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We present the first full-potential method that solves the fully relativistic four-component Dirac-Kohn-Sham
equation for materials in the solid state within the framework of atom-centered Gaussian-type orbitals (GTOs).
Our GTO-based method treats one-, two-, and three-dimensional periodic systems on an equal footing, and
allows for a seamless transition to the methodology commonly used in studies of molecules with heavy elements.
The scalar relativistic effects as well as the spin-orbit interaction are handled variationally. The full description
of the electron-nuclear potential in the core region of heavy nuclei is straightforward due to the local nature
of the GTOs and does not pose any computational difficulties. We show how the time-reversal symmetry and
a quaternion algebra-based formalism can be exploited to significantly reduce the increased methodological
complexity and computational cost associated with multiple wave-function components coupled by the spin-orbit
interaction. We provide a detailed description of how to employ the matrix form of the multipole expansion and
an iterative renormalization procedure to evaluate the conditionally convergent infinite lattice sums arising in
studies of periodic systems. Next, we investigate the problem of inverse variational collapse that arises if the
Dirac operator containing a repulsive periodic potential is expressed in a basis that includes diffuse functions,
and suggest a possible solution. Finally, we demonstrate the validity of the method on three-dimensional silver
halide (AgX ) crystals with large relativistic effects and two-dimensional honeycomb structures (silicene and
germanene) exhibiting the spin-orbit-driven quantum spin Hall effect. Our results are well-converged with
respect to the basis set limit using standard bases developed for molecular calculations and indicate that the
common rule of removing basis functions with small exponents should not be applied when transferring the
molecular basis to solids.
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I. INTRODUCTION

Relativistic effects on band structures and properties of
solids containing heavy elements have for a long time been
known to have a significant impact on both core and valence
electrons [1]. The effects of relativity on the spectroscopic
properties of electrons close to the nuclei (x-ray spectroscopy)
were studied as early as in 1933 [2]. In contrast, the impor-
tance of relativistic effects on valence states located close
to the Fermi level was not apparent until 1957 [3] when
Mayers observed a large relativistic contraction of the 6s
orbital and a corresponding expansion of the 5d orbitals in
heavy elements such as mercury. Such changes in the size
of the atomic orbitals due to relativity can lead to dramatic
changes in the structural and physical properties of solids
[4–6]. For instance, Christensen, Satpathy, and Pawlowska
demonstrated that these relativistic effects are responsible
for the stable phase of lead being the face-centered cubic
(fcc) crystal structure, in contrast to the diamondlike structure
adopted by other group 14 elements (C, Si, Ge, and Sn) [4].
It has also been shown that relativistic effects need to be in-
cluded in theoretical models of solids in order to explains why
the ground state of CsAu is insulating and not metallic [7].
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Relativity has also been shown to significantly increase the
voltage of the lead-acid-battery reaction used in car batteries
by 1.7–1.8 V out of the total 2.13 V [8], and lead to a decrease
in the melting temperature of mercury by 105 K [9], making
mercury the only metal that is liquid at room temperature.

A protruding manifestation of relativity in quantum
mechanics—the spin-orbit coupling (SOC)—leads to a split-
ting of bands in materials lacking space inversion symme-
try [10–12]. These splittings can be remarkably large in
transition-metal dichalcogenides [13–16], and are then often
referred to as “giant SOC.” SOC plays a paramount role in
the field of spintronics [17–19], topological insulators [20,21],
and related spin-Hall effects [22–24]. SOC has also been
shown to open the band gap in two-dimensional honeycomb
systems [25–28] and change the stable phase of flerovium
(Fl, element 114) from fcc to a hexagonal close packed (hcp)
structure [29].

Materials exhibiting some of the unique properties men-
tioned above are rare [30], however, and the search for novel
materials must be aided by first-principles calculations [31].
Modeling spin-orbit-coupled solid-state systems is far from
straightforward, and Kohn-Sham (KS) density functional the-
ory (DFT) [32,33] is today the only affordable first-principles
method at the fully relativistic level of theory with varia-
tionally included SOC. For such studies, DFT offers a very
favorable compromise between accuracy and computational
feasibility. However, we note the promising recent works of
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Sakuma et al. [34] and Scherpelz et al. [35] at the GW level
of theory.

A critical choice in the modeling of solids is the represen-
tation of the one-particle basis functions. There are two major
families of basis sets: local functions (e.g., atom-centered
orbitals) and plane waves. Plane waves are ill-suited to capture
rapid oscillations of wave functions in regions close to the
nuclei, and are for this reason often combined with pseudopo-
tentials [36]. For heavier elements, these pseudopotentials
can be constructed from relativistic all-electron calculations
[37,38]. The use of pseudopotentials sacrifices the possibility
to model the nodal structure of the wave functions close to
the nuclei and introduces uncontrollable transferability errors.
This makes all-electron methods in some cases the preferred
method, e.g., for calculations of nuclear magnetic resonance
(NMR) shifts [39].

Relativistic all-electron calculations are possible using the
relativistic Korringa-Kohn-Rostoker (KKR) method [40–43]
or by extending Slater’s augmented plane-wave (APW)
method [44] to the Dirac Hamiltonian [45,46]. The APW
method divides space into spheres centered at atoms and
an interstitial region, and requires solving a secular energy-
dependent equation for each band to match KS orbitals at
boundaries of the spheres. This approach results in equations
with a nonlinear dependence on energies. The method is very
accurate, but computationally expensive. To mitigate the com-
putational cost, the APW method can be linearized [47,48],
leading to the linear-APW (LAPW) and linear muffin-tin
orbitals (LMTO) methods, enabling the use of a full potential
for all electrons. The LMTO approach has been extended
to the relativistic domain [49–52]. A relativistic extension
of LAPW was first developed by MacDonald, Picket, and
Koelling [53] and later by Wimmer et al. [54]. MacDonald
et al. included SOC by a two-step variational method, the
so-called second-variational approach, i.e., as a post process-
ing to the spin-non-polarized scalar-relativistic self-consistent
procedure. This process is performed on a smaller set of
scalar-relativistic eigenfunctions, thus reducing the compu-
tational effort considerably. The second-variational approach
was later extended and implemented in some of the modern
program packages [55–57], where the second-variational in-
clusion of SOC can be employed both self-consistently as well
as non-self-consistently.

Both the full-potential LMTO and LAPW methods suf-
fer from limitations when treating systems with deep-lying
valence and extended core states [58]. If SOC is included,
severe convergence problems can be encountered [59]. These
limitations are due to the insufficient flexibility of the finite
scalar-relativistic basis set for describing Dirac p1/2 states in
the core region [53,59]. Convergence is achieved when the
basis is augmented by Dirac p1/2 local orbitals in the second
variational step [60–62]. Huhn and Blum carried out a bench-
mark study and a comparison of various LAPW strategies for
the evaluation of the SOC contribution [62].

More recently, the linearized methods were generalized
by Blöchl to include the pseudopotential approximation, es-
tablishing the projector augmented wave (PAW) technique
[63,64]. PAW introduces pseudopotentials as a well-defined
approximation, and hence brings transferability errors under
control, enabling all-electron calculations of properties in a

pseudopotential framework. However, the complexity of the
PAW approach makes its extension to, e.g., include hybrid
density functionals and the study of response properties dif-
ficult. A fully relativistic PAW method for both Dirac-type
(four-component) and Pauli-type (two-component) equations
was formulated by Dal Corso [65].

An alternate strategy to the use of plane waves, is to
expand the KS orbitals in a set of local functions. Such full-
potential methods employing numerical orbitals have been
extended to include scalar relativistic corrections [66,67],
as well as four-component (4c) SOC [68–71]. Alternatively,
basis functions can be constructed by placing analytic Slater-
type orbitals (STOs) or Gaussian-type orbitals (GTOs) on
atomic centers. two-component (2c) techniques using STOs
were implemented by Philipsen et al. [72,73] and Zhao et al.
[74] Relativistic calculations on solids with GTOs were re-
ported with scalar-relativistic corrections [75,76], as well as
approximate 2c schemes solving Pauli-type equations [77,78],
or approaches based on the Douglass-Kroll-Hess Hamilto-
nian [79,80]. While calculations that include scalar-relativistic
corrections on solids are common [66,67,75,76], extending
nonrelativistic implementations by SOC poses severe method-
ological challenges due to the appearance of multicomponent
spinor structure of the wave functions as well as the need to
use complex algebra.

Here, we present the first fully relativistic all-electron full-
potential GTO-based method directly solving the 4c Dirac-
Kohn-Sham (DKS) equation for periodic systems while treat-
ing both the scalar relativistic effects and SOC variationally
during the self-consistent optimization procedure. Thus the
approach enables studies of relativistic effects in solids con-
taining elements from the entire periodic table in a consistent
manner without the use of the pseudopotential approximation.
The variational treatment of SOC is mandatory in studies of
materials containing heavy elements, where SOC splittings
are of the same magnitude as the effects of the crystal po-
tential, and for which the evaluation of perturbational or non-
self-consistent SOC can be insufficient [34,62,81]. We will
demonstrate that GTOs are a convenient and computationally
efficient approach for full-potential relativistic calculations.
The local nature of the GTOs makes them amendable to highly
efficient linear scaling techniques, as GTOs better reflect the
decay properties of operators and density matrices [82]. In
addition, because periodicity is embedded explicitly in the
local basis, systems that are periodic in one or two dimensions
(polymers and slabs) can be studied using atom-centered
GTOs while avoiding the requirement to repeat the polymer
or slab in the nonperiodic dimensions [83]. This eliminates
the concern in calculations on such systems using plane
waves that there will be spurious self interactions between
the system studied and its periodic images. In contrast to
LMTO and LAPW, GTOs can treat both core and valence
electrons on an equal footing, the quality being independent
of a fixed linearization energy. Furthermore, here we will
demonstrate that a systematic convergence to the basis limit
is possible with GTOs, and discuss specific problems arising
in the nonrelativistic and 4c cases if the diffuse functions are
included in a local basis.

The presented 4c method builds on a transparent and effi-
cient quaternion algebra-based formulation of time-reversal-
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symmetric operators in real and reciprocal space employing
a Kramers-restricted kinetically balanced basis. We imple-
mented this method into the 4c RESPECT program package
[84], and utilized integral screening techniques based on
quaternion algebra [85,86]. The implementation exploits the
full k-point sampling of the first Brillouin zone, and allows
to use irreducible unit cells for all lattice structures. Our
approach builds on previous nonrelativistic methodologies
for handling periodic systems with GTOs. This includes the
pioneering works of Pisani, Dovesi, and coworkers [87,88],
and the more recent implementations of Towler, Zupan, and
Causá [89] and of Łazarski, Burow, and Sierka [90].

The rest of the paper is organized as follows. In Sec. II,
we establish the main principles of our 4c GTO-based method
for the solid state. In Sec. II A, we concentrate on the general
formulation of the working equations, in Sec. II B, we define
the 4c density and the density matrix in real-space GTOs,
Sec. II C shows consequences of the time-reversal symmetry
on the structure of operators in both real space and reciprocal
space, and these concepts are further developed in Sec. II D
in a quaternion formulation. In Sec. II E, we derive how the
Coulomb potential and energy are evaluated using the 4c real-
space GTOs, before we in Sec. II F analyze the problem of the
long-range electrostatic lattice sums, and describe its solutions
within our theoretical framework. In Sec. II G, we derive the
exchange-correlation contributions. Practical implementation
details and approximations required in realistic calculations
are described in Sec. III. In Sec. IV A, we discuss problems
emerging in the nonrelativistic solid-state calculations associ-
ated with diffuse functions in local basis sets, and in Sec. IV B,
we outline a new complication that arises in our relativistic
method if we include diffuse functions in the basis. Results
for the silver halide crystals and 2D hexagonal structures are
shown and discussed in Sec. V, before we in Sec. VI, give
some concluding remarks and an outlook.

II. THEORY

A. General framework

In this section, we outline the basic GTO-based scheme
we use to solve the 4c DKS equations for periodic systems.
Unless otherwise stated, we employ atomic units, setting the
elementary charge e, the electron rest mass me and reduced
Planck’s constant h̄ to unity. Throughout this paper, Ein-
steins’s implicit summation over repeated indices is assumed.

The fundamental building units of the presented theory
are the scalar atom-centered normalized primitive Cartesian
GTOs [91,92]

gμ(r) ≡ N (x − Ax )lx (y − Ay)ly (z − Az )lz e−α(r−A)2
, (1)

where N is the normalization constant, α is the Gaussian ex-
ponent, l ≡ (lx, ly, lz ) are the Cartesian angular momenta, and
A and r are the nuclear and electron coordinates, respectively.
Basis representations of the solutions to the DKS equations
are constructed in three steps. First, 4c basis bispinors χμ for
a reference unit cell are formed

χμ(r) ≡
(

χL
μ (r) 02

02 χS
μ(r)

)
, (2)

using 2c spinors χL
μ and χS

μ defined for the so-called large (L)
and small (S) components, respectively, as

χL
μ (r) ≡ I2 ⊗ gμ(r), (3a)

χS
μ(r) ≡ 1

2c
(σ · p)gμ(r), (3b)

where I2 is the 2 × 2 identity matrix, σ are the Pauli matrices,
p ≡ −i∇ is the electron momentum operator, and c is the
speed of light. The construction of the small-component basis
in Eq. (3b) utilizes the restricted kinetically balanced (RKB)
condition which is essential to achieve variationally stable 4c
solutions in a finite basis [93]. Second, the basis for periodic
systems is obtained by translating χμ from the reference unit
cell to the unit cell m as

χμm(r) ≡ χμ(r − m), (4)

where the unit cell position vector m is

m = miai, mi ∈ Z, i = 1, . . . , d. (5)

Here, Z denotes the field of integers, d is the number of
periodic dimensions, and ai are the primitive vectors that
constitute a Bravais lattice. Since all unit cells are equivalent,
we choose the central unit cell m = 0 to be the fixed reference
unit cell. Third, symmetry-adapted Bloch functions for each k
point from the first Brillouin zone K are constructed from the
real-space GTOs as the Fourier series

ϕμ(k; r) = 1√|K|
∑

m

eik·mχμm(r), (6)

where the infinite lattice sum is over the whole Bravais lattice.
|K| is the volume of the primitive reciprocal unit cell (first
Brillouin zone), and enters the normalization constant to
ensure an approximate normalization of the Bloch functions.
The symmetry-adapted functions in Eq. (6) satisfy the Bloch
condition

ϕμ(k; r + m) = eik·mϕμ(k; r), (7)

by construction, and ϕμ(k; r) can thus be used as basis
functions that block-diagonalize a translationally invariant
Hamiltonian.

Our aim is to solve the 4c DKS equations

F̂ψp(k; r) = εp(k)ψp(k; r), (8)

for each band p. Here εp(k) and ψp(k; r) are the energy and
the crystalline orbital (CO) of the pth band, respectively, and
F̂ is the 4c Fock operator

F̂ =
(

V (r) cσ · p

cσ · p V (r) − 2c2

)
, (9)

consisting of the one-electron Dirac Hamiltonian [94] and the
potential V (r), which in the context of KS DFT contains the
mean-field Coulomb potential and the exchange-correlation
potential [95–97]. Such an approach approximates the two-
electron interaction with an instantaneous Coulomb operator,
neglecting the relativistic corrections to the electron-electron
interaction. We expand the solutions ψp(k; r) of Eq. (8) in
terms of the Bloch functions in Eq. (6):

ψp(k; r) = ϕμ(k; r)cμ
p (k), (10)
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where cμ
p (k) are the 4c CO expansion coefficients. Inserting

the expansions in Eqs. (10) and (6) into Eq. (8), multiplying
the equation with ϕ

†
μ′ (k; r) from the left and integrating over

spatial coordinates r, yields the matrix form of the DKS
equation in reciprocal space

F (k)c(k) = S(k)c(k)ε(k), (11)

where ε(k) is the diagonal matrix of the band energies. F (k)
and S(k) are reciprocal-space forms of the Fock and overlap
matrices, respectively (see Appendix A):

Fμμ′ (k) =
∑

m

eik·mFμ0,μ′m, (12a)

Sμμ′ (k) =
∑

m

eik·mSμ0,μ′m, (12b)

and

Fμ0,μ′m =
∫
R3

χ
†
μ0(r)F̂χμ′m(r)d3r, (13a)

Sμ0,μ′m =
∫
R3

χ
†
μ0(r)χμ′m(r)d3r. (13b)

We have here exploited the translational invariance of the
Fock operator, which allows us to consider only the reference
unit cell m = 0 for the bra function χ

†
μ0, and to solve Eq. (11)

independently for each k. Finally, we express the real-space
integrals in Eqs. (13) utilizing Eqs. (2) and (3) to obtain the 4c
matrix forms for Fμ0,μ′m and Sμ0,μ′m:

Fμ0,μ′m =
(
VLL T
T 1

4c2 VSS − T

)
μ0,μ′m

, (14)

Sμ0,μ′m =
(
S 02

02
1

2c2 T

)
μ0,μ′m

, (15)

where the indices μ0 and μ′m are applied to each element of
the matrices individually and

Sμ0,μ′m = I2 ⊗
∫
R3

gμ0(r)gμ′m(r)d3r, (16a)

Tμ0,μ′m = I2 ⊗
∫
R3

gμ0(r)
p2

2
gμ′m(r)d3r, (16b)

VLL
μ0,μ′m = I2 ⊗

∫
R3

gμ0(r)V (r)gμ′m(r)d3r, (16c)

VSS
μ0,μ′m =

∫
R3

[(σ · p)gμ0(r)]†V (r)[(σ · p)gμ′m(r)]d3r. (16d)

Integrals over the GTOs in Eqs. (16) are evaluated analytically
using the recurrence scheme of Obara and Saika [92,98]. If we
now let

T =
(

02 T
T −T

)
, V =

(VLL 02

02
1

4c2 VSS

)
, (17)

be the 4c kinetic energy matrix and the potential matrix,
respectively, where we have omitted the μ0, μ′m indices, the
DKS Fock matrix in Eq. (14) can be partitioned as

F = T + V = T + J + V XC. (18)

Here, J is the Coulomb and V XC the exchange-correlation
contribution to the potential matrix V (the evaluation of these
contributions will be discussed in more detail in Secs. II E
and II G, respectively). The Coulomb matrix J contains both
the electron-nuclear interaction and the Hartree mean-field
interaction term. The exact exchange matrix required for
Hartree-Fock theory or hybrid DFT is omitted in this work.

Within the framework of DFT, Eq. (11) must be solved
self-consistently, since V contains the mean-field potential
as well as the exchange-correlation potential, both of which
depend on the electron density and its gradients and which are
constructed from the COs ψi(k; r). Eq. (11) is solved in an
iterative manner: its solutions are used to build a new Fock
matrix F , Eq. (11) is then solved for this updated potential
until convergence is reached.

B. Density and density matrix

In this section, we formulate the real-space 4c reduced one-
electron density matrix Dμm,μ′0 and the electron density ρe for
periodic systems that are used in practice for the construction
of the Fock matrix [Eq. (14)] instead of ψi(k; r).

The reciprocal-space density matrix expressed in terms of
COs is a diagonal matrix, where the diagonal elements form
an occupation vector fp(k) for each band p. fp(k) is a zero-
temperature limit of the Fermi-Dirac distribution

fp(k) = 1

eβ(εp(k)−μ) + 1
β→∞−→ ϑ (μ − εp(k)), (19)

where μ is the Fermi level chemical potential, β is the inverse
temperature, and ϑ is the Heaviside step function. Bands
corresponding to positronic (negative-energy) states are left
vacant (see Sec. IV B). If we let f (k) denote the diagonal
matrix of occupation numbers, we can write the k-space
density matrix in its block-diagonal form as

D(k, k′) = δ(k − k′)D(k), (20)

D(k) = c(k) f (k)c†(k), (21)

where δ is the Dirac delta function. Inverting the Fourier series
in Eq. (6), gives

χμm(r) = 1√|K|
∫
K

e−ik·mϕμ(k; r)d3k, (22)

which we use together with Eq. (20) to obtain the real-space
density matrix as a quadrature

Dμm,μ′m′ = 1

|K|
∫
K

eik·(m−m′ )Dμμ′
(k)d3k,

where Dμμ′
(k) are elements of the matrix defined in Eq. (21).

In practice, it is enough to restrict ourselves only to nonequiv-
alent elements (see Appendix A):

Dμm,μ′0 = 1

|K|
∫
K

eik·mDμμ′
(k)d3k. (23)

The electron charge density can be evaluated as (the minus
sign is for the electron charge)

ρe(r) ≡ −
∑

p

∫
K

Tr[ψp(k; r)ψ†
p (k; r) fp(k)]d3k, (24)
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where the trace (Tr) indicates a sum of diagonal elements of
the resulting 4 × 4 matrix. Equivalently, we can write

ρe(r) = −
∫
K

Tr[ϕμ′ (k; r)Dμ′μ(k)ϕ†
μ(k; r)]d3k, (25)

= −
∑
mm′

Tr[χμ′m′ (r)Dμ′m′,μmχ†
μm(r)]. (26)

Let us define the 4c overlap distribution function

�μm,μ′m′ (r) ≡ χ†
μm(r)χμ′m′ (r) =

(
�LL(r) 02

02 �SS (r)

)
μm,μ′m′

.

(27)

If we use

�μm,μ′m′ (r) = �μ0,μ′m′−m(r − m), (28)

together with the translational invariance of the density matrix

Dμ′m′,μm = Dμ′m′−m,μ0, (29)

then the electron charge density becomes (after changing the
summation variables)

ρe(r) = −
∑
mn

Tr[�μ0,μ′m(r − n)Dμ′m,μ0]. (30)

We now collect indices μ0, μ′m ≡ u and μ′m, μ0 ≡ ū, and
introduce a shorthand notation for the trace in real space for
an arbitrary operator A

AuDū ≡
∑

m

Aμ0,μ′mDμ′m,μ0. (31)

We can then express the total charge density as a sum of
nuclear and electronic contributions

ρ(r) =
∑

n

ρ̃(r − n), (32)

ρ̃(r) = ρ̃n(r) + ρ̃e(r), (33)

obtained from the auxiliary densities ρ̃n and ρ̃e translated from
the reference unit cell to the cell n. The auxiliary densities for
the reference unit cell are defined as

ρ̃n(r) ≡
∑

A

ZAδ(r − A), (34a)

ρ̃e(r) ≡ − Tr[�u(r)Dū], (34b)

where A labels atoms in the reference unit cell, ZA and A being
their charge and position, respectively. Let

N =
∑

n

1 (35)

be the infinite number of unit cells in a crystal and Ne the
number of electrons per unit cell. The electron charge density
ρe must integrate to minus the total (infinite) number of
electrons, i.e., ∫

R3
ρe(r)d3r = −NNe. (36)

Hence, we can infer from Eq. (32) that the auxiliary electron
density ρ̃e integrates to minus the number of electrons per unit

cell Ne. Moreover, integration of Eq. (34b) gives

Tr(SuDū) = Ne, (37)

where Su ≡ Sμ0,μ′m is the 4c overlap matrix from Eq. (15).
Note, however, that whereas the total electron density ρe is
a periodic function with the lattice periodicity, the auxiliary
density ρ̃e is not periodic. Nuclear charge densities follow the
same arguments. In addition, partitioning the total density in
Eqs. (32) and (33) into contributions from individual unit cells
ensures that the lattice sum over n is performed in a charge-
neutral manner [99,100], i.e.,

∀n :
∫
R3

ρ̃(r − n)d3r = 0, (38)

provided that there is no excess of positive or negative charge
in a unit cell.

C. Time-reversal symmetry

In the present work, we solve the DKS equation in k space
[Eq. (11)] by exploiting the time-reversal (TR) symmetry of
the Fock operator. In the absence of a vector potential and
in nonmagnetic (non-spin-polarized) systems, TR-symmetric
operators attain a special structure in the so-called Kramers-
restricted basis [101–104]. This allows us to reduce the com-
putational and memory resources needed in a calculation and
it also facilitates the interpretation of band structures. Here we
will generalize the concept of a Kramers-restricted GTO basis
to reciprocal space, and explicitly show the structure of the
TR-symmetric operators expressed in this basis.

We start by briefly reviewing the TR operator, which is
an antilinear one-electron operator defined in the 4c realm as
[102,104,105]

K = −i

(
σy 02

02 σy

)
K0, (39)

where K0 denotes complex conjugation. The TR operator
satisfies K† = −K and K†K = I4. An operator Â is time-
reversal symmetric if it commutes with K ([·, ·] denotes a
commutator):

[Â,K] = 0. (40)

Let us express the TR-symmetric operator Â in the Kramers-
restricted basis {|p〉 , | p̄〉}, where | p̄〉 ≡ K |p〉 denotes the
Kramers partner of |p〉. If a ≡ 〈p|Â|p〉 and b ≡ 〈p|Â| p̄〉 label
two distinct elements of A, then the remaining 2 elements are
given by

〈p̄|Â|p〉 = 〈Kp|Â|p〉 = 〈p|K†Â|p〉∗

= − 〈p|KÂ|p〉∗ = − 〈p|ÂK|p〉∗ = −b∗

and

〈p̄|Â| p̄〉 = 〈p|K†ÂK|p〉∗ = 〈p|ÂK†K|p〉∗

= 〈p|Â|p〉∗ = a∗.

Hence the matrix representation of the operator Â has the
following TR-symmetric structure:

A =
(

a b
−b∗ a∗

)
. (41)
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Note that the Hermitian adjoint of an antilinear operator
involves complex conjugation of the inner product.

The RKB basis defined in Eq. (2) is Kramers-restricted in
real space, and can be written as [102,103]

χμ(r) =
(

a b
−b∗ a∗

)
gμ(r), (42)

where

a ≡
(

1 0

0 ∇z

2ic

)
, b ≡

(
0 0

0 ∇x
2ic − ∇y

2c

)
, (43)

where we rearranged the 4 × 4 matrix to emphasize the TR-
symmetric structure of the basis. Using the transformation in
Eq. (6), we obtain the 4c Kramers-restricted Bloch functions
that constitute our basis in k space, and which acquire the
structure

ϕμ(k; r) =
(

a(k; r) b(k; r)
−b∗(−k; r) a∗(−k; r)

)
μ

, (44)

where

a(k; r) = 1√|K|
∑

m

eik·ma gμ(r − m), (45a)

b(k; r) = 1√|K|
∑

m

eik·mb gμ(r − m). (45b)

As a consequence of the Kramers-restricted basis, the TR-
symmetric operator Â takes the matrix form of

Aμ0,μ′m =
(

a b
−b∗ a∗

)
μ0,μ′m

, (46)

in real space, and after the transformation to k space
[Eqs. (12)], we have

Aμμ′ (k) =
(

a(k) b(k)
−b∗(−k) a∗(−k)

)
μμ′

, (47)

where aμμ′ (k) = ∑
m eik·maμ0,μ′m (and likewise for b).

We now prove two important corollaries of the TR sym-
metry in our scheme, namely, (1) that the band energies have
a k-inversion symmetry (as in the nonrelativistic case) and
(2) that the density matrix inherits the TR structure from the
Fock matrix. In addition, it can be shown that a new Fock
matrix constructed from the TR-symmetric density matrix
is also TR-symmetric. This implies that the TR structure
is preserved in the self-consistent procedure, allowing us to
impose this structure in the algorithm, significantly reducing
computational and memory demands in the calculations. Let
us assume the TR structure in Eq. (47) for the Fock matrix
F (k), and apply K from the left to the eigenvalue problem in
Eq. (11)

KF (k)c(k) = KS(k)c(k)ε(k). (48)

Since K commutes with the real-space Fock matrix, and
trivially also with the overlap matrix S(k), it follows that

KF (k) = F (−k)K, (49a)

KS(k) = S(−k)K. (49b)

Flipping k → −k in Eq. (48) gives

F (k)Kc(−k) = S(k)Kc(−k)ε(−k). (50)

Because the energies ε(k) are real, we can infer that
{c(k),Kc(−k)} both are solutions of the eigenvalue equation
Eq. (11) with energies {ε(k), ε(−k)}, and thus form a Kramers
pair. Let us introduce the following notation for the Kramers
partners:

c̄(k) = Kc(−k), (51a)

ε̄(k) = ε(−k), (51b)

f̄ (k) = f (−k), (51c)

where the last equation follows from Eq. (19). In addition,
Eqs. (51) imply that the density matrix in reciprocal space has
the TR-symmetric structure of Eq. (47). To prove this, we use
the block-diagonal structure of the operator K, and without
loss of generality we restrict ourselves to a 2 × 2 Fock matrix
with solutions

c(k) =
(

cu(k) c̄u(k)

cl(k) c̄l(k)

)
, (52)

where u and l denote the upper and lower spinor components,
respectively. The second column is related to the first via the
TR operation Eq. (51a), thus c̄u(k) = −cl∗(−k) and c̄l(k) =
cu∗(−k). The density matrix element Dlu then satisfies

Dlu(k) = cl(k) f (k)cu∗(k) + c̄l(k) f̄ (k)c̄u∗(k)

= −c̄u∗(−k) f̄ (−k)c̄l(−k) − cu∗(−k) f (−k)cl(−k)

= −Dul∗(−k).

Similarly Dll(k) = Duu∗(−k). It follows that the real-space
elements of the density matrix obtained from Eq. (23) have
the TR structure in Eq. (46).

D. Quaternion operators

Owing to the specific structure of TR-symmetric operators,
a compact notation which leads to a very efficient computer
implementation can be achieved with the use of quaternion
algebra (or its isomorphisms) [85,86,102,103]. This formula-
tion identifies the integrals that are nonredundant and nonzero
when constructing operators in the RKB basis Eq. (2), and
allows us to formulate an efficient relativistic algorithm to
solve the DKS equation. Let Re x and Im x denote the real and
imaginary parts of a complex number x, respectively. Then a
TR-symmetric matrix A is written as

A =
(

a b
−b∗ a∗

)
=

3∑
q=0

Aqeq ≡ Aqeq, (53)

where

A0 = Re a, e0 = I2 ≡ 1, (54a)

A1 = Im a, e1 = iσz ≡ ǐ, (54b)

A2 = Re b, e2 = iσy ≡ ǰ, (54c)

A3 = Im b, e3 = iσx ≡ ǩ, (54d)
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and ǐ, ǰ, ǩ are fundamental quaternion units obeying

ǐ2 = ǰ2 = ǩ2 = ǐ ǰ ǩ = −1. (55)

The Hermitian conjugation of A changes the sign of the three
imaginary components, so that

A† = (A0e0 + A1e1 + A2e2 + A3e3)†

= A0,T e0 − A1,T e1 − A2,T e2 − A3,T e3, (56)

where Aq,T denotes the transpose of the real matrix Aq. We
decompose the TR-symmetric matrices according to Eq. (53)
and refer to Aq as quaternion components regardless of
whether eq are interpreted as matrices or quaternion units. All
algebraic manipulations can be performed in an equivalent
manner in both algebras, and it is only a matter of personal
preference to select a suitable representation. However, we
emphasize that encoding complex 4c TR-symmetric matrices
using four real Aq components reduces the number of nonzero
terms by a factor of two, and often reveals important structures
of the operators, facilitating further reductions [85].

Matrix elements of a 4c TR-symmetric operator Â in the
basis defined in Eqs. (42) and (4) are expressed in real space
as

Aμ0,μ′m = Aq
μ0,μ′meq, (57)

where Aq
μ0,μ′m are 2 × 2 real matrices:

Aq
μ0,μ′m =

(
ALL,q ALS,q

ASL,q ASS,q

)
μ0,μ′m

. (58)

Reciprocal-space quaternion components of A are defined by
the Fourier series

Aq
μμ′ (k) =

∑
m

eik·mAq
μ0,μ′m, (59)

and form a quaternion (dropping the μμ′ indices)

A(k) = Aq(k)eq, (60)

with complex-valued components Aq(k).
During the self-consistent procedure, we exchange the

quaternion form of the Fock matrix with its complex form
Eq. (47) and vice versa. Whereas the quaternion form is
more beneficial in real space to facilitate the integral eval-
uation when assembling the Fock matrix, the matrix form
is inevitable in the diagonalization step of the procedure.
Additionally, if we establish a direct connection between these
forms in reciprocal space, we avoid unnecessary computations
of the Fourier series, because there are considerably fewer
nonzero quaternion components than complex matrix ele-
ments. Therefore we use the definitions in Eqs. (54) together
with Eq. (60) to compose a complex matrix

A(k) ≡
(

A0(k) + iA1(k) A2(k) + iA3(k)

−A2(k) + iA3(k) A0(k) − iA1(k)

)
. (61)

This matrix is consistent with Eq. (47), because the definition
of the reciprocal-space quaternion components [Eq. (59)]
implies

Aq∗(k) = Aq(−k). (62)

Inverting this process allows us to map a complex matrix

A(k) =
(

a(k) b(k)

c(k) d (k)

)

with assumed TR symmetry [c(k) = −b∗(−k), d (k) =
a∗(−k)] to a quaternion with complex components given by

A0(k) = 1

2
[a(k) + d (k)], (63a)

A1(k) = 1

2i
[a(k) − d (k)], (63b)

A2(k) = 1

2
[b(k) − c(k)], (63c)

A3(k) = 1

2i
[b(k) + c(k)]. (63d)

For k = 0 quaternion components, Aq(0) are real, and
Eqs. (63) coincide with the definitions in Eqs. (54).

We now rewrite all operators in Eqs. (16) that enter the
DKS equation in the language of quaternions. Scalar operators
S, T , and VLL have a trivial structure in the spin space,
therefore their corresponding quaternions have nonzero real
part (zeroth component) and zero imaginary part. On the
other hand, the operator VSS contains Pauli matrices, and thus
is a general quaternion VSS = VSS,qeq. The Fock matrix in
Eq. (14) can then be expressed as (omitting μ0, μ′m indices
for clarity)

F =
(
VLL,0 T 0

T 0 1
4c2 VSS,0 − T 0

)
e0 +

(
0 0

0 1
4c2 VSS,i

)
ei, (64)

for i = 1, 2, 3. It is convenient to rewrite the potential V in
terms of the 4c overlap distribution � defined in Eq. (27). We
accomplish this by rewriting Eq. (16d) as

VSS
μ0,μ′m =

∫
R3

[(σ · p)gμ0(r)]†[(σ · p)gμ′m(r)]V (r)d3r.

The small-component overlap distribution is a product of
small-component basis functions [Eq. (3b)], so

�SS
μ0,μ′m = 1

4c2
[(σ · p)gμ0]†[(σ · p)gμ′m]. (65)

The potential therefore becomes

VLL
u =

∫
R3

�LL
u (r)V (r)d3r, (66a)

1

4c2
VSS

u =
∫
R3

�SS
u (r)V (r)d3r, (66b)

where u ≡ μ0, μ′m, and the overlap distributions are quater-
nions

�LL
u (r) = �LL,0

u (r)e0, (67a)

�SS
u (r) = �SS,q

u (r)eq. (67b)

Explicit forms of the quaternion components of �SS can be
identified if we apply the multiplication rule for the Pauli

205103-7



KADEK, REPISKY, AND RUUD PHYSICAL REVIEW B 99, 205103 (2019)

matrices to Eq. (65), i.e.,

�SS
μ0,μ′m = 1

4c2
(∇gμ0)† · (∇gμ′m)I2

+ 1

4c2
(∇gμ0)† × (∇gμ′m) · iσ. (68)

This analysis shows that in order to build 4c complex matrices
for the Coulomb and exchange-correlation operators, it is
sufficient to evaluate integrals in Eqs. (66) for five components
of the overlap distribution—one for the LL sector, and four
for the SS sector. The k-space matrix is then obtained by com-
puting the Fourier series of these five components [Eq. (59)]
and arranging them according to Eq. (61). Moreover, one can
obtain a spin-free form of the DKS equation in solids by
omitting the imaginary quaternion terms that are associated
with the spin-orbit interaction, in analogy to the procedure
proposed by Dyall for molecules [106].

We conclude this section by employing the quaternion
formalism to express expectation values (traces with the
density matrix) of TR-symmetric operators appearing in the
DKS equation. Suppose a matrix A has the same structure
as the potential V , i.e., does not couple the large and small
components of the wave function, and its LL quaternion has
zero imaginary part. Its trace with a density matrix D, as
defined in Eq. (31), is obtained by using the traceless property
of the Pauli matrices as

Tr
[
AuDū

] = Tr

[(
ALL 02

02 ASS

)
u

(
DLL DLS

DSL DSS

)ū
]

= 2
(
ALL,0

u Dū
LL,0 + ASS,0

u Dū
SS,0 − ASS,i

u Dū
SS,i

)
, (69)

implicitly summing over u and i = 1, 2, 3. Note that despite
the general TR-symmetric structure of the density matrix,
only its corresponding five elements are required to evaluate
the trace. Equation (69) also holds for the electron density in
Eq. (34b) when substituting Au → �u(r). The kinetic energy
operator T [Eq. (17)] has a different structure than the poten-
tial V . We evaluate its trace with the density matrix to compute
the kinetic energy per unit cell as

Ek

N
= Tr[TuDū] = Tr

[(
02 T
T −T

)
u

(
DLL DLS

DSL DSS

)ū
]
.

It follows that
Ek

N
= 2T 0

u

(
Dū

SL,0 + Dū
LS,0 − Dū

SS,0

)
. (70)

E. Coulomb potential and energy

Using the auxiliary charge density ρ̃ from Eq. (32), we
can express the Coulomb contribution J to the Fock matrix
in Eq. (18)

J (r) = −
∫
R3

ρ(r′)d3r′

|r − r′| , (71)

as

J (r) = −
∑

n

∫
R3

ρ̃(r′)d3r′

|r − r′ − n| . (72)

We see that the Coulomb potential is a periodic function with
the lattice periodicity, given that the lattice sum over n runs

over the entire infinite lattice. Any truncation of this sum (for
instance, for numerical purposes) will violate the translational
symmetry. We express the nonequivalent matrix elements of J
in the real-space basis defined in Eqs. (4) and (2) as

Jμ0,μ′m =
∫
R3

χ
†
μ0(r)J (r)χμ′m(r)d3r.

Since the Coulomb potential J (r) is diagonal in the 4 × 4
bispinor space, it follows that

Ju =
∫
R3

�u(r)J (r)d3r

= −
∑

n

∫
R3×R3

�u(r1)ρ̃(r2)

|r1 − r2 − n|d3r1d3r2, (73)

where u ≡ μ0, μ′m, and � is the 4c overlap distribution
defined in Eqs. (27) and (67). Substituting the nuclear and
electronic auxiliary densities [Eqs. (34)], we obtain

Ju =
∑

n

[
Jn

u (n) + Je
u (n)

]
, (74a)

Jn
u (n) =

∑
A

∫
R3

−ZA�u(r)

|r − A − n|d3r, (74b)

Je
u (n) =

∫
R3×R3

�u(r1) Tr[�v (r2)Dv̄]

|r1 − r2 − n| d3r1d3r2. (74c)

Note that in Eq. (74c), the sum over v ≡ ν0, ν ′n′ is implied.
This sum over v together with the lattice sum over n in
Eq. (74a) must be computed for each u ≡ μ0, μ′m, making
this term the most computationally expensive to evaluate.

The expression for the Coulomb energy in a periodic
system can be obtained in a similar manner. Inserting the
auxiliary density to

EC = 1

2

∫
R3×R3

ρ(r1)ρ(r2)

|r1 − r2| d3r1d3r2 (75)

gives

EC

N
= 1

2

∑
n

∫
R3×R3

ρ̃(r1)ρ̃(r2)

|r1 − r2 − n|d3r1d3r2. (76)

If we divide the density into nuclear and electron contribu-
tions, and use the definitions in Eqs. (74b) and (74c), we
obtain

EC

N
= 1

2

∑
n

Enn(n) + 2 Tr
[
Jn

u (n)Dū
] + Tr

[
Je

u (n)Dū
]
, (77)

where

Enn(n) =
∑
AB

ZAZB

|A − B − n| (78)

is the nuclear-nuclear repulsion energy, and the bar over the
sum indicates that the divergent self-interaction terms are
excluded. The traces of the 4c matrices Jn

u (n) and Je
u (n) with

the density matrix are evaluated using Eq. (69). In Eq. (77),
we grouped the electron-nuclear and nuclear-electron terms
together—this is only possible if

∑
n Jn

u (−n) = ∑
n Jn

u (n), so
the lattice sum must contain both the n and −n unit cells for
each n. This is true for the infinite lattice sum, but should
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be taken into account when designing approximations to the
lattice sum.

F. Treatment of electrostatic lattice sums

A complication that emerges when studying periodic sys-
tems is the evaluation of the electrostatic lattice sums

∑
n that

appear in the Coulomb potential [Eq. (74a)] and the Coulomb
energy [Eq. (77)]. The difficulty originates in the long-range
nature of the electrostatic Coulomb interaction, and manifests
itself in two ways. One issue is the question of the conver-
gence itself. The lattice sums of individual electronic and
nuclear contributions to the potential and energy are divergent,
hence they must be treated in a charge-neutral manner, such as
in Eqs. (74a) and (77). Assuming that the unit cell is electri-
cally neutral, the charge-neutral lattice sums are convergent.
Unfortunately, their convergence is often only conditional,
and therefore the result is not determined uniquely unless
physical arguments are incorporated. In such cases, the results
can be shown to depend both on the choice of the unit
cell shape [107], as well as on the implemented summation
technique [108]. The convergence problems were rigorously
investigated by de Leeuw, Perram, and Smith [109], who
introduced convergence factors to enforce absolute converge
on the lattice sums. The second complication is the very
slow convergence of the sums. Even if the sum is absolutely
convergent, imprudent truncation of the sums severely distorts
the potential and breaks its translational invariance. To en-
able the evaluation of the electrostatic potential and energy,
the Coulomb operator is expanded in a spherical multipole
expansion [Eq. (B6) with P = 0 and Q = n]

1

|r1 − r2 − n| = RT (r1)�(n)R(r2), (79)

where R is the vector of scaled regular solid harmonics, and �

is the interaction tensor, defined in the work of Watson et al.
[110] (see also Ref. [111] and Appendix B). The Coulomb
problem is then reduced to the computation of the lattice sum
of the spherical interaction tensors. Nijboer and De Wette
proposed a universal method for computing such lattice sums
[112]. Their approach is based on an Ewald-like partitioning
of the sums into terms that converge rapidly in direct space,
and terms that converge rapidly in reciprocal space. In this
work, we follow a scheme that employs a renormalization
identity, first introduced by Berman and Greengard [113], and
then later reformulated by Kudin and Scuseria [114]. Contrary
to the approach of Kudin and Scuseria, we factor out the sum
of the interaction tensors �(n), as shown later in this section.
Because the sum of the interaction tensors only depends on
the lattice parameters, we precalculate it before proceeding to
the solution of the DKS equations.

We now apply the spherical multipole expansion in
Eq. (79) to derive expressions for the Coulomb potential and
energy. First we split the infinite lattice sum over n in Sec. II E∑

n

=
∑
n∈NF

+
∑
n∈FF

, (80)

where NF is the near-field and FF is the far-field of the refer-
ence unit cell n = 0. The FF is constructed to contain all unit
cells for which a universal multipole expansion in Eq. (79)

centered in n = 0 produces a globally valid approximation
to the integrals in Eqs. (74). A remaining finite array of unit
cells constitutes the NF. Our partitioning scheme is similar to
those discussed in previous studies [90,110,115]. Inserting the
multipole expansion in Eq. (79) into Eqs. (73) and (76) gives
the corresponding contributions to the far-field potential and
energy

JFF
u = qT

u �Q, (81)

EFF
C

N
= 1

2
QT �Q. (82)

We have here defined the lattice sum of interaction tensors

�lm, jk ≡
∑
n∈FF

�lm, jk (n), (83)

elements of the 4c electronic multipole moment operator

qlm
u ≡ −

∫
R3

�u(r)Rlm(r)d3r, (84)

and the total multipole moments of the reference unit cell

Qlm =
∫
R3

ρ̃(r)Rlm(r)d3r. (85)

Inserting the definition of the auxiliary density from Eqs. (33)
and (34) to Eq. (85) gives a more convenient expression for
the total multipole moments

Qlm =
∑

A

ZARlm(A) + Tr
[
qlm

u Dū
]
, (86)

where we implied the summation over u as defined in Eq. (31).
The trace of qlm

u with the density matrix is computed as
in Eq. (69). Notice that the total charge Q00 = 0, because
R00 = 1, q00

u = −Su, and Tr [SuDū] = Ne. Furthermore, Q1m

is the total (electric + nuclear) dipole moment, which is
gauge origin independent. To summarize, by employing the
multipole expansion we accomplished two tasks: We isolated
the slow-converging lattice sum

∑
n, facilitating its subse-

quent computation, and we factorized the complicated six-
dimensional two-electron integrals in Eq. (74c) into a product
of simpler three-dimensional one-electron integrals [Eq. (84)].
In this way, we obtained a very efficient scheme to incorporate
the potential generated by the infinite lattice.

Analysis of the multipole expansion reveals that the prob-
lem of the conditional convergence of the Coulomb series
can be attributed to nonzero unit cell dipole and quadrupole
moments [109]. In fact, the three-dimensional lattice sums
of the �1m,00 and �00,1k elements of the interaction tensor
that enter the far-field potential [Eq. (82)] are divergent. To
rectify this, we introduce fictitious point charges at unit cell
face centers, as was done in previous studies [99,116]. For
each of the three periodic dimensions i = 1, 2, 3, two charges
±zi are placed at opposing walls ± ai

2 for each unit cell.
This procedure guarantees that the unit cell remains charge
neutral. Furthermore, every unit cell wall is shared by 2 unit
cells, and thus contains 2 fictitious charges with opposite
signs, canceling each other. Note that this scheme is valid for
arbitrary unit-cell geometries. The values zi are determined so
that they eliminate the unit cell dipole moment μ, and they are

205103-9



KADEK, REPISKY, AND RUUD PHYSICAL REVIEW B 99, 205103 (2019)

obtained by solving a linear system of equations

ziai = −μ. (87)

To understand how the inclusion of fictitious charges resolves
the problem of the conditional convergence, let us enclose a
crystal sample in a finite volume, and examine the limit of the
(finite) lattice sum over unit cells inside the volume as the vol-
ume approaches infinity. The lattice sum in the Coulomb po-
tential and energy can be shown to contain surface-dependent
terms that are linear and quadratic in the position, and hence
break the periodicity of the potential [108,117]. These terms
do not vanish in the limit of the infinite volume, and thus
the limit gives different results for different volume shapes.
The fictitious charges included as described above only cancel
inside the volume, not on its surface, and serve to compensate
the ambiguous linear (charge-dipole) surface terms in the
potential. Quadratic (charge-quadrupole) surface terms could
be eliminated similarly, but because they simply shift the
potential by a constant, they are ignored in this work. Such
shifts affect absolute band energies, but do not alter the total
energy or the band gaps.

We conclude this section by adapting the renormalization
procedure of Kudin and Scuseria [114] to the evaluation of the
lattice sum in Eq. (83). Instead of a direct calculation, the sum
� is obtained as a limit

� = lim
t→∞ �t . (88)

�t are partial sums that are computed by iterating the recur-
rence equation

�t+1 = �1 + U (�t )W, (89)

where

U
(
�t

lm, jk

) = 1

3l+ j+1
�t

lm, jk (90)

is the scaling operator, and

W =
1∑

μ1...μd =−1

W (μiai ) (91)

is a matrix consisting of a sum of translation tensors W defined
in Appendix B. The recurrence scheme is initiated by

�1 =
∑

n∈FF1

�(n) ≡
∑

n1...nd ∈FF1

�(niai ), (92)

where FF1 contains all unit cells that are in the far-field of
the central reference unit cell, but are in the near-field of
the supercell composed of the original near-field. To illus-
trate this, let the near-field supercell be a block (in crystal-
lographic coordinates) consisting of unit cells with indices
ni = −Ni, . . . , Ni for each of the periodic dimensions i =
1, . . . , d . Thus the total number of unit cells in such a block is∏d

i=1(2Ni + 1). Then

FF1 =
{

(n1 . . . nd ) ∈ Zd ; 1 � max
i=1...d

( |ni| − 1

Ni

)
� 3

}
. (93)

In contrast to a naive term-by-term summation, the recurrence
formula [Eq. (89)] converges rapidly to its limit, and in
practice only a few iterations are needed. We provide a formal
derivation of Eq. (89) in Appendix C.

G. Exchange-correlation contribution

We here derive the exchange-correlation (XC) contribution
to the Fock operator and the energy of periodic systems. We
assume the nonrelativistic generalized gradient approximation
(GGA) for the XC energy functional [118,119]. Within the
Kramers-restricted (closed shell) framework, a GGA-type XC
functional is expressed as

EXC[n,∇n] ≡ EXC =
∫
R3

εXC(r)d3r, (94)

where εXC(r) ≡ εXC[n,∇n](r) is the XC energy density, and
n(r) is the total electron probability density obtained from
the electron charge density in Eq. (30) as n(r) ≡ −ρe(r). For
periodic systems, the integration over R3 can be limited to
an integration over the central reference unit cell, because
the electron density is a periodic function with the lattice
periodicity, and consequently εXC(r + m) = εXC(r). Letting
Cm denote the unit cell positioned at the lattice point m, we
obtain

EXC =
∑

m

∫
Cm

εXC(r)d3r =
∑

m

∫
C0

εXC(r + m)d3r

=
∑

m

∫
C0

εXC(r)d3r = N
∫
C0

εXC(r)d3r,

where N is the total number of unit cells. Therefore the XC
energy per unit cell is

EXC

N
=

∫
C0

εXC(r)d3r. (95)

The XC functional has a complicated dependence on the
electron density, and the integral in Eq. (95) must therefore be
integrated numerically. Because the integrand εXC is a highly
inhomogeneous function in real space containing cusps, a
robust numerical technique is needed. In this work we follow
the integration scheme developed by Towler et al. [89], which
is an extension of Becke’s atomic partitioning method [120] to
periodic systems. Towler et al. introduced a weight function
wA(r) for each atom A in the reference unit cell, and define it
for all other unit cells Cm using translations:

wAm(r) ≡ wA(r − m). (96)

The weight functions are constructed to be normalized to unity
for each point r, i.e., ∑

Am

wAm(r) = 1. (97)

The detailed process of forming the weight functions can be
found in Refs. [89,120]. Inserting the weights into Eq. (95)
gives

EXC

N
=

∫
C0

εXC(r)
∑
Am

wA(r − m)d3r

=
∑
Am

∫
C−m

εXC(r)wA(r)d3r.

It follows that
EXC

N
=

∑
A

∫
R3

εXC(r)wA(r)d3r. (98)
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For a discrete set of grid points g, the integral is replaced by a
weighted sum

EXC

N
→

∑
g

εXC(g)w(g), (99)

where the sum is over an integration grid composed of the
joined atomic grids and, similarly, the weights w(g) contain
all atomic weights wA(g).

The XC potential is defined as the functional derivative of
the XC energy:

V XC(r) = δEXC

δn(r)
= ∂εXC

∂n(r)
− ∇ · ∂εXC

∂∇n(r)
, (100)

where V XC(r) ≡ V XC[n,∇n](r). Since V XC is a periodic func-
tion, we can express its nonequivalent matrix elements in the
real-space basis defined by Eqs. (4) and (2) as the derivative

V XC
u = ∂EXC

∂Dū
. (101)

Applying the chain rule

∂EXC

∂Dū
=

∫
R3

δEXC

δn(r)

∂n(r)

∂Dū
d3r (102)

and the identity

�u(r) = ∂n(r)

∂Dū
(103)

yields

V XC
u =

∫
R3

V XC(r)�u(r)d3r. (104)

Because the integral in Eq. (104) is handled numerically, it
is more convenient to use integration by parts to apply the
derivative in the expression for V XC(r) in Eq. (100) to the
overlap distribution �u. Let us denote

V 0
XC(r) ≡ ∂εXC

∂n(r)
, V i

XC(r) ≡ ∂εXC

∂ (∇in(r))
, (105a)

�u,0(r) ≡ �u(r), �u,i(r) ≡ ∇i�u(r), (105b)

for i = x, y, z. Equation (104) can then be written as

V XC
u =

∫
R3

V α
XC(r)�u,α (r)d3r, (106)

where α = 0, x, y, z. To arrive at a working expression for the
XC potential, we insert the weight functions into Eq. (106),
and get

V XC
u =

∫
R3

V α
XC(r)�u,α (r)

∑
Am′

wA(r − m′)d3r.

It follows that the XC potential becomes

V XC
u =

∑
Am′

∫
R3

V α
XC(r)�u,α (r + m′)wA(r)d3r. (107)

III. IMPLEMENTATION DETAILS

We have implemented the method described in Sec. II into
the 4c DFT program package RESPECT [84]. Matrix represen-
tations of all operators in real space are obtained by evaluating

the integrals in Eqs. (16) over the RKB Cartesian GTOs using
the efficient and vectorized integral library INTEREST [98]. The
entire implementation is hybrid OpenMP/MPI parallel, utiliz-
ing the OpenMP application programming interface for intra-
node parallelization, and Message Passing Interface (MPI) for
inter-node parallelization.

Before proceeding to the main self-consistent field (SCF)
procedure, i.e., the iterative solution of Eq. (11), we perform
these steps. (1) Exploit the exponential decay of a product of
two GTOs χ

†
μ0χμ′m as their centers become more distant in

order to generate a finite list of significant 4c overlap distri-
butions. (2) Form an array of NF unit cells. (3) Calculate and
store the infinite lattice sums �lm, jk of the interaction tensor in
Eq. (83) using the procedure described in Sec. II F. (4) Evalu-
ate the 4c overlap matrix in reciprocal space S̃(k) in spherical
GTOs using Eqs. (12b) and (15), and orthonormalize the basis
applying the Löwdin canonical orthonormalization [121], i.e.,
compose a transformation matrix L(k) = U (k)s̃−1/2(k) from
the eigenvalues s̃(k) and eigenvectors U (k) of S̃(k). Remove
the columns of L(k) that correspond to very small (<10−7)
eigenvalues s̃(k) to resolve approximate linear dependencies
arising in the basis.

During the SCF cycle, operators depending on the density
matrix must be reevaluated. The most time-consuming part is
the computation of the electron repulsion integrals (ERIs) of
the Coulomb term in Eq. (74c) for n restricted to the NF unit
cells. Therefore we employ a variety of approximations and
estimates to accelerate this step. First, centering the multipole
expansion at the center of the overlap distribution �u that
indexes the Fock matrix enables us to approximate many
integrals within the NF using the multipole expansion

Je
u (n) ≈ qT

u (P)�(n − P)Q, (108)

where P is the center of �u, and

qlm
u (P) = −

∫
R3

�u(r)Rlm(r − P)d3r, (109)

is the translated electronic multipole moment operator. Sec-
ond, we apply the quaternion adaptation of the Cauchy-
Schwarz inequality to obtain an upper estimate of the re-
maining ERIs, discarding integrals that contribute negligibly
to the Fock matrix. Details of this integral screening will
be published elsewhere [86]. Finally, the ERIs that con-
tain a product of two small-component overlap distributions
�SS

u (r1) = χ
SS†
μ0 (r1)χSS

μ′m(r1) and �SS
v (r2) = χ

SS†
ν0 (r2)χSS

ν ′n′ (r2)
are only computed if (1) the bra basis function μ0 shares
the same center with the ket basis function μ′m and (2) the
bra basis function ν0 shares the same center with the ket
basis function ν ′n′. We denote this scheme as one-center
approximation to SS-type ERIs. We tested and tuned these
approximations to ensure that the quality of the results is not
affected, and the error introduced by these approximations
is below the error due to the finite basis representation and
numerical integration of the XC term.

To include the XC contributions to the potential and the
energy, we calculate the electronic density

n(r) =
∑

n

Tr[�u(r − n)Dū], (110)
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and its gradients on the DFT grid (see Sec. II G), where
the trace is expressed as in Eq. (69). The XC potential and
its derivatives vα (r) are obtained from the XCFUN library
[122] and used to construct the XC Fock matrix elements in
Eq. (107).

All relativistic calculations were carried out using a
Gaussian finite nucleus model, as described by Visscher and
Dyall [123]. The finite nucleus model is required in order to
regularize the singularity that appears in the small-component
wave function evaluated at the point-type nuclei; this singu-
larity is otherwise difficult to capture with a finite basis.

The Coulomb and XC contributions are used to assemble
the nonzero real-space quaternion components of the Fock
matrix in Eq. (14), which are then transformed to k space,
evaluating the Fourier series in Eq. (59). The 4c k-space Fock
matrix is composed using Eq. (61). The kinetic operator is
added in a similar way. The orthonormal basis representation
of the Fock matrix is obtained as F (k) → L†(k)F (k)L(k).
The Fock matrix is diagonalized, and from its band ener-
gies εp(k), an occupation vector fp(k) is formed [Eq. (19)].
The k-space density matrix is obtained in the orthonormal
basis according to Eq. (21), and transformed as D(k) →
L(k)D(k)L†(k).

The new density matrix in real space Dμm,μ′0 is constructed
by calculating the integral in Eq. (23) over the first Bril-
louin zone. The integral is approximated by a sum over a
�-centered uniform mesh of k points with equal weights
|K|/N , where N is the total number of sampled k points.
Specifically, let bi denote the primitive vectors in reciprocal
space for i = 1, . . . , d . Then the mesh consists of k points
defined as

k =
d∑

i=1

ki

Ni
bi, ki = −Ni − 1

2
, . . . ,

Ni − 1

2
, (111)

where Ni is the total number of k points in the ith crys-
tallographic direction. Such an integration scheme does not
capture the discontinuity of the integrand at the Fermi surface
arising in metallic systems. However, in this work we study
systems with a nonzero band gap, and the integration scheme
proved sufficiently accurate.

In order to accelerate the SCF convergence, we extrapolate
the real-space Fock matrix using the linear combination of
Fock matrices from the current and the previous SCF cycles,
before transforming it to reciprocal space. The extrapolation
coefficients are determined from the direct inversion of the
iterative subspace (DIIS) procedure of Pulay [124,125], ap-
plied only to the � point (k = 0), i.e., using error vectors
defined as e = [F (0), D(0)] (in the orthonormal basis). Such
a restriction has been demonstrated to be satisfactory for
solid-state calculations [90,126,127].

IV. PROBLEMS WITH DIFFUSE FUNCTIONS

A. Nonrelativistic theory

Gaussian basis functions with diffuse exponents are known
to cause numerical instabilities in the SCF procedure for
solids [75,128–131]. One type of instability is associated with
the overcompleteness of a chosen basis, i.e., “true” linear
dependence of the basis that usually occurs when the smallest

eigenvalue of the overlap matrix is below a certain thresh-
old (10−7) [128–130]. We remove such linear dependencies
during the basis orthonormalization step by applying the
procedure described in Sec. III. Another type of instability
arises when the Fock matrix elements are calculated with
large errors, e.g., due to a premature truncation of the infinite
lattice sums (see Sec. II F). This problem was reported if
the lowest eigenvalue of the overlap matrix was below 10−2

[128–130]. For these reasons, it is a common practice to
exclude most diffuse functions from solid-state calculations
altogether, either by deleting them from the molecular basis
sets [74–76,131] (a rule of thumb is to remove exponents
smaller than 0.1) or by reoptimizing the basis set exponents
and the contraction coefficients [131].

In this work, we did not encounter the aforementioned
problems in the nonrelativistic implementation, and deleting
the diffuse functions from the basis set proved to be unneces-
sary. On the contrary, we observed that removing the diffuse
functions produced significant errors in some of the calculated
band gaps (see Table II), and the systematic convergence
of so-constructed basis sets was lost. Thus we recommend
caution when making such severe modifications of basis sets.
We believe that the problems with diffuse functions can be
mitigated by proper handling of the lattice sums.

B. Relativistic theory

While the nonrelativistic implementation did not pose
convergence challenges even with the original unmodified
molecular basis with diffuse functions, the same is not true in
the 4c case. For the three-dimensional silver halides examined
here, we found that the energy gap between the negative- and
positive-energy states was closed. In fact, a small number of
the negative-energy states was located in the energy region
of the occupied electronic states. Occupying any of these
intruder states disrupted the SCF procedure and made it
impossible to reach convergence. This pathological behavior
occurred even if the magnitude of the lowest eigenvalues of
the small-component overlap (kinetic) matrix T was of the
order of 10−4, and the behavior was not observed if the diffuse
functions were excluded from the calculation.

To understand this problem, let us study a model Dirac
Hamiltonian expressed in an RKB basis containing one basis
function. In absence of SOC, Eq. (11) can be written as the
2 × 2 equation(

v 1
2 t

1
2 t w

4c2 − 1
2 t

)(
cL

cS

)
= ε

(
s 0
0 t

4c2

)(
cL

cS

)
, (112)

where s, t ∈ R+ parametrize the 4c overlap matrix in Eq. (15);
v,w ∈ R are the large and small-component contributions to
the potential in Eq. (14), respectively; ε is an eigenvalue; and
(cL, cS )T is an eigenvector. Here, we omit the dependence
on k, as it is not relevant for the following discussion. The
orthonormalized Hamiltonian thus becomes

H =
⎛
⎝ v

s

√
t
s c√

t
s c w

t − 2c2

⎞
⎠. (113)
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Expanding the solutions of this Hamiltonian as c → ∞ gives

ε+(c) = v

s
+ t

2s
+ O

(
1

c2

)
, (114a)

ε−(c) = −2c2 + w

t
− t

2s
+ O

(
1

c2

)
. (114b)

Similarly, the asymptotic expansion of the solutions as t → 0
gives

ε+(t ) = v

s
+ O(t2), (115a)

ε−(t ) = −2c2 + w

t
+ O(t2). (115b)

The expansion in Eq. (114b) shows that ε− is singular as
c → ∞, whereas according to Eq. (115b), ε− is also singular
as t → 0. This is in contrast with ε+ which does not exhibit
such singularities. If w > 0 then the term w

t increases the
energy of ε−. This increase can become significant for large
values of w or, equivalently, small values of t , and can shift
the negative-energy state to the electron region close to ε+. In
practical calculations, the Coulomb potential consists of both
the electron-nuclear attraction as well as the electron-electron
repulsion. While the attractive Coulomb potential gives rise
to bound states just below the positive-energy continuum,
the repulsive potential produces bound states just above the
negative-energy continuum [132]. The matrix V in Eq. (17)
is indefinite, i.e., with both negative and positive eigenvalues,
and the behavior corresponding to w > 0 can be observed.
Some of the highest-lying (spurious) negative-energy states
can thus have a higher energy than the lowest positive-energy
states. This “inverse variational collapse” is possible because
the RKB basis only guarantees that the low-lying positive-
energy bound states do not collapse into the negative-energy
continuum (except for superheavy elements with large values
of Z [133]), but does not prevent the negative-energy bound
states from intruding the positive-energy region [134–136].

Since the negative- and positive-energy states can overlap
if diffuse functions are included in basis sets used for solid-
state calculations, the conventional procedure of forming the
occupation vector in Eq. (19) by assuming that the electronic
bound states are well-separated from the negative-energy
states [137] is not justified. Expansions in Eqs. (114) indicate
that it is possible to identify the negative-energy states by
probing their dependence on the speed of light. Here, we
perturb the one-electron Dirac Hamiltonian by infinitesimally
shifting the square of the speed of light, i.e., we employ
the substitution c2 → c2(1 + λ) in the Fock operator ex-
pressed in the orthonormalized basis, and evaluate ξp(k) ≡

1
2c2

∂εp(k,λ)
∂λ

|
λ=0

. We found that the states with negative values
of ξp(k) must be left vacant in order to converge the SCF
procedure. The negative-energy states that penetrated into the
positive-energy spectrum always appeared in pairs: One vir-
tual state with a high energy and ξp(k) ≈ −1, and one orbital
in the region of occupied electron states with −1 < ξp(k) < 0,
presumably corresponding to a bound negative-energy state.
These intruder states did not appear in calculations on finite
systems consisting of one unit cell (molecule). A more robust
approach to mitigate this problem will be a subject of further
research.

V. RESULTS

To asses the performance of the proposed methodology, we
have performed energy band-gap calculations at different k
points for the three-dimensional silver halides (AgX , X=Cl,
Br, I) using both fully relativistic (4c) and the nonrelativis-
tic one-component (1c) density functional level of theory.
Despite of their highly symmetric cubic fcc structure, AgX
serve as an excellent probe for the 4c method for a number of
reasons. The unit cell of AgX has a nonzero dipole moment,
and the Coulomb lattice sums exhibit the most complicated,
conditional convergence. In addition, silver halides are small-
gap indirect semiconductors [74,76] with a densely packed
structure, and thus pose more challenges to the SCF procedure
as well as to the employed basis sets. Finally, fully relativistic
4c calculations using simulation supercells that contain more
than six hundred heavy atoms and tens of thousand electrons
are memory and CPU demanding.

Even though the ionic AgX crystals exhibit large rela-
tivistic effects, these are predominantly of a scalar-relativistic
origin while SOC plays only a minor role [74,76]. To better
assess how well our approach can treat SOC effects, we also
study the two-dimensional graphenelike honeycomb struc-
tures of silicene and germanene [26] that possess a large
SOC-driven quantum spin Hall effect.

A. Silver halide crystals

Equilibrium lattice constants of AgX were taken from the
recent work of Zhao et al. [74], and the nonrelativistic GGA-
type XC functional PBE [138] was employed. The numerical
integration of the XC contributions was performed on a grid
consisting of 302 angular points for each atom, 80 radial
points for Ag, and 70 radial points for the halides. Reciprocal
space integration was evaluated on a uniform mesh of 7 ×
7 × 7 k points [Eq. (111)]. For the large-component basis, the
all-electron pob-TZVP basis set of triple-ζ quality optimized
for solid-state calculations [131] was used; however, the basis
was uncontracted, as is required for relativistic calculations,
we denote this basis as upob-TZVP. Since upob-TZVP is not
available for heavier elements, we employed the uncontracted
all-electron double-ζ (DZ) basis sets of Dyall [139,140] for
Ag and I. The small-component basis functions were gener-
ated on-the-fly using the RKB condition in Eq. (3b).

In order to alleviate the convergence problems described in
Sec. IV B that are related to diffuse Gaussian-type functions
in the atomic basis sets, we followed the common practice of
removing the GTOs with exponents < 0.1 from the original
basis sets [74–76,131]. In this work, we deleted the most dif-
fuse s- and p-type functions on Ag, and denoted the reduced
basis by acronym “r” added in front of the original basis
set name. During the numerical integration of the XC term,
GTOs were considered to have a finite extent, defined as the
radius of an atom-centered sphere outside of which values of
the most diffuse Gaussian function are below a user-defined
threshold. The extent of the original basis sets was 12.1 Å
due to the diffuse functions on Ag. Using the truncated r-type
basis sets reduced this extent to values between 7.4 and 7.8 Å.
The GTO extent defined as in Ref. [110] used in the mul-
tipole expansions of the Coulomb term had almost identical
values.
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TABLE I. Energy band gaps of three-dimensional AgX systems
obtained for various k points at the fully relativistic (fr) and non-
relativistic (nr) level of theory using the PBE XC functional. The
upob-TZVP basis was employed for Cl and Br, and Dyall’s double-ζ
for Ag and I, both with (DZ) and without (rDZ) the most diffuse
functions.

Gap (eV)

AgCl a0 (Å) Basis L-L �-� X -X L-�

nr 5.692 rDZ 5.18 3.53 5.45 1.74
DZ 4.93 3.47 5.47 1.68

STOa 4.72 3.44 5.29 1.67
LAPWb 4.76 3.44 5.29 1.69

fr 5.612 rDZ 4.67 2.95 4.20 0.89
DZ 4.47 2.93 4.20 0.87

STOa 4.27 2.99 4.03 0.88
LAPWb 4.30 3.02 4.04 0.89

AgBr a0 (Å) Basis L-L �-� X -X L-�
nr 5.937 rDZ 4.76 3.15 4.83 1.77

DZ 4.36 2.96 4.81 1.59
STOa 4.31 2.97 4.81 1.57

LAPWb 4.35 2.96 4.79 1.58
fr 5.843 rDZ 4.13 2.34 3.67 0.70

DZ 3.82 2.24 3.68 0.61
STOa 3.77 2.25 3.67 0.60

LAPWb 3.82 2.24 3.68 0.61

AgI a0 (Å) Basis L-L �-� X -X L-X
nr 6.280 rDZ 5.12 3.28 3.58 1.62

DZ 3.99 3.11 3.54 1.59
STOa 3.91 3.14 3.56 1.60

LAPWb 3.92 3.13 3.54 1.58
fr 6.169 rDZ 4.14 1.96 2.75 0.50

DZ 3.25 1.88 2.74 0.49
STOa 3.17 1.90 2.76 0.49

LAPWb 3.18 1.91 2.75 0.47

aReference [74], 2c X2C approach.
bReference [74], 4c approach.

Table I shows the results of our 4c and 1c calculations
of the energy gaps for the AgX systems. Our values are
compared with the results calculated using two different tech-
niques [74]: 2c method based on the X2C Hamiltonian and
STOs, and the 4c LAPW method. The vertical (direct) band
gaps are obtained at a set of special k points: �, L, and X .
The band-structure diagram and the density of states (DOS)
of AgI calculated at the 1c and 4c levels are depicted in Fig. 1;
DOS was obtained as N (ε) ≡ 1

N
∑

pk δ(ε − εpk), where N
is the total number of sampled k points, and the δ function
was represented with a Gaussian with a standard deviation of
136 meV. These results show that the ionic AgX compounds
are indirect semi-conductors, with the band gap occurring
between the L and � points for AgCl and AgBr, and between
the L and X points for AgI. This agrees with the findings
of previous studies [74,76]. All band gaps are significantly
reduced when including relativistic effects, and Fig. 1 reveals
that this reduction is due to a large decrease in the energy
of the entire conduction band. In Fig. 1, we can also observe
strong SOC splittings that occur within the valence bands. In
particular, SOC lifts the degeneracy on the �-X and �-L lines,

TABLE II. Nonrelativistic 1c energy band gaps of three-
dimensional AgI calculated with a hierarchy of basis sets. All results
are obtained with the PBE functional. Comparisons are made with
nonrelativistic literature values obtained using either STOs or plane
waves, and are taken from Ref. [74].

AgI
Gap (eV)

basis L-L �-� X -X L-X

rDZ 5.12 3.28 3.58 1.62
rVDZ 4.87 3.30 3.60 1.62
rVTZ 4.66 3.74 3.50 1.56
rVQZ 4.01 3.21 3.56 1.59
DZ 3.99 3.11 3.54 1.59
VDZ 3.95 3.14 3.56 1.59
STOa 3.91 3.14 3.56 1.60
LAPWa 3.92 3.13 3.54 1.58

aReference [74].

and for k = �, the difference between the split energies equals
to 1.13 eV. Overall, our results calculated with the DZ basis set
agree well with those presented in Ref. [74]; we reproduce the
general trends as well as the difference between the relativistic
and the nonrelativistic calculations.

On the other hand, there is a notable discrepancy between
the L-L direct gaps evaluated using the DZ and the rDZ
basis sets, particularly for AgI. The fact that DZ results
agree well with the STO and LAPW results in Ref. [74]
indicates that the diffuse functions are of immense importance
for the band structures of these systems, and should not be
removed from the basis set. To further investigate the basis
set effect, we conducted additional tests at the 1c level with
various basis sets, and the results for band gaps of AgI are
summarized in Table II. In addition to the DZ basis set,
we included the larger Dyall’s valence double-ζ (VDZ), as
well as the hierarchical system of basis sets: reduced valence
double-, triple-, and quadruple-ζ (rVDZ, rVTZ, rVQZ), with
discarded the exponents smaller than 0.1. The sequence of
basis sets without the diffuse functions does not exhibit an
apparent convergence, the �-� gap deviates more from the
reference results for larger basis sets. Acceptable agreement
is reached only with the very large rVQZ. This issue does
not appear for the original basis sets with diffuse exponents,
and our results agree very well with those of Zhao et al.
[74] already for DZ and VDZ. A similar observation was
done by Zhao et al., who performed test calculations on
AgCl with polarized double-ζ STOs, and the calculated band
gaps differed marginally (<0.1 eV) from the results obtained
with the large reduced polarized quadruple-ζ basis (rQZ4P)
with eliminated diffuse s and p functions. In addition, this
is in line with the findings of Te Velde and Baerends [143]
that a reasonable basis-set limit (with errors < 10−3 a.u. in
cohesive energies per atom) can be reached for densely packed
systems already with STOs of double-ζ quality, provided they
contain polarization functions. Considering that GTOs and
STOs only differ in the radial part, one would expect that
a similar behavior should be seen also for GTOs. We have
confirmed this observation, but only for the full original DZ
basis set with diffuse exponents. Therefore, great care must be
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FIG. 1. Band structure diagram (left) and the DOS (right) of AgI obtained at the 4c (full line) and 1c (dashed line) levels of theory with the
PBE XC functional. The horizontal dashed black line separates the occupied and the vacant states, and was placed in the middle of the band
gap. The path traversing high-symmetry k points in the reciprocal-space unit cell was chosen according to Ref. [141]. The figure was generated
using PYTHON matplotlib library [142].

taken when adopting basis sets for solid-state calculations, and
we do not generally recommend deleting diffuse exponents
for heavy elements. Optimized solid-state GTOs have been
developed by Peintinger et al. [131] for the lighter elements
of the periodic table, but this work needs to be extended to
address the elements in the lower part of the periodic table as
well.

Finally, we tested the parallel performance of our imple-
mentation with respect to the number of central processing
units (CPUs) used. We conducted a series of 4c calculations
on AgI with the DZ basis using two-socket computational
nodes, where each socket consists of 16 physical cores. We
used the calculation on four nodes (128 CPUs) as a refer-
ence. Figure 2 demonstrates near-ideal linear scaling with the
number of processors of the NF Coulomb contributions to the
Fock matrix and energy. The implementation remains efficient
even when 64 nodes (2048 CPUs) are used. The evaluation of
the XC contributions exhibits optimal scaling for a smaller
number of nodes, but becomes less optimal beyond 1024
CPUs. However, absolute wall-clock times required to com-
pute the XC contribution are considerably shorter than for the
Coulomb terms. The remaining steps in the algorithm, such as
the FF Coulomb contributions, Fourier transformation, matrix
diagonalizations, and the DIIS, are negligible.

B. Honeycomb structures

To validate our method on systems displaying larger spin-
orbit effects, we have also calculated the band structure of
the heavier two-dimensional analogues of graphene: silicene
and germanene. Both systems have been found to be stable
in a low-buckled hexagonal geometry [26], contrary to the
truly planar graphene. In contrast to graphene, the buckled
geometry of silicene and germanene enhances the SOC effect
[26]. To compare our calculated band gaps with literature
values, we used the geometries from Ref. [26], and the non-
relativistic PBE functional [138]. The integration grid for the

XC contributions contained 80 radial points per atom, and
Lebedev quadrature grid points of an adaptive size in the an-
gular part [144]. Reciprocal space integration was performed
on a uniform grid of 31 × 31k points. We studied the effect of
basis set on the band gap, and employed the uncontracted all-
electron upob-TZVP [131] and the hierarchy of systematically
improved Dunning’s basis sets [145] (ucc-pVDZ, ucc-pVTZ,
ucc-pVQZ).

Table III collects our calculated band gaps at the 1c and
4c levels of theory at the Dirac points (k = K) of silicene

FIG. 2. Speedup on the wall-clock time of the evaluation of the
Coulomb and XC contributions to the Fock matrix in real space for
1 SCF cycle of the 4c AgI as a function of the number of CPUs
used. The reference calculation was performed using 128 CPUs
(4 nodes) and the largest calculation used 2048 CPUs (64 nodes).
The dashed line denotes a hypothetical (linear) scaling of wall-clock
time with given computational resources. The figure was generated
using PYTHON matplotlib library [142].
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TABLE III. Band gaps of two-dimensional honeycomb struc-
tures at the fully relativistic (fr) 4c and nonrelativistic (nr) 1c level of
theory using the PBE functional and various basis sets. Geometries
are taken from Ref. [26].

Band gap (meV)

Method Basis Silicene Germanene

nr upob-TZVP 0.026 0.028
fr upob-TZVP 1.548 25.119
fr ucc-pVDZ 1.596 24.296
fr ucc-pVTZ 1.606 24.323
fr ucc-pVQZ 1.607 24.342
Ref. [26] 1.55 23.9

and germanene. For comparison, we report in Table III also
the results of Liu, Feng, and Yao [26] calculated using the
relativistic pseudopotential PAW approach [65]. Since these
graphene-like structures exhibit a quantum spin Hall effect
[25,26,28], the existence of a nonzero gap is solely due to
SOC. Hence, the nonrelativistic band gaps should then be
strictly zero. The numbers in Table III do not display this
feature exactly, but we attribute the very small values of
the nonrelativistic gaps to numerical noise and the trunca-
tion of the expansion of the one-electron bases (finite basis
effect). The convergence with respect to the basis limit is
very fast—our ucc-pVDZ band gaps differ only marginally
from the ucc-pVTZ and ucc-pVQZ results, whereas a larger
discrepancy exists already between the ucc-pVDZ results and
the results in Ref. [26]. Since our band gaps are obtained at
the fully relativistic 4c level with the all-electron potential
and well-converged basis, one can consider them as reference
data. The small discrepancy between our 4c method and the
previously reported 2c Pauli-type relativistic PAW method
[65] of Ref. [26] can be attributed to the different treatment
of relativity and the use of the pseudopotential approximation
in the latter approach. We believe that these results demon-
strate that the presented methodology opens a new possibility
to study heavy-element-containing materials with promis-
ing technological applications, for instance in spintronic
devices.

VI. CONCLUSION AND OUTLOOK

We have presented a first-principles full-potential rela-
tivistic method and its implementation for solving the 4c
Dirac-Kohn-Sham equation for periodic systems employing a
local basis composed of Gaussian-type orbitals. The proposed
method accounts variationally for both scalar-relativistic as
well as spin-orbit effects, allowing us to study solids across
the entire periodic table in a uniform and consistent manner.
The explicit built-in periodicity allows for a treatment of sys-
tems of arbitrary dimensionality without having to introduce
nonphysical replicas of the systems studied in nonperiodic
dimensions. We formulated key principles of the method in
the 4c Kramers-restricted framework, exploiting the time-
reversal structure of operators in real and reciprocal space,
and showed how to assemble the real-space Coulomb and
exchange-correlation operators in this framework. We have

discussed the conditionally-convergent electrostatic infinite
lattice sums arising in studies of periodic systems, and we
adopted the multipole expansion and an iterative renormal-
ization procedure to calculate the lattice sums of the inter-
action tensor. To accelerate the calculations, some explicit
two-electron integrals were neglected based on an efficient
screening scheme, or approximated with a multipole expan-
sion. We have analyzed the problem of inverse variational
collapse that emerges in the 4c method if the employed basis
set contains diffuse functions, and have suggested a means
for avoiding the breakdown of the 4c SCF procedure. The
method has been implemented in the 4c RESPECT [84] code,
using the vectorized integral library INTEREST [98]. Finally,
we have validated this methodology on some exemplary cal-
culations of three-dimensional silver halide crystals in their
fcc phase, and two-dimensional honeycomb structures fea-
turing the quantum spin Hall effect. Energy band gaps were
calculated at various special k points. Overall, our results
agreed very well with earlier published findings. Furthermore,
we have demonstrated that the convergence with respect to
the basis limit is possible for standard basis sets used for
molecular calculations in quantum chemistry, without the
need to modify the basis sets by removing the most diffuse
exponents. We obtained very good cost-performance ratio
of our hybrid OpenMP/MPI parallel implementation as we
increased the number of used CPUs up to 2048.

The methodology presented in this paper holds promise
in the computational study of solid-state materials. The 4c
scheme is conceptually simpler and more transparent than
approximate 2c techniques, and can be used to produce ref-
erence results to benchmark more approximate methods, and
in this way increase confidence in approximate schemes and
thus pave the way for computational studies of more complex
materials. Furthermore, the full-potential formalism adopted
here enables investigations of unique features of spin-orbit
coupled materials, such as magnetic response properties and
core-electron (x-ray) spectroscopy, where a full relativistic de-
scription is needed. We also believe that the method can prove
valuable in a search for materials with nontrivial topological
properties.
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APPENDIX A: TRANSLATIONAL SYMMETRY

In this Appendix, we review some consequences of the
translational symmetry on operators in various basis represen-
tations. We will here only be concerned with discrete trans-
lations, i.e., translations by an arbitrary integer-modulated
lattice vector m, defined by Eq. (5). Let tm denote a translation
operator for the lattice vector m, defined by an application to
a function f :

(tm f )(r) ≡ f (r − m). (A1)

An operator A is translationally invariant iff it commutes with
the translation operators for all lattice vectors m ([·, ·] denotes
a commutator):

[A, tm] = 0. (A2)

Clearly, the momentum operator p, as well as the spin op-
erator σ are translationally invariant. As a consequence, the
composite operators p2/2 (nonrelativistic kinetic energy) and
σ · p are also translationally invariant. For this reason, we
can omit the spin- and momentum-dependence of an operator
A from the following discussion without loss of generality.
Let A(r) be the coordinate representation of A. Translation
invariance of A [Eq. (A2)] then requires

A(r + m) = A(r). (A3)

Matrix elements of A expressed in the discrete real-space basis
of Eq. (4) are obtained as

Aμm,μ′m′ =
∫
R3

χ†
μm(r)A(r)χμ′m′ (r)d3r. (A4)

For any lattice vector n, it follows that

Aμm,μ′m′ = Aμm+n,μ′m′+n = Aμ0,μ′m′−m, (A5)

implying that the real-space matrix elements of translationally
invariant operators have a Toeplitz structure. In addition, if the
operator A is Hermitian, then

A†
μ0,μ′m = Aμ′0,μ−m, (A6)

where A† denotes the Hermitian conjugate within the 4 × 4
bispinor space.

Reciprocal-space elements of A for k, k′ ∈ K are acquired
by using Eq. (6) together with Eq. (A5):

Aμμ′ (k, k′) = 1

|K|
∑
mm′

e−ik·meik′ ·m′
Aμ0,μ′m′−m.

Changing the summation variables yields

Aμμ′ (k, k′) = δ(k − k′)Aμμ′ (k), (A7)

Aμμ′ (k) =
∑

m

eik·mAμ0,μ′m, (A8)

where we have employed

δ(k) ≡ 1

|K|
∑

m

eik·m, (A9)

which is the Fourier kernel representation of the Dirac δ

function. Notice that the symmetry in Eq. (A5) resulted in
the block-diagonal reciprocal-space matrix [Eq. (A7)]. This

argument can also be reversed, i.e., any block-diagonal k-
space matrix will have a Toeplitz structure [Eq. (A5)] in
real space. We have applied this argument when constructing
only the nonequivalent elements of the real-space density
matrix in Eq. (23). Finally, the symmetry in Eq. (A6) leads
to matrices in the reciprocal space that are Hermitian for each
k individually:

A†
μμ′ (k) = Aμ′μ(k). (A10)

Therefore, provided that the Fock matrix in Eq. (14) satis-
fies the combined translational and Hermitian symmetry in
Eq. (A6), the eigenvalues ε(k) in Eq. (11) are guaranteed to
be real.

Translational symmetry allows us to assign finite expec-
tation values of operators that naturally describe extensive
properties, such as the kinetic energy of electrons. Beginning
with a divergent expression for the expectation value of a
translationally invariant one-electron operator A (given that
the density matrix is translationally invariant as well), we can
write

〈A〉 =
∑
mm′

Tr[Aμm,μ′m′Dμ′m′,μm]

=
∑

m

1
∑
m′

Tr[Aμ0,μ′m′Dμ′m′,μ0],

where Tr denotes the trace in the 4 × 4 bispinor space. If we
employ the short-hand notation from Eq. (31), and realize,
that

∑
m 1 ≡ N is the total (infinite) number of unit cells, we

can calculate the expectation value of A per unit cell in the
thermodynamic limit (N → ∞) as

〈A〉
N

= Tr[AuDū]. (A11)

APPENDIX B: SPHERICAL MULTIPOLE EXPANSION

Here we summarize the formulation of the spherical multi-
pole expansion needed to evaluate the far-field contribution to
the Coulomb operator. We follow the framework of Helgaker
et al. [111] and Watson et al. [110] The Coulomb interaction
operator |r1 − r2|−1 ≡ r−1

12 can be expanded (as a function
of six variables) around an arbitrary center (P, Q) into a
spherical multipole expansion which takes the form

1

r12
=

∞∑
l=0

l∑
m=−l

∞∑
j=0

j∑
k=− j

Rlm(r1− P)�lm, jk (Q − P)R jk (r2 − Q),

(B1)
where

�lm, jk (R) = (−1) j I∗
l+ j,m+k (R), (B2)

is the interaction tensor, Rlm(r) and Ilm(r) are the scaled
regular and scaled irregular solid harmonics, respectively,
defined as

Rlm(r) = 1√
(l − m)!(l + m)!

rlClm(ϑ, ϕ), (B3)

Ilm(r) =
√

(l − m)!(l + m)!r−l−1Clm(ϑ, ϕ). (B4)

Here, Clm(ϑ, ϕ) are eigenfunctions of the angular momen-
tum operators L2 and Lz, namely, the spherical harmonics
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in Racah’s normalization, obtained from the conventional
spherical harmonics Ylm(ϑ, ϕ) as

Clm(ϑ, ϕ) =
√

4π

2l + 1
Ylm(ϑ, ϕ). (B5)

We shall use the compact matrix notation

1

r12
= RT (r1 − P)�(Q − P)R(r2 − Q), (B6)

where R is a vector and � is a matrix defined by their
respective elements Rlm and �lm, jk . The series in Eq. (B6) is
convergent for all points (r1, r2) that satisfy the condition

|r1 − r2 + Q − P| < |Q − P|. (B7)

The scaled regular and irregular solid harmonics have the
following properties (λ ∈ R is an arbitrary scaling factor):

Rl−m(r) = (−1)mRlm∗(r), (B8a)

Il−m(r) = (−1)mI∗
lm(r), (B8b)

Rlm(λr) = λlRlm(r), (B8c)

Ilm(λr) = 1

|λ|
1

λl
Ilm(r). (B8d)

The regular solid harmonics obey the addition theorem

Rlm(r − P) =
l∑

j=0

j∑
k=− j

Rl− j,m−k (−P)R jk (r), (B9)

which can be written in the following matrix form:

R(r − P) = W (P)R(r), (B10)

where W is the translation tensor, its elements defined as

Wlm, jk (P) = Rl− j,m−k (−P). (B11)

The translation tensor W can be used to evaluate the regular
solid harmonics for shifted arguments. Moreover, we can

apply Eq. (B10) to derive a similar rule for the interaction
tensor. Multipole expansions of r−1

12 expanded around two
different centers (P, Q) and (P̄, Q̄) must coincide, so that

1

r12
= RT (r1 − P)�(Q − P)R(r2 − Q)

= RT (r1 − P̄)�(Q̄ − P̄)R(r2 − Q̄).

Applying the addition theorem [Eq. (B10)], we identify

�(Q − P) = W T (P̄ − P)�(Q̄ − P̄)W (Q̄ − Q). (B12)

Using W (0) = I, and setting P̄ = P and Q̄ = P + Q in
Eq. (B12), we obtain the corollary

�(Q − P) = �(Q)W (P). (B13)

In the present implementation, we avoid using complex num-
bers for multipole expansions by expressing interaction and
translation tensors in terms of the real (regular and irregular)
solid harmonics, which we construct from recurrence equa-
tions (see Ref. [111]) and we do therefore not evaluate the
zero imaginary part of the real-valued Coulomb r−1

12 operator.

APPENDIX C: LATTICE SUM OF INTERACTION
TENSORS

Here we prove the recurrence relation in Eq. (89), estab-
lishing a rapidly convergent scheme for the computation of
lattice sums of spherical interaction tensors. Let us begin by
fragmenting the far-field (FF) into layers FFr as follows. Let
the near-field (NF) be a block consisting of unit cells with
indices ni = −Ni, . . . , Ni for each of the periodic dimensions
i = 1, . . . , d . For generic noncubic lattices, such an object
has a diamondlike shape. The first layer of the far-field, FF1,
envelopes the NF by placing supercells in all directions, each
supercell having as many unit cells as the NF itself. The
process is then repeated for the next layer of the far-field, FF2,
with the exception that the supercell now contains all unit cells
in both NF and FF1, as depicted in the following scheme:

. . . |
FF1︷ ︸︸ ︷

−3Ni − 1 . . . − Ni − 1︸ ︷︷ ︸
2Ni+1

|
NF︷ ︸︸ ︷

−Ni . . . − 1 0

NF︷ ︸︸ ︷
1 . . . Ni︸ ︷︷ ︸

2Ni+1

|
FF1︷ ︸︸ ︷

Ni + 1 . . . 3Ni + 1︸ ︷︷ ︸
2Ni+1

|
FF2︷ ︸︸ ︷

3Ni + 2 . . . 9Ni + 4︸ ︷︷ ︸
2(3Ni+1)+1

| . . . (C1)

Let Nir denote the upper extent of the far-field layer r in the
direction i, i.e., it is the index of the unit cell that is the farthest
from the center 0. Then Nir satisfies the following recurrence
relations (r = 0 labels the NF)

Ni0 = Ni, Nir+1 = 3Nir + 1, (C2)

which have the solution

Nir = (2Ni + 1)3r − 1

2
. (C3)

The number of unit cells in layer r is given by

|FFr | = 3d (r−1)(3d − 1)|NF|, (C4)

where |X | denotes the number of elements of X . From
Eq. (C4), we can see that the sizes of the layers form a geomet-
ric sequence. Therefore the partitioning in Eq. (C1) divides the

space into regions that become exponentially larger with each
new layer. Formally, we define FFr as

FFr =
{

(n1 . . . nd ) ∈ Zd ; 1 � max
i=1...d

( |ni| − 1

Nir−1

)
� 3

}
.

(C5)
The overall far-field is then given by the union

FF =
∞⋃

r=1

FFr, (C6)

and the lattice sum in Eq. (83) becomes

� =
∑
n∈FF

�(n) = lim
t→∞

t∑
r=1

∑
n∈FFr

�(niai ),
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where we have abbreviated the summation indices as n =
(n1 . . . nd ). It follows that the lattice sum is obtained as a limit
of partial sums

� = lim
t→∞ �t , (C7)

�t =
t∑

r=1

∑
n∈FFr

�(niai ). (C8)

Let us consider the term t + 1:

�t+1 = �1 +
t+1∑
r=2

∑
n∈FFr

�(niai ) = �1 +
t∑

r=1

∑
n∈FFr+1

�(niai ).

(C9)

The following identity relates the two sums over different
layers of the far-field∑

n∈FFr+1

�(niai ) =
∑

n∈FFr

∑
μ∈P

�((3ni − μi )ai ), (C10)

where P is the Cartesian power

P = {−1, 0, 1}d ,

for d = 3,P = {(±1,±1,±1), (±1,±1, 0), . . .} and con-
tains the reference unit cell and all its 26 nearest neighbours.

Up to this point, the proof has been of a general nature—we
did not need to specify � or use its properties. However, in
order to obtain an applicable recursive formulation, we need to

express the term �t+1 via the previous terms. To proceed, we
therefore apply the addition theorem in Eq. (B13), factorizing
the interaction tensor as

�((3ni − μi )ai ) = �(3niai )W (μiai ) ≡ U [�(niai )]W (μiai ),

where W is the translation tensor [Eq. (B11)], and where we
have defined the scaling operator U as

U [�lm, jk (n)] ≡ �lm, jk (3n) = 1

3l+ j+1
�lm, jk (n). (C11)

Here we applied the scaling property of the irregular solid
harmonics [Eq. (B8d)]. Returning to Eq. (C9), this leads to

�t+1 = �1 +
t∑

r=1

∑
n∈FFr

∑
μ∈P

�((3ni − μi )ai )

= �1 + U
[

t∑
r=1

∑
n∈FFr

�(niai )

] ∑
μ∈P

W (μiai ).

If we define the aggregate translation matrix

W =
∑
μ∈P

W (μiai ) ≡
1∑

μ1...μd =−1

W (μiai ), (C12)

then

�t+1 = �1 + U (�t )W, (C13)

which completes the proof.
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