
Faculty of Science and Technology
Department of Computer Science

VisualBox
A Generic Data Integration and Visualization Tool

—

Pontus Edvard Aurdal
INF-3981: Master’s thesis in Computes Science – June 2019

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2019 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“The art and practice of visualizing data is becoming ever more important in
bridging the human-computer gap to mediate analytical insight in a

meaningful way.”
–Edd Dumbill

Abstract
The number of cellular Internet of Things (IoT) connections is expected to
grow at a rate of 30% each year and is reaching into the billions by 2019. The
world of IoT can be fragmented since data sources span a wide variety of
protocols, API’s, authentication methods and file formats. Data collection and
processing can be complex and producing visualizations for value extraction
can be a tedious task. Developers can often find themselves "reinventing the
wheel" while building or using visualization libraries that present data in a
specific way.

VisualBox is a generic data integration and visualization tool, built as a Software
as a Service (SaaS) running a front-end web application and a back-end cloud
architecture using Amazon Web Services (AWS). VisualBox is built by first
defining an abstract vision where problems are divided into smaller parts that
are then progressively developed into a coherent system.

An ecosystem of crowdsourced modules is used to allow developers to write
software that handle data fetching and processing (called "integrations") and
data visualizations (called "widgets"). These modules can be published to a
registry where other users of the system can discover them for use of their
own.

Modules can be added to dashboards that produce data visualizations. Inte-
gration modules output generic data models that can be connected to widget
modules. By making this separation, different widgets can be used to visualize
different data models and allows for rapid value extraction, even for users
without any technical or programming experience.

Different approaches are explored while solving the problem of executing
arbitrary user generated code and how to isolate the host system from code
with malicious intent; on the client with the use of web-workers and on the
back-end with the use of Docker containers. The container startup time is
evaluated while using Amazon Elastic Container Service (Amazon ECS) with
the Fargate launch type.

Acknowledgements
First I would like to thank my main advisor, Prof. Anders Andersen for his
support, valuable input to this work, contribution of ideas for further exploration
and for always providing me with the necessary working spaces and equipment;
and my external advisor, Dr. Arne Munch-Ellingsen for providing the initial
idea of this work, for introducing me to challenging and highly interesting IoT
projects and for acting as a very supporting mentor during the final years of
my academic career at uit.

Further I would like to thank the staff at the Deparment of Computer Science;
Ken-Arne Jensen and Kai-Even Nilssen for helping with hardware and cloud
resources crucial for the development of this work; student counsellor Jan
Fuglesteg for always making my study progression smooth; and all the other
people responsible for a fantastic CS study programme at uit.

Finally, thank you mom and dad for always supporting me both mentally
and financially during my years in the far north and for all the visits you’ve
made.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xv

List of Abbreviations xvii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Results . 3
1.3 Methodology . 3

1.3.1 Divide and Conquer 4
1.3.2 Progressively Added Functionality 4

1.4 Scope of Work . 5
1.5 Scope Limitation . 5
1.6 Outline . 6

2 Motivation and Vision 7
2.1 An Easy-to-use Dashboard Builder 8
2.2 Crowdsourced Modules . 9
2.3 Motivation and Vision: Summary 10

3 Incremental Exploration: Data Processing 11
3.1 Code Isolation is Important 12
3.2 Client Side Data Processing 13

3.2.1 JavaScript Transpilation 15
3.2.2 Module Resolution 15
3.2.3 Cross-Origin Resource Sharing (CORS) 17

3.3 Server Side Data Processing 18
3.3.1 First Approach: AWS Lambda 19
3.3.2 Second Approach: Amazon ECS Fargate 19

vii

viii CONTENTS

3.3.3 Third Approach: Kubeless 20
3.3.4 Fourth Approach: Fission 20
3.3.5 Final Approach: Kubernetes 20

3.4 Incremental Exploration: Summary 21

4 Vision Realized: Architectural Model 23
4.1 Integration Runtimes . 25
4.2 Dashboard Builder . 27

4.2.1 Main Panel . 28
4.2.2 Adding Integrations 29
4.2.3 Adding Widgets . 31
4.2.4 Connecting a Widget to an Integration 32

4.3 Architectural Model: Summary 34

5 Crowdsource Developer Model 35
5.1 Shareable Modules . 35

5.1.1 Modules are Versioned 36
5.2 Module Development . 37

5.2.1 Select Runtime Environment 37
5.2.2 Source Code Editor 38
5.2.3 Upload Module Code 38
5.2.4 Sync with External Version Control Services 38
5.2.5 Preview Module . 39

5.3 Configuration Data Model 40

6 Implementation 43
6.1 Infrastructure as Code . 43

6.1.1 Serverless Framework 44
6.2 AWS Lambda Functions . 45

6.2.1 Creating an HTTP endpoint for an AWS Lambda . . . 45
6.3 VisualBox Cloud Architecture 47
6.4 Launching a Container . 49

6.4.1 Initial Parameters for a Container 49
6.4.2 Lambda Task Launcher (LTL) 49
6.4.3 Container Bootstrapper 51
6.4.4 Lambda File Provider (LFP) 51
6.4.5 Container Access Record (CAR) 52
6.4.6 Socket Server . 53

6.5 Widget and Integration Indexing 55
6.6 Publishing a Widget or Integration 56
6.7 Implementation: Summary 58

7 Experiment and Evaluation 59
7.1 Container Startup Time . 59

CONTENTS ix

7.2 Experimental Setup . 60
7.3 Results . 61
7.4 Experiment: Summary . 64
7.5 Distributed Arctic Observatory (DAO) 64

8 Discussion and Future Work 67
8.1 Multi-stage Docker Image Builds 67
8.2 Warm Containers . 68
8.3 gVisor . 69
8.4 Securing Sensitive User Data 69

8.4.1 Initial Configuration Data Model 70
8.5 Sharing Dashboards . 70

9 Conclusion 73

Bibliography 77

List of Figures
1.1 Ericsson Mobility Report, June 2018, p. 16. 2
1.2 An abstract desired result is divided into smaller problems (A,

B, C and D) that can be worked on independently. 4
1.3 Functionality to the end result is added progressively as to

always keep the current product functioning. 4

2.1 Abstract representation of components involved in a typical
IoT solution. 8

2.2 The complete IoT solution can be separated into two inde-
pendently functional parts; the presentation and data part. . 9

3.1 Running integrations must be isolated to prevent a harmful
integration (colored red) to interfere with other integrations. 12

3.2 After the web application is sent to the client (1) it will fetch
and process data on the client-side (2). 13

3.3 Total number of packages in each registry over time. Gener-
ated with http://www.modulecounts.com/. 14

3.4 Required integration modules (dependencies) are sent to the
Turbo resolver AWS Lambda function. The result is injected
into the final bundle. 16

3.5 The same HTTP request done to the origin and a remote server. 17
3.6 The client sends the integration code to the back-end (1)

where it is executed (2). The result is then returned to the
client (3). 18

4.1 Integrations, data models and widgets together form a dash-
board for data visualizations. 24

4.2 Intergations can be executed in different runtimes containers
on the back-end and are orchestrated in a Kubernetes cluster. 25

4.3 An existing dashboard can be opened by clicking on it in the
dashboard list, or a new dashboard can be created by clicking
the plus-button in the top right corner. 27

4.4 The main panel of a dashboard builder lets the user add/re-
move integrations and widgets. 28

xi

http://www.modulecounts.com/

xii L IST OF FIGURES

4.5 The integration explorer allows the user to add already exist-
ing integrations to their dashboard. 29

4.6 The information page is shown when an integration is opened
from the integration explorer. The version can be specified
before added to the dashboard. 30

4.7 Added integrations to the dashboard are shown in a list in
the main panel. Their color signals if the integration code is
running (red or green). 30

4.8 The configuration data model defines input parameters that
the integration code can use. 31

4.9 Action buttons are shown when a widget is hovered where it
can be edited, copied or removed from the dashboard grid. . 32

4.10 A widget can be connected to a data model (that has been
generated by an integration) by clicking the "Data Source"
button in the configuration panel. 32

4.11 The data model viewer will display generated data models by
integrations that has been added to the dashboard. 33

4.12 A minimal functioning dashboard with a single widget con-
nected to a data model by an integration. 34

5.1 The explorer allows for the discovery of published integra-
tions or widgets which can be forked or used. 36

5.2 A runtime environment must be chosen when a new integra-
tion module is created. 37

5.3 A widget can be previewed during development by opening
the preview console (right). The configuration data model
can be accessed by switching to the configure-tab. 39

5.4 A config.json file has resulted in the following HTML form
where the user can input values that are then injected as vari-
ables into the widget or integration code. This may alter the
appearance and/or behavior of the widget/integration. . . . 41

5.5 The same gauge widget with an unconfigured (top) and a
configured (bottom) configuration model. 42

6.1 Architectural overview of the VisualBox back-end composed
of multiple services and AWS cloud resources. 47

6.2 Steps involved for a client to launch one or more integrations
in separate containers and establish a private socket commu-
nication channel. 50

6.3 The container lifecycle is governed by the bootstrap binary
which is running in each container. 51

6.4 Steps involved for a container to get its source code from the
Lambda File Provider (LFP). 52

L IST OF FIGURES xiii

6.5 The development console with thee different messages;
T_INFO (green), T_WARNING (yellow) and OUTPUT (blue). 55

6.6 Workflow when a client wants to publish a new version of a
module. 57

7.1 AWS ECS Fargate startup times for containers with different
image sizes using a task definition with 0.5GB memory and
0.25 vCPU. 61

7.2 AWS ECS Fargate startup times for containers with different
image sizes using a task definition with 1GB memory and 0.5
vCPU. 62

7.3 AWS ECS Fargate startup times for containers with different
image sizes using a task definition with 2GB memory and 1
vCPU. 63

7.4 VisualBox in use by the Distributed Arctic Observatory (DAO)
research group. The middle screen is a VisualBox dashboard
visualizing metrics reported by two separate IoT devices. . . 65

8.1 A socket communication is the only link between the client
web application and the VisualBox back-end Kubernetes clus-
ter, and hides away any sensitive information that may have
been used while generating data. 71

List of Tables
4.1 Prepare and run commands that are executed in respective

runtime after launch. 26

6.1 Initial parameters for a container. 49
6.2 Socket Message Types sent between the client application and

containers. 53
6.3 Possible Status Types for the STATUS message. 54

7.1 Image sizes used in the experiments. 60
7.2 AWS ECS Fargate task definition configurations. 60

xv

List of Abbreviations
AWS Amazon Web Services

CAR Container Access Record

CD Continuous Deployment

CORS Cross-Origin Resource Sharing

CRUD create, read, update and delete

DAO Distributed Arctic Observatory

DoS Denial of Service attack

EC2 Elastic Compute Cloud

ECR Elastic Container Registry

ECS Elastic Container Service

FaaS Function as a Service

IaC Infrastucture as Code

IAM Identity and Access Management

IDE Integratied Development Environment

IoT Internet of Things

IST Instance Session Token

LFP Lambda File Provider

xvii

xviii L IST OF ABBREV IAT IONS

LTL Lambda Task Launcher

MIC Managed IoT Cloud

MVP Minimum Viable Product

NPM Node Package Manager

PWA Progressive Web App

REPL read–eval–print loop

S3 Simple Storage Service

SaaS Software as a Service

SemVer Semantic Versioning Specification

SPA Single Page Application

UiT University of Tromsø

VM Virtual Machine

1
Introduction
The Internet of Things (IoT) is on the rise and more and more data is generated
by ubiquitous sensors located all around us. Ericsson is forecasting the number
of cellular iot connections to grow at a rate of 30 percent each year, and reach
3.5 billion in 2023 [1]. By connecting physical things to the internet, industries
can reduce production costs and increase the production efficiency as more
monitoring data becomes available.

With the introduction of network technologies such as LoRaWAN and NB-
IoT1 – small battery driven microcontrollers can extend their life-time to span
years [2] and the cost of production is going down. As network infrastructure is
upgraded, extended and a higher bandwidth can be established, data pipes can
be streamlined to push information directly to end-consumers which enables
a constant stream of updated live data. Nevertheless, with all of this comes
increasing amounts of data.

1. Long Range Wide Area Network (LoRaWAN) is maintained by the LoRa Alliance.
Narrowband IoT (NB-IoT) is developed by 3rd Generation Partnership Project (3GPP).

1

2 CHAPTER 1 INTRODUCT ION

Figure 1.1: Ericsson Mobility Report, June 2018, p. 16.

Data visualization has long been an application for computer systems and data
scientists. Data often needs to be pre-processed before actual value can be
extracted. As humans, we can get a better understanding of larger quantities of
data by transforming, aggregating, splitting it into smaller pieces and visualize
it. As such, you can find graphical data visualization libraries in many program-
ming languages. Although the tools to create data visualizations exists, it can
often be a tedious task to write the software necessary to achieve this goal,
especially if data sources span a range of different protocols, devices, services
and authentication methods. This is especially true in the world of iot.

Related work, such as Grafana [3], come in the form of bundled services that
are downloaded, installed and hosted on infrastructure provided in-house by
the customer and are often tailored for a specific application use-case.

1.1 Problem Statement
A tool for creating data visualizations as a collection of graphs in a dashboard
would reduce time spent on building iot prototypes and applications.

The world of iot can be fragmented in terms of data sources that span different
protocols, devices etc. It can be a tedious task to build a systemwhich integrates
and collects data from various data sources. There are also only so many ways
e.g. a two-dimensional graph can be made, so a lot of time could potentially
be wasted on implementing the same types of graphs for each new data
visualization application.

1.2 RESULTS 3

This thesis will handle how to safely execute arbitrary user generated code in
a containerized environment, explore different container orchestration methods
and how to tie together a coherent system where data visualizations can be made
from crowdsourced modules that can be arranged in dashboards. The use of
containers is motivated by the execution isolation it provides, and will be used to
run crowdsourced module code. The container efficiency, in terms of startup time,
will be evaluated and different levels of execution isolation will be explored on the
1. browser level in the form of utilizing web workers and 2. the back-end in the
form of a cluster of containers.

1.2 Results
The result of this thesis is a complete Software as a Service (saas) solution
for a generic data visualization tool called VisualBox (https://visualbox.io)
where virtually any data source can be attached. To achieve flexibility for the
user to attach data sources, an experimental cluster of containers is used to
host a pool of sandboxes to run arbitrary user generated code in isolation.
Containers support a range of environments where different programming
languages can be used. Widgets can be arranged in a highly configurable
dashboard which gives maximum customizability.

Crowdsourced data source integrations and visualization widgets allows for
a complete data presentation application to be built in a short time without
any technical competence. A model for how to optimize containers by using
a pre-build step is proposed and how it compares against the implemented
model. The feasibility of such a system is tested in cooperation with research
projects at the uit.

1.3 Methodology
The methodology used in the development of this project is based on a divide-
and-conquer approach for problem solving combined with progressively added
functionality.

https://visualbox.io

4 CHAPTER 1 INTRODUCT ION

1.3.1 Divide and Conquer
When working towards an abstract vision for what the desired end result should
be it can be helpful to divide it into smaller, more digestible problems. This
method is widely used during the thesis work to not only concretize problems,
but later compose a larger functioning end result.

Figure 1.2: An abstract desired result is divided into smaller problems (A, B, C and D)
that can be worked on independently.

1.3.2 Progressively Added Functionality
The project start with a working solid base foundation. As new problems
are solved they are added to the base as an addition. The goal is to always
have a working product at any given time. This is somewhat comparable to
what is found in Agile methodologies where instead of a waterfall approach
the product should always be in a working state (although possibly lacking
functionality).

A

B
C
D

Figure 1.3: Functionality to the end result is added progressively as to always keep
the current product functioning.

1.4 SCOPE OF WORK 5

1.4 Scope of Work
This thesis focuses on the integration of different types of data sources across
protocols and authentication methods, and how to efficiently and safely create
visualizations in generic dashboards with crowdsourcedmodules such as:

• Data source integrations that fetch, process and generate data models,
written by integration developers in their programming language of
choice.

• Widget visualizations that consume data models generated by data
source integrations and display the result in dashboards running in a
web browser.

One of the first problems to solve is to find out how and where these crowd-
sourced modules will be executed. In the case of integrations that are re-
sponsible for data processing, it can either be executed on the front-end or
the back-end. Both alternatives must be tested to find out which is the best
alternative.

A client web-application with a dashboard builder must be implemented so
that data visualization modules can be connected to data processing modules.
A platform for crowdsourced developers to build and share their modules and
a way for users to find these modules will be built using Amazon Web Services
(aws) as a cloud provider for the necessary infrastructure.

1.5 Scope Limitation
This thesis will not address the implementation details of the front-end ap-
plication. The source code for the front-end application is open sourced and
can be found at the following GitHub repository: https://github.com/Pwntus/
visualbox-frontend .

https://github.com/Pwntus/visualbox-frontend
https://github.com/Pwntus/visualbox-frontend

6 CHAPTER 1 INTRODUCT ION

1.6 Outline
Chapter 2 – Motivation and Vision explains the motivation behind the work

of this thesis and describes the vision for the system.

Chapter 3 – Incremental Exploration describes paths taken while finding a
solution for optimal data processing.

Chapter 4 – Vision Realized: Architectural Model outlines components of
the interactive visualization dashboard builder model.

Chapter 5 – Crowdsource Developer Model describes components of the
crowdsourced module builder and the developer experience.

Chapter 6 – Implementation describes in detail the cloud architecture and
the functionality behind the service.

Chapter 7 – Experiment and Evaluation outlines the experiments performed
and obtained results while finding the fastest container startup time for
different container orchestrating strategies and shows how third parties
can utilize a minimum viable product of the VisualBox system.

Chapter 8 – Discussion and Future Work motivates choices taken and sug-
gests future work and areas of improvements.

Chapter 9 – Conclusion concludes this thesis.

2
Motivation and Vision
Common components involved when developing a complete iot-like solution
includes physical sensors powered by battery-driven microcontrollers, a data
transfer layer and a back-end data storage service. In addition to these com-
ponents a data presentation application to visualize processed information to
end-users is also common (Figure 2.1).

During my work at Telenor Start IoT [4] we made various iot device proto-
types utilizing the LoRaWAN network and the Managed IoT Cloud (mic) [5],
developed by Telenor Connexion. Applications included soil sensors for golf
courses and road monitoring sensors to alert weather conditions, all of which
were deployed in and around the city of Tromsø in northern Norway. What
we found was that for each new prototype came a new application, and a new
"dashboard" had to be made to visualize the generated data.

It soon became a routine to setup everything necessary ranging from authenti-
cation, building a grid of graphs and connect them to the data source. Although
each application had similarities in how data was fetched, they all varied in
how the data was presented.

My fellow colleagues could also see the value in a tool for data visualizations
that wouldn’t care where the data is coming from or how it is stored, at least
in a rapid prototyping phase of a project.

7

8 CHAPTER 2 MOT IVAT ION AND V IS ION

Figure 2.1: Abstract representation of components involved in a typical IoT solution.

A generic dashboard builder could solve all steps involved in an iot solution
while still allowing full control over how data is fetched and processed. By
making the tool into a saas, installation and configurations steps would com-
pletely be removed and the client application could be run on a wide variety
of devices and operating systems.

2.1 An Easy-to-use Dashboard Builder
If the goal is to visualize data,what if the task of putting together all components
necessary to build the infrastructure for a complete iot solution could be as
easy as a drag-and-drop dashboard builder? And not just for an iot solution,
but with any kind of data stored in any kind of way?

A generic dashboard builder for setting up a grid of data visualizations with
live updated data can be notoriously hard to make, and is often seen as a
custom developed solution for a specific purpose. If this could be made into a
saas where anybody, even without any technical skills, could start processing
information from a data source and make beautiful data visualizations, it could
bring great value to the user.

2.2 CROWDSOURCED MODULES 9

Figure 2.2: The complete iot solution can be separated into two independently func-
tional parts; the presentation and data part.

2.2 Crowdsourced Modules
What if we separate the abstract representation of components in a typical iot
solution into two parts; the presentation part and data part (Figure 2.2). These
are essentially the two parts that can vary independently, and could give great
flexibility if combined in different ways (different presentations for different
data parts).

If we instead call the presentation part a widget, and the data part an integration,
we can assign them the following roles:

• Integrations are responsible for fetching data, processing it and out-
putting a data model from a data source. They run the logic behind a
dashboard and provide the system with data to be visualized.

• Widgets are responsible for actually visualizing data. They are connected
to a data model (produced by an integration) and simply visualize it in a
specific way.

We can draw similarities to the three-tier architecture, which is a software
architecture pattern consisting of a presentation tier, a logic tier and a data tier.
In this case the integration part would be a combination of the logic tier and
the data tier.

10 CHAPTER 2 MOT IVAT ION AND V IS ION

Widgets and integrations can now be considered modules in an ecosystem. If
someone made a highly generic widget, which is simple in its function but can
be applied to visualize a wide variety of data, wouldn’t it be useful if it could be
shared? By crowdsourcing widget and integration modules, a large collection
of pre-built modules ready to be used could greatly benefit other users of the
system without the need to have any technical or programming skills.

Not only would crowdsourced modules prevent "the reinvention of the wheel",
but could potentially open up for external contributions by third-party members
that would improve or modify the look and feel of modules. Crowdsourcing in-
tegration and widget modules would be a powerful asset to a data visualization
tool.

2.3 Motivation and Vision: Summary
It can be a tedious task to create a data presentation application in a typical
iot scenario. Especially if a project is in a prototyping phase, where quick
data visualizations without excessive amounts of time spent on building an
application is crucial.

A tool for connecting a variety of data sources that span different data storage
methods, protocols and devices together, combinedwith presentational widgets
to form data visualizations, will make it easier and faster to develop iot
applications.

The visualization and data processing parts can be separated into modules that
can be combined in different ways. By crowdsourcing these modules, one user
can benefit from the work of another user.

Based on this vision, a platform for module development and sharing will
be built in addition to a client web-application with a "dashboard-builder".
The dashboard builder will be used to combine visualization modules with
data processing modules and can be used by users without any technical or
programming skills. The first problem to solve then becomes; how and where
should data processing modules run in such a system?

3
Incremental Exploration:Data Processing
This chapter will incrementally explore the problem of how and where the
data processing part of a dashboard builder could be solved. A trial-and-error
approach is applied where different solutions are implemented to find the best
option for its task.

The data processing parts of a dashboard will be called an integration. If
integrations are to be crowdsourced they ought to be programmable by the user.
This means that the service must protect other users that utilize crowdsourced
integrations. The immediate danger from utilizing code that is not written
by yourself is that the code may have harmful intent or unintended behavior
(e.g. disastrous bugs with information leaks). This means that the code must
be executed in isolation as to prevent one integration to interfere with other
integrations or the host system where the integration is executed.

11

12 CHAPTER 3 INCREMENTAL EXPLORAT ION : DATA PROCESS ING

3.1 Code Isolation is Important
Integration code is arbitrary user-generated code and should be treated as
being malicious. Great care must therefore be taken when code not written
by a host program is to be evaluated/executed. A typical approach in such
situations is to create a sandbox.

A sandbox environment encapsulates the running code in such a way that no
matter what the sandboxed program does, it is contained within set limits of
the host. This both protects the system in which the sandbox is hosted and
prevents the executed code from using too much compute resources.

Situations where a sandbox environment is required depends upon the applica-
tion. A sandbox gives more control to the user of the system to write arbitrary
custom code that can be used to enhance the overall experience. However, if a
severe bug is introduced (intended or unintended) it is up to the host of the
sandbox to mitigate the effects of the bug from impacting other components
of the host system.

VisualBox must allow integration developers to write their own data processing
software, but at the same time protect the internal system. Multiple integrations
may run on the same host, so sandbox isolation is important to protect multiple
integrations from each other (Figure 3.1).

Integration Integration Integration

Figure 3.1: Running integrations must be isolated to prevent a harmful integration
(colored red) to interfere with other integrations.

The resource utilization of an integration should also be controllable by the
service so that a potential Denial of Service attack (dos) can be mitigated.
Ideally, an integration should be executed in a contained sandbox environment
with restricted compute resources.

Two approaches are explored in finding the best way to run integration code.
The first approach is based on running all integration code on the client-side
in the context of web-workers. The second approach abandon the idea to run
integration code on the client-side and moves it to the back-end.

3.2 CL IENT S IDE DATA PROCESS ING 13

Back-end

Data Source

1. Ship client application

2. Client integration
fetch & process data

Client
Figure 3.2: After the web application is sent to the client (1) it will fetch and process

data on the client-side (2).

3.2 Client Side Data Processing
The design that was first implemented supported integrations written in
JavaScript. The decision to only support JavaScript is natural because it’s
natively supported by all major web browsers. This also allows the user to
completely run integration code in a web-worker and offloads the service of all
computation involved in generating data models. All code would be executed
directly on the client computer (Figure 3.2).

An effort to allow integrations utilize the Node Package Manager (npm) [6]
registry to load external JavaScript modules from a public registry was made.
npm is currently the largest package registry and with more than 800 000
packages (as of May 9, 2019) has far more packages than any other major
package registry (Figure 3.3).

14 CHAPTER 3 INCREMENTAL EXPLORAT ION : DATA PROCESS ING

Figure 3.3: Total number of packages in each registry over time. Generated with
http://www.modulecounts.com/.

However, most packages on the npm registry is intended to work with the
JavaScript runtime called Node.js [7], which is required to run on an operating
system platform. External Node.js packages are also not guaranteed to be
written in a JavaScript syntax specification that works in a web browser, and
require a transpilation step before delivered to the web browser.

Running the Node.js runtime in a web browser environment would require
mocking of native system calls such as file system operations. The overhead is
also large due to the client application being forced to load the entire Node.js
runtime code before running the JavaScript code. Including the Node.js runtime
in the web browser was therefore not an alternative.

The goal was now to allow purely JavaScript based integrations to write the
most recent JavaScript language syntax specification without using the Node.js
runtime. Integration code should also not be restricted to only one file. A
multi-file project should be able to import files from different folders using the
require()-syntax in Node.js. If integration code were to be executed inside a
web-worker, all code would be in-memory and would be forced to implement
a virtual file system to mock files and folders.

In order to allow integration code to utilize the NPM registry, and allow external
files to be imported, a module resolution, transpilation and bundle step had to
be involved.

http://www.modulecounts.com/

3.2 CL IENT S IDE DATA PROCESS ING 15

3.2.1 JavaScript Transpilation
The JavaScript language specification is standardized by Ecma International
[8], and is actually called ECMAScript (short ES). As newECMAScript standards
get finalized, web browsers start to implement features to adhere to the new
standard specifications. The standard is drafted and finalized faster than most
major web browsers can keep up with, which ends up with a finalized scripting
specification that is not always supported in client web browsers.

To mitigate this effect, JavaScript code can undergo a transpilation step, where
code written in a newer standard specification gets transformed to target a
previous standard that is more widely supported by older web browsers. This
process happens offline and often before a bundle step, where assets and files
get built into a single bundle that can be shipped to a production server.

3.2.2 Module Resolution
Many online services provide a Node.js-like read–eval–print loop (repl) en-
vironment. Some of them includes Codesandbox.io [9], StackBlitz [10] and
Scrimba [11]. They all allow a user to write JavaScript in a Node.js environment
where modules are resolved and downloaded, but do it in different ways.

• StackBlitz recognized that modules residing on the npm registry has a
lot of unused code. Code that is never used after the module has been
transpiled. They developed a back-endmodule resolver, called Turbo [12],
which claims to be 5x faster than npm. By analyzing a requested package,
and only returning necessary files they can both lower the package size
and network transfer time.

• Codesandbox.io started with a back-end bundler, where the packages
would be resolved and the project would be transpiled and bundled
entirely by servers. Due to the solution not being efficient enough they
later moved to a client-side module resolver, much like StackBlitz.1

• Scrimba has tried to replicate the behavior of StackBlitz, and does a
similar job of resolving modules on the client side.2

Since StackBlitz has open sourced the Turbo resolver, an effort was made to

1. Hackernoon article by Ives van Hoorne: "How we make npm packages work in the
browser" https://hackernoon.com/how-we-make-npm-packages-work-in-the-browser-
announcing-the-new-packager-6ce16aa4cee6

2. Scrimba lesson by Magnus Holm: "How we run NPM packages in the browser"
https://scrimba.com/c/c6azJtG

https://hackernoon.com/how-we-make-npm-packages-work-in-the-browser-announcing-the-new-packager-6ce16aa4cee6
https://hackernoon.com/how-we-make-npm-packages-work-in-the-browser-announcing-the-new-packager-6ce16aa4cee6
https://scrimba.com/c/c6azJtG

16 CHAPTER 3 INCREMENTAL EXPLORAT ION : DATA PROCESS ING

implement the Turbo resolver in an aws Lambda function [13]. aws Lambda
functions are used throughout the VisualBox system and will be described in
more detail in Section 6.2 – AWS Lambda Functions.

When a VisualBox integration requires a module from the NPM registry, a
request is made to the Turbo resolver Lambda function and the resolved
module code is returned. The module code is then dynamically injected into
the integration code.

Dependency 1
Dependency 2

Turbo Resolver Integration Code
Bundle

Figure 3.4: Required integration modules (dependencies) are sent to the Turbo re-
solver aws Lambda function. The result is injected into the final bundle.

Modules can now be required and resolved but the project code still has to be
bundled to work in a browser environment. Rollup [14] is a JavaScript bundler
which is small enough to be included in the front-end client application. Rollup
was therefore embedded into the client application and was used to bundle
files (represented as text strings in memory) into a final integration bundle.
The whole process was very primitive and it was apparent that this solution
would not scale to support larger files.

When integration code started to function and successfully executed in web
workers, a new issue arose. It is very important for integration code to request
and download data from external servers. This is one of the core responsibilities
of integrations; to fetch and process data. Web browsers implement a security
mechanism when client JavaScript requests resources located on a remote
server, as will be explained in the next section.

3.2 CL IENT S IDE DATA PROCESS ING 17

3.2.3 Cross-Origin Resource Sharing (CORS)
Cross-Origin Resource Sharing (cors) [15] is a security mechanism in web
browsers that uses HTTP headers to determine if an application on one domain
(the origin) can request resources hosted on a different domain. Essentially,
if the requested server in a cross-origin request doesn’t return the Access-
Control-Allow-Origin header granting the origin access, the HTTP request will
be blocked (Figure 3.5).

Client

Origin

Remote Server

GET		/foo

Always allowed

GET		/foo

Only allowed if returned
Access-Control-Allow-Origin

header contains "Origin"

Cross Origin Request
Figure 3.5: The same HTTP request done to the origin and a remote server.

This is a major problem for JavaScript code running in a web-worker. Integra-
tion JavaScript code must be able to make HTTP requests to servers that are
not hosted on the same domain. Since cors is not guaranteed to always allow
this, a proxy had to be made to bypass this restriction.

The cors proxy was designed to take an HTTP request as input and forward
it, essentially making the HTTP request for the integration itself. This imposes
many problems. The proxy becomes a major bottleneck in the system. It also is
a single point of failure would it go down at some point. It was also discovered
that automated bots by third-parties would use the proxy if the proxy endpoint
was discovered.

To mitigate third-parties exploiting the proxy, an authentication mechanism
would have to be implemented. All of these issues, and the fact that the
integration code would still be forced to always use the proxy were it to make
an HTTP call, contributed to the discontinuation of the execution of integration
code on the client side.

18 CHAPTER 3 INCREMENTAL EXPLORAT ION : DATA PROCESS ING

Back-end

Data Source

1. Ship integration

2. Integration fetch
& process data

Client

3. Push result to dashboard

Figure 3.6: The client sends the integration code to the back-end (1) where it is
executed (2). The result is then returned to the client (3).

3.3 Server Side Data Processing
Running bundled and transpiled code in web-workers on the client was still
too limited. File system operations needed to be mocked and system calls are
unavailable. E.g. if an integration needs to fetch a video file from a remote server
and transcode it into another video file-format, the code needs to save it to a
file-system both before and after the transcoding happens. Even though these
functionalities could be mocked or mimicked in a web browser environment
(such as videoconverter.js [16]), the developer would still be limited to only
write JavaScript code.

The decision to move integration execution to the back-end was made (Figure
3.6). By running integration code in containers, the possibility to use any
language becomes available, and true file system operations and system calls
can be made. Containers also provide an isolated environment for integrations.
However, there are many different ways to launch and orchestrate contain-
ers.

3.3 SERVER S IDE DATA PROCESS ING 19

The following sub-sections outline the different approaches that was taken to
find the best container orchestration strategy.

3.3.1 First Approach: AWS Lambda
The first logical approach was to see if aws Lambda could be used to run
integration code. Six different runtimes are available (Node.js, Python, Ruby,
Java,Go and .NET) and code can be dynamically loaded and executed. However,
there is a hard upper limit on the execution time of an aws Lambda function
set to 15 minutes.3

The limit of 15 minutes could not be accepted. A common pattern for data
fetching and processing is to fetch the data periodically, pause and re-fetch
again after a defined time. This pattern could potentially span days, weeks or
months and essentially resembles a computer-server. Since integration code
must be able to run for longer than 15 minutes, aws Lambda was not an
alternative.

3.3.2 Second Approach: Amazon ECS Fargate
aws ecs [17] is a managed Docker container orchestration service for con-
tainerized applications running on aws. By utilizing Elastic Compute Cloud
(ec2) [18] worker nodes, a cluster can easily be created for containers to run
on. The quantity of worker nodes, number of vCPU’s and memory has to be
manually managed.⁴

aws Fargate [19] is a new way of launching containers where cluster man-
agement is completely removed from the developers’ perspective. All that is
required by the developer is to specify a task definition (which defines container
resources and network interfaces), launch the container and aws will take
care of the rest. aws will automatically scale the cluster in which containers
are launched and load balance according to their internal infrastructure.

aws Fargate is advantageous in the sense that no cluster management is
involved. This can save valuable time and reduces complexity for customers
that need to containerize their workloads.

3. "AWS Lambda enables functions that can run up to 15 minutes"
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-
functions-that-can-run-up-to-15-minutes/

4. vCPU - virtual CPU is a portion of a physical CPU in a virtual machine.

https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/

20 CHAPTER 3 INCREMENTAL EXPLORAT ION : DATA PROCESS ING

The service characteristics of aws ecs with Fargate is a good fit for launching
containers that run integration code in VisualBox, where multiple containers
needs to be launched at different times. However, the container startup timewas
not sufficient as described in Chapter 7 – Experiment and Evaluation.

3.3.3 Third Approach: Kubeless
The decision to move from a tailored andmanaged service such as aws Lambda
and aws ecs to a bare container orchestrating service was now made. All
major cloud providers offer a managed container cluster solution. Instead of
relying on a cloud provider during this experimental phase of the project,
where potentially unnecessary cost could get accumulated, the decision to run
container orchestration on a local development server was now made. A Lenovo
ThinkCentre M900 Tiny was acquired. This allowed for rapid prototyping and
development without the fear of over-spending. If a good solution was found
on this local server it could easily be transferred to a managed service in a
cloud provider at a later stage.

Kubeless [20] is an open source Function as a Service (faas) running on
Kubernetes [21] that aims to replicate the functionality of services such as aws
Lambda. The idea was to tweak the weaknesses of aws Lambda and to remove
the code execution limit. However, the customizability of functions were not
enough. Kubeless functions are based on a request-response model where a
return value is expected to be the result of a function. VisualBox requires that
an integration can be long running and return multiple values at different
times.

3.3.4 Fourth Approach: Fission
Fission [22] is an open source faas similar to Kubeless. Fission also runs on
Kubernetes. Difficulty in customizing how functions run and return values
(much like the previously tried solution, Kubeless) also lead to it not being used
in the VisualBox implementation.

3.3.5 Final Approach: Kubernetes
Many container orchestration services has now been tried without finding an
optimal way of launching containers for integration code to run in. The final
approach was now made to run Kubernetes without any external software. By
running Kubernetes without any third-party system gives maximum customiz-
ability for how containers are orchestrated. To fully customize the behavior

3.4 INCREMENTAL EXPLORAT ION : SUMMARY 21

and management of containers in the Kubernetes cluster, a container boot-
strapper was implemented. The bootstrapper handle container initialization
and communication with the VisualBox system and will be described in more
detail in Section 6.4.3 – Container Bootstrapper.

For testing purposes, the Lenovo ThinkCentreM900 Tiny served as a single node
Kubernetes cluster where containers could be launched and run in isolation.
Once again, this single-node cluster can easily be transferred to a managed
Kubernetes service in a cloud provider if the cluster needs to be scaled up to
support more containers. An aws Lambda function can create the definition
for a Kubernetes Job⁵ – authenticate with the cluster by using X509 client
certificates and launch the job (with a Docker image definition) in the single-
node cluster. The process of launching a container from the VisualBox service
will be described in Section 6.4 – Launching a Container.

3.4 Incremental Exploration: Summary
The first approach of running arbitrary user generated code was to execute it
on the client side in web-workers. There were multiple issues with allowing
Node.js-style code to be transpiled and bundled in the browser (no true file-
system, code transpilation and external Node.js-module resolution complexity,
HTTP requests getting blocked by CORS) so the decision tomove code execution
to the back-end was made.

Different container orchestrating strategies were explored such as aws Lambda,
aws ecs with Fargate, Kubeless and Fission. None of the tried solutions sup-
ported a containerized application to function as a traditional server applica-
tion, so a plain Kubernetes implementation on a single-node local machine was
used.

A container bootstrapper and controller program is included in every container
so that it can be managed, limited and allowed to communicate with the
VisualBox system.

5. Kubernetes API Reference Docs: "Job v1 batch"
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#job-v1-batch

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.10/#job-v1-batch

4
Vision Realized:Architectural Model
This chapter will describe the architectural model of the system and how the
previously described vision has been realized. This chapter takes the perspective
of how a user without any technical expertise would experience the VisualBox
system.

The VisualBox system is designed to be a Software as a Service (SaaS) with
a client running in the web browser. By providing a web client the user is
completely relieved of software installation and system configuration. Data
processing is offloaded to more powerful computers running on the back-end
by the service in a Kubernetes cluster.

The client application is developed as a Single Page Application (spa) using the
Vue.js [23] JavaScript framework. A spa is a JavaScript web application where
the complete application is loaded at once in a single HTTP request. Pages
and information is later dynamically loaded when the user interacts with the
application. spa’s give a more "fluid" user experience in the sense that the web
page never has to be reloaded once launched. A spa is also easily extended to
become a Progressive Web App (pwa), where the whole web application can
be added to the home-screen of a smartphone, much like a native app.

23

24 CHAPTER 4 V IS ION REAL IZED : ARCH ITECTURAL MODEL

Integration

Data Model

Integration

Data Model

Dashboard

Widget Widget Widget

Figure 4.1: Integrations, data models and widgets together form a dashboard for data
visualizations.

The architectural model is composed of two crucial components; integrations
and widgets. Together they form a visualization dashboard.

• Integrations are responsible for fetching data, processing it and out-
putting a data model from a data source. They run the logic behind a
dashboard and provide the system with data to be visualized. Integration
code is written by the user and is run in a container sandbox environment
as to keep the system and other users safe from harmful or badly written
code.

• Widgets are responsible for actually visualizing data. They are connected
to a data model (produced by an integration) and simply visualize it in
a specific way. Users also write widget code in the form of HTML files.
Widget code is run inside a sandbox iframe HTML element with limited
capabilities as to what it can do. The same argument applies here for the
safety of the system and users viewing a widget. E.g. a widget should
not be able to redirect the web browser to an external website where
potential harmful content may be hosted.

The data model generated by integrations can be connected to widgets (Figure
4.1). Data models can be combined with widgets to allow crowdsourced mod-
ules to be re-used, given that the widget can understand the data model.

4.1 INTEGRAT ION RUNT IMES 25

Dashboard

Node.js Runtime
Container

Node.js Runtime
Container

Python 3 Runtime
Container

Node.js
Integration

Node.js
Integration

Python 3
Integration Ku

be
rn
et
es

Figure 4.2: Intergations can be executed in different runtimes containers on the back-
end and are orchestrated in a Kubernetes cluster.

4.1 Integration Runtimes
A runtime environment is a Docker [24] image specialized for the chosen
runtime language and is pre-built by the VisualBox system. A separate Docker
image is built for each runtime environment. Each docker image includes
libraries and binaries needed to run the integration source code for a specific
runtime. The integration source code will be loaded and executed dynamically
into the selected runtime image after the integration has been launched (Figure
4.2). This gives the integration developer choices on how an integration is
written and run.

The VisualBox system only support three integration runtimes; Node.js, Python
3 and Go. However, this list can easily be extended by building a new Docker
image with required libraries and binaries for a new runtime to function. The
new integration runtime can then be made available to integration developers
for use.

Runtime environments may require a build step if a compiled language is used
such as Go. Interpreted languages such as Node.js or Python may also need
to download required dependencies, so the entrypoint and start commands
vary for each runtime (Table 4.1). These varying operations are defined in the
Docker image and may not be changed by the integration developer.

26 CHAPTER 4 V IS ION REAL IZED : ARCH ITECTURAL MODEL

Runtime Prepare CMD run CMD
Node.js yarn install node index.js
Python 3 pip3 install -r requirements.txt python3 main.py
Go glide install go run *.go

Table 4.1: Prepare and run commands that are executed in respective runtime after
launch.

By letting the runtime Docker image dictate how a project is prepared (com-
piled, dependencies downloaded) the VisualBox system can maintain a concise
way of launching the source code. This limits the options for how a developer
can structure their project, so an alternative approach is discussed in Section
8.1 – Multi-stage Docker Image Builds.

How to access the VisualBox API for sending data back to the system also
varies for each runtime and is described in detail in the VisualBox integrations
documentation [25] for each runtime environment. E.g. if the Node.js runtime
environment is used, a global package called visualbox must be imported to
allow the code to send data back to the VisualBox system:
// Import globally accessible ’visualbox ’ package
const visualbox = require (" visualbox ");

// Send some data back to VisualBox
visualbox . output ("An output string ");

Listing 4.1: Node.js integration code.

In the Go runtime environment a corresponding visualbox Go package must
be imported:
// Import globally accessible ’visualbox ’ package
import " visualbox "

// Send some data back to VisualBox
visualbox . Output ("An output string ")

Listing 4.2: Go integration code.

4.2 DASHBOARD BU ILDER 27

4.2 Dashboard Builder
The dashboard builder is a tool in the front-end web application for combining
widgets with data models that are generated by integrations. Widgets are
arranged in a grid and visualize the data that they have been provided. The
usermust add integrations to the dashboard (so that datamodels are generated)
and then add widgets. A widget needs to be connected to a data model before
any data is visualized.

The following section will describe steps necessary to build a minimal function-
ing dashboard, where a widget is connected to a data model and visualize a
piece of information in a specific way. The first step is to open the dashboard
builder.

The dashboard builder is accessed by creating a new dashboard or by opening
an existing dashboard (Figure 4.3).

Figure 4.3: An existing dashboard can be opened by clicking on it in the dashboard
list, or a new dashboard can be created by clicking the plus-button in the
top right corner.

28 CHAPTER 4 V IS ION REAL IZED : ARCH ITECTURAL MODEL

4.2.1 Main Panel
When a dashboard has been created and is opened, the main panel is displayed.
If no widget has been added the dashboard will be empty. In the main panel
there are five different buttons (Figure 4.4). The functions of the buttons are
as follows:

1. Add integration button that will open the integration explorer.

2. Add widget button that will open the widget explorer.

3. Dashboard settings button that will open a new panel where the dash-
board name and background color can be configured.

4. Fullscreen button.

5. Unlock/lock widgets so that they can be moved or resized.

Figure 4.4: The main panel of a dashboard builder lets the user add/remove integra-
tions and widgets.

These buttons will be used in the following sub-section when creating the
minimum functioning dashboard.

4.2 DASHBOARD BU ILDER 29

4.2.2 Adding Integrations
If the "Add Integration" button is clicked (number 1 in Figure 4.4) the integra-
tion explorer is opened. Publicly available or local integrations (integrations that
are created by the current user) can be explored and added to the dashboard.
The explorer displays integrations that have been published to a registry and is
part of the crowdsource developer model of the system. This will be discussed
in more detail in Chapter 5 – Crowdsource Developer Model.

The user can choose an already existing integration and add it to the dashboard
(Figure 4.5). Here we’re adding an integration called "Managed IoT Cloud
- Thing Shadow", which is an integration that connects to the Managed IoT
Cloud API and fetches the latest data from an iot device.

Figure 4.5: The integration explorer allows the user to add already existing integra-
tions to their dashboard.

When we click the integration in the integration explorer we’re shown the in-
formation page of the integration (Figure 4.6). The information page contains
information about what the integration does, how it’s configured and what the
expected output will be.

If we decide to add the integration to the dashboard we can choose which
version we want. The "latest" version is chosen by default, and will ensure that
the integration always runs the latest code. If an older version is chosen the
integration code will be "locked" and never change, even if the original author
updates the code at a later stage. This behavior is described in Section 5.1.1 –
Modules are Versioned.

30 CHAPTER 4 V IS ION REAL IZED : ARCH ITECTURAL MODEL

Figure 4.6: The information page is shown when an integration is opened from the
integration explorer. The version can be specified before added to the
dashboard.

After the integration has been added it will show up in a list in the main panel.
The color of the newly added integration will initially be red, meaning that the
integration code has not started yet. The color will eventually go from red to
green after the integration has started (Figure 4.7). The integration startup
time here is crucial and is part of the experiments in Chapter 7 – Experiment
and Evaluation.

Figure 4.7: Added integrations to the dashboard are shown in a list in the main panel.
Their color signals if the integration code is running (red or green).

4.2 DASHBOARD BU ILDER 31

After an integration has been added to the dashboard it will immediately start
and eventually output a data model. If the integration is clicked, a configuration
panel is shown where the user may specify input parameters for the integration
in question. The input parameters vary and is completely defined by the
integration itself. This is what’s referred to as the configuration data model (see
Section 5.3 – Configuration Data Model). E.g. if the integration needs to
connect to an external API it may need credentials provided by the user. The
integration will automatically restart when the input parameters are changed
and saved (Figure 4.8).

Figure 4.8: The configuration data model defines input parameters that the integra-
tion code can use.

4.2.3 Adding Widgets
Widgets are added to the dashboard by opening the widget explorer in the
same way as when adding an integration. When a widget has been added it
appears in the dashboard grid, where it can be moved and re-scaled.

By hovering over a widget in the dashboard grid, a menu of action buttons is
shown. Here the widget can be edited, copied or removed. If the edit button is
clicked the configuration data model for the widget is shown in the left side
panel, much like when editing an integration (Figure 4.9).

32 CHAPTER 4 V IS ION REAL IZED : ARCH ITECTURAL MODEL

Figure 4.9: Action buttons are shown when a widget is hovered where it can be edited,
copied or removed from the dashboard grid.

4.2.4 Connecting a Widget to an Integration
After a widget has been added to a dashboard it needs to be connected to a data
model that has been produced by an integration. This is done by opening the
configuration panel for a widget and opening the data model viewer (Figure
4.10).

Figure 4.10: A widget can be connected to a data model (that has been generated by
an integration) by clicking the "Data Source" button in the configuration
panel.

4.2 DASHBOARD BU ILDER 33

If an integration has been added to the dashboard, and it has generated an
output, the data model will be displayed for exploration (Figure 4.11).

The datamodel can be expanded to showmore information about each property.
Since the data model is represented as a tree, multiple values can be selected
by selecting a node that is higher in the hierarchy. The selected data will then
be available to the widget for use.

Figure 4.11: The data model viewer will display generated data models by integrations
that has been added to the dashboard.

The data source of the widget is now pointed to a property in a data model
that is generated by an integration, and will have access to the information
whenever it is produced. This means that whenever a dashboard is re-opened,
and widgets are loaded, they must wait until the integration that is responsible
for producing the data source has started.

An example of a customized widget that is connected to a data source is shown
in Figure 4.12. The widget that was used will simply display the value it as
been provided, and can be assigned a title. The background color, font size and
font color have been changed to give a more appealing look.

34 CHAPTER 4 V IS ION REAL IZED : ARCH ITECTURAL MODEL

Figure 4.12: A minimal functioning dashboard with a single widget connected to a
data model by an integration.

4.3 Architectural Model: Summary
This chapter has outlined how the architectural model is composed of integra-
tions that produce data models and widgets that consume them. Integrations
run in containerized Docker images that are pre-built, and act as runtime envi-
ronments. Each runtime environment provide necessary libraries and binaries
for the runtime to function.

A dashboard builder is used to add, configure and customize integrations and
widgets. The data model explorer can be opened when configuring a widget
and shows data models that has been produced by integrations. Widgets can
then be connected to portions of data models that is then fed as input for the
widget to visualize.

The following chapter will handle the crowdsource developer model of the
VisualBox system; the perspective of a module developer.

5
Crowdsource DeveloperModel
This chapter will handle the crowdsource model from a developers’ perspective.
A crowdsourced developerwill write the code that integrations andwidgets run.
This perspective differs from that of a regular dashboard user, who will only
use integrations and widgets to produce data visualizations. An integration or
widget will be referred to as a module from now on in this chapter.

5.1 Shareable Modules
Widget and integration source code can be published to a public registry
maintained by the VisualBox system. Published integrations and widgets will
be indexed and made discoverable by other users. The source code becomes
open source and can be re-used (forked), modified or extended. This opens up
for widgets and integrations to be widely spread and shared, thus the notion
of a crowdsourced ecosystem of modules.

As an example; if a highly generic widget module is developed which displays
an array of data-points in a two-dimensional line graph, it can be used to
visualize different data models from different integrations. There is no need
to develop this type of widget multiple times, so by publishing this widget to

35

36 CHAPTER 5 CROWDSOURCE DEVELOPER MODEL

Figure 5.1: The explorer allows for the discovery of published integrations or widgets
which can be forked or used.

the registry other users may use it to visualize their data models. This avoids
"reinventing the wheel".

To fork a module source code it must first be found. The widget or integration
explorer (Figure 5.1) is used to search for modules. When the desired module
is found it can be forked by a single click of a button. The entire module is then
copied and made as a new module in the account of the current developer. The
forked copy can now be modified and/or re-published to the registry as a new
module.

5.1.1 Modules are Versioned
Modules that are published to the registry are versioned. If you publish the same
module more than once it must have a new version number and a snapshot is
saved which can’t be modified later. This ensures that widgets and integrations
currently in use in other dashboards won’t stop working if a breaking change
is introduced to the source code by the module maintainer. Version numbers
follow the Semantic Versioning Specification (semver) [26].

5.2 MODULE DEVELOPMENT 37

Figure 5.2: A runtime environment must be chosen when a new integration module
is created.

5.2 Module Development
Integrations and widgets that are used in dashboards are written by the crowd-
sourced developers of the system. This gives complete control on what and
how code is run to generate and visualize a dashboard. To do so, a project is
created. A project consists of multiple files and folders that are needed for the
integration or widget to run and a selected runtime environment.

5.2.1 Select Runtime Environment
The VisualBox client is running as a web application, so the natural way to
create visualizations is by using web technologies such as HTML, CSS and
JavaScript. Since widgets in VisuaBox are responsible for visualizing data,
the code is run inside of an iframe HTML-element. An iframe is an HTML
element which allows one web-site to include another web-site into a framed
portion. This frame is completely separated from the host web-site, but can
communicate with the host using the cross-document messaging JavaScript API.1
The environment must therefore always be HTML and JavaScript. Integrations
on the other hand are not limited to run in the web browser (see Section 3.3
– Server Side Data Processing).

1. MDN web docs: "Window.postMessage()"
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

38 CHAPTER 5 CROWDSOURCE DEVELOPER MODEL

When a new integration module is created the option to choose runtime
environment is presented as shown in Figure 5.2. When the integration module
is added to a dashboard it will be launched on the back-end in a container
with the selected runtime environment.

5.2.2 Source Code Editor
The module developer may choose to use an in-browser code editor where
the source code can be modified. The in-browser code editor is based on the
Monaco Editor [27], which is the same editor that is used in VS Code [28], and
supports common features found in an Integratied Development Environment
(ide) such as syntax highlighting, multiple tabs and text-search. The editor
allows for rapid code modification without the need to setup a complete local
development environment and is completely run inside a web browser.

5.2.3 Upload Module Code
The in-browser code editor provides a fast way for inspecting and make mod-
ifications to the module source code, but is in many cases not enough for
the developer. The option to use a local development environment must be
available.

A programmer may use their own local development environment and write
the module source code on their own computer. After the module is ready to
run, the source code can be compressed into a ZIP archive and uploaded to
a VisualBox module. E.g. if a Node.js integration is to be created it can be
developed locally using an ide of the developers’ choice, tested and run before
compressed into a ZIP-archive and uploaded to VisualBox.

5.2.4 Sync with External Version Control Services
If a local development environment is used, or if multiple people are working
on the samemodule, a version control systemmight have been used to e.g. keep
features in separate branches and the possibility to revert changes if necessary.
The open source project hosting site GitHub can be used to start, collaborate
and develop integration code that will eventually run on the VisualBox service
infrastructure.

By enabling the option to connect an external version control service such
as GitHub, and synchronize the external repository with the internal module
code, allows for wider collaboration and ease of use while transferring the

5.2 MODULE DEVELOPMENT 39

code into VisualBox. Continuous Deployment (cd) is an interesting method
worth exploring where code that is pushed to a version control system can be
compiled, transferred to and run in production immediately after the code was
committed. This feature is not implemented but left for future work.

5.2.5 Preview Module
In the case of editing a widget, the rendered widget HTML can be previewed
by opening a preview console. This allows for continuous feedback on what
the final product will look like. A tab for displaying the widget itself and a
tab for modifying the configuration data model is available (Figure 5.3). The
configuration data model tab allows the developer to test the behavior of the
widget code when the configuration model is changed, and is explained in the
next section.

Similarly, when editing an integration it can be run in a development console.
A live container is started and the standard output and error is printed for
debugging purposes. Messages sent to the debug console are explained in
Section 6.4.6 – Socket Server.

Figure 5.3: A widget can be previewed during development by opening the preview
console (right). The configuration datamodel can be accessed by switching
to the configure-tab.

40 CHAPTER 5 CROWDSOURCE DEVELOPER MODEL

5.3 Configuration Data Model
To allow dashboard users to alter the look and feel of widgets, a configuration
data model can be defined. The configuration data model is a key-value map
of variable names to user input values that are injected into the widget source
code at runtime. E.g. a widget may need credentials to connect to a server. The
configuration data model can then be configured to allow the user to input a
username and a password, which are then transformed into variables that are
injected and used in the widget source code.

The purpose of the configuration data model is to give the widget developer
a controlled way of receiving user input and to separate variables from the
source code. Integrations also has the same configuration data model where
user input can be provided.

A configuration data model is by convention defined as an array of JSON objects
in a config.json file placed in the root folder of the module project. A single
object in the array takes the following form:
[

{
"type": "text",
"name": " myVariable ",
"label": "Input Label",
" default ": " Default value"

}
]

Listing 5.1: A sample config.json file. Different fields can be required depending on
the type of the configuration object.

Type describes what input type to render. It can be text, password, color,
switch, slider, date or select.

Name is the variable name to be injected into the widget/integration code
and is used by the widget/integration developer.

Label is a user facing input label.

Default is the default value that the input should initially have.

The system will interpret the JSON-formatted file contents and render a HTML
form with different input fields for a user to interact with. An example of what
a rendered configuration data model input form may look like with text, slider,
switch and color fields is displayed in Figure 5.4.

5.3 CONFIGURAT ION DATA MODEL 41

Figure 5.4: A config.json file has resulted in the following HTML form where the user
can input values that are then injected as variables into the widget or
integration code. This may alter the appearance and/or behavior of the
widget/integration.

42 CHAPTER 5 CROWDSOURCE DEVELOPER MODEL

As an example, a gauge widget has been added to a dashboard as shown in
Figure 5.5. At the top, the widget is in its initial, unconfigured state. If the
widget is edited, the rendered configuration model HTML form is shown in
the left-side pane. The bottom image shows the same widget with different
configuration values.

Figure 5.5: The same gauge widget with an unconfigured (top) and a configured
(bottom) configuration model.

6
Implementation
Regarding the infrastructure necessary to build and run a saas you have two
choices; either you host your own servers and storage machines (and maintain
the facilities, networking, electricity and server provisioning yourself) or you
use a cloud provider such as aws. During this thesis work, the architecture
is built to run on aws and utilizes many of the various services provided by
Amazon Web Services. In this chapter we will therefore take a closer look at the
aws services used to create the cloud architecture that powers the VisualBox
system and how they are tied together on a higher level.

6.1 Infrastructure as Code
Cloud computing is becoming more and more prevalent in the way computer
systems and services are built. By moving infrastructure "into the cloud",
companies can focus on building the application and don’t have to worry about
provisioning and maintaining machines.

Infrastucture as Code (iac) [29] is an automation service pioneered by aws
which deals with problems surrounding infrastructure operations. Physical and
virtual infrastructure residing at the cloud provider is kept as code and is used
to provision, update and remove so called "artifacts". iac is provided as a
service by aws and is called aws CloudFormation [30].

43

44 CHAPTER 6 IMPLEMENTAT ION

Key points of using iac as described by aws:

• Lower cost because human capital can be removed that would else be
used for provisioning and maintaining infrastructure.

• Higher consistency following configuration standards.

• Agility by the speed of which new versions of the service can be released.

• Attaining and maintaining compliance to corporate or industry stan-
dards.

By defining "cloud resources" as definitions in code, the developer can treat
their physical deployment as software. When a set of cloud resources has been
made, the developer can send iac artifacts to the cloud provider and the whole
architecture is then build as a coherent stack. The advantages of this approach
is easier replicability, architectural changes can be version controlled (using
e.g. Git), errors and other misconfigurations can be rolled back to a previously
working state and transferability to different cloud providers is trivial.

Many components of the VisualBox system is built using aws such as Lambda
functions, DynamoDB tables [31][32] and S3 buckets [33]. iac is used for
deployment of cloud resources together with the Serverless Framework.

6.1.1 Serverless Framework
The Serverless Framework [34] is a tool for writing and deploying iac to
multiple cloud providers. The framework uses a normalized template-language
so that cloud resources can be defined similarly over a set of different cloud
providers.

Much of its popularity has come from the fact that it lets developers easily
define functions that are then translated into its respective service in the cloud
provider, as well as scaffolding necessary HTTP endpoints for it to be reachable
over the internet. In the case of aws this involves setting up an API Gateway
[35] and connecting a Lambda function to it using the Proxy Integration.1 This
is what is commonly referred to as a microservice, or a serverless function.

1. Serverless Framework AWS documentation: "Lambda Proxy Integration"
https://serverless.com/framework/docs/providers/aws/events/apigateway#lambda-
proxy-integration

https://serverless.com/framework/docs/providers/aws/events/apigateway#lambda-proxy-integration
https://serverless.com/framework/docs/providers/aws/events/apigateway#lambda-proxy-integration

6.2 AWS LAMBDA FUNCT IONS 45

The Serverless Framework also makes it easier to separate different stages of a
stack of cloud resources. This is useful when testing new features by deploying
a development stage in a complete replica of the production stage. When the
new feature has been tested and is ready to be released it can be deployed and
updated in the production stage.

VisualBox is utilizing the capabilities provided by the Serverless Framework to
define, update, deploy and version control cloud resources in aws. As described
later in Section 6.3 – VisualBox Cloud Architecture, each service is its own
Serverless Framework stack.

6.2 AWS Lambda Functions
aws Lambda functions are stateless microservices that are invoked by an event
and return a value. A developer can upload the source code of the aws Lambda
function that then becomes immediately available to be invoked across the aws
infrastructure. The main benefit of aws Lambda functions is that the developer
do not have to handle server provisioning or scaling. This is automatically
handled by aws and makes the speed and agility to develop applications
composed of multiple microservices fast and trivial.

aws Lambda functions are billed by execution time. This means that the
customer only pays for what is actually used when an aws Lambda function
is invoked. Idle functions are not billed.

An aws Lambda function may also invoke another action which makes it
possible to chain multiple aws Lambda functions. This is what is commonly
referred to as event based architecture. E.g. when a file is uploaded to a Simple
Storage Service (s3) bucket it can send an event to an aws Lambda function
to take the uploaded object and process it.

6.2.1 Creating an HTTP endpoint for an AWS Lambda
An aws Lambda function is by default not exposed to the internet as an HTTP
endpoint. To make this possible, an API Gateway is commonly used together
with aws Lambda functions to create and expose an HTTP endpoint for an
external application to use. The API Gateway will expose an HTTP endpoint
and when called, it will create an HTTP event for a connected aws Lambda
function. A single aws Lambda function can also be connected to different API
Gateway endpoints. E.g. the same aws Lambda function can handle both GET
and POST methods for the same HTTP endpoint.

46 CHAPTER 6 IMPLEMENTAT ION

The Serverless Framework automate the process of setting up an API Gateway
and connect an HTTP endpoint to the aws Lambda function. The API of the
VisualBox system is composed of multiple aws Lambda functions that are
connected to a single API Gateway with different endpoints.

Creating a function in the Serverless Framework is done by defining a function
name, the handler and a list of events.
getFunction:

handler: get.main
name: ${stage}- integration -get
events:

- http:
path: integration
method: get

Listing 6.1: Serverless Framework function definition with an HTTP event source.

If the cloud provider is set to be aws, the Serverless Framework will take the
definition in Listing 6.1 and create a Lambda function with the name
${stage}-integration-get, and replaced the first part with the stage name of the
deployed stack. An API Gateway would also be created with a single HTTP
GET endpoint at the URL path /integration. A client application can now call
the endpoint and invoke the aws Lambda function. The actual function code
is pointed at by the handler and is written in a file called get and must contain
the entry function main().

6.3 V ISUALBOX CLOUD ARCH ITECTURE 47

Figure 6.1: Architectural overview of the VisualBox back-end composed of multiple
services and aws cloud resources.

6.3 VisualBox Cloud Architecture
The VisualBox cloud architecture is grouped into six separate services (Figure
6.1). Each service is a separate Serverless Framework definition file and
contains definitions for cloud resources that are related. These services mainly
defines and implements a set of related aws Lambda functions, but may also
define aws Identity and Access Management (iam) policies and roles, which
are omitted from the figure for brevity.

By breaking down the whole architecture into these services only parts of the
architecture can be updated without interrupting other parts of the system.
The only component in the figure not deployed to aws is the Socket Server.
This is due to limited event-driven socket capabilities in aws, but this is
something that is expected to be generally supported.2

2. Blog post by Chris Munns: "Announcing WebSocket APIs in Amazon API Gateway"
https://aws.amazon.com/blogs/compute/announcing-websocket-apis-in-amazon-api-
gateway/

https://aws.amazon.com/blogs/compute/announcing-websocket-apis-in-amazon-api-gateway/
https://aws.amazon.com/blogs/compute/announcing-websocket-apis-in-amazon-api-gateway/

48 CHAPTER 6 IMPLEMENTAT ION

The following list contains brief explanations on what is contained within each
service and what responsibilities they have in the VisualBox system:

• Auth Service defines one single aws Lambda function called
authMessage. The aws Lambda function takes as input an Amazon
Cognito [36] event which allows the function to take action once a user
interacts with the Amazon Cognito service. In this case the function is
used to send an email message to the user after a sign-up event has
been emitted, providing the user with a link that they must follow to
verify their email-address.

• Integration Service defines fours aws Lambda functions that together
implements the four basic functions, create, read, update and delete
(crud), typically found in a RESTful API endpoint. Each function
interacts with an Amazon DynamoDB table called integrations where
metadata about data source integrations are stored.

• Widget Service is almost identical to the Integration Service with the
exception that each crud function interacts with a different Amazon
DynamoDB table that is exclusively storing widget metadata.

• Dashboard Service defines the most aws Lambda functions. It also
implements the four crud functions but the last two functions are
designed to retrieve integration and widget metadata once a dashboard
has been opened. These two functions are grouped in the Dashboard
Service since the metadata is required only when the client application
has opened a dashboard.

• Registry Service defines three aws Lambda functions called publish,
delete and LFP. LFP is described in Section 6.4.4 – Lambda File
Provider (LFP) and publish in Section 6.6 – Publishing a Widget or
Integration – and revolve around the registry used for crowdsourced
widget and integration discovery.

• Container Service defines a single aws Lambda function called LTL.
The LTL is described in Section 6.4.2 – Lambda Task Launcher (LTL)
and is used to launch containers and generating instance session tokens.
The LTL also interacts with the last Amazon DynamoDB table which is
called container access and is used for storing container access records
as described in Section 6.4.5 – Container Access Record (CAR).

6.4 LAUNCH ING A CONTA INER 49

6.4 Launching a Container
There are two aws Lambda functions involved when an integration is started;
the Lambda Task Launcher (ltl) and Lambda File Provider (lfp). They each
play important roles in setting up the container with its initial parameters as
well as providing the container with its source code without exposing it
publicly.

6.4.1 Initial Parameters for a Container
As will be explained in the following sub-sections, a newly launched container
will start with a set of initial parameters. A container that is starting doesn’t
have the notion of state and starts as a blank slate. The container must, with
the help of these initial parameters, find the correct source code,
configuration data model and establish a private socket connection with the
client web application.

The following is a list of initial parameters that are given to a newly launched
container:

Parameter Description
TOKEN An Instance Session Token (IST) unique to the current

client-container session.
I A unique number for the current container since multiple

containers may be launched during the same session.
ID The unique integration module ID.
VERSION The integration module version to be used.
MODEL The initial configuration data model and its values.
RUNTIME The current runtime environment of the container.

Table 6.1: Initial parameters for a container.

6.4.2 Lambda Task Launcher (LTL)
The ltl is an aws Lambda function used to start a project (or task) in a
container (Figure 6.2). It is the first step for the client application to invoke
this function when a dashboard is opened. The Lambda function takes as
input a list of integrations it should launch (1). The ltl is stateless so each
integration in the input list must include the integration ID, integration
version and the current values for the configuration model.

50 CHAPTER 6 IMPLEMENTAT ION

LTL Container 2

Container 3

Container 1

1. Send list of integrations

3. Return Instance Session Token (IST)

2. Launch tasks

4. Establish private socket communication based on IST

Figure 6.2: Steps involved for a client to launch one or more integrations in separate
containers and establish a private socket communication channel.

The ltl will verify that each integration exists and that the user currently
invoking the function has access to them. The correct Docker image is
determined based on the runtime environment of an integration and a
container is launched with the correct initial parameter configuration
(2).

Before integrations in the list gets launched in separate containers, a
randomly generated token is produced which represents the current Instance
Session Token (ist). This ist is included as an initial parameter for the
container bootstrap configuration. After every integration has been launched
the ist is returned to the client application (3) and a socket channel is
established with a socket server (4). The ist is used during the
socket-handshake so that a private communication channel can be established
between the client and all containers in the current instance session. This way
the client can receive output and send commands to individual containers in
the current dashboard.

6.4 LAUNCH ING A CONTA INER 51

Terminate

Program exit or error

Bootstrap

Download source code
from LFP and setup
socket connection

Execute

Download project
deps. and execute

source code

Restart

Configuration or
source code

changes

1 2 3 4

Figure 6.3: The container lifecycle is governed by the bootstrap binary which is run-
ning in each container.

6.4.3 Container Bootstrapper
Each container includes a bootstrap binary program which is responsible for
loading the user source code, perform prepare and run commands and handle
socket communication with the running user program and the VisualBox
client. The bootstrapper is responsible for upholding the container lifecycle as
depicted in Figure 6.3.

When a container is started it is given the initial parameters (such as
integration ID, version and configuration model values) necessary for the
bootstrapper to start the integration module. The first step is to fetch and
download the correct integration source code. This is done by invoking the
lfp.

6.4.4 Lambda File Provider (LFP)
The lfp is an aws Lambda function responsible for retrieving integration
source code based on its ID and version number. Source code is stored as a
ZIP archive in an aws s3 bucket. The lfp simply locate the ZIP archive and
return it to the invoker. A running container will utilize this function during
its bootstrap phase to retrieve its source code to be executed.

Since running containers are stateless the lfp has no way of knowing if the
invoker has access to the requested integration source code. Integrations that
are not published to the registry are considered private to the author of the
source code, and should under no circumstances be accessible by anyone else.
A method to limit what ZIP archives the lfp can access is required, so the
Container Access Record (car) table is implemented.

52 CHAPTER 6 IMPLEMENTAT ION

LTL

LFPContainer Access Record (CAR)

1. Launch container. Include IST.

2. Generate Container
Access Record (CAR)

with allowed integrations
for the current IST. 3. Get source

code. Include IST.

4. Check if IST has access to
requested source code.

S3 Bucket

5. Retrieve source
code ZIP archive.

6. Return source
code ZIP archive.

Container

Figure 6.4: Steps involved for a container to get its source code from the Lambda File
Provider (LFP).

6.4.5 Container Access Record (CAR)
A car is generated during a ltl invocation and contains the same list of
integration ID’s and their versions that was used during the function
invocation, and is stored in an aws DynamoDB table (Figure 6.4, no. 2). The
ist generated by the ltl is included in the car so that the token is locked to
the set of integrations originally launched. The ist is given to a launched
container (1) which will in turn be used when the container invokes the lfp
to retrieve the project source code (3). The lfp requires the ist and will use
this to determine which integrations the invoker (or container) can access (4).
This ensures that a container can never launch an integration not defined
within the scope of its ist since its creation.

If everything checks out, the ist is valid and the requested project source
code is within the scope if the ist, the lfp will retrieve the ZIP archive stored
in an aws S3 bucket (5) and return it to the container (6).

The ist becomes the key to which a container can identify and authenticate
against the lfp to fetch the source code necessary. As described in Section
6.4.2 the ist is also used by the bootstrapper to connect a container to a
private socket channel so that a client can communicate.

6.4 LAUNCH ING A CONTA INER 53

6.4.6 Socket Server
The socket server is a Socket.IO [37] server responsible for setting up a private
communication channel between a VisualBox front-end client and associated
containers in a dashboard. Socket.IO has the concept of rooms, which groups
connected socket clients and can be used to send messages between them.
The generated ist for a dashboard is used as the room name.

As soon as a client opens a dashboard and the ist is returned, the client will
join the room by the ist-name and listen for messages of the type INIT. An
INIT message is only sent once by a container that has just started, and signals
that the container is ready. The client will then know that an integration has
started and can inform the user by changing its color from red (not started) to
green (started). The INIT message includes the number of the integration in
the dashboard so that if multiple integrations are present it can know which
integration in the current instance session that sent the INIT message.

Message Type Payload Description
INIT Integration Number First message sent by a

container when it has started.
The integration number is
unique in the session instance
for this integration so that the
client knows which integration
sent the message.

OUTPUT Integration Number
and Data

A message of this type is sent
by a container when the in-
tegration code has generated
data that can be used by wid-
gets in a dashboard. The in-
tegration number is included
so that the client can sort the
data model by integrations in
a dashboard.

STATUS Status Type and Data A message of this type is sent
for all other messages not
related to the data model by
a container. Possible Status
Types are defined in Table 6.3.

Table 6.2: Socket Message Types sent between the client application and containers.

54 CHAPTER 6 IMPLEMENTAT ION

Status Type Description
T_INFO Standard output of the executed integration code.
T_WARNING Standard error output during the prepare command of

an integration bootstrap.
T_ERROR Standard error output during the run command of an

integration.
T_TICK Signal from a client to a container that the connection is

still alive.

Table 6.3: Possible Status Types for the STATUS message.

Once an integration has generated a data model it is sent as an OUTPUT
message. The OUTPUT message includes the integration number and the data
as payload. All other messages come in the form of STATUS types.

If any standard output is generated during the execution of integration code it
is sent as a STATUS message with he type T_INFO. This STATUS message is
only visible in the client if the user is utilizing the development console while
developing an integration in the in-browser code editor.

A STATUS message with the T_WARNING type is sent if, during the prepare
command in the bootstrap phase of an integration, a standard error is
generated. This message is also only visible if using the development
console.

The T_ERROR type is similar to T_INFO, which is sent if a standard error is
generated during the execution of the integration code.

The T_TICK type is sent by the client to keep running container alive. The
container bootstrapper will continuously decrement a counter for 1 minute.
Each time the bootstrapper gets a STATUS message with this type it will start
the counter from the beginning, keeping the container alive. This is a
mechanism to gracefully shut down a container if the client is suddenly
disconnected.

6.5 W IDGET AND INTEGRAT ION INDEX ING 55

These messages allow the module developer to know what’s going on in the
container and send commands to restart it. An example of different STATUS
message types and an OUTPUT message being sent to the client development
console can be seen in Figure 6.5.

Figure 6.5: The development console with thee different messages;
T_INFO (green), T_WARNING (yellow) and OUTPUT (blue).

6.5 Widget and Integration Indexing
If a developer wants to open source a widget or an integration module it can
be published to the registry maintained by the VisualBox service. To do so, the
module needs to be versioned and indexed so that it can be discovered by
other users using the widget or integration explorer. The published widget or
integration can then be added to all dashboards, or copied and modified. This
allows code to be re-used and improved. Reusability also prevents
"reinventing the wheel" and keeps the time of creation for visualization
prototypes to the minimum.

Module source code metadata such as author, module name, environment and
thumbnail images are stored in DynamoDB tables. DynamoDB is a highly
available, eventually consistent key-value store and is designed to handle
large amounts of operations in a short time, but does not have strong
text-based search capabilities. DynamoDB only support scanning index shards
of entries or query a primary key.3 This is not enough for the widget or

3. As described in the Amazon DynamoDB Developer Guide:
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Scan.html

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Scan.html

56 CHAPTER 6 IMPLEMENTAT ION

integration explorer in VisualBox where text-based search is required, so a
separate index has to be made.

Algoliasearch [38] is an index service with great free-text search capabilities
and is chosen as the index for published widgets and integrations in
VisualBox. An integration or widget is indexed in Algoliasearch when the
module is published. By maintaining a unique ID of each index element, a
one-to-one mapping can be made between the DynamoDB table containing
the source metadata and the Algoliasearch index result whenever a search is
made.

6.6 Publishing a Widget or Integration
A separate aws Lambda function called publish is invoked once a module is
going to be published to the registry. The Lambda function receives as input a
module ID and its desired new version. The goal for the Lambda function is to
create a new copy of the module and tag it with the new version number. aws
S3 support object versioning. This means that the same object can contain
multiple "snapshots" with different versions. An aws S3 object version is an
MD5 hash which corresponds to a physical snapshot.

A published widget or integration cannot be modified. This is to prevent
breaking dashboards that are using widgets or integrations on a specific
version number. E.g. if a widget or integration is added to a dashboard with a
specific version X, and version X is changed to include code that completely
alters the behavior or appearance, then all dashboards using version X could
potentially break. Published widgets and integrations are therefore immutable.
Although, a module can be removed completely from the registry.

As depicted in Figure 6.6, the client will invoke the publish Lambda function
by sending the module ID and its new desired version (1). The publish
Lambda function will then create a new aws S3 object for the ZIP archive
corresponding to the module ID (2). aws S3 will then create a new snapshot
(3) and return the generated snapshot hash to the publish Lambda function
(4). The publish Lambda function finally create or update the index record
with the new metadata.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html

6.6 PUBL ISH ING A W IDGET OR INTEGRAT ION 57

Publish

1. Client send module
ID and new version.

S3 Bucket

2. Publish creates a new S3 object
version for module with provided ID.

4. The new S3 object
version hash is returned.

40fb 49f6 33ce

3. S3 bucket creates
a new object version.

Module Object

5. Algolia index is updated
with module metadata.

Figure 6.6: Workflow when a client wants to publish a new version of a module.

58 CHAPTER 6 IMPLEMENTAT ION

6.7 Implementation: Summary
In this chapter we’ve covered the cloud infrastructure in aws that powers the
VisualBox module platform and how the infrastructure is divided into
separate services that each contain related cloud resources.

iac is a automation service that is used together with the Serverless
Framework to provision cloud resources that can be launched and updated in
separate stacks. The VisualBox architecture is grouped into six services; Auth,
Integration, Widget, Dashboard, Registry and Container. By making this
separation, only portions of the architecture can be modified without the need
to re-deploy other parts of the system.

Once a user opens a dashboard in the front-end web application, the ltl aws
Lambda function is invoked. This function is then responsible for producing a
randomly generated token, the ist, that represents the instance session of the
dashboard. Integrations are launched in separate Docker containers and
include a set of initial parameters that identify in which instance session they
belong. The ist is used to establish a private socket communication between
the front-end web application and integration containers.

To protect integration source code from getting accessed by non-authorized
containers, a Container Access Record (car) DynamoDB table is used. The
car table is a list of integrations that are allowed for a specific ist. When a
newly launched integration container requests the source code to be run from
the lfp aws Lambda function, a check is made against the car table. If the
integration is included in the current car, the source code is retrieved and
returned to the integration container. This ensures that a container won’t have
access to all integration source code in the registry, unless granted during the
generation of the ist.

A bootstrap binary program is included in every integration container. The
bootstrapper is responsible for upholding the container lifecycle such
as:

• Downloading the integration source code from the lfp.

• Establish a socket communications channel with the front-end web
application.

• Receive commands and send source code output from/to the front-end
web application.

• Terminate container if dashboard is closed or code exit/error.

7
Experiment and Evaluation
In this chapter we experiment with the container startup time while using
aws ecs Fargate as the container orchestrating service. aws ecs with the
Fargate container launch type is the most suited for running containerized
integration code in VisualBox, since all cluster management is completely
hidden from the developer and makes it faster and easier to develop
containerized applications. Therefore the performance must be thoroughly
examined.

7.1 Container Startup Time
Each time an integration is used it is launched within a Docker container. This
means that the container startup time must be as low as possible. Ideally it
should not take longer than a couple of seconds, or the user may experience
frustration while using the VisualBox service.

The container startup time is defined as the time it takes from the initial
command to launch until the container image is running.

59

60 CHAPTER 7 EXPER IMENT AND EVALUAT ION

7.2 Experimental Setup
Five different Docker images with different sizes were produced to examine
the potential impact image size would have on container startup times. Each
image was built using various base images such as Alpine Linux and Ubuntu to
get an evenly distributed size spectrum. The following image sizes were
obtained to be used in the experiments:

4.21MB 29.6MB 56MB 69.9MB 95.2MB

Table 7.1: Image sizes used in the experiments.

They were then pushed to an aws Elastic Container Registry (ecr), which is
a hosted container registry. When using aws ecs with Fargate, containers has
to pull images from a registry in ecr.

When a container is to be launched in aws ecs with Fargate, a task definition
has to be made. The task definition specify which network interfaces and
subnets to use but also how much memory and vCPU’s the container will be
assigned. The experiments were divided into three different task definitions
with varying memory and vCPU count.

Experiment Memory vCPU
#1 0.5GB 0.25
#2 1GB 0.5
#3 2GB 1

Table 7.2: aws ecs Fargate task definition configurations.

An aws ecs cluster was then made and tasks were launched using the
Fargate launch type. The recorded startup time was calculated by taking the
difference in time of creation and time of termination from the information
page of a task in the aws ecs cluster console. Each data point in every
experiment was run five times to produce a standard deviation.

7.3 RESULTS 61

7.3 Results
The first experiment was configured to use a task definition with 0.5GB
memory and 0.25 vCPU. Each image was launched five times and the following
results were obtained:

0 10 20 30 40 50 60 70 80 90
Image size (MB)

20

40

60

80

100

120

St
ar

tu
p

tim
e

(s
)

Memory: 0.5GB, vCPU: 0.25

Figure 7.1: aws ecs Fargate startup times for containers with different image sizes
using a task definition with 0.5GB memory and 0.25 vCPU.

The smallest image size took little over 10 seconds to start. A large leap in
startup time is then taken when the image size goes from 4.21MB to 29.6MB
and goes from approximately 15 seconds to over 100 seconds. A plateau can
be seen for each image with a size of over 30MB. The image size can be
discarded after this plateau has been reached, and the startup time can in
some cases be seen to decrease for larger image sizes.

The sudden jump in startup time clearly shows that the image size has an
important role in how fast aws ecs with Fargate can launch a container. It is
however not possible to pinpoint exactly where the tipping point is from the
obtained figure, so the conclusion is that the image size should not exceed
4MB, unless startup time is not critical.

62 CHAPTER 7 EXPER IMENT AND EVALUAT ION

The second experiment was configured to use a task definition with 1GB
memory and 0.5 vCPU and the same five images. The following results were
obtained:

0 10 20 30 40 50 60 70 80 90
Image size (MB)

20

40

60

80

100

120

St
ar

tu
p

tim
e

(s
)

Memory: 1GB, vCPU: 0.5

Figure 7.2: aws ecs Fargate startup times for containers with different image sizes
using a task definition with 1GB memory and 0.5 vCPU.

A very similar result was obtained compared to the first experiment. The first
image took little over 10 seconds to start and the same plateau is reached
when the image size exceeds 30MB. However, the increase in memory and
vCPU count seems to have sped up the plateau and is closer to the 100 seconds
mark than in the first experiment. This change can be considered negligible
due to the long startup times while exceeding an image size of 30MB.

The image with size 69.9MB experienced a larger standard deviation. This
happened because a single measurement took approximately 40% longer than
the rest. This shows that the startup time with aws ecs Fargate can be
inconsistent, so an achieved startup time should not be relied upon.

7.3 RESULTS 63

The final experiment was configured to use a task definition with 2GB memory
and 1 vCPU and the same five images. The following results were
obtained:

0 10 20 30 40 50 60 70 80 90
Image size (MB)

0

20

40

60

80

100

St
ar

tu
p

tim
e

(s
)

Memory: 2GB, vCPU: 1

Figure 7.3: aws ecs Fargate startup times for containers with different image sizes
using a task definition with 2GB memory and 1 vCPU.

Much like the two previous experiments we can see that the smallest image
has a startup time below 20 seconds, followed by a plateau. The increase in
memory and vCPU count seems to make the startup time more stable at this
plateau.

An exception happened during the final experiment where the largest image
with a size of 95.2MB was almost as fast as the first, smallest image. It was
believed that a configuration error was made, so the data point was
re-calculated. However, the same result was always obtained. A possible
explanation to this behavior is that aws ecs stores the image in cache so that
the container can load and start faster. aws ecs can be configured to cache
large images.1 – this was however not configured in the experiment so a
probably cause is that it has been cached automatically.

1. "Amazon ECS Adds Options to Speed Up Container Launch Times"
https://aws.amazon.com/about-aws/whats-new/2018/05/amazon-ecs-adds-options-to-
speed-up-container-launch-times/

https://aws.amazon.com/about-aws/whats-new/2018/05/amazon-ecs-adds-options-to-speed-up-container-launch-times/
https://aws.amazon.com/about-aws/whats-new/2018/05/amazon-ecs-adds-options-to-speed-up-container-launch-times/

64 CHAPTER 7 EXPER IMENT AND EVALUAT ION

7.4 Experiment: Summary
The experiments has shown the startup time for containers using the aws
ecs Fargate orchestrating service. The goal was to find which task definition
results in the fastest container startup time for varying image sizes, and if the
service could be incorporated in the VisualBox service for use with running
integration modules. The obtained results shows that the image size plays a
significant role in how fast aws ecs Fargate will launch a container. There
seems to be a tipping point where the container startup time tenfolds, and
stabilizes on a plateau of approximately 100 seconds.

It was also shown that the startup time can be drastically decreased if images
are cached. VisualBox can however not rely on caching if a miss could result
in a 100 second startup time.

Due to the nature of aws ecs Fargate, the inner workings of cluster
management and worker node provisioning is hidden. The purpose of the
Fargate launch type is to relieve the developer from these tasks. This
apparently comes with a cost of longer startup times and leaves room for
improvement by aws.

The same images were for contrast tested on a local computer running a
single-node Kubernetes cluster, where startup times were constantly in the
sub-five seconds and almost solely relied on the time it took to download an
image from an image repository.

The shortcomings with relatively long startup times for aws ecs Fargate
influenced the choice to move integration and data processing to a "plain"
Kubernetes solution. The Kubernetes cluster setup becomes more complex but
container startup times are at an acceptable level of sub-five seconds.

7.5 Distributed Arctic Observatory (DAO)
Since VisualBox is designed as a saas, part of the evaluation is to create a
Minimum Viable Product (mvp) and test it in practice. The Distributed Arctic
Observatory (dao) research group at uit was working on iot devices to be
stationed in arctic conditions. It was desired to constantly be able to monitor
the internal sensors of the device as to be notified if a device suddenly
becomes defect or needs a battery change. Some of the metrics to be
displayed was the internal temperature of the devices and their power usage
over time. A GPS position was also reported.

7.5 D ISTR IBUTED ARCT IC OBSERVATORY (DAO) 65

These devices sent the data to a server which then eventually ended up as text
files on a data dump server. The information was structured in folders
separated by devices, sensors (such as temperature sensor, GPS module etc.),
and text-files for each new day. These files were then accessible over a simple
HTTP-based file server.

A VisualBox integration was made to take as input credentials necessary to
authenticate against the HTTP-based file server. Once the integration started it
would figure out the current date (and if specified, a date-range) and request
the files necessary to put together all information. After each text-file was
fetched, the result was merged and an output model was generated. This
whole process could be configured to repeat itself at set intervals to constantly
feed the dashboard with fresh data.

Since visualization widgets such as gauges, line-graphs and maps already
existed in the crowdsourced registry, they could be used to plug into the
generated data model, and a dashboard with device metrics was quickly built
as seen in Figure 7.4.

Figure 7.4: VisualBox in use by the Distributed Arctic Observatory (DAO) research
group. The middle screen is a VisualBox dashboard visualizing metrics
reported by two separate iot devices.

8
Discussion and FutureWork
8.1 Multi-stage Docker Image Builds
Integrations that are used to fetch and process data in a dashboard are
written by users that may choose which runtime the code is going to run in.
To get this to work, a separate Docker image is built for each runtime with
required binaries and packages. E.g. for the Python 3 runtime to work, Python
3 and pip3 has to be installed once the container starts.1 This also means that
if a compiled language runtime is used it has to compile the integration code
each time a new container starts. This can greatly reduce container startup
time and the disk space needed for the integration to run.

With the introduction of multi-stage Docker builds, a pre-build step can be
used to produce Docker images that can then be stored in an image-registry
before a container is launched. A multi-stage Docker build allows the usage of
multiple, separate base images at each build stage that can be used to
introduce additional custom functionality from other base images. This is
something that is currently not possible in the implemented VisualBox
version.

1. pip3 - the Python 3 package installer.

67

68 CHAPTER 8 D ISCUSS ION AND FUTURE WORK

Controlling the build process would only require a Dockerfile to be included
in the project source code. More disk space is required by building a separate
Docker image for each unique integration, but a pre-built Docker image can
be configured to compile, install and prepare all necessary resources for an
integration before it is started and would reduce the container startup
time.

If an integration has to be pre-built before it is used, the code would also be
bundled inside the produced Docker image. This would eliminate most tasks
performed by the lfp, as there is no longer a need for the bootstrapper to
pull down the source code of the integration during the bootstrapping phase.
This could also reduce the size and complexity of the bootstrap binary, which
is included in each integration runtime to allow for communication with the
VisualBox system.

aws CodeBuild could be used to automatically build the integration source
code into a Docker image that is then updated in an image-registry. The leap
is then not far to make the aws CodeBuild pipeline trigger on external events,
such as GitHub pull-requests, and would act as a cd pipeline, completely
bypassing the VisualBox client application. This would make it easier to
develop integrations locally before deploying them to the VisualBox pre-build
service.

The question then becomes; when should an integration be built? If an
integration project is uploaded to the VisualBox system without being
pre-built it would not work when added to a dashboard. The user must
explicitly command the project to be built by e.g. a "build" button in the client
application. Extra care must be taken by the integration explorer as to not
show integrations that are not pre-built. The same goes for an integration
being published to the registry. An integration must be pre-built before it can
be published and shared with other users, as to avoid adding it to dashboards
when an image is non-existing.

8.2 Warm Containers
Another way of achieving faster container startup times is to keep a pool of
already running containers, or "warm" containers. When a user needs a
container for data processing, a check can be made to see if a warm container
already exists, and assign it to the task at hand.

However, if the multi-stage docker image build strategy is to be implemented
as described in the previous section, it would mean that almost no container

8.3 GV ISOR 69

images are generic. This then makes it hard to keep a pool of warm container
since few containers are similar, and the probability of a user requiring the
same container is slim.

One could argue that if a specific crowdsourced and public integration got
extremely popular, and a supporting analytical system could follow the use of
certain container images, a ranking could be made for the most used
container images to be put into a pool of warm containers. This could speed
up container startup times for the top most used integrations, even if they are
uniquely built.

8.3 gVisor
Some security experts have raised their voices on the practice of running
arbitrary, untrusted code in containers and simply believing that the host
system is completely isolated from attacks [39]. The arguments is that since a
container is able to directly communicate with the host kernel and major
Linux kernel subsystems are not namespaced, an attack can be made and the
host system can be owned. The broad surface area of the kernel that is
exposed to a container is a great attack vector for a container with malicious
intent.

In response to these claims, Google introduced gVisor [40], which is a
container sandbox that offer greater isolation between the host system and
containers while being more lightweight than a Virtual Machine (vm).

gVisor runs as an unprivileged process that intercepts system calls made by
the application. It is compatible and integrates with Docker and Kubernetes,
and is definitely a security measure that must be implemented in VisualBox to
further isolate integration code.

8.4 Securing Sensitive User Data
An issue with utilizing the configuration model (see Section 5.3 –
Configuration Data Model) is the use of the password-type. Each value that
is provided by an user that is interacting with the rendered HTML form must
be stored on the back-end. It is never a good idea to store passwords in
clear-text format, ever. Ideally, the VisualBox system should never
permanently store sensitive configuration data.

70 CHAPTER 8 D ISCUSS ION AND FUTURE WORK

One alternative is to never store the input of a password-type in a database.
Instead, the client application could notice when a password-field is being
used, and choose to store the password temporarily in local storage on the
client side. This would in turn mean that the values for password-fields are
never guaranteed to be present whenever a dashboard is opened, but the user
would instead have to re-type the password whenever it disappears, and is
definitely a better alternative than storing the password in clear text in a
database.

Another alternative is to utilize encryption services provided by e.g. aws,
such as aws Secrets Manager [41]. aws Secrets Manager encrypts secrets
(such as password) and can decrypt them upon an authenticated request from
an application. Automatic secret rotation will add additional protection at the
cost of more complexity.

8.4.1 Initial Configuration Data Model
The initial parameters sent to a container that is launched in Kubernetes
includes the configuration data model, the unique ID for the instance session,
integration ID and the integration version. The initial configuration data
model is included as environment variables in the container when it is
launched where they are read by the bootstrapper binary. By including the
initial configuration data model during the bootstrap phase of a container, it
can pull the source code and start it at once without having to communicate
with the client application and ask for the configuration data model. However,
when initially sending the configuration data model as environment variables
they can potentially be later discovered in Kubernetes-specific log files of the
node that is running the container.

It is not desired to store the configuration data model as environment
variables at any given time. This means that the bootstrapper would have to
ask for the client application to send over the initial configuration data model
once the communication channel has been established. This could potentially
increase the total container startup time, but would keep sensitive
configuration data models (such as passwords) from getting stored on the
back-end servers in the form of log-files.

8.5 Sharing Dashboards
An important aspect of the dashboard builder is to be able to share data
visualizations with external users. An easy solution would be to export an

8.5 SHAR ING DASHBOARDS 71

image of the current state of the dashboard. However, if a dashboard is to be
displayed at e.g. a public display screen, or to be opened by someone with
another account, the integration configuration should be protected. This is
because integration configurations may contain sensitive information such as
credentials and passwords.

Fortunately, this problem is almost already solved due to the nature of how
containerized integrations communicate with the client web application. The
only "link" between a dashboard and its integrations is through the socket
server. If a dashboard could be launched without specifying which or how
integrations run, the user viewing the dashboard is never exposed to sensitive
configuration data (Figure 8.1).

Shared Dashboard

Socket communication

Integration configuration is
hidden behind socket server

Figure 8.1: A socket communication is the only link between the client web applica-
tion and the VisualBox back-end Kubernetes cluster, and hides away any
sensitive information that may have been used while generating data.

When a dashboard is to be shared, a unique URL link can be generated with
an randomized ID that identifies which integrations to include in the shared
dashboard and how they are configured. When the URL link is visited, the
correct containers are launched and a socket communication is established,
all without exposing any information on how or where the data is obtained in
the dashboard.

9
Conclusion
Safely executing arbitrary user generated code in containerized environments
can be done in many different ways; web workers in a web browser
environment on the client-side; in a Function as a Service (FaaS) such as
Kubeless, Fission or aws Lambda; aws ecs Fargate or in Docker containers
orchestrated by a Kubernetes cluster. All of these alternatives has been
explored while finding the most suited to be used in a system of crowdsourced
data processing modules. The most flexible solution is to use a Kubernetes
cluster combined with a control program that bootstraps a container into its
working state.

We’ve seen how the architectural model of the VisualBox system utilizes
integration and widget modules that can be combined in different ways to
create visualization dashboards for different data models, and how they can
be configured by taking user input via a configuration data model.

By offering a platform for crowdsourced modules to be written, tested and
shared directly from the web browser, the creation of data visualizations can
be made even without any technical experience.

The Serverless Framework provides a normalized language for specifying
cloud resources in different cloud providers, and makes it easy to deploy and
update cloud architectures. A collection of cloud resources can be deployed as
a coherent stack and by dividing related functionality into separate stacks
only parts of a larger cloud infrastructure can be updated.

73

74 CHAPTER 9 CONCLUS ION

aws ecs with the Fargate launch type can be a good alternative for some
applications to run containerized workloads without the need to worry about
cluster management. The container startup times are however too slow for
the VisualBox application. An interesting behavior was discovered with aws
ecs Fargate, where the startup time would plateau after a certain image size
was exceeded.

A successful mvp of the VisualBox system was launched and evaluated in the
field for monitoring iot sensor metrics in cooperation with the dao research
group at uit where internal temperature, battery drainage an geographical
position was visualized in a dashboard and displayed on a large screen.

As we’ve seen there are many components involved when building a complete
saas, but as long as the number of cellular iot connections keep rising, and
data is becoming ever so more available, VisualBox may just be a small
catalyst in solving a much greater challenge at hand.

Bibliography
[1] Ericsson Mobility Report, p. 16, June 2018. [Online]. Available:

https://www.ericsson.com/assets/local/mobility-
report/documents/2018/ericsson-mobility-report-june-2018.pdf

[2] O. Liberg, M. Sundberg, Y.-P. E. Wang, J. Bergman, and J. Sachs,
“Cellular Internet of Things - Technologies, Standards and Performance.”
Academic Press, 2008, ch. 8, pp. 316–318.

[3] Grafana Labs, “The open platform for analytics and monitoring,” 2019
(accessed May 10, 2019). [Online]. Available: https://grafana.com/

[4] Telenor Start IoT. (2019). [Online]. Available:
https://startiot.telenor.com/

[5] Telenor Connexion, “Managed IoT Cloud,” 2019 (accessed May 9, 2019).
[Online]. Available:
https://www.telenorconnexion.com/managed-iot-cloud/

[6] NPM Inc., “the heart of the modern development community,” 2019
(accessed May 9, 2019). [Online]. Available: https://www.npmjs.com/

[7] Node.js®, “JavaScript runtime built on Chrome’s V8 JavaScript engine,”
2019 (accessed May 14, 2019). [Online]. Available: https://nodejs.org/

[8] “European Computer Manufacturers Association (ECMA),” 2019
(accessed May 10, 2019). [Online]. Available:
http://www.ecma-international.org/

[9] I. van Hoorne, “CodeSandbox: Online Code Editor Tailored for Web
Application Development,” 2019 (accessed May 6, 2019). [Online].
Available: https://codesandbox.io/

[10] StackBlitz, “The online code editor for web apps. Powered by Visual
Studio Code.” 2019 (accessed May 6, 2019). [Online]. Available:

77

https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
https://grafana.com/
https://startiot.telenor.com/
https://www.telenorconnexion.com/managed-iot-cloud/
https://www.npmjs.com/
https://nodejs.org/
http://www.ecma-international.org/
https://codesandbox.io/

https://stackblitz.com/

[11] S. Aarsaether and P. H. Borgen, “Scrimba,” 2019 (accessed May 6, 2019).
[Online]. Available: https://scrimba.com/

[12] E. Simons, “Introducing Turbo: 5x faster than Yarn & NPM, and runs
natively in-browser ,” 2017 (accessed May 7, 2019). [Online]. Available:
https://medium.com/stackblitz-blog/introducing-turbo-5x-faster-than-
yarn-npm-and-runs-natively-in-browser-cc2c39715403

[13] Amazon Web Services (AWS) Inc., “AWS Lambda – Serverless Compute,”
2019 (accessed May 7, 2019). [Online]. Available:
https://aws.amazon.com/lambda/

[14] Rollup.js, 2019 (accessed May 10, 2019). [Online]. Available:
https://rollupjs.org/

[15] MDN Web Docs, “Cross-Origin Resource Sharing (CORS),” 2019
(accessed May 9, 2019). [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

[16] B. Grinstead and A. Marasco, “videoconverter.js,” 2019 (accessed May 24,
2019). [Online]. Available: https://bgrins.github.io/videoconverter.js/

[17] Amazon Web Services (AWS) Inc., “Amazon Elastic Container Service,”
2019 (accessed May 10, 2019). [Online]. Available:
https://aws.amazon.com/ecs/

[18] ——, “Amazon EC2,” 2019 (accessed May 10, 2019). [Online]. Available:
https://aws.amazon.com/ec2/

[19] ——, “AWS Fargate,” 2019 (accessed May 10, 2019). [Online]. Available:
https://aws.amazon.com/fargate/

[20] Kubeless, “The Kubernetes Native Serverless Framework,” 2019
(accessed May 10, 2019). [Online]. Available: https://kubeless.io/

[21] Kubernetes, “Production-Grade Container Orchestration,” 2019 (accessed
May 10, 2019). [Online]. Available: https://kubernetes.io/

[22] Fission, “Serverless Functions for Kubernetes,” 2019 (accessed May 10,
2019). [Online]. Available: https://fission.io/

[23] E. You, “Vue.js - The Progressive JavaScript Framework,” 2019 (accessed

https://stackblitz.com/
https://scrimba.com/
https://medium.com/stackblitz-blog/introducing-turbo-5x-faster-than-yarn-npm-and-runs-natively-in-browser-cc2c39715403
https://medium.com/stackblitz-blog/introducing-turbo-5x-faster-than-yarn-npm-and-runs-natively-in-browser-cc2c39715403
https://aws.amazon.com/lambda/
https://rollupjs.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://bgrins.github.io/videoconverter.js/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ec2/
https://aws.amazon.com/fargate/
https://kubeless.io/
https://kubernetes.io/
https://fission.io/

May 3, 2019). [Online]. Available: https://vuejs.org/

[24] Docker Inc. (2019) Docker: Enterprise Application Container Platform.
[Online]. Available: https://www.docker.com/

[25] VisualBox, “Integration Environments,” 2019 (accessed April 30, 2019).
[Online]. Available:
https://docs.visualbox.io/integrations/#environments

[26] T. Preston-Werner. (2019) Semantic Versioning 2.0.0. [Online]. Available:
https://semver.org/spec/v2.0.0.html

[27] Microsoft. (2019) Monaco Editor. [Online]. Available:
https://microsoft.github.io/monaco-editor/index.html

[28] ——. (2019) Visual Studio Code. [Online]. Available:
https://code.visualstudio.com/

[29] Amazon Web Services (AWS) Inc., “Infrastructure as Code,” 2017
(accessed April 25, 2019). [Online]. Available: https:
//d1.awsstatic.com/whitepapers/DevOps/infrastructure-as-code.pdf

[30] ——, “AWS CloudFormation,” 2019 (accessed May 9, 2019). [Online].
Available: https://aws.amazon.com/cloudformation/

[31] ——, “Amazon DynamoDB,” 2019 (accessed May 7, 2019). [Online].
Available: https://aws.amazon.com/dynamodb/

[32] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” SOSP, pp. 205–220, 2007.

[33] Amazon Web Services (AWS) Inc., “Amazon Simple Storage Service
(Amazon S3),” 2019 (accessed May 7, 2019). [Online]. Available:
https://aws.amazon.com/s3/

[34] Serverless Inc., “The Serverless Application Framework powered by AWS
Lambda, API Gateway, and more,” 2019 (accessed May 7, 2019). [Online].
Available: https://serverless.com/

[35] Amazon Web Services (AWS) Inc., “Amazon API Gateway,” 2019
(accessed May 7, 2019). [Online]. Available:
https://aws.amazon.com/api-gateway/

https://vuejs.org/
https://www.docker.com/
https://docs.visualbox.io/integrations/#environments
https://semver.org/spec/v2.0.0.html
https://microsoft.github.io/monaco-editor/index.html
https://code.visualstudio.com/
https://d1.awsstatic.com/whitepapers/DevOps/infrastructure-as-code.pdf
https://d1.awsstatic.com/whitepapers/DevOps/infrastructure-as-code.pdf
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/
https://serverless.com/
https://aws.amazon.com/api-gateway/

[36] ——, “Simple and Secure User Sign-Up, Sign-In, and Access Control,”
2019 (accessed May 9, 2019). [Online]. Available:
https://aws.amazon.com/cognito/

[37] Socket.IO, “Realtime application framework (Node.JS server),” 2019
(accessed May 10, 2019). [Online]. Available: https://socket.io/

[38] Algolia, “Fast, reliable and modern search and discovery,” 2019
(accessed May 7, 2019). [Online]. Available: https://www.algolia.com/

[39] D. J. Walsh, “Are Docker containers really secure?” 2019 (accessed May
29, 2019). [Online]. Available:
https://opensource.com/business/14/7/docker-security-selinux

[40] Google, “gVisor - A container sandbox runtime focused on security,
efficiency, and ease of use.” 2019 (accessed May 29, 2019). [Online].
Available: https://gvisor.dev/

[41] Amazon Web Services (AWS) Inc., “Amazon Secrets Manager,” 2019
(accessed May 13, 2019). [Online]. Available:
https://aws.amazon.com/secrets-manager/

https://aws.amazon.com/cognito/
https://socket.io/
https://www.algolia.com/
https://opensource.com/business/14/7/docker-security-selinux
https://gvisor.dev/
https://aws.amazon.com/secrets-manager/

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Problem Statement
	1.2 Results
	1.3 Methodology
	1.3.1 Divide and Conquer
	1.3.2 Progressively Added Functionality

	1.4 Scope of Work
	1.5 Scope Limitation
	1.6 Outline

	2 Motivation and Vision
	2.1 An Easy-to-use Dashboard Builder
	2.2 Crowdsourced Modules
	2.3 Motivation and Vision: Summary

	3 Incremental Exploration: Data Processing
	3.1 Code Isolation is Important
	3.2 Client Side Data Processing
	3.2.1 JavaScript Transpilation
	3.2.2 Module Resolution
	3.2.3 Cross-Origin Resource Sharing (CORS)

	3.3 Server Side Data Processing
	3.3.1 First Approach: AWS Lambda
	3.3.2 Second Approach: Amazon ECS Fargate
	3.3.3 Third Approach: Kubeless
	3.3.4 Fourth Approach: Fission
	3.3.5 Final Approach: Kubernetes

	3.4 Incremental Exploration: Summary

	4 Vision Realized: Architectural Model
	4.1 Integration Runtimes
	4.2 Dashboard Builder
	4.2.1 Main Panel
	4.2.2 Adding Integrations
	4.2.3 Adding Widgets
	4.2.4 Connecting a Widget to an Integration

	4.3 Architectural Model: Summary

	5 Crowdsource Developer Model
	5.1 Shareable Modules
	5.1.1 Modules are Versioned

	5.2 Module Development
	5.2.1 Select Runtime Environment
	5.2.2 Source Code Editor
	5.2.3 Upload Module Code
	5.2.4 Sync with External Version Control Services
	5.2.5 Preview Module

	5.3 Configuration Data Model

	6 Implementation
	6.1 Infrastructure as Code
	6.1.1 Serverless Framework

	6.2 AWS Lambda Functions
	6.2.1 Creating an HTTP endpoint for an AWS Lambda

	6.3 VisualBox Cloud Architecture
	6.4 Launching a Container
	6.4.1 Initial Parameters for a Container
	6.4.2 Lambda Task Launcher (LTL)
	6.4.3 Container Bootstrapper
	6.4.4 Lambda File Provider (LFP)
	6.4.5 Container Access Record (CAR)
	6.4.6 Socket Server

	6.5 Widget and Integration Indexing
	6.6 Publishing a Widget or Integration
	6.7 Implementation: Summary

	7 Experiment and Evaluation
	7.1 Container Startup Time
	7.2 Experimental Setup
	7.3 Results
	7.4 Experiment: Summary
	7.5 Distributed Arctic Observatory (DAO)

	8 Discussion and Future Work
	8.1 Multi-stage Docker Image Builds
	8.2 Warm Containers
	8.3 gVisor
	8.4 Securing Sensitive User Data
	8.4.1 Initial Configuration Data Model

	8.5 Sharing Dashboards

	9 Conclusion
	Bibliography

