UiT

THE ARCTIC UNIVERSITY OF NORWAY

Charging technology for small maritime vessels

Bjarte Hoff Associate professor Department of Electrical Engineering Faculty of Engineering Science and Technology UiT The Arctic University of Norway

Arctic Frontiers 2019

Outline

- Charging requirements
- How small maritime vessels are charged today
- Comparison to electrical cars
- International standards for shore connection
- Wireless charging

Charging requirements

Vessel	Battery capacity	Charging power	Charging solution
Elfrida (Hybrid)	180 kWh		? 400 V
Karoline (Hybrid)	195 kWh	44 kW	63 A plug 400 V
GMV Zero	350 kWh	2 x 87 kW	2 x 125 A plug 400 V
MF Folgefonn (Hybrid)	1000 kWh	1 MW	Inductive + NG3 plug
MF Ampere	1040 kWh	1.2 MW	ST.Pantograf Cavotec plug
MF Future of the Fjords	1800 kWh	2.1 MW	Cavotec plug
Color Hybrid	5000 kWh	7 MW	NG3 plug

Photo: Karoline, Maritimt Magasin

Photo: GMV Zero, Grovfjord Mekaniske Verksted

Charging solution for small vessels

Charging modes for electric vehicles

- Today's small vessels equals Mode 1 -> Room for development?
- Mode 2 should be a minimum

Charging standards for electric vehicles

SAE J1772 IEC Type 2

- AC charging
- 44 kW
- 63 A, 400 V

CHAdeMO

- DC fast charging
- 400 kW (version 2)
- 350-400 A, 1 kV

CCS

- DC fast charging
- 350 kW (version 2)
- 500 A, 1 kV

Photo: Paul Sladen

A. Ahmad, M. S. Alam and R. Chabaan, "A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles," in *IEEE Transactions on Transportation Electrification*, vol. 4, no. 1, pp. 38-63, March 2018.

Example of charging using CHAdeMO

RAICHO-I

- Built by Tokyo University of Marine Science and Technology
- Charged to 80% within 30 minutes using CHAdeMO
- Contains a 18 kWh battery and a 25 kW motor

T. Takamasa, T. Oode, H. Kifune, E. Shimizu and T. Hazuku, "Quick charging plug-in electric boat "RAICHO-I"," 2011 IEEE Electric Ship Technologies Symposium, Alexandria, VA, 2011, pp. 9-11.

Shore connection standards

NEK IEC/ISO/IEEE 80005-1:2018 - High voltage

 For supply over 1 MVA with a voltage of 6,6 kV or 111 kV AC

NEK IEC PAS 80005-3:2014 - Low voltage

• For supply up to 1 MVA with 400 V AC three-phase. The system uses a 350 A plug, where several plugs are paralleled for higher current levels.

NEK IEC/IEEE 8005-2:2016 - Communication

 Ethernet based on MODBUS TCP and optical fiber.

Inductive (wireless charging)

- Already demonstrated at 1 MW for ferries
- What about simplified solutions for lower power levels?

<u>G. Guidi, J. A. Suul, F. Jenset and I. Sorfonn, "Wireless Charging for Ships:</u> <u>High-Power Inductive Charging for Battery Electric and Plug-In Hybrid</u> <u>Vessels," in *IEEE Electrification Magazine*, vol. 5, no. 3, pp. 22-32, Sept. 2017.</u>

Wireless charging for electric vehicles

Source: Fraunhofer Institute for Integrated Systems and Device Technology

•

Wireless charging for electric vehicles

Plugless (third party):

• 7.2 kW

Wireless charging by BMW:

• 3.2 kW

Wireless fast charging for electric vehicles

Oak Ridge National Laboratory

- 120 kW fast charging
- 97% efficiency

Source: Mark Anderson, «Oak Ridge Inches Closer to 15-Minute Wireless EV Charging," IEEE spectrum, 2018.

Wireless chargers for electric busses

Wayside grid connection:

Onboard equipment:

Bombardier Primove charging 200

- 200 kW
- 280 A
- 530 750 V DC

Possible charging solutions and improvements?

- Conductive (cable) or inductive (wireless)?
- On-board charger in the boat or on-shore?
 - Will a fast charging station survive the salty water?
 - Fast and slow charging options like EV's?
- Grid monitoring and fault detection
- Charge with DC instead of AC?
- Galvanic isolation?
- Replace the big and heavy 50 Hz transformer with more modern compact solutions?
 - High frequency transformers
 - Solid state transformers
 - Integrate with the charger as an converter with galvanic isolation?

On-going project about charging technology for electric boats and aircrafts

Ladeteknologi for elektrifisert framdrift av maritime fartøy og luftfart

- One year project financed by ARC Arctic Center for Sustainable Energy
- Main goal: Identify future research topics
- Visit the project website for more information (in Norwegian): <u>https://site.uit.no/ladeteknologi/</u>

Master theses at UiT in Narvik

Application of electric vehicle charging solutions on small maritime vessels

Wireless charging for small electric vessels

Thank you for your attention