o

rf
4
7

, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
C

2
o

rf
4
7

 

P
E

=
1
 S

V
=

1
 

C
2
o

rf
4
7
 

 

2
 

2
 

2
 

3
2
,5

2
4
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

C
9

IZ
Q

1
 

T
ra

n
sl

o
co

n
-

as
so

ci
at

ed
 

p
ro

te
in

 

su
b
u
n

it
 a

lp
h
a 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

S
R

1
 

P
E

=
4
 S

V
=

1
 

  

 

1
 

1
 

1
 

3
3
,8

6
6
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

A
6

N
IM

6
 

S
o

lu
te

 c
ar

ri
er

 

fa
m

il
y

 1
5

 

m
em

b
er

 5
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

L
C

1
5

A

5
 P

E
=

3
 S

V
=

2
 

S
L

C
1
5

A
5
 

 

1
 

4
 

1
 

6
5
,2

2
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

0
3
3

8
 

L
-l

ac
ta

te
 

d
eh

y
d

ro
g
en

as

e 
A

 c
h

ai
n

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
L

D
H

A
 

P
E

=
1
 S

V
=

2
 

L
D

H
A

 

 

2
 

7
 

2
 

3
6
,6

6
5
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
2

6
5
9

9
 

P
o

ly
p
y

ri
m

id
i

n
e 

tr
ac

t-

b
in

d
in

g
 

p
ro

te
in

 1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
P

T
B

P
1
 

P
E

=
1
 S

V
=

1
 

P
T

B
P

1
 

 

2
 

2
 

2
 

5
7
,1

8
6
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

Q
1

5
3
9

2
 

D
el

ta
(2

4
)-

st
er

o
l 

re
d
u

ct
as

e 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
D

H
C

R
2

4
 P

E
=

1
 S

V
=

2
 

D
H

C
R

2
4
 

 

2
 

8
 

2
 

6
0
,0

6
2
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

O
7

5
3
0

6
 

N
A

D
H

 

d
eh

y
d

ro
g
en

as

e [u
b
iq

u
in

o
n
e]

 

ir
o
n

-s
u
lf

u
r 

p
ro

te
in

 2
, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
N

D
U

F
S

2
 P

E
=

1
 S

V
=

2
 

N
D

U
F

S
2

 

 

2
 

4
 

2
 

5
2
,5

1
2
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



108 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

Q
9

H
C

N
8
 

S
tr

o
m

al
 c

el
l-

d
er

iv
ed

 f
ac

to
r 

2
-l

ik
e 

p
ro

te
in

 

1
 O

S
=

H
o

m
o
 

sa
p
ie

n
s 

G
N

=
S

D
F

2
L

1
 

P
E

=
1
 S

V
=

2
 

S
D

F
2

L
1
 

 

1
 

1
 

1
 

2
3
,5

8
4
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
8

W
X

C
9
 

N
A

D
H

 

d
eh

y
d

ro
g
en

as

e [u
b
iq

u
in

o
n
e]

 

1
 a

lp
h
a 

su
b
co

m
p
le

x
 

su
b
u
n

it
 1

0
, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
N

D
U

F
A

1
0
 P

E
=

2
 

S
V

=
1
 

N
D

U
F

A
1

0
 

 

2
 

2
 

2
 

4
8
,5

3
2
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
1

3
8
6

7
 

B
le

o
m

y
ci

n
 

h
y
d

ro
la

se
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
B

L
M

H
 

P
E

=
1
 S

V
=

1
 

B
L

M
H

 

 

2
 

3
 

2
 

5
2
,5

2
8
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

F
8

V
Q

1
0
 

S
p

li
ce

o
so

m
e 

R
N

A
 h

el
ic

as
e 

D
D

X
3

9
B

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
D

D
X

3
9

B
 P

E
=

4
 

S
V

=
1
 

  

 

2
 

2
 

2
 

5
0
,7

1
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
2

4
5
3

4
 

E
lo

n
g

at
io

n
 

fa
ct

o
r 

1
-b

et
a 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
E

E
F

1
B

2
 

P
E

=
1
 S

V
=

3
 

E
E

F
1
B

2
 

 

1
 

1
 

1
 

2
4
,7

4
8
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
2

3
2
8

4
 

P
ep

ti
d

y
l-

p
ro

ly
l 

ci
s-

tr
an

s 

is
o

m
er

as
e 

B
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
P

P
IB

 

P
E

=
1
 S

V
=

2
 

P
P

IB
 

 

1
 

2
 

1
 

2
3
,7

2
8
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

B
3

K
V

R
1
 

S
m

al
l 

n
u

cl
ea

r 

ri
b
o

n
u

cl
eo

p
ro

te
in

-

as
so

ci
at

ed
 

p
ro

te
in

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

N
R

P
N

 

P
E

=
2
 S

V
=

1
 

S
N

R
P

N
 

 

1
 

1
 

1
 

2
5
,0

5
9
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

4
0
4

0
 

C
at

al
as

e 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
C

A
T

 

P
E

=
1
 S

V
=

3
 

C
A

T
 

 

2
 

2
 

2
 

5
9
,7

1
9
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

O
1

4
7
3

2
 

In
o

si
to

l 

m
o

n
o
p

h
o

sp
h

a

ta
se

 2
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
IM

P
A

2
 

P
E

=
1
 S

V
=

1
 

IM
P

A
2
 

 

1
 

1
 

1
 

3
1
,3

0
1
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

P
2

3
2
4

6
 

S
p

li
ci

n
g

 

fa
ct

o
r,

 

p
ro

li
n

e-
 a

n
d

 

g
lu

ta
m

in
e-

ri
ch

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

F
P

Q
 

P
E

=
1
 S

V
=

2
 

S
F

P
Q

 

 

2
 

1
2
 

1
 

7
6
,1

0
2
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
6

2
2
5

8
 

1
4

-3
-3

 

p
ro

te
in

 

ep
si

lo
n
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
Y

W
H

A

E
 P

E
=

1
 

S
V

=
1
 

Y
W

H
A

E
 

 

1
 

1
 

1
 

2
9
,1

5
5
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



109 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

Q
6

N
Z

I2
 

P
o

ly
m

er
as

e 
I 

an
d

 t
ra

n
sc

ri
p

t 

re
le

as
e 

fa
ct

o
r 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
P

T
R

F
 

P
E

=
1
 S

V
=

1
 

P
T

R
F

 

 

1
 

1
 

1
 

4
3
,4

5
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

6
D

M
3
 

U
n

ch
ar

ac
te

ri
z

ed
 p

ro
te

in
 

C
1
8
o

rf
8

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
C

1
8
o

rf
8

 

P
E

=
2
 S

V
=

2
 

C
1
8
o

rf
8
 

 

2
 

2
 

2
 

7
4
,9

2
7
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
5

D
8
6

2
 

F
il

ag
g

ri
n

-2
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
F

L
G

2
 

P
E

=
1
 S

V
=

1
 

F
L

G
2
 

 

5
 

7
 

5
 

2
4
7

,9
2

8
 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

P
3

1
0
4

0
 

S
u

cc
in

at
e 

d
eh

y
d

ro
g
en

as

e [u
b
iq

u
in

o
n
e]

 

fl
av

o
p

ro
te

in
 

su
b
u
n

it
, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

D
H

A
 

P
E

=
1
 S

V
=

2
 

S
D

H
A

 

 

2
 

2
 

2
 

7
2
,6

4
5
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
2

5
3
1

1
 

Z
in

c-
al

p
h

a-
2

-

g
ly

co
p

ro
te

in
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

Z
G

P
1

 

P
E

=
1
 S

V
=

2
 

A
Z

G
P

1
 

 

1
 

1
 

1
 

3
4
,2

3
7
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
4

2
1
6

6
 

L
am

in
a-

as
so

ci
at

ed
 

p
o
ly

p
ep

ti
d

e 

2
, 
is

o
fo

rm
 

al
p

h
a 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

M
P

O
 

P
E

=
1
 S

V
=

2
 

T
M

P
O

 

 

2
 

4
 

2
 

7
5
,4

4
6
 

N
o

t 
F

o
u

n
d
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

B
3

K
S

Q
1
 

V
er

y
-l

o
n
g

-

ch
ai

n
 e

n
o

y
l-

C
o

A
 

re
d
u

ct
as

e 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

E
C

R
 

P
E

=
2
 S

V
=

1
 

T
E

C
R

 

 

1
 

3
 

1
 

3
7
,4

4
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

9
1
1

0
 

3
-k

et
o

ac
y
l-

C
o

A
 t

h
io

la
se

, 

p
er

o
x
is

o
m

al
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

C
A

A
1

 

P
E

=
1
 S

V
=

2
 

A
C

A
A

1
 

 

1
 

1
 

1
 

4
4
,2

6
4
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

H
9
B

4
 

S
id

er
o

fl
ex

in
-

1
 O

S
=

H
o

m
o
 

sa
p
ie

n
s 

G
N

=
S

F
X

N
1

 

P
E

=
1
 S

V
=

4
 

S
F

X
N

1
 

 

1
 

1
 

1
 

3
5
,5

9
6
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

Q
9

B
R

Q
8
 

A
p

o
p

to
si

s-

in
d

u
ci

n
g

 

fa
ct

o
r 

2
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

IF
M

2
 

P
E

=
1
 S

V
=

1
 

A
IF

M
2
 

 

1
 

4
 

1
 

4
0
,5

0
1
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

Y
6
7

3
 

D
o

li
ch

y
l-

p
h
o

sp
h
at

e 

b
et

a-

g
lu

co
sy

lt
ra

n
sf

er
as

e 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

L
G

5
 

P
E

=
1
 S

V
=

1
 

A
L

G
5
 

 

1
 

1
 

1
 

3
6
,9

2
2
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



110 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

Q
6

P
4

A
7
 

S
id

er
o

fl
ex

in
-

4
 O

S
=

H
o

m
o
 

sa
p
ie

n
s 

G
N

=
S

F
X

N
4

 

P
E

=
1
 S

V
=

1
 

S
F

X
N

4
 

 

1
 

1
 

1
 

3
7
,9

7
4
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
1

5
7
5

8
 

N
eu

tr
al

 

am
in

o
 a

ci
d

 

tr
an

sp
o

rt
er

 

B
(0

) 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

L
C

1
A

5
 

P
E

=
1
 S

V
=

2
 

S
L

C
1

A
5
 

 

1
 

5
 

1
 

5
6
,5

6
2
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
0

Y
4
4

9
 

N
u

cl
ea

se
-

se
n

si
ti

v
e 

el
em

en
t-

b
in

d
in

g
 

p
ro

te
in

 1
 

(F
ra

g
m

en
t)

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
Y

B
X

1
 

P
E

=
4
 S

V
=

1
 

  

 

1
 

5
 

1
 

4
1
,9

9
 

H
ig

h
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

G
3

V
3
2

5
 

P
en

ta
tr

ic
o

p
ep

ti
d

e 
re

p
ea

t-

co
n

ta
in

in
g

 

p
ro

te
in

 1
, 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

T
P

5
J2

-

P
T

C
D

1
 P

E
=

4
 

S
V

=
1
 

A
T

P
5

J2
-

P
T

C
D

1
 

 

2
 

8
 

2
 

8
4
,0

5
7
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

5
1
9

8
 

E
u
k

ar
y
o
ti

c 

tr
an

sl
at

io
n

 

in
it

ia
ti

o
n
 

fa
ct

o
r 

2
 

su
b
u
n

it
 1

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
E

IF
2

S
1
 

P
E

=
1
 S

V
=

3
 

E
IF

2
S

1
 

 

1
 

5
 

1
 

3
6
,0

8
9
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
1

3
7
2

4
 

M
an

n
o

sy
l-

o
li

g
o

sa
cc

h
ar

i

d
e 

g
lu

co
si

d
as

e 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
M

O
G

S
 

P
E

=
1
 S

V
=

5
 

M
O

G
S

 

 

2
 

2
 

2
 

9
1
,8

6
1
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

J3
K

Q
7
3
 

P
ep

ti
d

y
l-

p
ro

ly
l 

ci
s-

tr
an

s 

is
o

m
er

as
e 

F
K

B
P

8
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
F

K
B

P
8

 

P
E

=
4
 S

V
=

1
 

F
K

B
P

8
 

 

1
 

2
 

1
 

4
7
,1

1
4
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
8

N
B

X
0
 

S
ac

ch
ar

o
p
in

e 

d
eh

y
d

ro
g
en

as

e-
li

k
e 

o
x
id

o
re

d
u

ct
as

e 
O

S
=

H
o
m

o
 

sa
p
ie

n
s 

G
N

=
S

C
C

P
D

H
 P

E
=

1
 

S
V

=
1
 

S
C

C
P

D
H

 

 

1
 

2
 

1
 

4
7
,1

2
1
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
1

4
2
4

0
 

E
u
k

ar
y
o
ti

c 

in
it

ia
ti

o
n
 

fa
ct

o
r 

4
A

-I
I 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
E

IF
4

A
2
 

P
E

=
1
 S

V
=

2
 

E
IF

4
A

2
 

 

1
 

1
 

1
 

4
6
,3

7
3
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

P
5

1
6
4

8
 

F
at

ty
 

al
d

eh
y
d

e 

d
eh

y
d

ro
g
en

as

e 
O

S
=

H
o
m

o
 

sa
p
ie

n
s 

G
N

=
A

L
D

H
3

A
2

 P
E

=
1

 

S
V

=
1
 

A
L

D
H

3
A

2
 

 

1
 

1
 

1
 

5
4
,8

1
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
8

N
C

5
1
 

P
la

sm
in

o
g
en

 

ac
ti

v
at

o
r 

in
h

ib
it

o
r 

1
 

R
N

A
-b

in
d

in
g
 

p
ro

te
in

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
S

E
R

B
P

1
 

P
E

=
1
 S

V
=

2
 

S
E

R
B

P
1
 

 

1
 

5
 

1
 

4
4
,9

3
8
 

M
ed

iu
m

 

M
ed

iu
m

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



111 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

P
3

3
9
9

2
 

D
N

A
 

re
p

li
ca

ti
o
n

 

li
ce

n
si

n
g
 

fa
ct

o
r 

M
C

M
5

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
M

C
M

5
 

P
E

=
1
 S

V
=

5
 

M
C

M
5
 

 

2
 

2
 

2
 

8
2
,2

3
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

O
1

4
5
5

6
 

G
ly

ce
ra

ld
eh

y

d
e-

3
-

p
h
o

sp
h
at

e 

d
eh

y
d

ro
g
en

as

e,
 t

es
ti

s-

sp
ec

if
ic

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
G

A
P

D
H

S
 P

E
=

1
 S

V
=

2
 

G
A

P
D

H
S

 

 

1
 

1
4
 

1
 

4
4
,4

7
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

5
0
2

3
 

S
o

d
iu

m
/p

o
ta

s

si
u

m
-

tr
an

sp
o

rt
in

g
 

A
T

P
as

e 

su
b
u
n

it
 

al
p

h
a-

1
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

T
P

1
A

1
 

P
E

=
1
 S

V
=

1
 

A
T

P
1

A
1
 

 

2
 

2
 

2
 

1
1
2

,8
2

4
 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

J3
K

P
X

7
 

P
ro

h
ib

it
in

-2
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
P

H
B

2
 

P
E

=
4
 S

V
=

1
 

  

 

1
 

1
 

1
 

3
3
,3

8
2
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

H
7

Z
7
 

P
ro

st
ag

la
n

d
in

 

E
 s

y
n

th
as

e 
2

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
P

T
G

E
S

2
 

P
E

=
1
 S

V
=

1
 

P
T

G
E

S
2
 

 

1
 

1
 

1
 

4
1
,9

1
7
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

6
C

S
3
 

F
A

S
-

as
so

ci
at

ed
 

fa
ct

o
r 

2
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
F

A
F

2
 

P
E

=
1
 S

V
=

2
 

F
A

F
2

 

 

1
 

1
 

1
 

5
2
,5

9
1
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

6
7
3

3
 

A
lp

h
a-

en
o

la
se

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
E

N
O

1
 

P
E

=
1
 S

V
=

2
 

E
N

O
1
 

 

1
 

1
 

1
 

4
7
,1

3
9
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
0

4
8
4

4
 

D
o

li
ch

y
l-

d
ip

h
o

sp
h

o
o

li

g
o

sa
cc

h
ar

id
e-

-p
ro

te
in

 

g
ly

co
sy

lt
ra

n
sf

er
as

e 
su

b
u
n
it

 

2
 O

S
=

H
o

m
o
 

sa
p
ie

n
s 

G
N

=
R

P
N

2
 

P
E

=
1
 S

V
=

3
 

R
P

N
2
 

 

1
 

1
 

1
 

6
9
,2

4
1
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
2

9
4
0

1
 

T
ra

n
sk

et
o
la

se
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

K
T

 

P
E

=
1
 S

V
=

3
 

T
K

T
 

 

1
 

1
 

1
 

6
7
,8

3
5
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

Q
1

0
4
7

1
 

P
o

ly
p
ep

ti
d

e 

N
-

ac
et

y
lg

al
ac

to
s

am
in

y
lt

ra
n

sf
e

ra
se

 2
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
G

A
L

N
T

2
 P

E
=

1
 S

V
=

1
 

G
A

L
N

T
2
 

 

1
 

1
 

1
 

6
4
,6

9
1
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
1

2
7
9

7
 

A
sp

ar
ty

l/
as

p
ar

a

g
in

y
l 

b
et

a-

h
y
d

ro
x
y

la
se

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
A

S
P

H
 

P
E

=
1
 S

V
=

3
 

A
S

P
H

 

 

1
 

1
 

1
 

8
5
,8

0
9
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 



112 

A
c
c
e
ss

io
n

 

D
e
sc

ri
p

ti
o

n
 

G
en

e 
ID

 

 #
 P

e
p

ti
d

e
s 

#
 P

S
M

s 

#
 U

n
iq

u
e 

P
e
p

ti
d

e
s 

M
W

 [
k

D
a

] 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
E

K
2
9
3
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

H
eL

a
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

G
S

T
 

P
4

8
6
4

3
 

T
-c

o
m

p
le

x
 

p
ro

te
in

 1
 

su
b
u
n

it
 

ep
si

lo
n
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
C

C
T

5
 

P
E

=
1
 S

V
=

1
 

C
C

T
5
 

 

1
 

1
 

1
 

5
9
,6

3
3
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
0

8
2
1

1
 

A
T

P
-d

ep
en

d
en

t 

R
N

A
 h

el
ic

as
e 

A
 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
D

H
X

9
 P

E
=

1
 

S
V

=
4
 

D
H

X
9

 

 

2
 

2
 

2
 

1
4
0

,8
6

9
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

P
1

4
8
6

8
 

A
sp

ar
ta

te
--

tR
N

A
 

li
g

as
e,

 

cy
to

p
la

sm
ic

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
D

A
R

S
 P

E
=

1
 

S
V

=
2
 

D
A

R
S

 

 

1
 

3
 

1
 

5
7
,1

 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

O
7

6
0
3

1
 

A
T

P
-d

ep
en

d
en

t 

C
lp

 p
ro

te
as

e 

A
T

P
-b

in
d
in

g
 

su
b
u
n

it
 c

lp
X

-

li
k

e,
 

m
it

o
ch

o
n
d

ri
al

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
C

L
P

X
 

P
E

=
1
 S

V
=

2
 

C
L

P
X

 

 

1
 

5
 

1
 

6
9
,1

8
1
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
0

7
2
8

3
 

T
ri

ch
o
h
y

al
in

 O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
T

C
H

H
 

P
E

=
1
 S

V
=

2
 

T
C

H
H

 

 

1
 

2
 

1
 

2
5
3

,7
7

7
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
8

IW
Z

3
 

A
n

k
y

ri
n

 r
ep

ea
t 

an
d
 

K
H

 d
o
m

ai
n

-

co
n

ta
in

in
g

 p
ro

te
in

 1
 

O
S

=
H

o
m

o
 s

ap
ie

n
s 

G
N

=
A

N
K

H
D

1
 

P
E

=
1
 S

V
=

1
 

A
N

K
H

D
1

 

 

1
 

4
 

1
 

2
6
9

,2
9

1
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

H
ig

h
 

H
ig

h
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

N
o

t 
F

o
u

n
d
 

Q
9

U
P

A
5
 

P
ro

te
in

 b
as

so
o
n

 

O
S

=
H

o
m

o
 

sa
p
ie

n
s 

G
N

=
B

S
N

 

P
E

=
2
 S

V
=

4
 

B
S

N
 

 

1
 

1
 

1
 

4
1
6

,2
1

4
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

H
ig

h
 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

N
o

t 
F

o
u

n
d

 

 


	Front.docxBMF
	FINALV9Identification of protein interaction candiates for GOLD domain of FYCO1 spring 201FINAL6

