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ABSTRACT

Non-Gaussian statistical models fit SAR data better than
Gaussian-based statistics, in most cases, but are complicated
and time-consuming to use for unsupervised image seg-
mentation via probabilistic clustering. The more advanced
the model, the more complicated and slow the clustering.
The U-distribution has been demonstrated to be one of the
most flexible models, capturing the Gaussian/Wishart, the
K-distribution and the G0 models as special cases, but can
take hours or days to process a full sized image, depending
on the chosen sensitivity. This work explains some compu-
tational improvements that drastically reduces the processing
time, whilst maintaining the segmented results. The effi-
ciencies are obtained by some smart re-parameterisations of
the distribution model parameters allowing the use of look-
up-tables for the density function evaluation and parameter
estimation. Real images and computation times are shown as
a demonstration.

Index Terms— Synthetic aperture radar, non-Gaussian
modelling, clustering, image processing, look-up-tables

1. INTRODUCTION

Non-Gaussian modelling for synthetic aperture radar images
has demonstrated advantages to a strictly Gaussian-based
analysis and can be used for supervised image classification
given training data, or in its unsupervised form for unlabelled
images segmentation, which is the focus of this paper. Seg-
mentation via clustering involves assigning each pixel in an
image to one of several groups based upon probabilistic sim-
ilarity. The end result, a segmentation, is an image with a
finite number of statistically distinct clusters, which presum-
ably represent real world classes, but the identity of these
clusters is unknown. Additional information, like training
data or decision criteria, would be required to determine and
assign the class labels and thereby turn the segmentation into
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a true classification. Nevertheless, an unlabelled segmen-
tation is already valuable for some applications of a more
exploratory nature.

Statistical distinction is usually determined by applying
the expectation maximisation algorithm with an assumed
parametric model to determine the unknown cluster param-
eters and assign the pixels to their most likely cluster. The
resulting clusters are strongly influenced by the number of
clusters and the choice of probability density model, and
clearly a well fitting model should produce more satisfactory
results. To this end, various models have been applied to
SAR and PolSAR data, from the un-textured (homogeneous)
Wishart model [1, 2], to the well known K-distribution [3, 4]
andG0 distribution [5, 6] for heterogeneous data with one tex-
ture parameter each, and to the doubly flexible U -distribution
[7, 8] and G-distribution [9] models with two texture param-
eters. The more flexible models were generally shown to
be better fitting to some real world classes as well as hav-
ing some theoretical reasoning for fine scale class mixtures
sweeping around in the texture space. The log-cumulant dia-
grams, showing second and third order log-cumulants of the
distributions, clearly visualises the shape space and flexibility
of these models, see Fig. 1.

However, the advantages of greater flexibility come at the
cost of greater complexity. There are more texture parameters
to estimate and more complicated mathematical equations to
evaluate, and this is for every iteration, and for every cluster,
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Fig. 1. Log-cumulant shape-space, indicating general inten-
sity profiles for 32-look data, the Wishart point, theK andG0

lines, and the U-distribution covers the area in between.



and for every pixel in the image. For large satellite PolSAR
images, which can comprise of many millions of pixels, such
non-Gaussian clustering can be a rather time-consuming pro-
cess. The long processing time is probably the main reason
that these non-Gaussian clustering models have not attained
more widespread use, since they have been generally demon-
strated to have measurably better segmentation results.

This paper describes some new ideas to re-parameterise
the equations to produce smoothly varying functions that
are amenable to low order approximation and fast evaluation
with look-up-tables (LUT), and goes beyond those mentioned
previously [10, 11]. Firstly, the U-distribution expression is
shown to be smoothly varying with respect to a compound
observable term and may be approximated with linear or cu-
bic spline interpolation for use in a look-up-table. This sped
up the repeated probability evaluation part of the code. Sec-
ondly, the parameter estimation was dramatically reduced by
avoiding the minimum distance search for shape parameters
and using a LUT directly on the observed log-cumulants.
Since the significance of the texture parameters varies non-
linearly in log-cumulant space, the look-up grid was chosen
at logarithmic radial spacing fanning out in the shape space.
We demonstrate manyfold speed improvements with these
improvements in the U-distribution density function evalu-
ation and parameter estimation. Comparison is made to the
previous (slow) algorithm, by the total processing time and
by visual observation of the segmented images.

We have not considered parallel processing methods here,
because multiple CPUs will only gain a few-fold speed-up
for some parts of the code and most GPUs cannot perform
many of the more complicated functions, like the Kummer-U
hypergeometric function. In contrast, the LUT approach can
use the high-level processing and still gain significant gains
with little loss of accuracy, and, once the LUT has been de-
veloped and proven, the whole interpolation approach can be
taken to the GPU in a very trivial way.

2. METHODOLOGY

The starting point for this work is the previous clustering al-
gorithm [8] that fits a mixture of U-distribution models to the
data, automatically determines an appropriate number of clus-
ters and all class parameters, and returns an unsupervised im-
age segmentation image. It is based upon a modified expecta-
tion maximisation algorithm that includes an extra goodness-
of-fit testing loop to determine the number of clusters.

The U -distribution is defined by the probability density
function of the observable covariance matrix C with five class
parameters as

pC(C; d, L,Σ, α, λ) =
LLd

Γd(L)

|C|L−d

|Σ|L

(
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)
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where d is the polarimetric dimension, L is the number of
looks (or equivalent number of looks), Σ is the class mean co-
variance matrix, and α and λ are the shape parameters. Γd(·)
denotes the multivariate gamma function of the complex kind,
defined as

Γd(s) = π
d(d−1)

2 Πd−1
i=0 Γ(s− i)

with Γ(·) being the ordinary Euler gamma function, and
U(·, ·, ·) is the Kummer U function, defined as

U(a, b, z) =
1

Γ(a)

∫ ∞
0

ezuua−1(1 + u)b−a−1du (2)

The original algorithm used for the Kummer-U function
internally performs numerical integration as in (2), either in
mathematical libraries or by explicitly performing said in-
tegration in MatLab code. This function evaluation takes a
significant proportion of the overall processing time and is
ripe for optimisation. The Kummer-U term in (1), and in fact
the whole U-distribution probability density function (PDF),
depends upon the global parameters d and L, the class spe-
cific texture parameters {α, λ}, as well as the class mean co-
variance Σ and the observable C through the combined term
tr(Σ−1C). Given that the texture terms are non-linearly re-
lated to shape variation and asymptotically approach infinity
for the (Gassian-based) Wishart case and that the trace term
is essentially a geometric ratio, then it is unsurprising that the
probability density function values are more smoothly vary-
ing when plotted as log-U-distribution versus log(α), log(λ)
and log(tr(Σ−1C)), as shown in figure 2.

Fig. 2. Example of logarithmic U distribution PDF changing
with log(tr(Σ−1C)), log(α) , and log(λ), respectively. The
fixed parameters in each plot are α = 5, λ = 5, and C = Σ.



The smoothly varying function could now be approxi-
mated by a linear or cubic spline LUT with good results and
with significantly faster evaluation time than numerical in-
tegration. However, the overall computation time was still
lengthy and we realised that the U-distribution PDF evalu-
ation was only part of the problem and the next processing
bottleneck was for the texture parameter estimation.

Each cluster (class) is defined by its own mean covariance
matrix Σ, and the two texture parameters α and λ. In the
existing algorithms, the parameter Σ is determined with the
sample covariance matrix estimator, which becomes a mem-
bership weighted mean over the C matrix data samples in the
fuzzy clustering sense and is reasonably efficient. The method
for estimating the two texture parameters, α and λ, however,
is much more cumbersome, because there are no close-form
maximum likelihood solutions. Texture parameter estimation
is achieved with the method of matrix log-cumulants.

The method of matrix log-cumulants states that the log-
cumulants of order 2 or higher are independent of the mean
matrix parameter and only dependent upon the shape param-
eters. For this work we utilise log-cumulants κ2 and κ3, from
the theoretical population log-cumulant expression

κν>1(L,α, λ)=ψ
(ν−1)
d (L) + dν(ψ(ν−1)(α)− ψ(ν−1)(λ)) (3)

where ψ(ν)
d (·) is the multivariate polygamma function defined

as

ψ
(ν)
d (L) =

d−1∑
i=0

ψ(ν)(L− i)

and ψ(ν)(·) is the usual polygamma function of order ν. Such
expressions for the log-cumulants do not allow for direct
inversion to obtain the maximum likelihood parameter esti-
mates from sample log-cumulants and, hence, a minimum
distance search is usually employed and which leads to the
processing bottleneck. These parameters are only obtained
for the subsequent re-substitution into the PDF evaluation to
calculate likelihoods, and hence this whole estimation process
may be avoided by creating a LUT directly on the observed
log-cumulant values. Either getting α and λ from LUTs and
using the original U-distrtibution PDF parameterisation, or
more efficiently by directly looking-up the U-distrtibution
PDF evaluation with respect to observed log-cumulants, es-
sentially skipping the intermediate parameter evaluation.

A look-up-table may be created with a grid of κ2, κ3
log-cumulant space to efficiently determine the corresponding
nearest α, λ parameters and lead to a much faster evaluation.
Considering the asymptotic relations and fan-like manifold
of the log-cumulant with regards to the texture parameters,
we choose to use a grid based upon radial distance from the
Wishart point and angle around the hemisphere to neatly re-
duce our gridded range. In addition, the distance is sampled
logarithmically to increase the detail approaching the Wishart
point. An example grid is shown in figure 3.

Fig. 3. An example group of LUT nodes plot on the κ2, κ3
plane. The red dots represent the LUT nodes.

In summary, the new clustering strategy is to determine
the equivalent number of looks using an unsupervised estima-
tion procedure in a pre-processing stage [12], and then pre-
build a LUT for the U-distribution PDF evaluation. Subse-
quently determine each class mean covariance matrix (with a
membership weighted average over the samples) and the sam-
ple matrix log-cumulants of order 2 and 3 (also using mem-
bership weighted log-cumulant sums) ready for probability
evaluation via the LUT within the modified expectation max-
imisation algorithm. The number of clusters is determined by
the goodness-of-fit testing loop and finished with the optional
Markov random field contextual smoothing.

3. RESULTS

The main results are the segmentation images with the new
look-up-table strategy compared to the images without the
look-up-table, along with the computational times of the pro-
cessing. These results show the suggested parameter estima-
tion replacement with a LUT, but only a partial implementa-
tion of the probability evaluation, because only the Kummer-
U hypergeometric function is implemented as a LUT, and
other power and gamma function factors are still evaluated.
We did not get time to implement the entire PDF as a LUT,
and hence we could expect to speed up the processing further.

An example for San Francisco is shown in figure 4. The
images are visually very similar with only 2.5% of pixels
having a different class label. The times shown, in ta-
ble 1, indicate the total clustering time, including various
set-up, table-generation, actual clustering, MRF smoothing
and screen plotting functions. This image was 240 × 240
pixels and larger images may gain relatively more.

The new strategy allows the table to be prebuilt, which can
save much more time, as indicated in parentheses in table 1.



Table 1. Total processing-time comparison.
Integrated U new LUT strategy (prebuilt)

time [s.] 410 26.1 (14.7)
speed-up from integrated ×15.7 (×27.9)

Fig. 4. Preliminary figures from algorithm, without LUT and
with LUT. Only 2.5% of pixels have changed labels.

4. CONCLUSION

The look-up-table strategy with these smooth parameterisa-
tions allows for manyfold computation time speed-up with-
out a significant effect on the image results. The speed im-
provements now make it comparable in speed to a normal
(Gaussian-based) Wishart analysis, which may open up more
opportunity to benefit from the non-Gaussian model fitting.
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