
The Faculty of Science and Technology
Department of Computer Science

Scalable exploration of population-scale drug consumptiondata
—
Tengel Ekrem Skar
INF-3981: Master’s Thesis In Computer Science
June 2019

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2019 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
The potential for knowledge discovery is currently underutilized on pharma-
coepidemiologic data sets. A big dataset enables finding and assessing rare
drug consumption patterns that are associated with adverse drug reactions
causing hospitalization, or death.

To enable such exploration of big pharmacoepidemiology data, four key issues
need so be addressed. First, to ingest, transform, preprocess and analyze popu-
lation scale data, we require large computation power and storage capabilities,
and therefore a distributed computing framework. Second, to expose patterns
between drug consumption and end-points such as hospitalization, we need
to develop feature extraction and preprocessing algorithms which represents
the drug consumption and hospitalization in a numerical format. Third, to
detect these patterns, we require models from libraries for statistics and ma-
chine learning. To interpret performance metrics, we also require visualization
libraries. Fourth, to enable rapid development of data exploration methods, we
require an interactive system thatmakes the frameworks, libraries andmethods
for explorative analyses available in a single, cohesive environment.

We make three contributions.

First, we present the design and implementation of a system with a live cod-
ing environment, which enables use of Apache Spark, our choice of big data
framework. It provides Scikit-learn and Tensorflow with Keras for machine
learning, and matplotlib and Plotly for visualization. All libraries and frame-
works are made available by the interactive environment, which enables rapid
development, and Spark enables workloads to scale.

Second, to enable machine learning methods, we provide algorithms for feature
extraction of drug consumption. We observe drug consumption in hospitalized
and unhospitalized patient groups, and label them according to their group.
This results in a data set that we use in supervised learning.

Third, we assess the performance in prediction of hospitalization on the data
set. We also estimate over-represented drugs in hospitalized patients.

D ABSTRACT

The results are available in an executable notebook format, and the implemen-
tations are modifiable so that researchers can re-purpose the preprocessing
algorithms and analyses for their needs.

To predict hospitalization, a logistic regression achieved an Area Under the
receiver operating characteristic Curve (AUC) of 0.758, and a neural network
achieved an AUC of 0.771.

We bootstrapped logistic regressions to obtain a list of 200 (of 900) drugs
that the regression obtains stable estimates for. The omitted 700 drugs had
high variance, which indicates that they are under-represented in our data
altogether.

The predictive performances were not very good. From the bootstrap analysis
we identified which drugs occur frequently enough in our data, and which
don’t. We believe that improved data cleaning can improve both models pre-
diction performance. We believe more data will enable more accurate log-odds
estimates for the remaining 700 drugs. We learned that good prediction of
hospitalization from drug consumption isn’t possible with our current prepro-
cessing, but we also learned which drugs that are most and least likely usable
for prediction.

Acknowledgements
First, I want to express my deep gratitude to my supervisors, Lars Ailo Bongo
and Kristian Svendsen, for their advice, feedback and constructive criticism
throughout this work. I would also like to thank my co-supervisor, Einar Holsbø,
for his great statistical knowledge, constructive criticism and discussion, which
inspired and shaped the methodology in this work. None of this would be
possible without all three of you.

I would like to thank my good friends and classmates, Maren, Andreas, Nikolai,
Sverre and Vebjørn for the enlightening technical discussions, exchanges of
knowledge, and great banter.

Thanks to my long-time friend and computer scientist Håvard Ola, for proof-
reading and suggesting minor changes to figures, citations and structure.

Maren, thank you for your love and support. You made the most challenging
periods of writing bearable.

Contents
Abstract C

Acknowledgements E

List of Figures I

List of Tables K

1 Introduction 1
1.1 Problems . 2

1.1.1 Problems with using existing data analysis systems . 2
1.1.2 Challenges for data exploration 3

1.2 System and methods for data exploration 4
1.3 Summary of results . 5
1.4 Thesis structure . 7

2 A system for exploration of pharmacoepidemiological data 9
2.1 Architecture . 9
2.2 Implementation . 10
2.3 Discussion . 12

2.3.1 Apache Spark . 12
2.3.2 Alternative notebook environments 13
2.3.3 Alternative Jupyter kernels 13
2.3.4 Conclusion . 14

3 Pharmacoepidemiological Data 15
3.1 Introduction . 16
3.2 Classification systems for drugs and diseases 16

3.2.1 The ATC system . 16
3.2.2 ICPC-2 and ICD-10 for classification of diseases . . . 17

3.3 NorPD - The Norwegian Prescription Database 18
3.3.1 NorPD - Norwegian prescription register, full popula-

tion, 2004-2014 . 20
3.3.2 NorPD - elder population, 2012-2014 20

G

H CONTENTS

3.3.3 NorPD - treatment duration estimates of prescriptions
in elder population 22

3.4 NPR - Norwegian Patient Registry 22
3.5 Data ingestion with Spark 23
3.6 Analyses that can be done using Spark SQL 24

3.6.1 Visualizing overrepresented drugs in patients who die 24

4 Exploring drug use patterns associated with hospitalization 29
4.1 Introduction . 29
4.2 Data preprocessing . 30
4.3 Logistic Regression vs Neural Network for prediction of hos-

pitalization . 33
4.3.1 Logistic Regression model 35
4.3.2 Neural network model 35
4.3.3 Results . 35
4.3.4 Conclusion . 39

4.4 Boostrapped logistic regression 39
4.4.1 Data differences from the comparative analysis . . . 39
4.4.2 Methodology . 40
4.4.3 Implementation . 41
4.4.4 Results . 41

5 Performance Evaluation 45
5.1 Hardware . 45
5.2 Bootstrap methods . 45

5.2.1 Reducing the bootstrap analysis time 47

6 Conclusion 49
6.1 Future work . 50

Bibliography 51

A Supplementary material 53
A.1 Notebooks . 53

List of Figures
1.1 Receiver operating characteristic curve of logistic regression

and neural network on 4-level ATC codes 6
1.2 Filtered bootstrapped logistic regression parameters, 98% con-

fidence intervals. We omit drugs where the 98% confidence
intervals overlap with the log odds equilibrium (0). 6

2.1 General data exploration system architecture 10
2.2 Our system design . 12

3.1 ATC Code hierarchy, example with Paracetamol (N02BE01) . 17
3.2 Illustration of available data, with eligible subset sizes after

cleaning . 18
3.3 ER-diagram of prescription data sets 19
3.4 Data in csv format ingested by Spark, converted to DataFrame,

written to disk in Parquet format 24
3.5 Aggregated drug consumption of drugs overrepresented in

patients that died, 30-day bins. 26

4.1 Illustration of preprocessing scheme 31
4.2 Number of patients with N number of hospitalizations, dis-

crete bins . 32
4.3 Hospitalization counts binned by the number of hospitaliza-

tions, discrete bins . 32
4.4 Drug consumption estimation in comparative analysis 34
4.5 ROC curve of Multi Layer Perceptron (Neural Net) and logis-

tic regression . 36
4.6 Calibration curve of Multi Layer Perceptron (Neural Net) and

logistic regression . 37
4.7 Drug consumption estimation in analysis 2 40
4.8 All bootstrapped logistic regressions parameter distributions

by relevance . 42
4.9 Filtered bootstrap logistic regression 42

5.1 Graph showing runtime of all 2000 bootstrap iterations . . . 46

I

J L IST OF FIGURES

5.2 Bootstrap convergence of the parameter means. Each data
point has the respective parameter mean of 2000 bootstraps
subtracted from it. 47

List of Tables
3.1 Table with overview of data sets 16

4.1 Confusion matrix of a bootstrapped logistic regression model 41

K

1
Introduction
There has been large advances in distributed computing and machine learn-
ing methods and frameworks for big data analyses. These have mostly been
developed and used by the tech industry. The frameworks enable exploration
of datasets which were historically too large, complex and computationally
intensive to analyze with traditional tools and methods. However, develop-
ing analyses with these frameworks requires a combination of expertise in
distributed computing, machine learning and statistics that many organiza-
tions do not have. Therefore the potential for knowledge discovery is currently
underutilized on big datasets in many fields.

One field with underutilized datasets is pharmacoepidemiology, which is the
study of consumption and effects of drugs on populations. An important aim
of pharmacoepidemiologic research is to assess the risks of adverse effects
from combinations in thousands of different drugs. Investigating these risks
on a population often requires finding drug consumption patterns in groups,
by linking drug consumption with known outcomes such as adverse drug
reactions, hospitalization and death . The main challenge is that detection
of drug combinations which occur rarely in a population require enormous
amounts of data, and thus new approaches to explore and analyze it must be
developed.

To enable exploration and analyses of big pharmacoepidemiology data, four
key issues need so be addressed. First, we need frameworks which leverage
large amounts of computing power to ingest, transform, preprocess and an-

1

2 CHAPTER 1 INTRODUCT ION

alyze the data. This requires a system for distributed computing. Second, to
explore data, we require numerical libraries for statistics and machine learning,
and libraries visualization libraries. Third, to find new patterns in the data,
we need to develop methods for feature extraction, prediction and to estimate
over-representation of drug consumption in patient groups. This includes pre-
processing schemes to transform prescription data to labeled training data,
which in turn is used to train supervised machine learning models. Once a
model is trained, we also need methods to interpret the model and its perfor-
mance. Fourth, exploration requires a system which enables quick development
of these methods. Therefore we require an interactive system that makes the
frameworks, libraries and methods available in a single environment.

We make three contributions. We present the design and implementation of a
system with a live coding environment, which enables use of Apache Spark, our
choice of big data framework. It provides Scikit-learn and Tensorflowwith Keras
for machine learning, and matplotlib and Plotly for visualization. We provide
algorithms for feature extraction, which we use to link drug consumption with
hospitalization. We assesses the performance in prediction of hospitalization on
these linked data sets. We also estimate over-represented drugs in hospitalized
patients. The results are available in an executable notebook format, and the
implementations are modifiable so that researchers can re-purpose the data
and analyses for their work.

1.1 Problems
1.1.1 Problems with using existing data analysis systems
Tools such as Excel, Stata, Python and R are commonly used to explore and
analyze datasets up to a few gigabytes in size. Their workflows are great
for fast data exploration because they have a large set of packages for data
analysis available, and most offer some interactive coding environment. They
do however face scalability issues when the data outgrows the memory or
processing power that a single machine provides.

A big data framework such as Apache Spark [1] can seamlessly scale analyses
by adding more machines. Spark was originally designed as an alternative
to MapReduce [2, 3] based frameworks. It reaps large performance gains by
favoring in-memory processing over MapReduce’s step-wise operations with
intermediate results written to disk.

However, Spark does not provide the functionality required for machine learn-
ing. Its machine learning library, MlLib is not very mature, and the evaluation

1.1 PROBLEMS 3

metrics [4] available for its machine learning models are limited. Second,
Spark has no built-in tools for visualization. Therefore Spark is often used in
combination with a machine learning framework.

1.1.2 Challenges for data exploration
In previous work, we implemented a combinatorial analysis where we aggre-
gated drug consumption as time-based data on a per-patient basis. The result
showed which drugs are used together in combinations of two. However, these
became difficult to interpret past combinations of two, because the resulting
output scaled combinatorially with the number of unique drugs. With com-
binations of two and a 856 unique drugs it resulted in a 856X856 matrix as
output.

Instead, a supervised machine learning model can be trained to learn correla-
tion between drug consumption and outcomes such as hospitalization, adverse
drug reactions or deaths. To apply supervised machine learning four issues
must be addressed.

First, our pharmacoepidemiologic data sets contain events such as drug con-
sumption, hospitalization, death and treatment duration for our population. It
therefore has a large number of correlations between the different events. We
need to find out which of these patterns we can use as predictors and outcomes
in the data.

Second, the predictors and outcomes must be preprocessed to select features
representing the patterns in the data. The feature space should exclude post-
outcomes to reduce overfitting.

Third, we need a machine learning model which learns patterns in the pre-
processed data. The type of model determines how complex relationships it
can learn between the features in the training data and the outcome, and
increasingly complex models have higher chance of overfitting, and worse
interpretability than simpler models. A

Finally, to extract new insights about pharmacoepidemological data, we must
choose interpretable methods to assess our models. These results should
be visualized so pharmacoepidemological researchers can assess their use-
fulness.

4 CHAPTER 1 INTRODUCT ION

1.2 System and methods for data exploration
To enable high development speed in pharmacoepidemiological data explo-
ration, we compose a system using existing tools, that provides the following
features.

The system enables interactive code execution with a notebook environment.
The environment has a framework for distributed computing available, and
also provides libraries for preprocessing, machine learning and visualization.
The notebook environment enables the developer to compose all steps, from
preprocessing to analysis inside with a set code blocks. Comments can be
written in markdown, and results are displayed below each cell.

Using a notebook enables data exploration because it tightly integrates devel-
opment, execution and evaluation of analyses in the same runtime, making
exploration fast. The environment enables reproduction of results, because
the full analysis - from raw data to result - can be fully contained in a note-
book.

Third, the system provides methods for loading, storing, transforming and
querying large data so that analyses can be performed on it. This is provided
by the distributed computing framework. Data is manipulated with SQL-like
querying on tabular data, which is an accessible and powerful feature that
makes data transformations of pharmacoepidemiological datasets much quicker
to develop than with low-level alternatives such as MapReduce.

Fourth, the framework provides tools for numerical computing, visualization
and machine learning. This enables the user to apply pattern recognition
algorithms on the data, and to interpret results of analyses.

As a starting point for further pharmacoepidemiological research, we imple-
ment a set of algorithms to preprocess and analyze prescription data:

1. We convert the raw tabular data to tables in the Parquet [5] format such
that simple exploration scripts can be implemented using Spark SQL.

2. We provide feature extraction of drug consumption from prescription
data sets.

3. We allow adjusting the dimensionality of the feature space by adjusting
the number of Anatomical Therapeutic Chemical Classification System
(ATC) levels.

4. We compare the performance of a logistic regression and neural network

1.3 SUMMARY OF RESULTS 5

for prediction of hospitalization based on our drug consumption features.

5. We use the bootstrap to obtain a list of drugs that are over- and under-
represented in hospitalized patients.

6. We enable reproducing or improving our analyses by providing the de-
scriptions, code, visualizations and documentation for our analyses in
notebook format.

1.3 Summary of results
Our big data analysis system provides the functionality required to efficiently
explore and develop new algorithms on pharmacoepidemological data of Nor-
wegian elders, with 60 million prescriptions and 2 million hospitalizations.
Also, our analyses have demonstrated to work with the available data.

On a single machine, we can preprocess the data of all patients from a single
gender in approximately 7 seconds. Training of a logistic regression model on
this data takes 10 seconds. Training of a neural network with scikit-learn on
CPU takes 400 seconds with one hidden layer with 50 neurons.

As can be seen in Figure 1.1 the neural net and logistic regression models
achieve almost identical receiver operating characteristic (ROC) curves and
AUC.

In our bootstrapping scheme, we draw samples randomly with replacement
from our population. This sampling with preprocessing takes on average 7
seconds. Using Scikit-learn, each logistic regression model takes on average 20
seconds to complete training on a bootstrapped sample. Training of 2000 boot-
strapped logistic regressions - sampling, preprocessing and training for each
iteration - took 15 hours and 12 minutes to complete on a single machine. The
scheme is embarrasingly parallel, so the task should scale linearly if distributed.
However, some implementation details must be changed to enable the whole
analysis to run on a cluster.

Through bootstrapping of logistic regression models we obtain estimates for
the mean and variance of every parameter. These parameters each correspond
to the log odds ratio that when a drug is used, a hospitalization occurs. We sort
these the parameters by their signal to noise ratio, and find a set of drugs that
are either over or under-represented in the hospitalized elders (1.21.2).

From the bootstrap analysis, we learned that many drugs don’t occur in enough

6 CHAPTER 1 INTRODUCT ION

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC Curve, models with 4-level ATC codes
MLP (AUC=0.771)
Log. Reg. (AUC=0.758)

Figure 1.1: Receiver operating characteristic curve of logistic regression and neural
network on 4-level ATC codes

Figure 1.2: Filtered bootstrapped logistic regression parameters, 98% confidence in-
tervals. We omit drugs where the 98% confidence intervals overlap with
the log odds equilibrium (0).

1.4 THES IS STRUCTURE 7

observations to obtain consistent log odds estimates. To learn more about these
drugs we believemore data is required. We believe that the system andmethods
we have developed will work on larger data sources.

1.4 Thesis structure
The rest of this thesis is structured as follows. Chapter 2 describes the the
design and implementation of our data exploration system. Chapter 3 describes
our data sets. Chapter 4 describes the preprocessing and machine learning
algorithms we have developed, and our results. In Chapter 5 we provide a
performance analysis of our bootstrap algorithm. In Chapter 6 we summarize
the contributions of this work. We discuss the limitations of our system, our
results, conclude and suggest future work.

2
A system for exploration ofpharmacoepidemiologicaldata
2.1 Architecture
The system architecture (Figure 2.1) is centered around a live code engine
that the user interacts with by writing code in an interactive programming
environment and by interacting with resulting visualizations. The live code
engine connects all frameworks, tools and libraries. It enables the user to
leverage multiple frameworks and libraries, and therefore implement and
execute an entire analysis in a single environment. This reduces development
time, and also reduces execution time since code changes do not require re-
executing the entire analysis. The code engine integrates the following three
features into one environment.

First, the environment connects to a big data framework upon intialization.
The big data framework connects the user to the data sources. The framework
enables the user to select, transform and aggregate big data using SQL-like
primitives on tabular data. SQL greatly simplifies data selection compared to
map-reduce based alternatives,making exploration fast. Data can also be pulled
from the big data framework into the live coding engine on-demand.

9

10
CHAPTER 2 A SYSTEM FOR EXPLORAT ION OF PHARMACOEP IDEM IOLOG ICAL

DATA

Second, the environment provides libraries and framework for efficient numeri-
cal computing, statistics andmachine learning. This enables quick development
of algorithms for pattern detection on pharmacoepidemiological data. To en-
able data modeling with machine learning libraries that run inside the code
engine, data is be pulled from the big data framework. For machine learning
frameworks that run on a cluster (for example TensorFlow clusters), data can
be pulled directly into the machine learning framework, from the big data
framework.

Third, the environment provides libraries for visualization. This enables inter-
pretation of the results that are obtained from analyses.

commands

results

SQL

matrices
save state, results

live code
execution

engine

libraries for data
cleaning &

preprocessing
scripting &

visualization

DataFrames

matrices

big data
framework

machine learning
frameworks

prescription data

data transformation &
aggregates

data management

user

models, training &
prediction

notebooks &
results

Figure 2.1: General data exploration system architecture

2.2 Implementation
We use Jupyter notebook [6] to provide interactive coding. As can be seen
in Figure 2.2 it is the core of our system. Our choice of big data framework
is Apache Spark [1, 7] with Spark SQL’s DataFrame API [8]. This provides a
programmatic SQL-like interface to the data sets.

To enable easy access to Spark with as little configuration as possible, we choose
Spylon-kernel [9] as the main kernel in the Jupyter environment. On start,
spylon-kernel initializes a Spark Session. The Spark Session connects to an
existing Spark cluster if Spark is configured, otherwise it creates a virtual Spark

2.2 IMPLEMENTAT ION 11

cluster which runs on the same machine as the Jupyter environment.

Spylon-kernel has two language interpreters available; a Python interpreter,
and a Scala interpreter. Both are connected to the same Spark Session. The
Scala interpreter enables performant computations in Spark. The Python in-
terpreter provides a wide array of libraries for analyses, machine learning and
visualization.

Our chosen libraries for machine learning are scikit-learn and Tensorflow with
Keras. Sci-kit provides a large number of algorithms for preprocessing, and
supervised and unsupervised learning. Tensorflow provides great support for
development of deep learning models, including support for GPU acceleration
and distributed training. Tensorflow also recently got native support for Keras,
which is a user-friendly API for machine learning. These libraries enable def-
inition, training and assessment of various machine learning algorithms. For
visualization we use matplotlib and Plotly.

The user connects to the Jupyter web server through a web browser. The web
server is hosted on a workstation. When connected, the user sees a directory
which contains all notebooks, datasets, utility code and plots. Some notebooks
contain the data ingestion programs, and the user has to run these the first
time the system is set up. When creating a new noteboook, the user has a
choice between two kernels, the Spylon-kernel, or the Python 3 kernel.

In Spylon, the user can load all data sets by importing and running some
utility functions we have implemented. This registers all Parquets(tables) with
pharmacoepidemiologic data so they’re queryable through the Spark Session.
This makes it possible to query them in the notebook with with Spark SQL.
From here, the user may transform, aggregate or pull data from Spark into the
Jupyter environment. To do this, the user can use the DF.toPandas() function,
which transforms the Spark DataFrame into a Pandas DataFrame in Python.
Pandas dataframes provides support for tabular data, and are conceptually
similar to Spark DataFrames. They also provide great support for interfacing
with libraries such as Numpy, scikit-learn and visualization libraries. The user
may convert columns or rows in the Pandas DataFrame to numpy arrays
easily. This enables the user to easily apply preprocessing and visualization
techniques.

With the Python 3 kernel, unlike Spylon-kernel, the user must set up the Spark
environment manually. We therefore suggest using Spylon-kernel for any work
that involves Spark.

For visualization of results, we suggest storing the results on disk and using
the Python 3 kernel instead of spylon-kernel. This is because Spylon requires

12
CHAPTER 2 A SYSTEM FOR EXPLORAT ION OF PHARMACOEP IDEM IOLOG ICAL

DATA

some workarounds to display graphs, and it has bad support for Plotly.

Spylon-kernel or
Python 3 kernel

Numpy, Pandas
Scikit-learn

Matplotlib, Plotly

Apache Spark

Tensorflow/Keras
or

Scikit-learn

Prescription Data

Data Transformation &
Aggregates

Data Management

User

Models, training &
Prediction

Notebooks &
Results

Jupyter
Web

Server

Jupyter-system

Figure 2.2: Our system design

2.3 Discussion
2.3.1 Apache Spark
We initially decided to use Spark because we struggled working with giga-
scale datasets with only Python and Pandas, programs would crash due to
memory issues. Using Apache Spark to ingest the data first solved these issues
automatically.

Spark versus Hadoop MapReduce
We believe Apache Spark is a better alternative for data exploration than
Hadoop MapReduce for a number of reasons.

Our data sets are structured, and Apache Spark has extensive APIs for work-
ing with structured and semi-structured data. Apache Spark provides Spark
SQL, which enables relational processing on the data. The user writes highly

2.3 D ISCUSS ION 13

expressive queries, and lets Spark figure out how to actually compute the
result. On the other hand, MapReduce implements a low-level programming
model where the user defines workloads with a chain of only two different
operations. Development of analyses with map-reduce is slower than Spark
SQL because the user must decompose his query to a set of steps that fits the
paradigm.

Apache Spark achieves better performance in most tasks due to its design.
Apache Spark is built on Resilient Distributed Datasets, a distributed data
structure which favors RAM over disk use. As long as a data set can fit in the
Spark cluster’s working memory, it never suffer the bottlenecks experienced by
disk I/O. On the other hand, Hadoop MapReduce is optimized for data that is
too large to fit in RAM, and uses disk for each intermediate computation.

Today, Hadoop MapReduce has one main advantage in some cases; cost. It
can be cheaper to run batch jobs in Hadoop MapReduce because it requires
fewer worker nodes to handle large data. The largest tradeoff is generally
computation time, Map Reduce jobs take longer to complete.

2.3.2 Alternative notebook environments
There are a number of available notebook environments available. Apache
Zeppelin is one such environment. It provides many of the same features as
our Jupyter environment with spylon-kernel, and is a viable option to our
solution.

However, we ended up using Jupyter because when we designed our system,
the general notion in the data science community was that Jupyter was more
mature than Apache Zeppelin. However, the Zeppelin community has been
steadily growing since then,and the system is builtwith Spark-support as amain
goal. Therefore we believe that it is as useful as our current environment. If we
adopted this system, we would only need to substitute the Jupyter environment
with Apache Zeppelin. The available libraries in Python would remain the same,
and the overall structure of our system would be identical.

2.3.3 Alternative Jupyter kernels
The Jupyter ecosystem has a large number of kernels available. We chose
spylon-kernel because it fit our problem space by providing easy methods to
interact with Spark. However, the spylon-kernel project is no longer actively
maintained, and it hasn’t seen updates for months. While we used spylon
throughout our work, we would consider migrating to an alternative kernel in

14
CHAPTER 2 A SYSTEM FOR EXPLORAT ION OF PHARMACOEP IDEM IOLOG ICAL

DATA

the future.

Apache Toree is a kernel which provides a larger set of features than Spylon-
kernel. In addition to Python and Scala, it has support for R programming
and SQL queries on DataFrames. We investigated possibilities of migrating
to Apache Toree. However, we encountered some issues with getting it up
and running. Since we hadn’t had any issues with spylon, we decided that it
was better to spend time on analyses. If Apache Toree was adopted, it would
only replace the spylon-kernel, and the rest of the system design would be
identical.

2.3.4 Conclusion
Our system provides tools which enable fast data exploration. There are multi-
ple alternatives to every component, but we believe that our chosen solution
is sufficient. To target potential issues that may arise with spylon-kernel, we
suggest a re-evaluation of the notebook system some time in the future. All
the discussed alternatives provide notebook environments that are very similar
to our solution. We therefore expect that our analyses should be portable to
other systems with minimal implementation changes.

3
PharmacoepidemiologicalData
Norway has a range of high quality health care data sets. The Norwegian
prescription database is one such data set. The database contains all drugs
dispensed at pharmacies in Norway. Big data analyses have never been used
on these data.

Detection of patterns such as drug interactions require development of anal-
yses that process huge amounts of data. Such analyses involve linking drug
consumption with data on hospitalization, death or adverse drug reactions. An
adverse drug reaction is an injury that is caused by taking medication, and
can occur from consumption of a single dose of a drug, use over time, or by
interactions from consuming a combination of multiple drugs. This is called
comedication. Detection of ADRs caused by comedication is a complex issue.
It is not guaranteed that the health care system will detect the cause of the
adverse effect when it occurs. If two drugs which cause adverse reactions
when comedicated are rarely prescribed, this requires huge amounts of data
to achieve a satisfying confidence.

15

16 CHAPTER 3 PHARMACOEP IDEM IOLOG ICAL DATA

3.1 Introduction
Our research utilizes drug-consumption related data from multiple Norwegian
sources. We have three data sets available: two data sets from the Norwegian
prescription database (NorPD), and one data set from the Norwegian Patient
Registry, containing hospitalizations. The two data sets about elders are linkable
by the patient’s ID. This enables many types of analyses. For example analyses
of correlation between drug consumption and outcomes such as hospitalization
and death, but also studies of doctors and how they medicate their patients.
The available data sets are listed in Table 3.1

Name Size Information
NorPD All 375 Million Prescriptions

NorPD Elders 60 Million Prescriptions+more
NorPD Elders Treatment 60 Million ATC, start+end

Duration
NPR, Elders 1.9M hospitalizations ID, Hosp. start+end

Table 3.1: Table with overview of data sets

3.2 Classification systems for drugs and diseases
There are multiple systems in use for classifications of drugs and diseases
worldwide. Following are short descriptions of the systems used in our data
sets.

3.2.1 The ATC system
The Anatomical Therapeutic Chemical Classification System [10] is a system
for classifying drugs based on the conditions it treats. The system is a five level
hierarchy which describes where in the body the drug works, what it treats,
in increasing detail, down to the specific chemical compound. This hierarchy
enables analyses at various granularity, as drugs that are chemically similar,
or that are used to treat the same illness, share up to four out of five levels in
the ATC hierarchy. Figure 3.1 shows the ATC-code for Paracetamol, a widely
known painkiller, with ATC code N02BE01.

3.2 CLASS IFICAT ION SYSTEMS FOR DRUGS AND D ISEASES 17

Figure 3.1: ATC Code hierarchy, example with Paracetamol (N02BE01)

3.2.2 ICPC-2 and ICD-10 for classification of diseases
The elders prescription data set uses two systems for disease classification.
These are used when medication is paid for by the health care system. However,
only one of the two systems are used per prescription, and the prescriber is
free to use whichever system he wants to.

Both systems contain most of the same diseases, but use different codes to
represent them.

• ICPC-2 [11] (International Classification of Primary Care) is used by
primary health care for diagnoses and other health issues. It is commonly
used by physicians in Norway.

• ICD-10 [12] is the 10th revision of the International Statistical Classifica-
tion of Diseases and Related Health Problems. This system is proposed
by the World Health Organization, and is one of their latest attempts
to create a global classification system. In Norway, this system is widely
adopted in hospitals.

18 CHAPTER 3 PHARMACOEP IDEM IOLOG ICAL DATA

elders
765.431 patients

prescriptions
59.903.331

hospitalizations
1.974.067

treatment
duration
estimates

172.428
hospitalized

patients

593.003
unhospitalized

Patients

patient where
count(hosp) < 10

109.385
hospitalized

patients

hospitalizations
508.498

All patients

preprocessing
and

encoding

hospitalized
training data
109K-508K

observations

prescriptions

treatment
duration
estimates

preprocessing
and

encoding

unhospitalized
training data

593K to N*503K
observations

N randomly
sampled

dates in 2013
per patient

~1/2 size when split by gender

Figure 3.2: Illustration of available data, with eligible subset sizes after cleaning

3.3 NorPD - The Norwegian Prescription
Database

We have two data sets which cover drug consumption. The first data set covers
most drug consumption of all patients in Norway in a 10-year period. The
second covers the drug consumption of all Elders in Norway in a three year

3.3 NORPD - THE NORWEG IAN PRESCR IPT ION DATABASE 19

period. Both data sets are longitudinal and therefore covers each patient’s use
of medicines over time. The two data sets cannot be linked with each other
directly, as the pseudonymized IDs are different for each of the two sets. This
is because they are obtained as part of two different projects. The general
population data set contains more than 6x the prescriptions of the Elders data
set. However, it has less features, and therefore less detail per prescription,
and is not linkable to any other data sets. There are no direct outcomes about
the state of the patients, so the potential analyses of this data set is limited.
The elders data sets contains less prescriptions, but has more information per
prescription. It can also be linked with the other available data sources.

Both data sets are originally in csv-format, and each row contains one pre-
scription. We may describe the information using the ER diagram in Figure
3.3.

Figure 3.3: ER-diagram of prescription data sets

20 CHAPTER 3 PHARMACOEP IDEM IOLOG ICAL DATA

3.3.1 NorPD - Norwegian prescription register, fullpopulation, 2004-2014
This data set contains most prescriptions dispensed at pharmacies in Norway
between 2004 and 2014. The data set has 374.9 million prescriptions. It contains
856 unique drugs that have at least one recorded adverse effect in the period.
It does not contain drugs that are purchased without prescription, nor drugs
used in hospitals.

As shown in our previous work, analyses of all combinations of drugs grow com-
binatorially. For example, with 856 different drugs, analyses of all combinations
of two results in matrices with more than 730.000 different drug combina-
tions, if we include ordering. All combinations of three results in more than
630 million combinations. Creating interpretable and computationally feasible
combinatorial analyses may require narrowing of scope, or implementation of
novel methods. The structure of the data set is described below.

Structure
Listed are the columns included in the NorPD general population data set.
Official Norwegian names are listed in parens.

• Pseudonymized ID (PasientLøpeNr): Pseudonymization instead of dei-
dentification allows us to collect specific patient’s prescriptions by search-
ing through the data set.

• Gender of patient (PasientKjønn)

• Birth year of patient (PasientFødtÅr)

• An exception tag for patients without an ID (PasientUtenID): Approxi-
mately 1% of medication are prescribed to patients with no ID

• Date of dispensing from pharmacy (UtleveringsDato)

• ATC-Code (ATCKode): Precise classification of the drug

3.3.2 NorPD - elder population, 2012-2014
Its structure is similar to the general population data set. It contains fewer
prescriptions, 61.9 million, but has additional variables per prescription about
dosage, disease, and variables for the patient including diseases and death. It

3.3 NORPD - THE NORWEG IAN PRESCR IPT ION DATABASE 21

contains 3 years of prescriptions from patients older than 65 years, between
2012-2014. The additional information allows it to be split into multiple subsets,
such as living patients, dead patients and hospitalized patients. This is useful,
as it enables creation of labeled data to train supervised learning algorithms
with. The data set is obtained as part of a different project than the general
population, and thus the patients in the two sets are not linkable with IDs.

Structure
• Pseudonymized ID (PasientLøpeNr)

• Gender of patient (PasientKjønn)

• Birth year of patient (PasientFødtÅr)

• ATC-Code

• Patients county of residence (PasientBostedFylkeNr, -Navn)

• Patients year and month of death, if the patient died between 2013 and
2017 (PasientDødsÅr, PasientDødsMnd)

• Prescribers Pseudonymized ID,age andgender (ForskriverLøpeNr, -FødtÅr,
Kjønn)

• Date of dispensing (UtleveringsDato/Diff_UtleveringDato): For persons
with no hospital admission in 2013 a simple date is provided. For persons
admitted, a relative date is provided with number of days before/after
the first hospital admission in 2013 provided. Note that this number may
be both positive and negative. This means that a subset of the data must
be treated differently with respect to time.

• Amount of drug dispensed (in number of defined daily doses)

• Diagnostic codes for reimbursement (RefusjonKodeICDNr, -ICPCNr): When
a prescription is payed for by the health care system, prescribers must
provide an indication for use in the form of a ICD-10 or ICPC-2 code.
Not all prescriptions are reimbursed so there are missing values in these
variables.

• Product name (VareNr, VareNavn)

• ATC DDD value and unit (AtcKodeDDDVerdi, -DDDEnhet): Dosage speci-

22 CHAPTER 3 PHARMACOEP IDEM IOLOG ICAL DATA

fications

3.3.3 NorPD - treatment duration estimates ofprescriptions in elder population
This data set contains estimates for the treatment duration of all prescriptions
in the NorPD Elders data set, and thus the two sets are directly linkable.
However, the timestamp format of unhospitalized patients is different. For
unhospitalized patient, the treatment start is defined as the difference in days
between the date of prescription, and January 1st, 2013. For patients who were
hospitalized, the treatment start variable is the same as the Diff_Utleveringdato.
For both sets, the treatment end timestamp is defined as treatment_start +
estimated_treatment_time. The treatment duration estimates are computed by
researchers at the institute for pharmacy atUiT,using pharmacoepidemiological
rules.

Structure
• Pseudonymized ID (PasientLøpeNr)

• ATC code (ATCKode)

• Treatment start

• Treatment end

3.4 NPR - Norwegian Patient Registry
Our NPR data set contains all hospitalizations in the 2012-2014 period from
patients who were hospitalized at least once in 2013. Each row contains a
hospitalization,with the ID of the patient, the start timestamp and end time The
data is linkable with the NorPD elders data set by the patient’s identifier.

Structure
• Pseudonymized ID (PasientLøpeNr)

• ICD-10 code

3.5 DATA INGEST ION W ITH SPARK 23

• ICPC-2 code

• Hospitalization start

• Hospitalization end

3.5 Data ingestion with Spark
To enable fast queries on the data sets, we use Spark to transform the data sets
to a Parquet format. We ingest the raw CSV files with Spark SQL’s DataFrame
API, which parses the header and infers the schema automatically.

Spark SQL defaults the type of each column as string when loading csv files.
We make adjustment to some columns. Specifically, we convert dates from
string format to unix time, and date diffs and birthyears to integer format. We
partition the tables by patient IDs before we write the tables back to disk in
Parquet format. , we write the resulting DataFrame to disk in Parquet format.
Figure 3.4 visualizes this process.

Queries on a Parquet formatted table is very fast for a number of reasons.
First, Parquet is a column-store format which utilizes column compression,
which reduces storage footprint, and indexing methods to make it very fast to
search from. Queries only loads the columns required into Spark, minimizing
the memory footprint and computational complexity. Second, by partitioning
by ID we enable fast queries on this field. In a distributed setting it should
ensure that queries on a per-patient basis is computed on a per-worker basis,
because the partitioning ensures that all data of each respective patient is
stored together per table.

Finally, the storage footprint is greatly reduced with Parquet. The elder’s pre-
scriptions data set, which storage footprint is 14 GB in csv format, is reduced
to 768 MB in Parquet format. The drug treatment duration is 17 MB in Parquet
format, down from 760 MB in the raw format. We believe most of this comes
down to redundancy in all data sets, which is greatly optimized with column
compression.

The reduced storage footprint comes at a cost of increased computational
complexity when writing the data to disk. This is negligible in our case, the
conversion takes approximately 2 minutes per data set, and only has to be done
once. Therefore we believe the up-front computational cost is negligible.

24 CHAPTER 3 PHARMACOEP IDEM IOLOG ICAL DATA

Raw data
.CSV

Spark:
- ingest

- define schema
- define types

- cleaning
- partitioning

Parquet
files

tabular
format

Spark:
- load data
- transform

-preprocessing

Jupyter:
pandas

DataFrame

Figure 3.4: Data in csv format ingested by Spark, converted to DataFrame, written to
disk in Parquet format

3.6 Analyses that can be done using Spark SQL
3.6.1 Visualizing overrepresented drugs in patients who die
We aim to find out when drugs that are overrepresented in patients who die
are consumed relative to their month of death. We therefore implement an
analysis of drug consumption in live and dead male patients.

We first have to estimate which drugs that are overrepresented in the dead
population. We therefore split the elders data into two subsets, patients who
are alive (640.000 patients), and patients who died between 2013 and 2017
(133.000 total).

Compute the relative frequency of each drug per group. For both splits, we
count the number of times each drug is prescribed, and also the total number of
prescriptions in each respective group (7.5 million for dead patients, 16.2 million
for live patients). We normalize the aggregated prescriptions by dividing the
count of each drug by the total number of prescriptions for each respective
group.

We compare the relative frequencies from the distribution of drug consump-
tion of the two groups on the log scale. We do this by dividing the relative
frequencies of dead patients with the frequencies of live patients. We choose
the five drugs with the highest relative frequency.

3.6 ANALYSES THAT CAN BE DONE US ING SPARK SQL 25

Results
In figure 3.5, we visualize the prescriptions of these drugs in dead patients as
a set of 30-day aggregates in a 900 day time frame prior to patient’s death. We
choose 30 day buckets for two reasons. First, the death date is only defined in
year and month, not day, which inherently limits the precision of the timeline.
Second, since most displayed drugs occur in low quantities, buckets of smaller
size will only make the visualization noisy.

26 CHAPTER 3 PHARMACOEP IDEM IOLOG ICAL DATA

Figure 3.5: Aggregated drug consumption of drugs overrepresented in patients that
died, 30-day bins.

We observe that midazolam (N05CD08) is almost exclusively prescribed a
very short period prior to death. It is a sedative, and is most likely used for
palliation.

3.6 ANALYSES THAT CAN BE DONE US ING SPARK SQL 27

L01AX03, L02BB04, L01CA04 are all drugs used in cancer treatment, and we
see that the prescriptions tend to occur more frequently when closer to patients
death.

Finally, dexamethasone (H02AB02) increases in use when closer to death. This
drug is used together with cancer treating drugs, specifically to treat or reduce
the severity of adverse effects from the cancermedication, which tend to appear
when the treatment is prolonged.

4
Exploring drug use patternsassociated withhospitalization
4.1 Introduction
We aim to find drugs that are over- or under-represented in patients that are
hospitalized. Our long term goal is to predict adverse drug reactions that cause
hospitalization.

We compare drug consumption data for hospitalized and unhospitalized pa-
tients.

As a starting point for our research, we design a preprocessing scheme to
convert prescription- and hospitalization data from elders to observations in a
numerical format, which is usable for modeling. We design two analyses which
trains supervised learning models on the observations.

First, we design a comparative analysis to find out how well models can predict
hospitalization from our data. We compare the performance of a logistic
regression and a neural network in prediction of hospitalization.

Second, we estimate drugs that are over- and under-represented in patients

29

30
CHAPTER 4 EXPLOR ING DRUG USE PATTERNS ASSOC IATED W ITH

HOSP ITAL IZAT ION

who end up hospitalized and unhospitalized, respectively. We obtain these
estimates by applying a bootstrap scheme which computes point estimates
and confidence intervals of logistic regression parameters. Since each of the
model parameters corresponds to a drug, we interpret the mean magnitudes
as a measure of over-representation in the respective groups, and use the
confidence intervals to indicate if we have enough data on the respective
drug.

4.2 Data preprocessing
To enable supervised learning on our data, we first have to preprocess it. We
choose drug consumption as our features, and hospitalization as our outcome.
We split the data by gender. This is because the drug consumption of men
and women differs; some drugs are exclusively prescribed to one of the two
genders.

We further divide the genders into a hospitalized and unhospitalized group.
From Chapter 3 we see that Hospitalized patients can be easily identified by
selecting all patients in the NorPD Elders data set that use the diff_date field
for time stamps.

We use binary labels, and code our unhospitalized group with a 0, and the
hospitalized groups with 1. Figure 4.1 displays how our data sets are prepro-
cessed.

4.2 DATA PREPROCESS ING 31

Elders

ID, ATC, date, diff_date, gender, birthyear

Female

ID, ATC, date, diff_date

Male

ID, prescription, date, diff_date

Unhospitalized F

ID, ATC, date

Hospitalized F

ID, ATC, diff_date

Hospitalized M

ID, ATC, diff_date

Unhospitalized M

ID, ATC, date

Elders Hospitalizations

ID, Start date, End date

Drug treatment duration (DTD)

ID, ATC, start_treatment, end_treatment

SELECT
ID,

Rand(date in 2013)
as date

SELECT
ID

Identical procedure as Female

JOIN

Unhosp. F,

ID, date(random in 2013)

For each ID:
Find hospitalization

with longest unhospitalized period prior

SELECT
ID,

DATE 30 days before
hospitalization Hosp. F

ID, date(30days_prior)

JOIN ON (ID, date)
WHERE

DTD.start_treatment <= date
AND

DTD.end_treatment >= date
GROUPBY(ID, date)

COLLECT(ATC)

JOIN ON (ID, date)
WHERE

DTD.start_treatment <= date
AND

DTD.end_treatment >= date
GROUPBY(ID, date)

COLLECT(ATC)

Unhosp. Estimated Consumed drugs

ID, LIST(ATC_codes)

Hosp. Estimated Consumed drugs

ID, LIST(ATC_codes)

Figure 4.1: Illustration of preprocessing scheme

Data cleaning
Patients with chronic diseases are regularly hospitalized. We need to remove
these, because their hospitalizations are usually not caused by drug consump-
tion. As can be seen in Figure 4.2, a majority of patients are hospitalized less
than 10 times in the period 2012-2014. We assume that most patients that are
hospitalized 10 times or more are likely regularly hospitalized due to a chronic
disease. These patient’s drug consumption are unlikely to generalize to other
patient’s drug consumption. We omit these patients, because they are likely
to cause our models to overfit. As can be seen in figure 4.3, which shows the
number of hospitalizations per bin, we lose a major portion of the total hos-
pitalizations in the data. The resulting set contains 508 498 hospitalizations,

32
CHAPTER 4 EXPLOR ING DRUG USE PATTERNS ASSOC IATED W ITH

HOSP ITAL IZAT ION

25.7% of the original set of 1 974 067.

0 10 20 30 40 50 60
Hospitalizations in period

0

2000

4000

6000

8000

10000

12000

14000
Nu

m
be

r o
f p

at
ie

nt
s

Hospitalized patients, by number of hospitalizations in 2012-2014

Figure 4.2: Number of patients with N number of hospitalizations, discrete bins

0 10 20 30 40 50
Patient's hospitalizations in period

10000

20000

30000

40000

50000

60000

70000

80000

To
ta

l n
um

be
r o

f h
os

pi
ta

liz
at

io
ns

Hospitalization counts, binned by N hospitalizations per patient, 2012-2014

Figure 4.3: Hospitalization counts binned by the number of hospitalizations, discrete
bins

ATC levels for dimensionality reduction
The ATC system enables dimensionality reduction in our modeling. This is be-
cause the ATC system is a hierarchical drug classification system (as mentioned
in chapter 3). A 4-level ATC code describes the therapeutic effect of all 5-level
ATC codes with the same preceding levels.

4.3 LOG IST IC REGRESS ION VS NEURAL NETWORK FOR PRED ICT ION OF
HOSP ITAL IZAT ION 33

We use a a one-hot encoding on drug consumption - each drug defined by an
ATC code - to generate features. This assigns each unique N-level ATC code
a binary feature. With 5 levels, this results in more than 900 features in a
preprocessed data set. With 4 ATC levels, the number of features is reduced to
160.

Our preprocessed data sets have sparse features. For each observation we can
expect only about 4 of the 160 to 900 possible drugs to be consumed per
observation. Hence the remaining 97.5% to 99.6% of features respectively are
zeroes.

Differences between preprocessing in our analyses
The preprocessing schemes in our analyses have two main differences. First
the granularity of ATC codes differ; in the comparative analysis we use 4-level
ATC codes, while we use 5-level ATC codes in the bootstrap analysis. Second,
the method we use to estimate drug consumption differs. In the comparative
analysis we estimate the drugs by examining 30 day windows and encoding the
drugs that are prescribed in the window. In the bootstrap analysis, we obtain
the drug consumption as point estimates from the treatment duration dataset.
The drug treatment data set was made available to us after development of
the comparative analysis.

4.3 Logistic Regression vs Neural Network for
prediction of hospitalization

We design an analysis where our aim is to determine if prediction of hospi-
talization is possible from drug consumption data. We compare two models,
a logistic regression and a neural network with one hidden layer. We train
these models on drug consumption which we estimate by examining 30 day
windows in hospitalized and unhospitalized patients. We assess the models
performance in the binary inference task on a test set which we derive with a
67%-33% train-test split on the preprocessed data prior to training.

34
CHAPTER 4 EXPLOR ING DRUG USE PATTERNS ASSOC IATED W ITH

HOSP ITAL IZAT ION

Hospitalized

Not hospitalized

Timeline

Longest window with no
hospitalization

Hosp. start

Record prescriptions
in 30 day window

before hospitalization

Estimated active drug treatments

D
ru

g
Tr

ea
tm

en
ts

Prescriptions

Hosp. end

Figure 4.4: Drug consumption estimation in comparative analysis

For the people who were hospitalized one or more times we examine 30 day
windows immediately before a hospitalization. We code the occurrence of a
given drug being prescribed one or more times by a 1, otherwise we code it as
a 0. We only select such windows when there is at least 60 days since the last
hospitalization. We do this to reduce the likelihood that our sampled dates are
correlated strongly with any previous hospitalization. We take up to three of
these windows per patient, in descending order by the number of days since
the last hospitalization.

We use drug consumption from unhospitalized patients as controls for com-
parison. We select uniformly at random 30 day windows in 2013 for each
patient. We code prescriptions in the same way as above. We sample dates
exclusively from 2013 because our data only includes hospitalizations if the
patient was hospitalized at least once in 2013. We do this because we know that
our unhospitalized group has no hospitalizations in 2013, but they may have
hospitalizations in 2012 and 2014 which are not included in the raw data.

We code ATC codes at 4 out of 5 levels. This reduces the number of unique
ATC codes to 160, from 900. 4-level ATC retains the function of the drug
treatment and chemical group, but loses information about the specific chemical
compound.

4.3 LOG IST IC REGRESS ION VS NEURAL NETWORK FOR PRED ICT ION OF
HOSP ITAL IZAT ION 35

4.3.1 Logistic Regression model
We model the probability of hospitalization after 30 days, p given that a drug
has been prescribed (xi ∈ {0, 1}) as linear on the logit scale

log
p

1 − p
= β0 + β1x1 + . . . + βkxk .

The coefficient βi for drug i represents the change in log odds of hospital-
ization if drug i is prescribed, all else treated as fixed. In other words, the
prescription of drug i changes the odds of hospitalization by a factor of eβi .
Large positive coefficient estimates indicate that drug i strongly correlates with
hospitalization. The number of cases and controls we select does not reflect
the population frequency of hospitalization, as such the intercept β0 has no
immediate interpretation.

We implement the logistic regression model using scikit-learn’s LogisticRegres-
sion model. We use the liblinear [13] optimizer. The model implements L2

penalty. We eliminate this penalty by setting the C parameter to 1042. The
C parameter is an inverse regularization parameter (1/λ), thus small C leads
to high regularization, which disincentivizes the model from overfitting. An
infinitely large C eliminates the regularization, which enables the parameters
in the logistic regression to converge unconstrained, but may lead to overfit-
ting.

4.3.2 Neural network model
We design a neural network with a single hidden layer with 50 perceptrons.
We use scikit-learn’s MultiLayerPerceptron model. This model has the same
API as the logistic regression model, which makes them simple to compare
because it is simple to compute the same metrics on both models. As activation
function in the hidden layer, we use the logistic activation function. Our chosen
optimizer is Adaptive Moment Estimation [14](ADAM).

4.3.3 Results
We train both models with the training set (67% split). We compute the receiv-
ing operating characteristic (ROC) curve of the models on the test set (33%
split). We visualize this curve for the respective models in Figure 4.5.

As can be seen, both models achieve a near-identical area under the curve on
the test set. The neural network achieves an AUC score of 0.771, while the

36
CHAPTER 4 EXPLOR ING DRUG USE PATTERNS ASSOC IATED W ITH

HOSP ITAL IZAT ION

logistic regression model achieves an AUC score of 0.758. The neural network
achieves slightly higher true positive rate than the logistic regression when
false positive rates are low.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve, models with 4-level ATC codes
MLP (AUC=0.771)
Log. Reg. (AUC=0.758)

Figure 4.5: ROC curve of Multi Layer Perceptron (Neural Net) and logistic regression

As can be seen in the calibration curve (Figure 4.6), both models appear to
be well-calibrated. A perfectly calibrated model has probabilistic output. This
means that if the model predicts an 80% probability of hospitalization for a
large number of observations, 80% of the predictions are correct.

Neural networks are composed from layers of stacked linear models with non-
linear activation functions between them. Neural nets can in model complex
interactions between drugs from the data, but it comes at the cost of inter-
pretability; it becomes increasingly difficult to understand its inference process
when the number of layers increases, and the network also grows more prone
to overfitting.

On the other hand, in a logistic regression, each parameter directly corresponds
to consumption of a single drug. This enables direct interpretation of how each
drug affects inference.

4.3 LOG IST IC REGRESS ION VS NEURAL NETWORK FOR PRED ICT ION OF
HOSP ITAL IZAT ION 37

0.0 0.2 0.4 0.6 0.8 1.0
Mean predicted probability

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

os
iti

ve
s

Calibration curves
Logistic Regression
Neural Network
Perfectly calibrated

Figure 4.6: Calibration curve of Multi Layer Perceptron (Neural Net) and logistic
regression

38
CHAPTER 4 EXPLOR ING DRUG USE PATTERNS ASSOC IATED W ITH

HOSP ITAL IZAT ION

The neural network has approximately 8000 parameters, 50 times the param-
eters of the 160 parameters in the logistic regression models. When compared
to the logistic regression, this has two major drawbacks. First, it is much more
difficult to interpret the decision making process of the neural network than
the logistic regression model. Second, the model is much more computationally
complex to train. The neural network takes 400 seconds to train on CPU, which
is 65 times longer than the logistic regression training time of 6.1 seconds.

The neural network shows signs of overfitting. It has a training set AUC of
0.822, a difference of 0.05 from its test set AUC. On the other hand, the logistic
regression achieves almost identical AUC between the training and test set,
with an AUC of 0.762 on the training set, a difference of 0.004.

Interpretability is an important topic in all research. Especially in fields re-
lated to medicine, researchers are often willing to trade off performance for
interpretability. It only makes sense; many people won’t let an analysis system
which reveals nothing about what it derived its decision from, be used in a
safety-critical or health-critical application.

We believe logistic regressions provide a more useful result than the Neural
Network because of this. The logistic regression is interpretable with regards
to our data, while the Neural Net has no immediate interpretation. Also, with
the performance metrics being almost identical, and the training time of the
neural network, there seems to be little application for this type of model with
the data we have now.

Our results indicate that there may be some inherent problem in our data
or preprocessing scheme. It is possible that the performance of our models is
limited by overlapping feature distributions in the hospitalized and unhospi-
talized groups, and that more accurate prediction cannot be made. However,
we believe it is more likely that out current cleaning - where we omit patients
that have less than 10 hospitalizations - fails to remove many hospitalizations
that are definitely not caused by drug consumption.

To improve the performance metrics of our data modeling, we believe the
data cleaning in the hospitalized patient group should be improved. To do
this, we suggest omitting hospitalizations that are non-preventable by drug
treatment. However, determining which hospitalizations to omit will require
domain expertise and time to implement.

4.4 BOOSTRAPPED LOG IST IC REGRESS ION 39

4.3.4 Conclusion
Our models perform equally well in prediction, and they appear to be well-
calibrated, whichmeans that they have some probabilistic properties. While the
ROC curve shows that models dont perform badly in prediction, they don’t per-
form great either. We cant determine if we can achieve better prediction of drug
consumption, but we believe that improved preprocessing of our hospitalized
group can improve our models prediction performance.

4.4 Boostrapped logistic regression
Following the results from the comparative analysis, we design an analysis
to detect drugs that are over-represented in hospitalized patients. To achieve
this, we apply a bootstrap scheme where we replicate logistic regressions. This
scheme also allows us to estimate drugs that we lack observations on. We use
a similar preprocessing as in the comparative analysis, and use unhospitalized
patients as a control.

4.4.1 Data differences from the comparative analysis
The data used in this analysis is derived using the same method as the compar-
ative analysis, with two differences.

First, we use 5-level ATC codes, instead of 4-level. This results in 900 features,
compared to the 160 features in the data in the previous analysis.

Second, we obtain drug consumption point estimates by performing a look up
in the active drug treatments dataset for each we sampled date per patient. In
patients who are hospitalized, we obtain these point estimates 30 days prior
to a hospitalization, with the same constraints as in the previous analysis. In
unhospitalized patients, we obtain the point estimates from dates sampled
uniformly at random in 2013.

The point estimates should be more accurate than the estimates in the compara-
tive analysis, because the treatment durations we use for our drug consumption
sampling are computed using pharmacoepidemiological rules. These drug con-
sumption estimates are thus more likely to include drugs that are prescribed
for longer periods than 30 days at a time, which the method in the previous
analysis can’t reliably estimate.

40
CHAPTER 4 EXPLOR ING DRUG USE PATTERNS ASSOC IATED W ITH

HOSP ITAL IZAT ION

Hospitalized

Not hospitalized

Timeline

Longest window with no
hospitalization

Hosp.
start

Point estimate of
active treatments
30 days before
hospitalization

Active Drugs

D
ru

g
Tr

ea
tm

en
ts

Active drug treatments

Hosp.
end

Figure 4.7: Drug consumption estimation in analysis 2

4.4.2 Methodology
We implement a bootstrapmethod to compute point estimates and distributions
of a logistic regression model. To do this, we simulate 2000 data sets from our
population by drawing observations from both populations at random with
replacement. For each bootstrapped data set we perform a train-test split of
66%-33% and fit a logistic regression to it.

We compute the point estimate of each parameter βi , in the bootstrapped
logistic regressions (n ∈ {1, 2, ..., 2000}) by

µi =

∑2000
n=1 (β

n
i)

2000
and the standard deviation

σi =

√∑2000
n=1 (β

n
i − µi)

2

2000
Since each parameter βi directly corresponds with a drug i we use the distri-
bution we compute to detect drugs that are over-represented with respect to
hospitalization.

The distribution we obtain enables us to estimate which parameters that have
enough data to be considered reliable in future data modeling, and which do
not.

4.4 BOOSTRAPPED LOG IST IC REGRESS ION 41

Real
Predicted

True False Sum

True 5.92% 20.73% 26.65%
False 3.04% 70.30% 73.45%
Sum 8.96% 91.04% 100.0%

Table 4.1: Confusion matrix of a bootstrapped logistic regression model

4.4.3 Implementation
The logistic regression model scikit-learn’s LogisticRegression. The C parameter
and training scheme we use are equivalent to the logistic regression model in
Analysis 1. Since 5 levels of ATC codes are used, it has 900 parameters instead
of 160.

4.4.4 Results
Confusion matrix
We compute the confusion matrix (Table 4.1) of a logistic regression trained
with our bootstrap method. The test set for this specific model contained 88005
observations, of which 23456 (26.65%) were hospitalized, and 64549 (73.45%)
were not hospitalized. As can be seen, the model achieved a 66% true positive
rate (5206 observations, 5.92% of total), and a 77.2% true negative rate (61868
observations, 70.3% of total). This shows that the model is slightly better at
predicting negative samples than positives.

Visualization of the parameter distributions
In Figure 4.8, we observe that many parameters have high variance. This
indicates that the corresponding drugs occur infrequently, and the logistic
regression is unable to learn stable parameter estimates for them.

42
CHAPTER 4 EXPLOR ING DRUG USE PATTERNS ASSOC IATED W ITH

HOSP ITAL IZAT ION

Figure 4.8: All bootstrapped logistic regressions parameter distributions by relevance

Figure 4.9: Filtered bootstrap logistic regression

In a logistic regression model, 0 log odds means there is an equal probability
of each respective outcome. We assume that parameters which 98% confidence
interval crosses the line is unlikely to be useful to do inference with using

4.4 BOOSTRAPPED LOG IST IC REGRESS ION 43

our available data. We therefore omit all respective parameters which 98%
confidence interval crosses the 0 log odds (50% probability) line from the
visualization. This result is a list of 200 drugs (Figure 4.9).

Conclusion
We have identified a list of drugs associated with hospitalization. We believe
this list can be used as a starting point for further analyses.

The large number of parameters with high variance in 4.8 confirms our suspicion
that many drugs don’t occur frequently enough to enable accurate estimates of
their true correlation with hospitalization. To obtain more accurate parameter
estimates for these parameters, we believe more data is required.

5
Performance Evaluation
To find out how our system scales, and how we can improve this scalability, we
evaluate the runtime performance of our bootstrap algorithm.

5.1 Hardware
Our system and analyses were run on a single machine with the following
specs:

• Intel Xeon E3-1275 4C/8T @ 3.80 GHZ

• 64 GB 2400MHZ ECC RAM

• 1x Nvidia GTX 1080 Ti

• 500 GB SSD (500 MB/s Read, 500 MB/s Write)

5.2 Bootstrap methods
The major drawback of our bootstrap analysis is computational complexity.
Since point estimates and distributions are obtained by repeatedmodel training

45

46 CHAPTER 5 PERFORMANCE EVALUAT ION

on many slightly different datasets, the complexity scales linearly with the
number of bootstrap samples we require.

In our case, we performed 2000 iterations of logistic regression on bootstrapped
data with males. Figure 5.1 displays the running time of each iteration in the
analysis with mean and error lines. The bootstap iterations took 15 hours and
12 minutes in total on a single machine.

0 250 500 750 1000 1250 1500 1750 2000
Iteration number

20

30

40

50

60

Bo
ot

st
ra

p
ite

ra
tio

n
tim

e
(S

ec
on

ds
)

Measured time
Mean
Stdev

Figure 5.1: Graph showing runtime of all 2000 bootstrap iterations

Figure 5.2 displays the convergence of the bootstrapped mean of every param-
eter as training commences, with the final mean of each parameter subtracted
from every respective data point. We observe that the means stabilize as the
number of bootstrap samples increase, and that they are fairly stable after 2000
iterations. This indicates that we probably have enough bootstrap resamples.
However, the graph reveals nothing about whether the data is sufficient for
accurate estimates (We assume many drugs lack data, as we talked about with
Figure 4.8). From the convergence graph, we only know that we have elimi-
nated most of the variance caused by not utilizing the nn possible permutations
of the data set.

5.2 BOOTSTRAP METHODS 47

0 250 500 750 1000 1250 1500 1750 2000
4

3

2

1

0

1

2

3

4
Bootstrap parameter convergence

Max and min

Figure 5.2: Bootstrap convergence of the parameter means. Each data point has the
respective parameter mean of 2000 bootstraps subtracted from it.

5.2.1 Reducing the bootstrap analysis time
An advantage of the bootstrap is that it is embarassingly parallel; each bootstrap
resampling procedure can be independently computed. Therefore, to reduce the
total analysis time on a single machine, we suggest utilizing thread parallelism
and distribution.

The data resampling and preprocessing is already partially implemented with
Spark. To enable Spark to scale this whole procedure we still need to implement
the remainder of the preprocessing scheme in Spark.

To reduce the total training time of the logistic regressions we suggest two
improvements.

First, we can improve the throughput on a single machine by training models in
parallel on each CPU core. To achieve this with scikit-learn,we suggest using the
Joblib Python library, because it requires little work to apply. With four models
training in parallel, this should increase the throughput of model training by
four. Since approximately 75% of our analysis time was spent training logistic
regressions (20/27 seconds),we expect the analysis time to bemore than halved.
We expect this because the throughput of models that are trained increases

48 CHAPTER 5 PERFORMANCE EVALUAT ION

four-fold (one model per 20 seconds to 4 models per 20 seconds) while the
resampling time per data set remains the same (7s/model*4=28s). This results
in an estimated 48 seconds to train four models, and 24 000 seconds (48s*500)
to train 2000 models, which is approximately to 6 hours and 40 minutes.

To distribute our bootstrap analysis with logistic regression models, we suggest
two solutions. First, the logistic regression training scheme can be implemented
with Apache Spark’s MLLib. This will require a complete reimplementation of
our bootstrap analysis, and we still need to investigate MLLib can be used to
achieve it. A second option is to distribute the current bootstrap algorithm as a
Python script that to each worker node in the same cluster that Spark runs in,
and let each worker node compute a number of bootstrap resamples.

6
Conclusion
We have designed a system which enables pharmacoepidemiological data ex-
ploration. It uses Apache Spark to enable analyses to scale to drug consumption
and hospitalization data in 700000 Norwegian elders, with 60 million pre-
scriptions and 1.9 million hospitalizations in a three-year period. We believe it
will scale to data even larger than the sources we have had available.

We demonstrated the usability of our system by implementing two machine
learning methods to explore the correlation between drug consumption and
hospitalization.

We implemented two models, a logistic regression and a neural network. The
models achieved near-identical performance, and both were well-calibrated.
The results suggest that there are detectable signals in the data. But we need
more data and improved data cleaning in order to be able to improve the
prediction metrics

We estimated drugs that are over- and underrepresented in the hospitalized
group, using bootstrapping with linear regression on labeled data. The result is
a list of the drugs that are most likely over-represented in the hospitalized and
unhospitalized group, respectively. The drugs are prioritized based on their
signal to noise ratio (µi/σi). We also found that a large number of drugs that
had high variance, and these were therefore omitted since the results suggests
that these drugs don’t occur often enough in either of our populations. More
data is necessary to get more accurate estimates for these drugs.

49

50 CHAPTER 6 CONCLUS ION

6.1 Future work
We believe that our system can help pharmacoepidemiologic research in the
future. The preprocessing can be further refined by improving data cleaning
procedures. Furthermore, new features such as disease classifications can be
added to enable machine learning models to learn more complex patterns
between drug consumption and outcomes.

We believe our system and analyses will scale to larger data sets of similar type.
Spark is the component that makes this possible. To scale machine learning
algorithms, we have shown that scikit-learn can be used with JobLib to train
multiple models in parallel on a single machine. To scale machine learning
analyses to very large data, we suggest distribution with Spark for simple
models, and Tensorflow for complex models because it enables distribution
and GPU acceleration.

The current iteration of our system uses spylon-kernel. It is not actively main-
tained. We suggest adopting an alternative kernel in the future. Apache
Toree [15] is an incubating Apache project which provides a kernel with
the same functionality as spylon-kernel, but with added R and SQL support.
Migrating our notebooks to this environment should be simple, since all code
is generic.

For cloud based notebook alternatives we suggest using Databricks. This ser-
vice provides notebook-style environment with managed Spark, much like the
system we have composed, but in the cloud. The service sees continous improve-
ments, and has seen growing use in industry since its inception. We believe
migration to this service will require the same amount of work as migration to
Apache Toree.

Bibliography
[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: Cluster computing with working sets,” Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, vol. 10, pp. 10–10, 07
2010.

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” vol. 51, pp. 137–150, 01 2004.

[3] “Hadoop mapreduce.” http://hadoop.apache.org/. Accessed: 2019-05-
31.

[4] “Evaluation metrics - rdd-based api.” https://spark.apache.org/docs/2.
1.0/mllib-evaluation-metrics.html. Accessed: 2019-05-31.

[5] “Apache parquet.” https://parquet.apache.org/. Accessed: 2019-05-24.

[6] “Project jupyter.” https://jupyter.org/. Accessed: 2019-05-31.

[7] “Apache spark™ - unified analytics engine for big data.” https://spark.
apache.org/. Accessed: 2019-05-31.

[8] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi, et al., “Spark sql: Relational data
processing in spark,” in Proceedings of the 2015 ACM SIGMOD international
conference on management of data, pp. 1383–1394, ACM, 2015.

[9] “Valassis-digital-media/spylon-kernel.” https://github.com/Valassis-
Digital-Media/spylon-kernel. Accessed: 2019-05-31.

[10] “Whocc - atc/ddd index.” https://www.whocc.no/atc_ddd_index/. Ac-
cessed: 2019-05-24.

[11] Wikipedia contributors, “International classification of primary care —
Wikipedia, the free encyclopedia,” 2018. [Online; accessed 1-June-2019].

51

http://hadoop.apache.org/
https://spark.apache.org/docs/2.1.0/mllib-evaluation-metrics.html
https://spark.apache.org/docs/2.1.0/mllib-evaluation-metrics.html
https://parquet.apache.org/
https://jupyter.org/
https://spark.apache.org/
https://spark.apache.org/
https://github.com/Valassis-Digital-Media/spylon-kernel
https://github.com/Valassis-Digital-Media/spylon-kernel
https://www.whocc.no/atc_ddd_index/

52 B IBL IOGRAPHY

[12] Wikipedia contributors, “Icd-10—Wikipedia, the free encyclopedia,” 2019.
[Online; accessed 1-June-2019].

[13] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblinear: A
library for large linear classification,” Journal of machine learning research,
vol. 9, no. Aug, pp. 1871–1874, 2008.

[14] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

[15] “Apache toree.” https://github.com/apache/incubator-toree. Ac-
cessed: 2019-05-31.

https://github.com/apache/incubator-toree

A
Supplementary material
The supplementary material and the repository with notebooks and code will
be made public some time in the future. Currently they are only available by
request because it may contain some sensitive information.

A.1 Notebooks
Following are a description of the notebooks included in which contains the
methods we used to ingest csv data and convert it to Parquet on disk. All
notebooks are in HTML format, thus they are not executable. Note that the
syntax highlighting is wrong in many cells. This is a result of the HTML
digest. The executable notebooks have functioning syntax highlighting. Our
visualizations are included in these analysis notebooks.

• notebook_1: Contains the code required to ingest the general population
prescription data set from NorPD.

• notebook_2: Contains the code required to ingest the elders prescription
data set from NorPD.

• notebook_3: Contains the code required to ingest the hospitalization data
of elders from the NPR data set.

53

54 APPEND IX A SUPPLEMENTARY MATER IAL

• notebook_4: Contains comparison of distributions of drug consumption
between live and dead patients obtained by counting occurrence of drugs.
Produces a dataframe with drugs sorted by their estimated overrepresen-
tation.

• notebook_5: Visualizes consumption of the top 5 overrepresented drugs
(obtained in notebook_4) in dead patients relative to their death.

• notebook_6: Data selection in the comparative analysis.

• notebook_7: Preprocessing and modeling in the comparative analysis.

• notebook_8: Data selection for the bootstrap analysis. Also contains
conversion of the drug treatment data set to Parquet.

• notebook_9: Preprocessing and bootstrap analysis.

• notebook_10: Visualizations from bootstrap analysis. Contains interactive
plotly visualizations of Figures [4.8, 4.9] near the bottom in the notebook.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problems
	1.1.1 Problems with using existing data analysis systems
	1.1.2 Challenges for data exploration

	1.2 System and methods for data exploration
	1.3 Summary of results
	1.4 Thesis structure

	2 A system for exploration of pharmacoepidemiological data
	2.1 Architecture
	2.2 Implementation
	2.3 Discussion
	2.3.1 Apache Spark
	2.3.2 Alternative notebook environments
	2.3.3 Alternative Jupyter kernels
	2.3.4 Conclusion

	3 Pharmacoepidemiological Data
	3.1 Introduction
	3.2 Classification systems for drugs and diseases
	3.2.1 The ATC system
	3.2.2 ICPC-2 and ICD-10 for classification of diseases

	3.3 NorPD - The Norwegian Prescription Database
	3.3.1 NorPD - Norwegian prescription register, full population, 2004-2014
	3.3.2 NorPD - elder population, 2012-2014
	3.3.3 NorPD - treatment duration estimates of prescriptions in elder population

	3.4 NPR - Norwegian Patient Registry
	3.5 Data ingestion with Spark
	3.6 Analyses that can be done using Spark SQL
	3.6.1 Visualizing overrepresented drugs in patients who die

	4 Exploring drug use patterns associated with hospitalization
	4.1 Introduction
	4.2 Data preprocessing
	4.3 Logistic Regression vs Neural Network for prediction of hospitalization
	4.3.1 Logistic Regression model
	4.3.2 Neural network model
	4.3.3 Results
	4.3.4 Conclusion

	4.4 Boostrapped logistic regression
	4.4.1 Data differences from the comparative analysis
	4.4.2 Methodology
	4.4.3 Implementation
	4.4.4 Results

	5 Performance Evaluation
	5.1 Hardware
	5.2 Bootstrap methods
	5.2.1 Reducing the bootstrap analysis time

	6 Conclusion
	6.1 Future work

	Bibliography
	A Supplementary material
	A.1 Notebooks

