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“ By the breath of God ice is given,
and the broad waters are frozen.

Stand still and consider
the wondrous works of God.”

–Job 37, 10. 14





Abstract
Unsupervised clustering methods on remote sensing images have shown good
results. However, this type of machine learning needs additional labelling to
be an end-to-end classification in the same manner as traditional supervised
classification. The automation of the labelling needs further exploration. We
want to investigate the robustness of a supervised automatic labelling scheme
by comparing a segmentation with additional automatic labelling against a
supervised classification method.

Using synthetic aperture radar (SAR) satellite images of sea ice from Sentinel-
1, an automatic Expectation Maximization method with a Gaussian mixture
model is used for the segmentation, taking into consideration the incidence
angle variation within a SAR image. The additional labelling is a likelihood
majority vote related to the Mahalanobis distance measure. The Bayesian Max-
imum Likelihood (ML) is used as the fully supervised reference method. The
experiments of comparison are done using various amounts of training data and
different percentages of mislabelling in the training data set. The classification
results are compared both visually and using classification accuracy.

As training data size increases, the accuracy of the ML method tends to decay
faster than for the segment-then-label approach, particularly when sample
sizes per class are less than a hundred. As more contamination is introduced,
the decay is not distinct, probably due to the large within-class variations in
the training set.

Based on the results, theMLmethod generally gets a higher overall classification
accuracy, but there are weak tendencies for the segment-then-label method to
be more robust to decreasing training data size and more mislabelling.
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1
Introduction
Remote sensing of Arctic areas is an important scientific field used for the
purpose of environmental and climate studies, marine traffic, and meteorology.
Our focus is remote sensing and classification of sea ice, which is important
for shipping purposes and for climate research. Of general interest is the
extent, amount, and thickness of the ice in different seasons. Unfortunately,
classification of sea ice is a field where only little ground truth (GT) data is
available. To achieve GT data for all different types of ice in different seasons
would be a cumbersome— not to mention expensive—process. The acquisition
of new points of ground in situ data each year is limited.

There exists a lot of different physical sea ice types. The World Meteorologi-
cal Organization (WMO) Sea ice nomunclature contains numerous different
distinct ice classes (WMO Sea-ice nomenclature, 2017). The ice is partitioned
depending on the development of the ice, the form of the ice, its concentration
or frequency on the water, its origin, stages of melting, and so forth. For classifi-
cation purposes, the different types must be limited and specified. E.g. Ochilov
and Clausi (2012) use seven different classes in their sea ice classification.

Supervised classification methods, as we will see, are based on having loads of
training data. For practical reasons, this is not a possibility in the Arctic areas.
This makes the motivation and necessity for wisely utilizing the little training
data at hand in the classification task.

1
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1.1 Background on data classification
Supervised and unsupervised classification are two of the main sub fields
of machine learning, both endeavouring to learn patterns within datasets for
being able to categorize the data into subcategories. The supervised techniques
have come far in the progress of satellite image analysis. Also, the unsupervised
methods have now come far, and there are numerous ways of effectively sorting
data. One of the upcoming challenges when using unsupervised techniques on
remote sensing images is how to automatically determine the physical ground
types that the classes represent. There may be large seasonal variations within
the different ground types, and viewing geometry and sensor noise provide
additional challenges.

Clustering, as an unsupervised machine learning method, can be used as a
part of a classification process. To be called a classification, the subgroups need
meaningful informative labels with known interpretation, not only random
numbering entities. Therefore, the clustering needs a labelling on top, a process
that determines what the constructed clusters are. The labelling may be done
manually, but could possibly be automated, and that is the motivation of this
study.

1.2 Previous work on segmentation and labelling
A survey on sea ice classification, presenting an overview on classification on
sea ice based on SAR data, is presented by Zakhvatkina et al. (2019). The
studies in the articles summarized below are mostly on sea ice, but a few are
applied on land cover and agriculture. Some are more generally applicable on
hyperspectral imagery and X-band SAR. Hyperspectral imagery is becoming an
important research field as the satellite technology develops, but SAR is still
the most applicable for Arctic conditions (see Chapter 3).

For classification in general, machine learning methods—like Gaussian Pro-
cesses (Bazi and Melgani, 2010) and Neural Networks (Zakhvatkina et al., 2013;
Maggiori et al., 2017; Ressel et al., 2016; Koltunov and Ben-Dor, 2001)—have
been investigated, and these have also shown good performance for remote
sensing imagery. Zakhvatkina et al. (2019) also list up Support Vector Machine
and wavelet transforms, as well as Maximum Likelihood and Bayes classifier
as possible sea ice algorithms that have been investigated and tested for sea
ice. The latter two will be further discussed in this thesis. Now we will focus
on the unsupervised part of sea ice classification, namely using segmentation
and labelling.
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1.2.1 Segmentation
Segmentation of remote sensing images is well investigated, also concerning
sea ice. The clustering techniques in use vary according to the purposes. Among
the algorithms are the well-used ISODATA (Parshakov et al., 2014a), as well
as statistical histogram thresholding (Cutler et al., 2015), and other methods
such as IGRS (Iterative region growing using semantics) (Yu and Clausi, 2008),
and watershed algorithm (Soh et al., 2004; Ochilov and Clausi, 2012). Yu
et al. (2012) use the segmentation algorithm MIRGS (Multivariate Iterative
region growing using semantics) presented by Qin and Clausi (2010). Further,
probabilistic clustering methods for mixture models, like Gaussian Mixture
Model (GMM) (Koltunov and Ben-Dor, 2001) and Spectral Mixture Models
(SMM) (Fang et al., 2018), are utilized. When using mixture models and class
membership vectors, a hard or soft decision is still required. This gives room
for misclassification where distributions overlap. Applying a Markov Random
Field (MRF) smoothing helps correcting the pixel affiliations by considering
the local spatial neighbourhoods for updating the cluster priors (Doulgeris,
2015; Fang et al., 2018).

1.2.2 Labelling
Reading the literature, one must be aware of the different terminologies used
within classification. The word “label” is sometimes used meaning the class
membership of a mixture (Fang et al., 2018). These “labels” are uninformative,
in the sense that they are integers specifying the mixture component or cluster
number. In this thesis “label” denotes only informative labels representing a
physical meaning.

Regarding the labelling methods in the literature reviewed, many still do the
process manually, using histograms and simple logic (Cutler et al., 2015). They
are often most interested in the clustering task. For the purpose of getting
cluster functionals, even a mathematical framework is proposed that uses
threshold measure (Lyons and Arribas, 2018).

Another method used is approaching a more automatic way of labelling by
dividing the image into polygons, where the polygons are the objects that
are segmented. The segments are then labelled by utilizing the ice types and
within-polygon concentrations from the polygons’ egg codes, which are made
by experts (Ochilov and Clausi, 2012).

ARKTOS is a rule-based system developed especially for classification of mor-
phological image features, rather than pixel-wise classification. After the seg-
mentation, attribute measurements for the segments are generated and passed
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on to a rule-based classification. The segments are then labelled according to
predefined expert system rules. (Soh et al., 2004).

Further, there are articles using distance measures for automatic labelling, e.g
Mahalanobis distance when using a Gaussian mixture model (Moen et al.,
2015), and Z-score distance for use in spectrogram comparison (Parshakov
et al., 2014a,b). The difference between Moen et al. (2015) and Parshakov
et al. (2014a) is that the former use training sample pixels extracted from
the image, whereas the latter use training representations, which are pure
reference endmembers in a library. The latter use hyperspectral data and the
bands from the multispectral data as features, and the former use SAR data and
SAR textural features. Distance measures are linked to probability distributions,
that support the use of distance measures for comparing endmembers.

Ochilov and Clausi (2010) state the problem of doing labelling on top a seg-
mentation for proper classification. Their objectives is automatic labelling of
segmented sea ice images, and they test a combined segmentation and la-
belling process. IRGS is used as their segmentation algorithm. Even though
this article focuses on automatic labelling, the segmentation still holds aspects
of manuality for making the polygons in IGRS, and therefore the process is not
fully automated.

Size and mislabelling
Gabrys and Petrakieva (2004) conduct experiments with different relative
amounts of labelled data to unlabelled data. They find, not surprisingly, that
a small amount of labelled data results in higher variability, and that a small
amount of training data gives results with higher dependency on the reliability
of the labelled data. Experiments where conducted to investigate the reliability
of the labelled data, using three different ways of selecting labelled samples.
Two ways of random sampling methods were tried, namely selecting randomly
per class, making sure all classes were represented, and totally random, with
the risk of some classes not being represented. The selective sampling methods
where (1) the mean selection, rewarding samples close to the cluster mean,
and with ability to split the cluster into subclusters; (2) the boundary selection,
rewarding samples with highest distance from other samples with the same
class; (3) a modification of (1) where clusters cannot be split. The selective
sampling methods improved both the mean classifier performance and the
reduction of the classification variance.

An empirical study on learning from both labelled and unlabelled data is done
by Chawla and Karakoulas (2005). They investigate the use of additional unla-
belled data together with the labelled data on both artificial and real datasets.
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Multiple semi-supervised techniques for classification and one supervised tech-
nique are compared, using varying ratios of labelled to unlabelled data amounts,
given by [(labelled, unlabelled)%], and different levels of contamination[(0,
5, 10, 20)%]. Contamination is mislabelling, or also called label noise. They
find that some semi-supervised techniques perform better than the supervised
technique for most datasets. The trend is especially strong when there are little
training data and relatively much unlabelled data (1,99)%. Experimenting with
mislabelling the datasets, they found that using 5% and 10% contamination
with small relative amount of labelled data (1,99)%, semi-supervised methods
performed better than the supervised method. The semi-supervised performed
appreciable better also for the labelled/unlabelled percentages (10,90)% for
20% contamination.

This review shows that the field of labelling of segmented images has yet only
been touched to a limited extent, and some researchers even concluded that
“limited research has been performed in ice-type labelling” (Ochilov and Clausi,
2012, p. 4399).

1.3 Objectives
The scope of this thesis is to investigate and compare the performance of two
automatic image classification schemes; (1) a semi-supervised scheme that
does an unsupervised clustering in combination with an automatic supervised
labelling (hereafter: segment-then-label), and (2) a fully supervised, or direct,
classification method (hereafter: fully supervised).

A Gaussian mixture model within an Expectation-Maximization framework
will be used as segmentation, and a distance-based labelling method will be
used in combination with it. The Maximum Likelihood is chosen as the fully
supervised method.

The main question is whether adding training data after a segmentation will
give better results than a fully supervised classification where training data
is provided from the beginning. We will compare the two approaches to
see which is better when training data is limited, and when training data is
contaminated.

The robustness of the two different main schemes are to be tested. If the
supervised method performs better when the data is clean and enough data
is present, how much contamination or how small sample size is sufficient for
the segment-then-label scheme to be a better classifier?
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The workflow is briefly described in the following steps:

1. Implement a Bayesian classifier to demonstrate the fully supervised
method.

2. Use a ready-made segmentation algorithm to get segmentation results
(Doulgeris and Cristea, 2018).

3. Implement a labelling strategy suggested from the literature for auto-
matic labelling of the segments (Moen et al., 2015).

4. Compare the performance of the fully supervised method (1) and the
segment-then-label method (2-3) with respect to the number of training
data and contaminations.

1.4 Structure of the thesis
Chapter 2 is an introduction to the theoretical background for classification.
Theory of machine learning concepts within supervised and unsupervised
classification are described, giving an introduction to the scientific problem of
choosing between supervised and unsupervised classification.

Chapter 3 describes the Sentinel-1 synthetic aperture radar images used in
this thesis, and some challenges concerning this data.

Chapter 4 deals with the questions about the amount of data, its representa-
tiveness, and discusses seasonal changes of sea ice.

Chapter 5 explains the the preprocessing steps done to the Sentinel-1 GRDM
products. Radiometric calibration, thermal noise removal, and multilooking are
dealt with.

Chapter 6 contains information on the training data and how it is extracted
from image polygons.

Chapter 7 define the Gaussian tubes—Gaussian functions with variable means,
used for the methods in both chapter 8 and 9, to deal with the challenge of the
class variation for incidence angle.

Chapter 8 present the Maximum Likelihood fully supervised classification
method, and its implementation.
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Chapter 9 present the segmentation-then-labelling method, and goes into the
details of the segmentation and the labelling procedures.

Chapter 10 is on the comparison experiments of the two methods. The experi-
ments are described and results presented and discussed.

Chapter 11 concludes the study,discusses strengths and limitations,andpresents
suggestions for future work.





Part I
Background theory and theimage data
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2
Machine learning theory
The field of machine learning consists of a number of subfields, where the
two subfields of supervised and unsupervised learning are discussed here.
The theory is important for understanding the problem of this thesis, and the
methods explained later.

The difference between unsupervised, supervised and semi-supervised classi-
fication is described in many text books, such as Campbell and Wynne (2011,
chap. 12.3-12.4) and Theodoridis and Koutroumbas (2009, chap 11). Reviews of
basic models in unsupervised learning are found in Ghahramani (2004) and
Friedman et al. (2001, chap 14).

Supervised classification of an image is based on having small sub-regions, or
training sets, as reference for all the pixels to be classified. Based on the values
of the sub-regions, the pixels in the image are assigned to their specified classes.
If no training data is provided for a certain class, supervised algorithms are not
able to recognize those certain pixel groups. The algorithmwill require training
data for all the classes. If training data is not available, better performance
would be achieved by an unsupervised approach. Supervised classification are
based on having labelled data for training the classifier. The trained classifier, or
the decision lines with associated weights, are the basis of the class decision for
the data points. The specific supervised method used in this thesis is contained
in Section 8.1 on the Bayes classifier. The statistical background for this method
is contained in Appendix A.

11
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Unsupervised learning, or clustering, is the identification of natural groups
or segments within the data, which are defined, identified, labelled, and in the
end, mapped. Image segmentation uses no labelled training data, and group
pixels together in segments, or clusters, based on their features and statistical
proximity. This would lead to more natural groupings of pixels. The drawback
is that clusters are unknown groupings, not categorized to a certain class.
Clustering is investigated further in section 2.1. Note that the terms clustering
is used interchangeably with segmenting in this thesis.

Semi-supervised classification is a hybrid category in between unsupervised
learning and supervised classification. These methods are described in the
textbooks (Theodoridis and Koutroumbas, 2009, chap 10), e.g. when using a
supervised method with training data, in conduction with the distributions of
the underlying structure of the data. A clustering is performed first without
training data, before comparing clusters with additional training data for
labelling the clusters. Semi-supervised methods are based on having training
data, but not enough for doing it all supervised with a satisfactory result. The
segment-then-label method we treat in this thesis is a type of semi-supervised
classification, where we also want to test pushing the amount of labelled data
used to a minimum.

2.1 Clustering
Clustering is based on dividing a set into more subsets, where a subset consists
of “similar” elements, and is separated from other subsets due to some proximity
criterion. The cluster assumption states that two points located in the same
cluster are probably members of the same class. A clustering of the dataset X
is the partitioning of X into M sets, C1, ...,CM . It is restricted to the following
conditions:

• Ci , ∅, i = 1, ...,m

• ∪mi=1Ci = X

• Ci ∩Cj = ∅, i , j, j = 1, ...,m

I.e., each subset has to be non-empty, all elements in the dataset X are contained
in some cluster, and each cluster is a disjoint region separated from other
clusters.

The third definition restricts each data point to belong to only one cluster.
By introducing a membership function, a point can temporarily be affiliated
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to different clusters in a probabilistic manner. A membership function is the
mixing portion specifying the probability for a data point to belong to each
cluster. In other words, how much each cluster contributes to the pixel mixing.
A dataset X is partitioned into m clusters, where the membership function uj
is the membership in jth cluster for each point. uj is contained in the inclusive
interval:

uj : X → [0, 1], j = 1, ...,m

such that the fractions for one data point sum up to 1

0 <
m∑
j=1

uj (xi ) < 1 j = 1, ...,N j = 1, ...,m

and such that each fraction is at maximum 1

0 <
N∑
i=1

uj (xi ) < N , j = 1, ...,N j = 1, ...,m

2.1.1 Proximity measures
Clustering algorithms based on pixel similarity need a proximity measure for
quantifying how similar, or dissmilar, the pixels are. A dissimilarity measure
is often called a distance, due to the proportionality between distance and
dissimilarity. (Theodoridis and Koutroumbas, 2009, chap 11.2). For probabilistic
clustering schemes like the Expectation-Maximization, similarity is measured
by likelihoods. Also for the supervised Maximum-Likelihood the likelihood is
used as a measure of similarity. In the labelling stage, some proximity measure
is needed for calculating the proximity between a cluster and training data
points or clusters.

An example of a dissimilarity measure is the Mahalanobis distance given
by

d(x, y) =
√
(x − y)T Σ−1(x − y)

This is the close to the Euclidean distance, the difference being that the Ma-
halanobis distance assumes some feature covariance. A Mahalanobis-based
distance clustering is equivalent to a probabilistic Gaussian Mixture Model
(see section 2.1.2).

Proximity measures are used to find the distance between single data points
in a vector-space, but also for finding proximity between a single point and a
set, for possibly assigning the point to the set. Two ways of comparing a point
to a cluster are:
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• all points in the set contribute to the proximity, using the maximum,
minimum, or average proximity function.

• or; the proximity is between a representative for the set and the point.
The representative for a compact cluster is a point, and the representative
for a Gaussian mixture component is described by both a mean point
and a covariance.

2.1.2 Mixture models
Different algorithms with a large variety are developed for the purpose of
dataset clustering. In this thesis, we focus on a cost function optimization-
based clustering. The particular algorithm we are looking at is the Expectation-
Maximization (EM) algorithm utilizing a GMM. The EM algorithm is briefly
discussed in Chapter 9, but we want to introduce the GMM here.

Using a mixture model, a point is still belonging to one cluster only. As this
cluster is not yet known, a membership function is utilized for determining
the likelihood of a point belonging to the different possible clusters. The
mixture model is written as the sum of all model components weighted by
their importance. The distribution of the data points in a mixture model of K
components may be written as

p(y|θ ) =
K∑
k=1

πkp(y|θk )

where πk is the class memberships of component k such that

K∑
k=1

πk = 1 and πk > 0 ∀k

and p(y|θk ) is the probability density function for the random variable y, with
parameters θk .

The question in a classification task is how to find the mixture components
contained in the data. The EM algorithm is a possible option that we will
discuss later.
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Figure 2.1: A compact cluster with points centred around a centre point.

Gaussian mixture models
A Gaussian Mixture Model (GMM) is a simple mixture model, where the
distribution of a component Y is assumed to be normal:

Y = N(µ, Σ)

The parameters for the model of component k thus become θk = (µk , Σk ),
where µk is the mean vector, and Σk is the covariance matrix of the kth
Gaussian component. The Gaussian mixture model assumes the clusters to be
compact, having a certain variance around a mean point, see Figure 2.1.





3
The satellite images
This thesis is a work on image classification, in the first place being a comparison
of two machine learning algorithms. However, this is done for a certain type
of images. Their distinctiveness makes it necessary to describe them and
their certainties. The images are the Ground Range, Multi-Look, Detected
level-1 product (GRD) from the Sentinel-1 (S1) spaceborne synthetic aperture
radar (SAR) satellite. We will briefly discuss the nature of these images in
the following sections. Two major problems dealing with classification of S1
images are discussed in Sections 3.6 and 3.7. In the end of the chapter we
discuss feature selection for SAR images.

3.1 Sentinel-1
The S1 satellite is part of the European Space Agency (ESA)’s Sentinel family.
It operates with C-band SAR having a frequency range within the microwave
region (central frequency of 5.404 GHz). Because of its capability for wide
coverage (400 kmwide areas), its resolution, and its short revisit time, it is used
among other applications for maritime surveillance of the large ocean areas.
Among the sensor’s four different acquisition modes is the Extra Wide swath
mode (EW), used for the imaging of large arctic and marine areas—especially
applied within ocean monitoring for crude oil detection, ship detection, and sea
ice monitoring. The EW mode has five imaging swaths in the range direction
(Collecte Localisation Satellites (CLS), ESA, 2016). Alongside the Single Look
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Complex (SLC) level-1 product and Ocean (OCN) level-2 products, the GRD
product is one of the S1 data products distributed by ESA. The S1 images are
free and openly available.¹

3.2 The synthetic aperture radar
The S1 is a synthetic aperture radar (SAR) sensor. This brief introduction to
its theory is based on the more thorough reviews found in Elachi and Van Zyl
(2006, ch. 5-6) and Campbell and Wynne (2011, ch. 7).

As the SAR sensor operates with microwaves it has certain advantages. The
wavelength of microwaves is larger than the atmospheric particles, and there-
fore the wave propagates unhindered trough the atmosphere. The signal is also
unaffected by different weather conditions and lack of Sun illumination. This
makes it suitable for Arctic areas with tough weather conditions, and darkness
through the winter season.

Scattering occurs for wavelengths in the microwave and radio part of the
electro-magnetic spectrum. This phenomenon happens when the signal waves
interact with the target surface, and the wave is reflected in some direction.
The backscatter is the portion that is scattered back towards the satellite and
detected by the sensor. Depending on the wavelength, intensity, polarisation,
phase, and other properties of the radiation, we can say something about the
surface. Different surfaces, like various types of sea ice and water, will scatter
differently based on the surface scatter type, meaning the surface’s conductive
properties and geometrical structures.

The SAR is an active sensor, meaning it both transmits and receives signals,
as opposed to the passive ones that only receive. This nature of the active
microwave sensor makes is possible to compare the transmitted and received
signals, in order to get more precise information of the ground surface. The
backscatter cross section is defined as the ratio of backscatter signal from
ground to sensor over the transmitted signal from the sensor. This ratio is an
indication of the particularities of the surface, e.g., how the ground material
absorbs or scatters in other directions. The microwave sensor produces gray-
scale images of the surface backscatter.

Speckle is a SAR image effect, which appears as salt-and-pepper noise (bright

1. The Sentinal-1 scenes were aquired during the European Space Agency’s @Copernicus
Programme. For information on image access, see: https://sentinel.esa.int/
web/sentinel/sentinel-data-access

https://sentinel.esa.int/web/sentinel/sentinel-data-access
https://sentinel.esa.int/web/sentinel/sentinel-data-access
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and dark return values) in the image (Campbell and Wynne, 2011, p. 222).
The SAR signal is transmitted over a narrow range of wavelengths, and is a
coherent source signal containing both an amplitude and a phase part. Ran-
dom displacement of individual scatterers causes constructive and destructive
interference in the coherent signal, resulting in the scattered energy to be
either reinforced or suppressed. Speckle noise is multiplicative, meaning that
it is directly proportional to the radiance of the specific pixels in the image,
and is an intrinsic part of the signal.

3.2.1 Polarimetry
An electro-magnetic wave consists of coupled electrical and magnetic fields.
The two fields are orthogonal to each other and to the propagation direction.
The amplitude of the electric field is a function of its orthogonal polarisations
(Canada Centre forMapping and Earth Observation, Natural Resources Canada,
2015).

Depending on the antenna configuration, it may transmit and receive in
horizontal (H) or vertical (V) linear polarizations. Configured with single-
polarisation, it receives only in the polarization it transmits (giving channels
HH or VV). If dual-polarisation is provided, it transmits in either H or V, and
is able to receive in both polarizations (giving channels HH/HV or VV/VH).
With quad-polarisation, it transmits and receives both polarisations (channels
HH/HV/VH/VV). Using dual-polarisation and quad-polarisation is beneficial
as it gives the possibility to analyse backscatter in different channels simulta-
neously. Different surface types may have similar response in one channel and
different response in another. Because of the certain polarimetric behaviours
of the different surface types, the polarimetry may be of great use in a classifi-
cation task.

The S1 EW mode is available in single and dual polarisation. The dual hori-
zontal transmitted configuration (HH/HV) is found to be the best suitable in
marine polar areas and to improve the sea ice monitoring (Copernicus Space
Component Mission Management Team, 2018, see p. 14,41,49). In sum, for our
classification task, we get two polarisation channels (HH and HV), correspond-
ing to two feature layers of different distinguishing capabilities.

3.3 Multilooking
Image multilooking is smoothing the image, or averaging the values in a pixel
neighbourhood. This can be done in the Fourier domain, by splitting the Fourier
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transformed image to the wanted number of looks and then average over these.
Alternatively, it can be done with a running average filter in the spatial domain.
The latter is used for multilooking in this thesis.

The averaging of image values results in reduced speckle and thermal sensor
noise. The averaging must be done on the real intensity values. Averaging over
complex zero-mean values, results in averaging to zero, instead of averaging
to the non-zero mean-intensity.

3.4 Resolution and pixelspacing
The GRD is the focused SAR data that has been multilooked and projected to
ground range. We use the medium resolution, thus GRDM, but high resolution
is also available for the EW mode’s GRD product. The product is multilooked
with six looks in ground range (rng) direction and two looks in azimuth (az)
direction. It’s pixel spacing is 40x40 [rng x az] [m], which means one pixel
correspond to an area on ground of 40m x 40m. The resolution², or resolving
power, though, is 93x87 [rng x az] [m]. Here the resolution is different from
the pixel spacing, which tells us that the image is already blurred over the
pixels it holds. The resolution tells how far apart two distinguishable objects
on the surface are. Ice types with an extent of more than the resolution size
can be distinguished.

3.5 SAR applied on sea ice
According to Elachi and Van Zyl (2006, p. 172), “one of the most useful applica-
tions of spaceborne microwave radiometry for surface studies is in the mapping
of polar ice cover and monitoring its temporal changes”. In this section we will
briefly discuss the SAR measurements and the SAR feature selection typical
for sea ice.

The sea ice scattering is dependent on surface roughness, size of scatterers
inside the ice, and its dielectric properties. The latter are in turn dependent
on the local temperature and salinity, as the salt molecules in the ice reduce
the radar penetration (Haykin et al., 1994). Volume scattering is significant for
some ice types, e.g. multi-year sea ice, which in general have lower salinity.
For other ice types, e.g. first-year ice, surface scattering dominates (Onstott

2. The resolution corresponds to the mid range value at mid orbit altitude, averaged over all
swaths.
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and Shuchman, 2004, p. 87, 89). The difference in dielectric properties of the
open water and the sea ice makes the backscatter of the two considerably
different.

3.5.1 Feature selection
A better classification can be achieved by a reasonable feature selection, using
the input features with the best class distinction capabilities. Different features
may highlight different surface targets, and certain feature combinations may
give higher ability to distinguish classes. Using more than one polarisation
channel gives the opportunity to create new features based on combinations
of the channels. Some examples of feature selection applicable for sea ice
classification in remote sensing images are worth mentioning.

The Extended Polarimetric Feature Space (EPFS) contains six features; one
for non-Gaussianity and five polarimetric ones from the covariance matrix.
It utilizes the advantages of quad-polarimetry. The texture and polarization
features hold the geometric brightness distinctive for SAR. (Doulgeris and
Eltoft, 2010; Moen et al., 2015)

For sea ice/water distinction, Scheuchl et al. (2001) have found the HV-intensity,
the HH/VV ratio, and the anisotropy to have good distinction capabilities.
Zakhvatkina et al. (2013) found that the most informative texture features
for distinguishing some specific ice types (MYI, FYI, DFYI, LFYI and open
water)³ are correlation, inertia, cluster prominence, energy, homogeneity, and
entropy, along with the third and fourth central moments of image brightness.
Ressel et al. (2016) discuss polarimetric features for X-band SAR, and use
both the complex backscatter, the H/A/α , and eight more features related to
texture.

For the simplicity of this study we restrict the number of features to the intensity
values for the horizontal transmitted dual-polarisation’s two channels.

3.6 The incidence angle problem
A side-looking sensor looks with different incidence angles on the areas on
ground within one scene. This large incident angle range is particularly present
in wide swath scenes. The Sentinel-1 (S1) EW mode has an incidence angle

3. MYI: Multiyear Ice, FYI: First-Year Ice, DFYI: Deformed First-Year Ice, LFYI: Level First-Year
Ice
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range of 18.9◦ − 47.0◦. The radar backscatter tend to be (close to) a linear
function of incidence angle, and the slopes vary with surface type. The intensity-
incidence angle slope tends to be less inclined the more deformed the ice is, and
steeper the higher the moisture content is (Mäkynen et al., 2002). The slopes
will be different for the HH and HV polarisation channels. The non-constant
incidence angle causes the same ground types to be clustered to different
clusters if the incident angle difference between the ground type locations is
too large.

Mäkynen and Karvonen (2017) review the research done on the front of inci-
dence angle correction in sea ice classification and clustering. They experiment
and find that the backscatter versus incidence angle slopes for S1 EW SAR.
These slopes can also be utilized for other C-band SAR (e.g. RADARSAT-2), but
only for the HH band, as the noise floor problem causes the slopes made for
the HV band in S1 to be S1 specific. They also state that the incidence angle
slopes change with seasonal variations.

Our way to deal with the incident angle problem is to make Gaussian tubes,
Gaussian curves of angle dependent means and constant variation. An expla-
nation of this is found in Chapter 7.

3.7 The noise floor problem
The satellite sensor needs a sufficiently strong signal to be able to record it, and
the signal needs to be stronger than the Noise Equivalent Sigma Zero (NESZ)
to be distinguished from the background noise. NESZ is a system parameter
measuring the sensors sensitivity and calculated from the optimized antenna
pattern. It is dependent on the antenna gain and efficiency, and relates to the
Signal to Noise Ratio (SNR).

Thermal properties of the sensor artificially cause the measured response in
each imaging swath to concentrate around the middle of the swath. This
causes a within-swath variation, giving the effect of different pixel value levels
from the middle part of a swath to the outer part of a swath. This is called
the noise floor problem. Thermal noise occurs in both range and azimuth
directions, and is seen as bright scalloping areas in the image. Especially the
cross-polarisation channels are exposed to the noise floor problem, having
generally lower backscatter cross section, but the same NESZ level (i.e. the
SNR is lower). Also ground areas with low backscatter, like calm seas, are
typically more affected by this problem.

The noise floor problem is a hinderance in a classification process, as the pixel
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intensity value-based classification will misclassify the noise areas. To solve this
problem, the noise has to be corrected for. The Sentinel Application Toolbox
(SNAP) has a thermal denoising function, which procedure is described by
Sentinel-1 Mission Performance Centre (MPC) (2017b). This function corrects
for the noise to some extent, but cannot fully compensate for it. The problem
and its solution so far is discussed by Park et al. (2018). As our study is limited,
the noise floor problem is not investigated further in this thesis. To exclude
this topic from our problem, the areas between the swaths are masked out,
and only the mid-swath areas are used in the segmentation, training, and
classification.

3.7.1 Swath emission
The Sentinel-1 EW images consist of five swaths. In addition to the noise
between the swaths, the large difference between the image brightness for
the first swaths compared to the others, should be carefully considered. In
addition to masking out the noise between borders, one should consider if
the first swath also should be masked out, due to both brightness and noise.
By masking away the first swath, the classifier would then be training on the
second to the fifth swaths only and the classification done for the same area.
Unfortunately, a smaller part of the image would then be analysed. In this
thesis we stick to use all swaths, to see how well the algorithms will work for
the whole image range.





4
Data size andrepresentativeness—including seasonalchanges
The lack of—or limited amount of—labelled training data is what makes the
clustering as an unsupervised method attractive, especially for remote sensing.
In this chapter we will discuss the amount and representativeness of the data
used for the labelling task. We will discuss the sensitivity to contamination in
the training data, and the size of the training data. Included is also a section
about seasonal changes.

4.1 Respresentativeness
The segment-then-label method has some challenges. Ideally, the method
should correctly label the automatic generated image segments, based on
training data. A general problem, however, is that the training data may not be
representative. Putting it to the extreme: What if there only is one point per
class, can we rely on the information of that point? An example is shown in
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(a) (b)

Figure 4.1: Given training data for two classes (square and diamond), which class
would the new data point “+” belong to? Alternative (a) with only labelled
training data points available. Alternative (b) including the data set’s
distribution. Figure from pilot.

the Figure 4.1a. Based on the training data alone, the new data point, marked
as a cross, has the closest distance to the square marker, and would therefore
belong to the same class as the square. Taking a closer look on the data set’s
distribution in Figure 4.1b, it is more reasonable to put it in the same cluster
as the diamond marker. This illustrates why clustering would help solving
the classification problem, but is also shows the importance of representative
and reliable training data. In this case, both training samples are representing
outlier values of each distribution.

Ideally, the training data should represent the whole range of possibilities.
This leads to the next example explained by Figure 4.2. If the calculated
distributions are based on the present training data only (given as dot and x),
the distributions would probably look like in Figure 4.2a, yet, in reality, the
distributions may look like in Figure 4.2b. The few data points do not fully
describe the shape and location of the real distributions, being a source of
possible classification errors. This is important to keep in mind, when assuming
the Gaussian distribution in the Gaussian mixture model.

4.2 Overlapping distributions
Overlaps between the distributions lead to another problem: How to distin-
guish between overlapping distributions? Considering the supervised Bayes
classification, the decision boundary is set such that the most probable class is
chosen (see section 8.1). In the EM-algorithm (see section 9.1.2), assumptions
on the underlying distributions are made in order to cluster the data according
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(a) (b)

Figure 4.2: (a) Sample distributions based on present data points. (b) Real data
distributions. The few data points are not able to fully describe the shapes
and locations of the real distributions. Figure from pilot.

to both labelled training data and unknown membership data. However, both
methods may be prone to failure when different data distributions overlap. In
Figure 4.3, a distribution of a given data set is shown in red, with the true
underlying distributions in black. It is clear by investigating only the red curve,
that it may consist of at least three distributions. How could a new data point
(the cross marker) be classified correctly? The data point could belong to either
of the distributions, and thus the final decision could possibly be wrong.

Figure 4.3: A Gaussian mixture distribution. The red line is the total distribution,
consisting of the three black distributions. The new point (x) belongs
to only one distribution, but how is the correct distribution determined?
Figure from pilot.
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4.3 Unknown data classes
Another question is whether a method is able to identify unknown data classes.
As for sea ice, there are a lot of different ice types. If training data does not
exist for a certain class within the image, the ideal method is still able to
differentiate between the unknown cluster and the other labelled classes. An
“unknown” label would specify that the method was not able to recognize
a cluster’s physical interpretable class, e.g. because the location of nearest
possible label was too far away, or above a certain threshold.

Figure 4.4 illustrates a training data set that is missing data for some of
the classes. The data set in Figure 4.4a seemingly contains six differentiable
clusters. In the training data set in Figure 4.4b, only four of the six clusters
are represented. Supervised classification of the data (Figure 4.4a) based on
this training data (Figure 4.4b) yields only four classes, and the data points
belonging to the missing classes will be classified into the four known classes.
An unsupervised algorithm would identify six clusters, but the subsequent
labelling algorithm would only be capable of labelling the data into four
classes. The ideal algorithm, however, should be able to label the last two
clusters as “unknown”.

The essence of this chapter so far is that the resulting labelling is dependent
on the training data at hand. A robust method is ideally less sensitive to small,
incomplete, or biased training data.

(a) (b)

Figure 4.4: (a) The dataset consisting of six possible clusters. (b) Training data corre-
sponding to only four of the clusters in (a). Figure from pilot.
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4.4 Error sources related to remote sensing
In addition to the above mentioned sources of classification error, three sources
directly relating to remote sensing imagery are worth pointing out.

Calibration is important for reducing noise from the satellite sensor and from
the geometrical viewing conditions. Unfortunately, the calibration in itself is
prone to error. Miscalibration may cause shifted class representatives, and thus
misleading classes in the classification. In this work we do the calibration as
described in 5, being aware of the potential error.

Incidence angle is a geometrical viewing condition which is another source of
classification error, as discussed in Section 3.6. Different incidence angles for
the actual data will cause mean intensity shifts, as illustrated in Figure 4.5. In
the figure, all classes have shifted the same amount per angle and stays in the
same class order. In reality the classes shift with a class-specific amount per
incidence angle. The solution we use for this problem is explained further in
Chapter 7 about the Gaussian incidence angle dependent tubes.

4.4.1 Seasonal variations of sea ice
Negligence of the seasonal changes of sea ice can result in the last type of
classification error source that we will discuss in this chapter.

Figure 4.5: Incidence angle causes a shift in the actual data. Note that the cluster
distributions (—) may have interchanged place, as the incidence angle
slope per class may be rather different. The training data classes (- - -) may
correspond to different clusters for 30◦ and 35◦ incidence angle. Figure
from pilot.
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Sea ice is a changing matter, which is worth keeping in mind when doing
classification. The backscatter from an ice type may behave totally different
from one season to another, such that using training data from one season for
classification on an image from another season may be prone to error.

The sea ice’s annual seasons are often referred to as being in different ther-
modynamic stages: freeze-up, winter, early melt, melt onset, and advanced
melt (Mäkynen and Karvonen, 2017; Barber et al., 2001). The thermodynamic
properties, along with the physical behaviour and dielectric properties of the
ice, vary with the ice stages throughout the annual cycle. The different sea
ice types will have different types of variations and changes when going from
one season to the next (Barber et al., 2001). From the classification point of
view, this means that classes being easily distinguishable in one season, are not
necessarily distinguishable in another season.

The salinity and the snow pack will have impact on the backscatter. Studying at
the micro plane, the pores and ponds in the snow will be able to fill themselves
with either water or air, and thus give rise to different scattering mechanisms.
The gradual deformation of the snow crystals also effects the backscatter.
The amount of water in the ice or snow will cause a variation in dielectric
properties, and thus give variation in the backscatter signal. Snow-covered sea
ice will give different dielectric response, and this will vary with the amount of
water contained in the snow. Both salt from the underlying sea and the solar
illumination will give physical changes of the ice, resulting in the ice having
different backscatter conditions (Barber et al., 2001).

For the melt and summer seasons the different sea ice classes will give more
similar backscatter, as the surface conditions of the ice classes are more equal.
Meltwater on the ice surface prevents the distinct ice surfaces below from
being detected, due to less penetration. E.g. distinguishing flat ice from small
ridges can be hard with surface meltwater. During the winter season, on the
other hand, the ice is more stable, the ice types’ backscatter levels being more
different (Barber et al., 2001).

Many studies are done to investigate how to do remote sensing of the changing
ice, thereby Park et al. (2016), who have investigated sea ice for the late summer
and early autumn with melting and freezing periods, resulting into what can
lead to better sea ice classification for those seasons where melt ponds occur on
the ice and the ice is covered by a various amount of water, and ice properties
are not stable. Another study (Casey et al., 2016) is on how to use both L-band
and C-band to get better separability of multiyear ice (MYI) and first-year ice
(FYI) in the season where the distinguishability in C-band is rather poor.

The overlap between the ice type’s distributions vary across the year—i.e. one



4.4 ERROR SOURCES RELATED TO REMOTE SENS ING 31
ice type may shift its overlap with different other ice types during the year.
The distribution of a specific season also may vary a lot from year to year, and
for the different Arctic regions. The winter (typically at least January - April)
is the season with least changing classes. One year May could be included
in the winter season, whereas the melt season may begin during May. Melt,
summer, and freeze-up stages have larger within-class changes. June can be
the period of melt onset, and July and August will most often have summer
season behaviour, before freeze onset in late August or September (Bliss et al.,
2019).

With this background the training and test data should be carefully chosen.
In our work we have training data polygons drawn for images acquired from
March to July, both winter, melt, and summer season. We chose to use all these
images even though they are from different seasons, as the error is likely to
affect both our methods equally.





5
Preprocessing
The image products from the S1 satellite that we use are described in Chapter 3.
An overview over the exact scenes used can be found in Tabel C.1 in Appendix
C. These are used for training of the fully supervised classifier, and for the
labelling stage within the segment-then-label. In this chapter we focus on the
preprocessing of these scenes.

The Sentinel Application Platform, SNAP, is used for the thermal correction
and radiometric correction preprocessing steps.

5.1 Thermal noise removal
The thermal noise comes from the properties of the sensor as described in
Chapter 3.7, and can be removed or reduced. The NESZ thermal noise pattern
in range direction for the S1 EW mode follows a specific pattern Sentinel-1
Mission Performance Centre (MPC) (2017b, p. 4 and 6). Based on this pattern
a denoising vector for the range direction can be made Sentinel-1 Mission
Performance Centre (MPC) (2017b, p. 11), which is then used in the denoising
process. Similarly process is done for the thermal noise in the azimuth direction.
Some of the thermal noise, especially in range direction, may still be present in
the image after thermal denoising, leading to the noise floor problem discussed
in Section 3.7. This occurs mostly in the cross-polarisation channel.

33



34 CHAPTER 5 PREPROCESS ING

5.2 Radiometric calibration
A raw SAR image is impaired due to antenna gain and antenna effective area.
Radiometric calibration of the SAr image is done to remove the image’s depen-
dency on the imaging sensor, and to adjust the image due to the geometrical
viewing conditions; the incidence angle and the topographic conditions. After
calibration, the image is independent also to the distance between radar and
target.

The radiometric calibration ensures the possibility to compare geophysical
variables derived from different points of time and from different sensors.

When doing the calibration, the user decides the projection of the image, either
ground range or slant range. The GRD is projected to ground range, and the
pixel values are the detected magnitudes. (Sentinel-1 Mission Performance
Centre (MPC), 2017a, see Section 7.3.1)

5.3 Exported layers
After the thermal noise correction and the radiometric calibration are performed
in SNAP, the intensity value images are exported as separate for further use.
From SNAP are also retrieved the land mask, masking out land, and the inci-
dence angle for the whole image. The land mask is then further modified, to
ensure the mask covers both land and the nearest approximately 50 pixels to
land. This is done by applying a convolution filter, via the Fourier domain.

Examples of the incidence angle image and the land mask image are illustrated
in Figure 5.1.

5.4 Multilooking
The S1 Ground Range, Multi-Look, Detected Medium resolution level-1 product
(GRDM) is already multilooked, see Section 3.3. Applying even more looks
could nevertheless be a handy tool for our further image analysis.

Using more looks reduces speckle and noise variance, and consequently causes
a higher radiometric resolution and reduction of class overlaps. On the other
hand, the spatial resolution is decreased. Small areas, like single leads and
ridges, may not be detected as such, because of the smoothing. Larger areas
containingmany of these may still be detectable, but then as mixtures of varying
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abundances rather than being identified individually. Such mixture pixels have
a higher abundance for this narrow ice class. The size of the mask has an impact
on this, as more looks means more smoothing, thus more mixing within a single
pixel’s value. Smoothing the edges between the different ground targets also
results in mixed pixels.

The number of looks is also related to the thermal noise patterns. If fewer
looks are applied, the signal noise variance is higher, such that the thermal
noise patterns are negligible. Thus the images are less affected of the thermal
noise. By using more looks, the image noise is more reduced, the signal has
less variability, and the thermal noise, which is no longer negligible, will have
a larger influence on the image.

The GRD data, without any additional multilooking, suits for detection of ice
areas larger than 40x40 m. If the goal is to do a close investigation of the
ice, fewer looks may be better when using the EW mode. On the other hand,
because the EW mode is so wide, it is well suited for monitoring wide areas.
Thus it is applicable for large-scale projects, e.g. making larger-scale sea ice
maps.

Figure 5.1c shows an example of a sub-image without any additional looks, and
Figure 5.1d shows the same sub-image multilooked with a 5x5 sliding average
filter. The appearance in the latter is clearly more blurred that in the first, but
the general contours are still visible.

5.4.1 Downsampling
The original images have a size of ca. 10 000 x 10 000 pixels. The repetetive
classification ofmany such images is a time-consuming process, thus the images
are downsampled, every 5th pixel in each spatial direction being picked, in
analogy to the multilooking process done with a 5x5 filter. This results in
a downsampled image of ca. 2 000 x 2 000 pixels, a pixel amount that is
one-twentyfifth of the original.

The downsampling changes the pixel spacing. (1) If no downsampling, the
pixel spacing is kept the same as for the original image (40 x 40)[m x m], and
the resolution is lowered from (93 x 87)[m x m] to (93 x L) x (87 x L). (2) If
the image is downsampled with a step of (L x L), i.e. taking every Lth pixel in
both spatial directions, the resolution is still lowered to (93 x L) x (87 x L), but
the pixel spacing is now (40 x 40) x (L x L)=(40 x L) x (40 x L).
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(a)
(b)

(c) (d)

Figure 5.1: Examples of (a) an incidence angle image and (b) a land mask extracted
using SNAP. The borders and between-swaths are masked away afterwards.
Sub-images extracted from Image no. 2 (c) without additional multilooks
and (d) with 5x5 looks [rng x az].



6
Training data and polygons
The data is as described in Chapter 3 and preprocessed as in Chapter 5. In
this chapter we briefly describe the ice classes and the training data used in
this thesis. A section about why the open water class was split in two is also
included.

The exact scenes used in this thesis are listed in Table C.1 in Appendix C. These
are chosen as it for these images existed training data polygons with different
ice type examples (defined by J. Lohse, 2019)¹. These are from the period from
March-July, and we are aware that this is a possible source of error, see Section
4.4.1.

6.1 Polygons
When drawing the polygons, it is important that a broad range of incidence
angles are covered for each class, for the purpose of getting more credible slope
values. Therefore, ideally, as many images as possible should be included, in
order to get enough training data for all classes, including the whole incidence
angle range from a variety of ice type constellations. When joining training
data from more images, one must ensure the polygons represent the whole
incidence angle range. Otherwise there is a risk of having little incidence angle

1. The polygons for classes 1-5 are defined and drawn by J. Lohse, 2019.
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variations within a class, making the slope of the class inaccurate. It is possible
to classify an image based on the polygons drawn within its own frames. This
is not recommended as the polygons may not spread over the incidence angle
range, but one class may be concentrated in a specific part of the image. The
training is not very time-consuming, taking a couple of minutes, as the training
set are of limited sample size.

Polygons of the seven ice classes are drawn in 27 images (see Figure 6.1). The
classes 6-7 are self-drawn.

6.2 Ice classes and training data
In this work seven ice classes are used, as they are clearly present in some or
more of the images. By further investigation, these classes could have been
divided into additional subclasses. The seven ice classes and their associated
class number are listed in Table 6.1. The training data for theses classes are
extracted from the mentioned image polygons, which are illustrated in Figure
6.1.

The training data amount for each class for each image is presented in Table
C.2 in Appendix C. The particularly disturbed zones between the swaths are
masked away from the images (see Figure 5.1b), such that only the mid-swath
points are used for the analyses. By masking away these areas, we avoid the
images being too much affected by the noise floor problem (see Section 3.7),
which we want to ignore in this work. This is done as the incidence angle
dependency in the data is still there.

Both from the polygons in Figure 6.1 and from Table C.1, we see that two classes
(6 and 7) dominate the training data. This requires a careful subsampling from
the classes, ensuring all classes are still well represented.

Data from the polygons in all images are combined to a common training data
pool, where each sample consists of a HH value, a HV value, and an incidence
angle value. Scatterplots of the data in each class for both polarizations are
illustrated in Figure 6.2. The fraction of the training data shown is different
for HH and HV, but in both cases we get an impression of how the data is
distributed in the incidence angle range. The linear decaying dependency is
particularly clear for the first, fifth, sixth, and seventh classes.
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Table 6.1: Enumerated training data classes

Ice type Class no.
Leads with Water/
Newly Formed Ice

1

Thick Ice, Flat 2
Thick Ice, Ridged 3
Thin Ice 4
Brash/Pancake Ice 5
Calm Open Water 6
Windy Open Water 7

6.2.1 Open water
The first dataset comprised six classes. The variance of the “open water” class
was too large, andwas therefore split into the subcategories “calm” and “windy”,
giving a total of seven classes in our dataset.

A too large variation within a class could make the distribution of the class to be
covering multiple other classes, making further classification difficulties. The
mean class value in the joint open water class would also be biased, favouring
the subcategory more present.

The backscatter from open water is dependent on current wind speed. With no
wind, the water surface acts as a mirror, reflecting the radar signals away from
the transmitting sensor. Wind gives rise to a rougher surface, which reflects the
radar signals more evenly, giving more backscatter. The windy water appear
brighter than the calm water in the SAR image, and the two have different
incident angle dependencies. The backscatter from windy open water tends
to be somewhat equal to some ice classes. Therefore, windy open water easily
could be classified to one of the most similar ice classes.

The wind effect applies on water, but the hard ice surface remains the same.
Ice covered with surface melt water could get a similar effect, e.g. in the melt,
freeze and summer season.

One must ensure that all classes have representative data. If some range of the
variation is not in the training data, this area is more likely to be misclassified
to other classes (see the discussion in Section 4.3 and Figure 4.4). If parts of
the open water backscatter range are not represented, the lack of data causes
the supervised method to be unable to recognise this backscatter as a part of
the certain class.
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An other possibility for classes with large variation is to make Parzen functions
for the classes instead of Gaussians. The Parzen is more flexible to the training
data, and is not restricted to a certain distribution.



Figure 6.1: The training data polygons made in each image. The training data samples, also used for validation, are extracted from these
polygons. Upper left image is scene no. 1. The images follow chronologically from left to right, line by line. The polygon class
legends are in the lower right. The majority of the training pixels are from Calm Open Water (cl6) and Windy Open Water (cl7).
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Figure 6.2: Training data in intensity-angle domain per class and polarisation (HH
in row 1, 3, and 5, HV in row 2, 4, and 6). All samples plotted. Classes are
listed chronologically in reading direction. All classes plotted together in
the lower right, using a subsample for each class.



Part II
Methods and experiments
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Gaussian incidenceangle-dependent tubes
A Gaussian mixture is used for both the fully supervised and the segment-
then-label schemes. In this chapter we describe the Gaussian incidence angle-
dependent tubes, being Gaussian functions, with incidence angle-dependent
means and constant variance. The shape of these structures will look tube-like.
These tubes are defined in order to solve the incidence angle problem (see
Section 3.6) in the classification task. To make the comparison fair between
the two schemes, the models for incidence angle dependency are made equally
for both methods, and adopted in both schemes.

The Gaussian tubes are determined iteratively in the segmentation, whereas
for the fully supervised classification the Gaussian tubes are calculated directly
from training data, as one then knows which points belong to which class.

The mean intensity is known to decay exponentially with incident angle θ ,
using the notation of Cristea et al. (2019):

Ī (θi ) = Ī0e
− θic

where c is a surface-specific constant. This leads to a linear decay of the
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log-intensities, calculated by:

ĪdB(θi ) = 10loд10(Ī (θi ))

= 10loд10(Ī0e−
θi
c )

= 10loд10(Ī0) + 10loд10(e−
θi
c )

using the formula for change of base in a logarithm

ĪdB(θi ) = 10loд10(Ī0) + 10
loдe (e−

θi
c )

loдe (10)

= 10loд10(Ī0) + 10
−θic

ln(10)
= 10loд10(Ī0) − 10

1
cln(10)θi

This can then be written as the mean function of incidence angle for each class
k with the following notation

µk (θi) = ak − bkθi, k = 1, ...,M, i = 1, ...,N

where M is the number of classes, and N is the number of samples, and

ak = 10loд10(Ī0)
bk = 10/cln(10)

The intercept ak is the log-intensity at an angle θ0 = 0 in [dB], and the slope
bk is the intensity decay rate in [dB/1◦], both class k specific.

The Gaussian component k then have a mean vector µ̄k as a function of
incidence angle, µk = ak − bkθ . The covariance Σk is assumed to be constant
over the incidence angle range. The distribution of the mixture model with
d dimensions and M components, where each component k is described by
(āk , b̄k ,Σk ), thus have the probability density function given by:

pX ,Θ(x,θ ) =
M∑
k=1

πk

(2π )d/2 |Σ|1/2
e

(
−1

2
(x − (āk − b̄kθ ))TΣ−1(x − (āk − b̄kθ ))

)
(7.1)

where āk and b̄k are vectors with length d, and Σ us the covariance matrix.
Note that for equiprobable classes, the prior πk is equal for all classes.



8
The fully supervisedclassification
A Maximum Likelihood classifier is implemented, as a fully supervised method,
in order to compare the efficiency of the segment-then-label method against
it. The classifier is self-implemented in the Python language, and the analyses
performed on this implemented version. Here follows the concept of Bayesian
decision theory for the implementation, followed by some implementation
details and general results using this method.

8.1 Bayesian decision theory
Let’s say that p(x |ωi ) is the conditional distribution of the data given affiliation
to class ωi , and P(ωi ) is the prior probability for class ωi . Using Bayes rule,
see Appendix A, the conditional probability of a class given some data points
x, also called the posterior probability is:

P(ωi |x) =
p(x|ωi )P(ωi )

P(x)
where P(x) is the probability density function for the data points x.

Bayesian decision theory is based on determining the most likely possibility.
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According to Bayes classification rule in a classification task with M classes,
ω1,ω2, ...,ωM , data points x are classified to class ωi if the probability for the
point being in class ωi is higher than the probability of belonging to other
classes:

x ∈ ωi i f P(ωi |x) > P(ωj |x) ∀j , i

The decision boundary x0 that optimally separates the classes ωi , i = 1, ...,M ,
is found by the discriminant functions дi (x), i = 1, ...,M:

дi (x) = p(ωi |x)

using Bayes rule, where p(ωi |X ) ∝ p(X |ωi )P(ωi )

дi (x) = P(ωi )p(x|ωi )

such that the decision boundary is drawn where

x0 : P(ωi )p(x|ωi ) = P(ωj )p(x|ωj )

This is called the Maximum A Posteriori (MAP) approach, as it maximizes the
posterior as the discriminant function.

8.1.1 The Maximum Likelihood classifier
Equal priors for all classes i result in the Maximum Likelihood (ML) approach,
where the discriminant function is simplified to be a maximization problem of
the likelihood functions for each class:

дi (X ) = p(X |ωi )

such that the decision boundary is drawn where

x0 : p(x|ωi ) = p(x|ωj )

8.2 The Mixture of Gaussian componets
For the supervised ML classifier the class membership zik is 1 only for samples
xi with the class label of class ωk :

zik =

{
1, if xi ∈ ωk

0, if xi < ωk
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as the labelled training data belong exclusively to one class.

In a supervised task, where labels are provided for the training data, the
mixture components will be deduced from the samples with specific labels.
The expressions for the parameter equations for the mean hyperparameters
and the covariance parameter follows for the mixture components (see Chapter
7) are found with the following equations, derived from Equation 7.1:

ak =

∑nk
i=1 xi |x ∈ωk + bk

∑nk
i=1 θi

nk

bk =
−∑nk

i=1 θixi |x ∈ωk + ak
∑nk

i=1 zikθi∑nk
i=1 θ

2
i

Σk =

∑nk
i=1(xi |x ∈ωk − (ak − bkθi |θ ∈ωk ))(xi |x ∈ωk − (ak − bkθi |θ ∈ωk ))T

nk

The hyperparameters a and b are dependent on each other, and are found via
a linear regression of the training data input in the joint space of log-intensity
and incidence angle. As the covariance is assumed to be constant with incident
angle, the covariance is calculated for θ0 = 0, such that the expression is
reformulated:

Σk =

∑nk
i=1(yi |x ∈ωk − (ak ))(yi |x ∈ωk − (ak ))T

nk
(8.1)

where yi = xi − bkθi are the sample points projected to the θ = 0◦ and ak still
is the mean value for all samples projected to θ = 0◦ incidence angle.

8.3 Implementation
The Bayesian ML, based on equiprobable normally distributed classes, is im-
plemented. The features used are the cross- and co-pol channels (HV and HH),
along with the incidence angle. The classes are considered Gaussian tubes (see
Chapter 7), meaning the classes are components of a Gaussian mixture. The
classification scheme is as follows:

1. The training stage consist of estimating the parameters of the Gaussian
distribution for each class. The mean hyperparameters a and b

µk (θi ) = a − bθi

are found by performing a linear regression in the intensity-incidence
angle space. The covariance of the samples in class k is found by the
θ = 0 projected sample points, as in Equation 8.1.
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2. A linear discriminant function is made for each class. The monotonic
logarithm function is used on the discriminant function to get

дk (x) = ln(p(wi |x)) wi : classi

applying Bayes rule

= ln(p(x|wi )P(wi ))
= ln(p(x|wi )) + ln(P(wi ))

Inserting a gaussian distribution and excluding priors, as classes are
equiprobable, and terms that are equal for all classes.

дk (x) = −
1
2
(x − µk )TΣ−1

k (x − µk )

Amultivariate normal function is used for implementing this discriminant
function.

3. The class k for which дk (x) is maximized for a data point xi , is set as
class for this data point.

8.3.1 Training data
Training data for the ML classifier are extracted from the manually drawn
polygons, and contains the HH, HV and incidence angle features (see Chapter
6). The trained ML classifier is able to recognize seven classes, each described
by a slope, an intercept, and a covariance matrix.

8.3.2 Decision
The trained classifier is then utilized for classification of each pixel. As each
class k is described by the set (ak ,bk , Σk ) for k = 1, ...,M , each class will have
a multivariate normal probability density function as given in Equation 7.1.
The samples to classify are given as (xi ,θi ) for i = 1, ...,N , where N is the
total number of samples. (xi ,θi ) are inserted into the M multivariate normal
functions, one function for each class. The decision for one pixel is then the
class associated with the highest probability for that pixel. This is a one point
sample against a set representative measure, where the set is represented with
both mean and variance (see Section 2.1.1).

A programming efficiency issue occurs if expansion of the classification to the
whole image is done by a for-loop over all the pixels. As this takes rather
long time, also when the image is downsampled, the decision is optimized by
looping over the classes instead, as described in the preceding section.
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8.4 Validation
A 10-fold cross-validation is performed for validation of this method separately.
The training data set is split into 10 equally sized parts. For each of the 10 runs,
one of the parts functions as validation, whereas the nine parts left are used
for training the classifier. The procedure of training and classification on the
validation set is run 10 times, and the classification accuracy for all runs are
averaged to get the final classification accuracy.

The training data merged from the original-sized 27 images are stratified such
that each class has a training sample size of 100 000 samples. The 10-fold
cross-validation then produces an accuracy of 56%. A 100-fold cross-validation
gives an accuracy of 56.24 ± 0.06%.

Using the whole training data set without stratification yields an overall cross-
validated accuracy of 60%. As this data is dominated by open water, we
conclude that the classification of the open water samples pulls the accuracy
upwards.

8.4.1 Examples of the visual results
For visual inspection of the result, an example of image classification is shown
in Figure 9.1f. Land is masked out, and we will only discuss the image parts
which are not masked. The left and uppermost area represents open water. The
classified image shows that a large part of the open water area is misclassified
as ice. Nevertheless, edges, and the main structures of the image are captured.
Even though the first swath is significantly brighter than the rest, and therefore
often is misclassified,we see that using the incidence angle dependency corrects
for this.

Another example is shown in figure 9.2f for an image of an area consisting
mostly of ice. This is a visibly good result, as the thin, long areas of thin ice are
recognized, as well as the large areas of thick ice. Also in this example we see
that there is no clear class deviation from near-range to far-range.





9
Segmentation and labelling
An automatic segmentation algorithm, which will be further described in this
chapter, is provided by A. Doulgeris. The code for this algorithm is used in its
Python version. Even though the segmentation algorithm is ready-implemented,
the preprocessing before the segmentation and the framework for the testing
are implemented specifically for this thesis. All analyses, the testing, and the
validation are implemented in Python.

9.1 Segmentation
Weuse a segmentation algorithm (hereafter: “the segmentation”) developed for
multi-polarization SAR images, that is an automatic Expectation-Maximization
(EM) algorithm utilizing a Gaussian Mixture Model (GMM). It considers the in-
cidence angle, and optionally does a MRF smoothing. The determined clusters
are Gaussian tubes, i.e. Gaussian mixture components, having incident angle
dependent means (see Chapter 7), with specific incidence angle dependency for
each component. The obtained segment information is used for expanding the
segmentation to the whole image. In the end an optional MRF smoothing does
a contextual smoothing in order to achieve a less noisy result. This method is
efficient enough for operational use as it is fast and determines the number of
classes automatically (Cristea et al., 2019; Doulgeris and Cristea, 2018; Cristea
and Doulgeris, 2018).
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This method is an extension of the Extended Polarimetric Feature Space (EPFS)
method presented in Doulgeris (2013). The EPFS method extracts features
from the local neighbourhoods, and the features are transformed to be Gaussian
or Gaussian-like, to make them suitable for a Mixture of Gaussian clustering.
This method extends the basic Mixture of Gaussian method by automatically
determining the number of classes, and by handling of the incidence angle
dependence within the classes. The incidence angle awareness is useful for
wide incidence angle range images, whereas the EPFS method still works fine
for narrow-swath images, where the incidence angle decay is negligible.

9.1.1 Features
The EPFS method contain polarimetric and textural features, and our segmen-
tation is also capable of taking such additional features, along with multiple
polarization layers. We are only using the log-intensity layers for the HH and
the HV channels. The intensity layers must be in the log-intensity versions
given in decibels, as the process is based on the linear decay of log-intensities.
The use of other features than the intensity layers is out of the scope for this
thesis.

9.1.2 The Expectation-Maximization algorithm
As the samples in a clustering task do not have labels, the mixture components
must be found iteratively. The lack of labels causes the idea of an incomplete
dataset (Theodoridis and Koutroumbas, 2009, p.45).

The EM algorithm is a probabilistic method, solving tasks with incomplete
datasets. E.g. for problems involving mixture models where labels are not
present. It is a cost function optimization-based clustering algorithm, the cost
function to iteratively optimize being the complete likelihood of both observed
and latent data in the incomplete dataset:

Q(Θ) = E{LL(Θ}

such that the optimization is given as

∂E{LL(Θ)}Q (Z )
∂Θi

The latent data, which could be the labels or class membership function, gives
the opportunity to perform the statistical expectation. The expectation step
updates the expectation of the latent data, based on the current iteration
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parameter estimates. The parameters are then updated in the maximisation
step, by maximising the complete likelihood of the parameters.

The algorithm runs iteratively over the two steps until convergence is reached
for the parameters, and each component is associated with the optimal mean
and covariance parameters. The latent data is the membership function zk ,k =
1, ...,M , where M is the total number of components. The expectation step
thus updates the membership weights zik , such that it denotes the expected
probability that pixel i belongs to the class k. A derivation of this expression is
shown in Appendix B.

E {zim}p(Z |X ;Θ) =
p(xi |zim = 1,Θ)∑M
k=1 p(xi |zik = 1,Θ)

For GMM a Gaussian distribution is inserted for p(xi |zim = 1,Θ).

The maximization step updates the parameters Θ = [µ(ak ,bk ), Σk ]. The mean
function holds 2 parameters, a and b (see Chapter 7). The parameter update
expressions are shown here, and the derivations can be found in Appendix
B.

ak =

∑n
i=1 zikxi + bk

∑n
i=1 zikθi∑n

i=1 zik

bk =
−∑n

i=1 zikθixi + ak
∑n

i=1 zikθi∑n
i=1 zikθ

2
i

Σk =

∑n
i=1 zik (xi − (ak − bkθi ))(xi − (ak − bkθi ))T∑n

i=1 zik

9.1.3 Goodness-of-fit testing
The automation of the EM algorithm is made by running this procedure for a
range of numbers of classes. The model with the best fitting amount of classes is
chosen when the goodness-of-fit criterion is first met. In principle this criterion
is a Pearson’s χ2-test, comparing the experimental values with theoretical
values from the χ2 distribution. Doulgeris (2015, section II.C).

9.1.4 Cluster decision
A clustering could be performed based on the resulting probability for a sam-
ple belonging to a class, given the mixture components achieved from the
converged EM scheme. The final clustering is then a hard Bayesian decision,
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where a sample belongs to the most probable class. The decision could also be
stochastic based on the probability for the different classes. The first case is
used in this segmentation.

9.1.5 Markov Random Field Smoothing
The problem discussed in Section 4.2, about the possibility of clustering a point
to the wrong distribution due to overlapping distributions, is solved by applying
a MRF smoothing. The smoothing is optionally done after the segmentation
from the EM algorithm. It is performed for a visibly better result.

For images, the MRF fields have the trait that a pixel directly depends only
on the other pixels in its local neighbourhood of a specified size. A pixel is
not directly independent, but rather indirectly dependent through the Markov
property, on all other pixels in the image (Elachi and Van Zyl, 2006, p.434).
The Markov field does an adjustment of the class priors based on the local
neighbourhood, that leads the Bayes classifier to possibly reclassify pixels in a
probabilistically rigorous manner.

For a fair comparison of the method, when no MRF smoothing is implemented
for the fully supervised method, the MRF smoothing is also not used after the
segmentation.

9.1.6 Tuning possibilities
The segmentation has two possible tuning parameters. These are the number
of looks in the input feature and a subsampling option.

Number of looks
The GRDM product is already multilooked as a part of the product’s nature.
The segmentation algorithm does not do an additional multilook, but the user
provides the algorithm with inputs that are either additionally multilooked or
not. The benefits of using additional looks are discussed in Section 5.4.

The segmentation is initially run to see how the multilook tuning plays a role in
the algorithm. Different number of looks are used in separate runs: filtersizes
of 15x15, 9x9, 5x5 and 3x3 pixels. A 15x15 filter gives a resolution of 1 395 m x
1 305 m, thus an ice area needs to be at least of this size to be distinguishable
from other ice areas. After using a 5x5 px filter, this size is 465 m x 435 m. Two
different ice types will smooth over in each other if they are nearer than the
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resolution distance. This means that one for example may loose narrow leads.
For larger multilook filters the thermal noise will be too broad, disturbing a
larger part of the image.

We consider a 5x5 pixels multilook filter as appropriate, as the speckle and noise
is sufficiently smoothed, but the small and tiny ice areas are still visible.

Subsampling and sensitivity
A sub-sampling option is set before the clustering, for controlling the number
of samples used for the training. This option restricts the amount of pixels
that the segmentation training uses for tuning the mixture components. The
clustering process speeds up and gives a quicker result by using fewer samples.
This comes at the cost of the clustering sensitivity, which increases with sample
size. A larger sample size give higher sensitivity, and a smaller sample size less
sensitivity.

By sensitivity is here meant the variance of the Gaussian curves. The lower the
variance, the finer the Gaussian curves, and the easier it will be to distinguish
between partly overlapping classes. The histogram used for the Pearson’s χ2-
test will be smoother with more samples. The goodness-of-fit test will thus
achieve its threshold more rapidly for less samples, and stop at a stage with
fewer clusters. With high sensitivity, the variance is lower, thus it is easier to
distinguish more clusters. With low sensitivity the algorithm gets a challenge
by distinguishing overlapping classes, whereas this could be a benefit if fewer
classes is preferred.

Different levels of sub-sampling are tried for a variation of multilook levels.
We want around 3-4 classes more than there are in the image, to have the
opportunity to label more segments with the same label. With 5x5 multilook a
subsampling of 80 000 samples is chosen, as this gives an appropriate amount
of segments in a realistic amount of time.

9.2 Labelling
From the literature 1.2, it is suggested to use a distance measure. Moen et al.
(2015) found that the Mahalanobis distance outperformed the four other dis-
tance measures used for labelling of the Gaussian-like segments. Based on this
our labelling uses the Mahalanobis distance

d(x, y) =
√
(x − y)T Σ−1(x − y)
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The Mahalanobis distance is calculated from two normal functions; the Gaus-
sian functions resulting from the segment part is compared against the Gaussian
functions obtained from the training data. The Mahalanobis distance is related
to the likelihood of the Gaussian function. The logarithmic version of the
Gaussian likelihood is given by

LL(Θ) = −d
2
loд(2π ) − 1

2
loд(|Σ|) − 1

2
(x − µ)T Σ−1(x − µ)

where d is the number of dimensions, and µ and Σ are the Gaussian parameters.
Excluding all constants, this is related to the Mahalanobis distance, but with
an additional covariance term. As the Mahalanobis distance is found to be well
performing for labelling, we assume that using the likelihoods will give the
same level of performance as shown for the Mahalanobis distance.

Two approaches of using the likelihoods in the labelling are considered. The
first is the total likelihood. The likelihoods for belonging to each segment are
calculated for all training data points, based on the segments’ slopes and the
training point’s location. Then each segment is labelled with the training data
class’ label with the highest normalized total likelihood.

The second approach is a majority counting among the likelihoods for a seg-
ment’s pixels. The pixels within a segment are compared to the training data
class slopes. Each segment pixel gets a temporary class label, being the most
likely training data class, before the labelling of the whole segment is set as
the majority class among its own pixels.

Themajority countingmay be amainmechanism to add benefit for the segment-
then-label method with respect to contamination. This is because the majority
vote will essentially filter outliers. The total likelihood approach would still
suffer from the contamination problem, as it does not have the outlier filtering,
but blends in all likelihoods in the total likelihood.

9.2.1 Important consideration
The training data will contain seven classes, as we have training for those.
The results from the segmentation may on the other hand contain different
amounts of classes, depending on the time and area of the acquisition and the
parameter tuning used. Some images simply do not contain certain ice types.
Therefore, some of the classes represented in the training data may not appear
as labels when classifying. It may also be that more than one cluster from
the segmentation happen to have the same class as the one with the shortest
distance, resulting in many clusters having the same label.



9.3 SEGMENTAT ION AND LABELL ING EXAMPLES 59
9.3 Segmentation and labelling examples
Visual results from the segmentation on two different images are shown in
Figures 9.1 and 9.2. The HH and HV log-intensity images processed with a
5x5 multilook are shown for the respective scenes in Figures 9.1a and 9.1b,
and Figures 9.2a and 9.2b. These are used as references for comparing the
classification results against the brightness images. The masked-out areas
(black) are not considered in the analyses, as including noise and land that do
not follow the model would affect the slopes too much. Figures 9.1c and 9.2c
show the segmentation results for both images,using a subsample of 80 000 and
processed with a MRF smoothing. The corresponding slopes for each segment,
together with the scatter for each segment, are shown in both polarizations in
the Figures 9.1d and 9.2d. The results after labelling the segments are shown in
Figures 9.1e and 9.2c for the respective scenes. The MRF smoothing is applied
here as an example of the clear visual improvements it adds. The difference
is clear comparing with the ML result in Figures 9.1f and 9.2f, where MRF
smoothing is not applied. Note that in the later comparison we do not use the
MRF smoothing at all.

In Figure 9.1c the segmentation determines 15 segments. The edge between ice
and water is found. We see that the edge consists of at least two ice segments:
the bright green and the orange. As the open water area contains a wide
range of brightness values even for a single incident angle, it contains many
segments. The inner ice area also consists of many segments. This seems to
be somewhat range dependent, as the midswaths consist of some particular
segments, whereas the far-range-swaths consist of other segments. Different
clusters are made for the ice region and the open water region. The segments
on the open water and on the ice do not seem to be shared. The amount of
the same segments on ice and water is marginal. Therefore, the segmentation
seems to be working well for this image. Remember that after the labelling,
the many segments are merged into the fewer classes.

The segmentation result in Figure 9.2c is an area over ice, and contains a
small area of open water in the middle of the first swath (left in image). The
segmentation is dominated by the dark blue and dark green segments. The long,
thin areas across the image are four different segments. The open water has
bright green and orange segments. Thus, this image seems to be realistically
segmented, according to what is seen in the brightness images.

Notice that even though we have seven training classes, the segmentations
have achieved up to 15 segments. For the other images the number of segments
is from 4 to 14. The number of segments is deliberately higher than the number
of classes, as more segments are allowed to belong to the same class.



60 CHAPTER 9 SEGMENTAT ION AND LABELL ING

(a) (b)

(c)
(d)

(e) (f)

Figure 9.1: Image no. 11, with areas of ice, open water, and land. (a) The HH and (b)
the HV log-intensity images. (c) Segmentation results. (d) The segment
slopes in both polarizations. Colours do not match segments. (e) Result
using the segment-then-label method. (f) Result using the ML classifier.
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(a) (b)

(c)

(d)

(e) (f)

Figure 9.2: Image no. 5, for the most containing ice. (a) The HH and (b) the HV
log-intensity images. (c) Segmentation results. (d) The segment slopes in
both polarizations. Colours do not match segments. (e) Result using the
segment-then-label method. (f) Result using the ML classifier.





10
Comparison of the twomethods
This chapter focuses on the comparison of the methods’ performances for
two cases: (1) The amount of training data and (2) the contamination or
mislabelling in training data.

Two cases
The training data amount case (1) is chosen, as the background for unsupervised
learning is to not use training data. One wants to add as little training data
as possible in the labelling stage, to get the same good results as for a direct
supervised method. The supervised methods have shown good performance
when enough training data is available, but we want to test if the segment-
then-label method can outperform it for a small training data amount. The
contamination case (2) is chosen as the second test case, as it is important to
know how the two methods behave with certain amounts of outliers in the
training data.

The maximum amount of training data is when using all training data samples.
A training data amount of “1 000” means that 1 000 samples are randomly
picked for each class to train the classifier. Note that the whole downsampled
data set in first split into training (80%) and validation (20%), and then the
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80% training data is restricted. Thus, the size of the validation sample remains
the same size when training data size is restricted.

The contamination test is done using 1 000 samples per class. A “10%” con-
tamination means that 10% of the samples within each class is randomly
mislabelled to the other classes. In such a way some of the training data
samples interchange labels, one class getting labels of other classes.

Performance measure
Classification accuracy is used as the measure of the classification performances.
Two types of classification accuracies are tested. The first is the total accuracy,
being the fraction of all correct classified data points, not regarding the classes.
The second is the mean class accuracy, calculating the classification accuracy
for each class separately, before averaging over the classes. To avoid any class
dominance when using the total accuracy, one has to ensure that the amount of
validation samples is the same for all classes. The mean class accuracy bypasses
this problem by letting each class have the same influence, regardless of the
number of samples per class.

The accuracy measure needs to be carefully implemented, as there are many
different images, containing a various amount of validation samples from the
different classes. When a few classes dominate in an image, the accuracy will
be heavily influenced by these classes.

Independent training and validation data
The classified pixels for evaluating the method should be independent of the
pixels used for training the classifier. If the results are checked against the
exact same data as they were trained for, the accuracy naturally will be high,
as the classifier is trained to classify exactly these points.

The data from the polygons of the reduced size image is split up to training
(80%) and validation (20%) sets. This is done for each image, such that there
for all images are 20% of the polygon-points that are used for the validation
and 80% for training, not regarding classes. The 80% training data from each
image is collected and joined to train the ML classifier and the labeller.

As there is a limited amount of training data in each image, all these images are
used for calculating the accuracy measure. The 27 scenes are run through both
methods, such that each scene has two resulting images, one for the supervised
method and one for the segment-then-label method. Note that each image has
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a limited amount of training data (see Figure 6.1 and Table C.2). From each
image is extracted the number of pixels correctly classified, along with the
total number of training samples in the image. The validation is joined for all
images, such that a validation is performed on the total amount of validation
points.

The numbers are joined such that the total accuracy is computed as:

# correct classified pixels from all images
# validation pixels in total from all images

The mean class accuracy is computed as:

1
# classes

# classes∑
i

# correct classified pixels from all images, for class i
# validation pixels in total from all images, for class i

Repeated runs
The classifications are run 100 times to get valid results, including both the
mean of hundreds and the variation of hundreds for the accuracy. In the graphs,
the error-bars are plotted as 95% confidence intervals using the student-T
distribution.

10.1 Graphical results
Figure 10.1 shows the total accuracies measured for varying percentage of
contamination, for both methods. Figure 10.2 shows the mean accuracies
for the same case, and Figure 10.3 the mean accuracies for restricting the
sizes.

A tendency is that more contamination in the data makes more pixels to be
classified as open water. The large sample size of open water makes the total
accuracy curve to increase for more contamination, as seen in Figure 10.1. The
reason for the open water to be well classified, is that there may be more likely
for the ice classes to intermix slopes, than to mix their slope with open water.
The open water has a more distinct distribution, more different from the ice
classes. As the data contains a large amount of open water samples, a safer
measure is the mean class accuracy.

The mean accuracy graphs decrease by both fewer samples (Figure 10.3) and
more contamination (Figure 10.2). The decrease with contamination is small,
but the decrease after 60% is larger for the fully supervised than for the
segment-then-label.
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Figure 10.1: Total accuracies measured for varying percentage of contamination in
each class, and using a training (80%) - validation (20%) split to the
downsampled training data set. Each point is a mean of hundred inde-
pendent runs, and the errorbars show the 95% confidence intervals. Due
to a larger amount of open water among the validation points, which
happen to be better classified by more contamination, we see that the
total accuracies are increasing for both methods. Both curves start to
decay at around 70% contamination in each class, which is not quite
reasonable.
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Figure 10.2: The mean class accuracies for varying percentage of contamination
in each class. A training (80%) - validation (20%) split is done to the
downsampled training data set, and the accuracy is calculate from the
validation data. Each point is a mean of hundred independent runs, and
the errorbars show the 95% confidence intervals. The fully supervised
method (orange) overall has a better classification accuracy than the
segment-then-label method (blue). The decay rate is approximately equal
for both methods.

The accuracy of the fully supervised method (in orange) in general becomes
higher than for the segment-then-label method (in blue). Looking at the class
accuracies, we notice that the “leads/newly-formed ice” class makes the mean
class accuracy for segment-then-label to be lower. The method simply classifies
this class with a low accuracy. Calculating new mean class accuracies, leaving
out the leads class, the accuracy of the segment-then-label method is still
lower.

10.1.1 The importance of both visual and statistical results
Ideally, statistical measures of the method performances should be compared
against each other. Subsequently, decisions are best made based on statistical
significance. In this work we classify a number of images, and the valida-
tion data are spread on all images. Only a tiny part of all classified pixels
are validated. Thus, the accuracy measure cannot describe the classification
of the whole image, but indicates how some small parts of the images are
classified.

In the ideal case, a whole image is labelled as a reference, and used as validation
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Figure 10.3: Themean class accuracies for varying number of training sample for each
class. The downsampled training data is split into training (80%) and
validation (20%). Each accuracy point is a mean of hundred independent
runs, and the errorbars show the 95% confidence intervals. The fully
supervised method (orange) overall has a better classification accuracy
than the segment-then-label method (blue). The decay rate is similar
down to a 100 training samples per class. For less than 100 samples per
class, the decay is steeper for the fully supervised (orange) than for the
segment-then-label method.

for this image’s accuracy. As this is not our case, visual inspection of the images
is helpful, as it will give an impression of how the classifications carry out
image-wise.

10.2 Visual comparison results
The classification results are illustrated visually in example 1 Figures 10.5/10.6,
example 2 Figures 10.7/10.8, and example 3 Figures 10.9/10.10 on the next
pages. These images are chosen to illustrate the results, as they contain a
diversity of ice classes and open water areas. A description of how to read the
pages is presented as two “pages” in Figure 10.4.

The first page in an example starts with a row containing the HH and HV
log-intensity images for both polarization channels. For the sake of visual
impression, the HH and HV log-intensity images are clipped to the log-intensity
range shown in the colorbars. The second row shows the “perfect” classification
for both methods using the training data from the original-sized image. The



10.2 V ISUAL COMPAR ISON RESULTS 69
Figure 10.4: Description on how to read the figure pages with results.

Example nr X, Page 1/2
C1 C2

R1 HH log-intensity HV log-intensity

R2
Fully supervised:
The "perfect"-
classified

Segment-then-
label: The
"perfect"-classified

R3
Fully supervised:
The "best" classi-
fied

Segment-then-
label: The "best"
classified

Example nr X, Page 2/2
C1 C2

R1
Fully supervised:
50 samples per
class

Segment-then-
label: 50 samples
per class

R2
Fully supervised:
10 samples per
class

Segment-then-
label: 10 samples
per class

R3
Fully supervised:
70% contamina-
tion

Segment-then-
label: 70% con-
tamination

third row shows the “best” classification, using the reduced training data from
the downsampled image. Bayes ML classifier takes the first column, and the
segment-then-label method takes the second.

The first row on the second page of an example is results for using 50 sample
points per class for training the classifiers. The second row is for using 10 sample
points per class. The third row is using 70% contamination in the training data.
Notice that the same samples and division are used for producing both the ML
and the segment-then-label results in a certain row.

The “best” and “perfect” classification results
The “perfect”-classified images are made using the large training data set
from the original-sized images. The “best” results are made using the reduced
training data set from the downsampled images. The classes of this training
data has different sample sizes, ranging from 1 600 to 2 000 000 per class
(Table C.2). The classes with more training data could be more well-trained, but
the 1 600 samples should still be sufficient to train a good classifier, especially
taking into account the large range of angles.

The difference in the “perfect” and the “best” images, can be considered in
Figure 10.7. The “perfect”-classified (second row) shows somewhat similar
results for both methods, with large areas of light blue ridged thick ice, and
dark green areas of leads/newly-formed ice around the islands. The fully
supervised method seems to misclassify the area in the lower right corner to
open water. Further, the methods do not agree about the small areas of thin
and brash ice (red and pink). The “perfect” images are fairly equal and seem
reasonable. In the “best” result (third row) the leads area is changed into calm
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open water and flat thick ice. The ML even classify the rightmost part of the
image to flat thick ice, which previously was ridged. We also notice the area
between the island (upper left), that is classified to flat thick ice or calm open
water when using the reduced size training data, but as leads/newly-formed
ice, using the original training data size.

Considering the image in Figure 10.9, there is not too much difference between
using the large and the downsampled training data for the segment-then-label.
For the ML classifier, on the other hand, the difference is clear by a large area
of ridged thick ice in the lower part of the image. The open water is partly
classified to open water, partly leads and flat thick ice. For the downsampled
set the open water seems to be better classified, but the thick ice areas are a
lot more mixed. In Figure 10.5, the ML classifier similarly does better either on
ice or water for the different sample sizes.

10.2.1 The results from the classified scenes
Using 50 and 10 samples per class (the examples’ page 2, first and second
row):

By using the ML classifier we see that the smaller sample size results in a
classified image which is more divided in range direction (Figure 10.6 first
coloumn, first and second row). The image seem to be divided swath-wise
by the classes. In the example with 50 samples per class, the leftmost part
of the ice is classified as leads and thin ice, the middle part as ridged thick
ice, and the right part as flat thick ice. The same effect is seen when only 10
samples per class are used, but different ice types dominate due to randomness
in the sampling. From left to right the ice is now divided into leads and calm
open water, ridged thick ice and thin ice. This is an effect of changing training
data slopes, such that the mean values, particularly for near and far-range, are
significantly different. For reduced sample size in Figure 10.8 (first column,
second row), the outcomes are also changed in the far range swath. Here, the
thick ice and the ridged ice probably have changed their slopes relatively to
each other, such that a large area which probably are ridges, are classed to flat
thick ice. The similar effect is also seen in (first coloumn, first row) between
ridges and thin ice in the near range, and in the example in Figure 10.10 (first
column, first and second row).

For the segment-then-label, the effect is less distinct. In Figure 10.6 (second
column) there is, though, also mixing between flat and ridged ice. For the 10
samples case (second row), almost the whole ice area, as well as one of the
major segments on the water, are classified as ridged thick ice. An intersection
between the windy open water and the ridged thick ice in the far range probably
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causes this. In the near range, ice and open water are clearly separable.

The impression for segment-then-label going from 50 to 10 samples per class
for Figure 10.8 (first and second row) is that the change is smaller than for
the ML. We notice that the thin ice class (pink) disappears using the fewer
samples, for both methods.

Looking at Figure 10.10, it is hard to conclude what amount of samples is
actually best (first and second row). With segment-then-label (second coloumn)
for 50 samples per image (first row), the ice is classified as flat thick ice and
leads, and water is impeccably resolved. But for the 10 samples per class, the
open water is partly determined to leads, whereas the ice area is classified to
thick ice. This image has a border between ice and water which to more or less
extent is classified to leads/newly formed ice in all four classified images.

Using 70% contamination (the examples’ page 2, third row):

The resulting images after contamination are plotted for different percentages
of contamination. For the examples in Figures 10.6 and 10.10, there was not too
much difference in the resulting images, using 20% and 70% contamination.
Therefore, only the 70% contamination is shown here. Results for contamina-
tion are shown in the third row at the second page of each example.

In Figure 10.6, the contamination does not seem to have any impact on the
segment-than label image (compared to the “best” image, Figure 10.5). The only
clear difference is the calm open water area that is classified to leads/newly-
formed ice. Comparing the “best” ML-classified image with the one using
contamination, there is only a small worsening, mostly in the left part of the
image where some of the ice is determined as brash ice, and part of the open
water as leads. The contamination for the example in Figure 10.10 does not show
large changes either. For the ML method, a larger part of the area is classified
as brash ice, and areas of open water as leads. The last misclassification also
applies to the segment-then-label result.

The contamination effect has a generally larger impact on the example in Figure
10.8. The image with 20% contamination tended to classify more areas to brash
ice. In the 70% contamination results, the areas are generally determined to
be brash ice, and flat thick ice. This instead of ridged thick ice, as suggested
from the “perfect” images.

Using a 70% contamination, we would expect larger distortions in the classified
images as a result of the contaminated training data. This is a moment for the
discussion.
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Figure 10.5: Example 1, part 1/2, image no. 15. Row 1: HH and HV log-intensities. Row
2: The classified results based on the full original training data, and row
3: the classified result based on the downsampled training data, for the
fully supervised method (coloumn 1) and the segment-then-label method
(coloumn 2).



10.2 V ISUAL COMPAR ISON RESULTS 73

Figure 10.6: Example 1, part 2/2, image no. 15. Coloumn 1: Fully supervised method.
Coloumn 2: Segment-then label method. Row 1: 50 samples per class.
Row 2: 10 samples per class. Row 3: 70% mislabelling per class.
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Figure 10.7: Example 2, part 1/2, image no. 2. Row 1: HH and HV log-intensities. Row
2: The classified results based on the full original training data, and row
3: the classified result based on the downsampled training data, for the
fully supervised method (coloumn 1) and the segment-then-label method
(coloumn 2).
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Figure 10.8: Example 2, part 2/2, image no. 2. Coloumn 1: Fully supervised method.
Coloumn: Segment-then label method. Row 1: 50 samples per class. Row
2: 10 samples per class. Row 3: 70% mislabelling per class.
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Figure 10.9: Example 3, part 1/2, image no. 20. Row 1: HH and HV log-intensities.
Row 2: The classified results based on the full original training data, and
row 3: the classified result based on the downsampled training data, for
the fully supervised method (coloumn 1) and the segment-then-label
method (coloumn 2).
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Figure 10.10: Example 3, part 2/2, image no. 20. Coloumn 1: Fully supervised method.
Coloumn 2: Segment-then label method. Row 1: 50 samples per class.
Row 2: 10 samples per class. Row 3: 70% mislabelling per class.
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10.3 Discussion
The results in Figures 10.3 and Figure 10.2 show decaying accuracies. The
comparison is on relative accuracy values, being relative to the best result
(no contamination and full data set). Ideally, the reference should be the best
ever-classified image, a 100%-accuracy classification image. Unfortunately, the
best we get is not a perfect classification. The source of the limited accuracy
could be limitations in the training data, the particular classes used, or in the
methods.

Continuing with the accuracies we have got, we get a accuracy graph for con-
tamination that is too stable and decreases less than expected. The classified
images also changes too little with more mislabelling, but there are differences
for each image how much mislabelling is necessary for a totally misclassified
image. This depends on the image’s class composition. After all, 80% contam-
ination in the data means that 80% of the training data has got other labels.
The classification can not be unaffected with such large change. A similar
accuracy for the 80% contamination case and the no label noise case could not
be correct.

The graph for the restriction of training data size seems more reliable (Figure
10.3), even though it also is not increasing much. We see that there is no big
difference in going from all our available training data to a subset of 1000
samples per class. The decay starts for less than 1000 samples per class, and
is steeper for the fully supervised than for the segment-then-label method.
In particular, the decay for less than 100 samples is interesting, as the decay
difference becomes more prominent for smaller size. The fully supervised
decays more than the segment-than label method in the interval between
100 and 50, but decays even more in the interval between 50 and 10. This is
an indication for the segment-then-label method being more robust to small
sample sizes, with less than 100 samples for each class. The classified images
using 10 and 50 samples per class, substantiate the change rates, and show
poorer results for less training data, even though the effect of randomness also
is visible by inspecting the scene examples.

In general, one gets the impression that the segment-then-label results are
often better looking. They appear smoother, andmatches better the distinctions
seen in the brightness images. This method better captures the greater image
appearance, unlike the ML method, which for the very small number of training
data is not able to pick up on it. After all, it does not split up ice classes
swath-wise, as is the tendency with less training data for the fully supervised
method.

The absent decrease in accuracy for contamination could be due to the training
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data and the validation being too similar, even if they are independent. The
validation data is taken from the same small polygons as the training data.
I.e. inter-polygon pixels may be too similar. It could also be that the training
and validation points just happen to be in a small area that looks better in
the ML-classified results, even if more real pixels look better elsewhere. If the
validation regime is not robust and the validation data are poor, the comparison
of the methods could not be done with reliable results.

The training data shown in Figure 6.2, from the polygons within the 5x5
multilooked image, show a quite large variance in brightness values on more
of the classes. The large within-class spreads could help explain some of the
difficulties. As more contamination is introduced to one class, a pixel with a
new label is likely to be within the new label’s class’ original spread. Thus,
this class gets a new point within its old spread, instead of an outlier pixel. No
actual contamination is added to this class. Multilooking with a larger filter
size (more than 5x5) could be beneficial for reduced variance in each class,
such that the contamination would have a clear impact.

The mechanisms for the reduction in size of the data are a bit different. The
class variance would also in this case have an impact, in the way that a large
variance in a class willmake itmore likely to achieve a training class slopewhich
is drastically changed. A class with originally little variance would perform
better with fewer samples than a class with high variance.

The random sampling per class may have influenced the validation regime, and
possibly culminated in poorly represented classes. Experimenting with other
sampling methods could be an extension to our work. Sampling in a more
structural random fashion could improve both the mean classifier performance
and reduce the classification variance, as discussed by Gabrys and Petrakieva
(2004) (see Section 1.2.2). E.g. thin ice (class no. 4) and brash ice (class no. 5)
have similar incidence angle dependencies (Figure 6.2), but most of the thin
ice samples tend to be located in a small incidence angle range. By reducing
sample size in a random sampling fashion, we saw that thin ice tended to be
misclassified as brash ice, probably as this slope where more likely to remain
stable.

In the end, it seems as the training data we are using is not good enough. Using
poor training data leads to a method scoring towards a poor solution rather
than the actual data distinction. One should consider using a labelled data set
which both reflects the actual data distinctions and covers the class variability
ranges. Labelling of images requires good knowledge on the surface types, and
could be a comprehensive process. This leads us back to the question about
the amount of training data available. One of the main reasons for learning
unsupervised is reducing the dependency on good training data. Stating the
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importance of better training data begs the question.

10.3.1 The expected result
The expected outcome of the classification is first that the segment-then-label
method will give higher accuracies than the fully supervised, as the underlying
structure of the data is included in the decisions. As the clusters are made
before the labelling, the pixels in the same cluster will stay in the same cluster,
no matter what training data is used for the labelling. If mislabelled, the whole
cluster with all pixels is mislabelled.

The segment-then-label method is expected to be more robust to contamination
than the fully supervised. The contamination interchanges labels of the training
data, thus the classes will get a certain amount of outlier values, being the
values actually belonging to other classes. The contamination changes the slope
of the training data classes, such that the class slopes are becoming more and
more equal. Still, the ML classifier will compare one pixel against the training
data slope for each class. The segment-then-label will compare all pixels within
a cluster to the same training data slopes. If the training data slopes change
too much, as a consequence of few training data points, or incorrect training
data points, it is safer to have the whole segment compared with training data,
than only a single point at a time (see point against point, and point against
set distances in Section 2.1.1). Though, there is a risk of misclassification of
large segments as another consequence.

Regarding the training sample size, the challenge is that the slope will be
too biased when the training data points are no longer representative. The
training class slopes could change much when going from more to less training
data, and the randomness in the data sampling will have an impact on this.
As discussed in Section 4.1, using the underlying structure of the data could
make up for the lowered representativeness. The segment-then-label method
is thus assumed to have a less decreasing accuracy result, which we have also
experienced.

10.3.2 Reliability of the results
It is hard to rely on the validation results as long asmore contamination does not
make the accuracy very much poorer. What happens with more contamination
is, that the classes, and their training slopes, are becoming more and more
equal. It is likely that we are having a training data set that does not allow for
a proper validation regime. This is tested by running the same tests with the
opposite training (20%) - validation (80%) split for generalized testing. The
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accuracies get lower, but the absent decrease by contamination is not changed
significantly.

The amount-restriction graph looks more trustworthy, and it decays with a more
reasonable steepness. But, as the contamination graph has clear weaknesses,we
also suspect this graph to be negatively impacted, but to a lesser extent.

To confirming our classification and validation scheme, a simulated synthetic
dataset could be made and tested in the same comparisons with contamination
and data reduction. As one then knows the true data, one could confirm the
scoring mechanism to be correct.





11
Conclusion and future work
11.1 Conclusion
This thesis has tested a segment-then-label classification scheme against the
supervised Maximum Likelihood classification scheme. The main aims in this
thesis were to test and compare the methods for two cases:

• Varying training data sample size

• Varying amount of mislabelling

Both the restrictions of size and mislabelling are done class-wise. The two
methods’ performances are measured using the mean class accuracy, and have
been compared against each other.

The classifications are done to a dataset of Sentinel-1 images on sea ice, and
the resulting classifications are presented and compared.

For reduced training data sample size case, the segment-then-label method
tends to have a less decaying accuracy than the fully supervised method,
especially for small sample sizes. This indicates a larger robustness to smaller
sample sizes for the segment-then-label method.

For more contamination the decay is not particularly distinct, probably due
to the large within-class variations in the training set. In general, the fully
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supervised method gives a higher accuracy, but the segment-then-label method
changes less with size and contamination.

We conclude that the segment-then-label method shows tendencies of being
more robust to training data size and contamination, but the results are weak.
We recommend a further investigation using more reliable training data.

This work is an investigation of the importance ofwhen the training data comes
into the classification process, either from start in a direct classification, or in
a labelling step after involving the underlying data structure.

Limitations
Several limitations to this study need to be acknowledged. Some possible
sources of error are:

• The ground truth polygons are made by one (two) persons, and are
therefore subject to a subjective opinion.

• Too large within-class variations in the training hide any effects of
mislabelling.

• The number of classes in the training data set is limited, just as the
number of training samples. Some classes could possibly be split up into
subclasses.

• The sampling is done randomly per class, but not per angle.

• The images, and the ground truth drawn from them, are from a large
seasonal range.

Even though these sources to error may have degraded the overall results,
we assume the same degradation is made to both methods, yielding a fair
comparison of the decays.

11.2 Future work
Future research projects could extend this study. First of all, we will mention
doing exactly the same as in this work, but using a labelled data set which
covers the class variability ranges, and at the same time reflects the actual data
distinctions. Possibly, this would require possession of good knowledge on the
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surface matter and a thorough labelling effort.

Further topics for extension of the mentioned is development of new labelling
strategies, which are not based on distance measures. A possibility is to inves-
tigate the confusion matrix for use in the labelling procedure, and eventually
the robustness of such a method.

The robustness after involving additional textural features could be explored,
as these could help the distinction of classes according to the surface’ small
geometrical differences.
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A
Bayes theory
Let Ai , i = 1, 2, ...M be M events such that

∑M
i=1 P(Ai ) = 1. The probability of

an event B is then given by the total probability theorem:

P(B) =
M∑
i=1

P(B |Ai )P(Ai )

The conditional probability of B given A, P(B|A), is defined as

P(B |A) = P(B,A)
P(A)

where P(B,A) is the joint probability of event A and B happening.

Bayes rule is the brought up from this to be

P(B |A)P(A) = P(A|B)P(B)

for which probability components can be replaced by probability density func-
tions when random variables are used:

P(x|A)P(A) = P(A|x)P(x)

and

P(x|y)P(y) = P(y|x)P(x)
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where the total probability theorem gives

P(x) =
M∑
i=1

P(x|Ai )P(Ai )



B
Derivation of the updateparameters for theEM-algorithm
The parameter update expressions used in the EM-algorithm’s maximisation
step is derived here. The concepts needed to get there are explained first.

The joint probability of the observed data x and the unknown labels z, given
parameters Θ, can for each sample i be written as

p(xi, zi;Θi)

By using the conditional probability sentence, the joint probability can be
expanded by conditioning on the unknown labels zi. The entries in zi are
assumed to be independent, and the expansion can be written as the product
of conditional probabilities for all m.

p(xi , zi ;Θi ) =
M∏

m=1

[p(xi |zim = 1;Θ)p(zim = 1)]zim

zim is thought of being 1 for the element corresponding to the selected mixture
componentm for each sample i, and 0 else; using the superscript zim therefore
includes only the for each sample decided components.
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The complete log-likelihood is given by

L(θ |x) =
N∏
i=1

fi (x |θ )

for N independent distributions fi . The joint probability from above is inserted
for fi in the likelihood:

L(Θ) =
N∏
i=1

M∏
m=1

[p(xi |zim = 1;Θ)p(zim = 1)]zim

The logarithm of the likelihood, or the log-likelihood, is then

LL(Θ) = loд
(
N∏
i=1

M∏
m=1

[p(xi |zim = 1;Θ)p(zim = 1)]zim
)

the logarithm of a product is the sum of the logarithm

=

N∑
i=1

M∑
m=1

loд [p (xi |zim = 1;Θ)p (zim = 1)]zim

=

N∑
i=1

M∑
m=1

zim [loд (p (xi |zim = 1;Θ)) + loд(p(zim = 1))]

where p(zim = 1)) is the prior for a class and for classification purposes of
equiprobable classes may be discarded. p (xi |zim = 1;Θ) is the Gaussian dis-
tribution for each component m for each data point xi .

The expectation of the log-likelihood above, with respect to Q(Z) is given
by

E{LL(Θ)}Q (Z) = E

{
N∑
i=1

M∑
m=1

zim
[
loд (p (xi |zim = 1;Θ))

]}
the expectation of a sum is the sum of the expectation

=

N∑
i=1

M∑
m=1

E
{
zim

[
loд (p (xi |zim = 1;Θ))

]}
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only random variables are subject to the statistical expectation

=

N∑
i=1

M∑
m=1

(
E {zim} loд (p (xi |zim = 1;Θ))

)

Inserting the Gaussian distribution gives:

E{LL(Θ)}Q (Z)

=

N∑
i=1

M∑
m=1

(
E {zim} loд

(
1

(2π )d/2 |Σm |1/2
exp

(
−1

2
(xi − (am − bmθi ))T Σ−1

m (xi − (am − bmθi ))
)) )

=

N∑
i=1

M∑
m=1

(
E {zim}

(
− d

2
loд(2π ) − 1

2
loд(|Σm |) −

1
2
(xi − (am − bmθi ))T Σ−1

m (xi − (am − bmθi ))
))

where d is the number of dimensions given in the multivariate Gaussian
formula.

The maximizing expression for am is found by optimizing the expected log-
likelihood, inserted the Gaussian density, with respect to am . Constants which
disappear after derivative are excluded.

∂E{LL(Θ)}Q (Z )
∂am

=
∂

∂am

N∑
i=1

E {zim}
(
− 1

2
(xi − (am − bmθi ))T Σ−1

m (xi − (am − bmθi ))
)

Using matrix derivative, rule (86) in Petersen and Pedersen (2012). Optimiz-
ing

=

N∑
i=1

E {zim}
1
2
(2Σ−1

m (xi − (am − bmθi ))) = 0

which gives

⇒
N∑
i=1

E {zim} Σ−1
m (ak − bkθi )) =

N∑
i=1

E {zim} Σ−1
m xi

such that the maximizing am is

âm =

∑N
i=1 E {zim} xi + bk

∑N
i=1 E {zim} θi∑N

i=1 E {zim}
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The maximizing expression for bm is found by optimizing the expected log-
likelihood, inserted the Gaussian density, with respect to bm . Constants which
disappear after derivative are excluded.

∂E{LL(Θ)}Q (Z )
∂bm

=
∂

∂bm

N∑
i=1

E {zim}
(
− 1

2
(xi − (am − bmθi ))T Σ−1

m (xi − (am − bmθi ))
)

Using the matrix derivative, rule (86) in Petersen and Pedersen (2012). Opti-
mizing.

=

N∑
i=1

E {zim}
1
2
(2Σ−1

m (xi − (am − bmθi ))θi ) = 0

which gives

⇒
N∑
i=1

E {zim} Σ−1
m (ak − bkθi )θi ) =

N∑
i=1

E {zim} Σ−1
m xi

such that the maximizing bm is

b̂m =
ak

∑N
i=1 E {zim} θi −

∑N
i=1 E {zim} xi∑N

i=1 E {zim} θ2
i

The maximizing expression for Σm is also found by optimizing the expected
log-likelihood with respect to the parameter itself. The derivative, inserted
with Gaussian probability density without prior, and without terms that vanish
after derivative is taken.

∂E{LL(Θ)}Q (Z )
∂Σm

=
∂

∂Σm

N∑
i=1

(
E {zim}

(
− 1

2
loд(|Σm |) −

1
2
(xi − (am − bmθi ))T Σ−1

m (xi − (am − bmθi ))
))

Using matrix derivative rules (72) and (141) and (396) in Petersen and Pedersen
(2012) , and then optimizing

=

N∑
i=1

E {zim}
1
2

(
− Σ−1

m + Σ−1
m (xi − (am − bmθi ))(xi − (am − bmθi ))T (Σ−1

m )T
)
= 0

gives

⇒
N∑
i=1

E {zim} Σ−1
m =

N∑
i=1

E {zim} Σ−1
m (xi − (am − bmθi ))(xi − (am − bmθi ))T (Σ−1

m )T
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All covariance matrices are symmetric and positive semi-definite. A symmet-
ric matrix A equals its transpose: A = AT . This gives the final maximizing
expression

Σ̂m =

∑N
i=1 E {zim} (xi − (am − bmθi ))(xi − (am − bmθi ))T∑N

i=1 E {zim}

E-step: The update expression for zim is derived in the following way:

E {zim}p(Z |X ;Θ) = p(zim = 1|xi ;Θ)

Using the sentence about conditional probability

=
p(zim = 1,xi |Θ)

p(xi |Θ)

Using conditional probability again, conditioning on zim

=
p(xi |zim = 1,Θ)p(zim = 1)

p(xi |Θ)

Using the rule of total probability in the denominator

=
p(xi |zim = 1,Θ)p(zim = 1)∑M
k=1 p(xi |zik = 1,Θ)P(zik = 1)

Recognizing the probability p(zim = 1) to be the prior, which we discard due
to equiprobability. The final expression

E {zim}p(Z |X ;Θ) =
p(xi |zim = 1,Θ)∑M
k=1 p(xi |zik = 1,Θ)
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Table C.1: Enumerated image scenes used in the thesis

Nr Image
1 S1A_EW_GRDM_1SDH_20150328T105745_20150328T105846_005231_0069B3_D34B
2 S1A_EW_GRDM_1SDH_20150327T115532_20150327T115632_005217_00696B_D22F
3 S1A_EW_GRDM_1SDH_20150504T163454_20150504T163554_005774_0076AC_3188
4 S1B_EW_GRDM_1SDH_20170716T122837_20170716T122941_006513_00B73D_BB34
5 S1A_EW_GRDM_1SDH_20150331T112258_20150331T112358_005275_006ABB_CD7F
6 S1A_EW_GRDM_1SDH_20150412T112159_20150412T112259_005450_006F2D_D076
7 S1A_EW_GRDM_1SDH_20160427T141524_20160427T141624_011008_0108BB_763B
8 S1A_EW_GRDM_1SDH_20160604T171627_20160604T171727_011564_011A8C_4390
9 S1A_EW_GRDM_1SDH_20160709T131853_20160709T131953_012072_012AC1_D788
10 S1A_EW_GRDM_1SDH_20160711T161922_20160711T162022_012103_012BC2_0B78
11 S1A_EW_GRDM_1SDH_20150406T152850_20150406T152950_005365_006CEC_6952
12 S1A_EW_GRDM_1SDH_20160708T141528_20160708T141628_012058_012A49_CA0E
13 S1A_EW_GRDM_1SDH_20160709T163445_20160709T163542_012074_012ACF_52EF
14 S1A_EW_GRDM_1SDH_20160722T171529_20160722T171629_012264_0130ED_CD79
15 S1A_EW_GRDM_1SDH_20160711T161822_20160711T161922_012103_012BC2_A3B8
16 S1A_EW_GRDM_1SDH_20150412T112259_20150412T112359_005450_006F2D_AC40
17 S1A_EW_GRDM_1SDH_20150508T160153_20150508T160253_005832_007813_7CF7
18 S1A_EW_GRDM_1SDH_20160614T141527_20160614T141627_011708_011F14_5612
19 S1A_EW_GRDM_1SDH_20160627T163444_20160627T163544_011899_012521_5B2A
20 S1A_EW_GRDM_1SDH_20160709T131753_20160709T131853_012072_012AC1_E527
21 S1A_EW_GRDM_1SDH_20150620T141524_20150620T141624_006458_0088D5_773C
22 S1A_EW_GRDM_1SDH_20160627T163544_20160627T163644_011899_012521_8539
23 S1A_EW_GRDM_1SDH_20160608T164324_20160608T164424_011622_011C50_DA37
24 S1A_EW_GRDM_1SDH_20160708T141628_20160708T141728_012058_012A49_AE8A
25 S1A_EW_GRDM_1SDH_20160708T173158_20160708T173258_012060_012A5D_565D
26 S1A_EW_GRDM_1SDH_20160513T165924_20160513T170024_011243_011024_564C
27 S1A_EW_GRDM_1SDH_20150716T153742_20150716T153842_006838_009369_9351

S1A_EW_GRDM_1SDH_20150328T105745_20150328T105846_005231_0069B3_D34B
S1A_EW_GRDM_1SDH_20150327T115532_20150327T115632_005217_00696B_D22F
S1A_EW_GRDM_1SDH_20150504T163454_20150504T163554_005774_0076AC_3188
S1B_EW_GRDM_1SDH_20170716T122837_20170716T122941_006513_00B73D_BB34
S1A_EW_GRDM_1SDH_20150331T112258_20150331T112358_005275_006ABB_CD7F
S1A_EW_GRDM_1SDH_20150412T112159_20150412T112259_005450_006F2D_D076
S1A_EW_GRDM_1SDH_20160427T141524_20160427T141624_011008_0108BB_763B
S1A_EW_GRDM_1SDH_20160604T171627_20160604T171727_011564_011A8C_4390
S1A_EW_GRDM_1SDH_20160709T131853_20160709T131953_012072_012AC1_D788
S1A_EW_GRDM_1SDH_20160711T161922_20160711T162022_012103_012BC2_0B78
S1A_EW_GRDM_1SDH_20150406T152850_20150406T152950_005365_006CEC_6952
S1A_EW_GRDM_1SDH_20160708T141528_20160708T141628_012058_012A49_CA0E
S1A_EW_GRDM_1SDH_20160709T163445_20160709T163542_012074_012ACF_52EF
S1A_EW_GRDM_1SDH_20160722T171529_20160722T171629_012264_0130ED_CD79
S1A_EW_GRDM_1SDH_20160711T161822_20160711T161922_012103_012BC2_A3B8
S1A_EW_GRDM_1SDH_20150412T112259_20150412T112359_005450_006F2D_AC40
S1A_EW_GRDM_1SDH_20150508T160153_20150508T160253_005832_007813_7CF7
S1A_EW_GRDM_1SDH_20160614T141527_20160614T141627_011708_011F14_5612
S1A_EW_GRDM_1SDH_20160627T163444_20160627T163544_011899_012521_5B2A
S1A_EW_GRDM_1SDH_20160709T131753_20160709T131853_012072_012AC1_E527
S1A_EW_GRDM_1SDH_20150620T141524_20150620T141624_006458_0088D5_773C
S1A_EW_GRDM_1SDH_20160627T163544_20160627T163644_011899_012521_8539
S1A_EW_GRDM_1SDH_20160608T164324_20160608T164424_011622_011C50_DA37
S1A_EW_GRDM_1SDH_20160708T141628_20160708T141728_012058_012A49_AE8A
S1A_EW_GRDM_1SDH_20160708T173158_20160708T173258_012060_012A5D_565D
S1A_EW_GRDM_1SDH_20160513T165924_20160513T170024_011243_011024_564C
S1A_EW_GRDM_1SDH_20150716T153742_20150716T153842_006838_009369_9351


Table C.2: Training data samples per class per image for the downsampled ground truth. Image numbers according to Table C.1. Down.
denotes the whole downsampled image. Masked denotes the samples still present after borders and between-swath areas are
masked away. The masked samples are used for training.

cl1 cl2 cl3 cl4 cl5 cl6 cl7
Im. Down. Masked Down. Masked Down. Masked Down. Masked Down. Masked Down. Masked Down. Masked
1 153 29 837 430 542 0 1.058 831 0 0 0
2 5.232 2578 0 1.901 0 291 269 0 0 0
3 269 117 0 0 0 0 0 0
4 1.014 74 0 3.220 380 0 0 0 0
5 41 41 372 372 240 240 443 443 0 0 0
6 829 429 711 59 237 0 177 0 0 0 0
7 8.011 1.556 235 235 12.709 9.412 4.570 3.696 0 0 0
8 9.950 1.456 0 5.233 2.997 0 0 0 0
9 52 21 70 26 150 0 0 0 0 0
10 15 0 142 142 59 59 0 0 0 0
11 311 181 0 4.137 4.137 1.522 479 16.620 7.763 50.750 32.625 744.363 255.168
12 0 0 24.979 7.939 0 4.914 3.101 187.138 48.940 645.198 288.022
13 10.844 1.349 0 27.763 17.520 0 10.928 3.075 141.441 25.858 519.261 206.956
14 9.482 1.952 0 18.198 9.714 0 4.295 4.047 538.639 168.585 0
15 0 0 10.316 6.106 0 0 245.731 47.831 943.716 394.917
16 40 0 0 0 0 0 8.461 1.080 93.787 31.285
17 109 5 0 0 132 74 0 5.018 0 692.751 282.826
18 0 0 5.475 4.690 0 0 39729 13.730 148.393 82.274
19 332 288 281 281 0 0 0 100.227 19.519 0
20 0 0 4.795 3.955 0 0 99.536 28.847 1.192.838 519.486
21 88 16 0 0 0 0 132.430 32.413 0
22 12.295 6.561 336 0 38.081 20.508 0 0 0 0
23 36.056 24.828 0 2.358 1.847 0 0 0 0
24 31 10 100 53 1.037 0 0 0 0 0
25 14.424 0 0 0 0 0 0 0
26 0 0 0 0 0 0 52.374 798
27 0 0 0 0 0 0 62.020 0
Sum 109.578 45.491 3.084 1.598 161.431 89.504 8.193 5.792 36.757 17.986 1.549.100 419.428 5.094.701 2.061.732
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