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Abstract
Although clinical management of melanoma has changed considerably in recent years, intrinsic treatment
resistance remains a severe problem and strategies to design personal treatment regimens are highly warranted.
We have applied a three-dimensional (3D) ex vivo drug efficacy assay, exposing disaggregated cells from 38
freshly harvested melanoma lymph node metastases and 21 patient derived xenografts (PDXs) to clinical relevant
drugs for 7 days, and examined its potential to evaluate therapy response. A strong association between
Vemurafenib response and BRAF mutation status was achieved (P b .0001), while enhanced viability was seen in
some NRAS mutated tumors. BRAF and NRAS mutated tumors responded comparably to the MEK inhibitor
Cobimetinib. Based on the ex vivo results, two tumors diagnosed as BRAF wild-type by routine pathology
examinations had to be re-evaluated; one was subsequently found to have a complex V600E mutation, the other a
double BRAF mutation (V600E/K601 N). No BRAF inhibitor resistance mechanisms were identified, but PIK3CA and
ceived 6 December 2018; Revised 28 March 2019; Accepted 1 April 2019
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NF1 mutations were identified in two highly responsive tumors. Concordance between ex vivo drug responses
using tissue from PDXs and corresponding patient tumors demonstrate that PDX models represent an indefinite
source of tumor material that may allow ex vivo evaluation of numerous drugs and combinations, as well as
studies of underlying molecular mechanisms. In conclusion, we have established a rapid and low cost ex vivo drug
efficacy assay applicable on tumor tissue from patient biopsies. The 3D/spheroid format, limiting the influence
from normal adjacent cells and allowing assessment of drug sensitivity to numerous drugs in one week, confirms
its potential as a supplement to guide clinical decision, in particular in identifying non-responding patients.

Translational Oncology (2019) 12, 951–958
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linical management of melanomas has changed noticeably in recent
ars due to development of small-molecular inhibitors (BRAFi)
rgeting the BRAFV600E mutated protein and the use of
munotherapy [1]. Unfortunately, whereas initial responses are
equently observed in patients eligible to BRAFi treatment, nearly all
lapse within one year [2,3]. Intrinsic BRAFi resistance is seen in
proximately 20% of the patients and is associated with
erexpression of cyclin D1 and COT, loss of PTEN and NF1,
romal expression of hepatocyte growth factor and RAC1 and
OXD8 mutations [4]. Reports have also indicated co-existence of
ones harboring either BRAF or NRAS mutation [5,6] or BRAF/
RAS double-mutations within the same cells [7]. The majority of
echanisms of acquired BRAFi resistance include NRAS and MEK1/
mutations, BRAFV600E amplification and alternative splicing of
RAF. In addition, dysregulation of PI3-kinase/Akt signaling and
erexpression of receptor tyrosine kinases have been shown to have
impact [3]. To overcome acquired resistance, patients have been
fered BRAFi in combination with MEK inhibitors (MEKi).
lthough progression-free survival is improved, most patients will,
wever, eventually experience disease progression [2,8,9].
Tumor cell lines grown as monolayer cultures (2D) have
aditionally been used as a first step to evaluate the efficacy of
ticancer therapies. This approach does, however, not adequately
capitulate the complex biology of the tumors [10–13]. To date, the
e of patient derived xenograft (PDX) models have been recognized
the cornerstone for evaluating the potential of novel anti-cancer
erapy [14,15] and several studies have demonstrated a strong
rrelation between treatment responses in PDXs and patient
tcome [14,16,17]. The use of PDX models has, however, its
itations and is not well suited as routine assays of response
ediction in individual patients. Most importantly, variability in
graftment and latency time clearly exceed what can be accepted in a
inical setting. Likewise, loss of human tumor environment and
mune responses, costs and ethical considerations, limit extensive
e of PDXs in routine diagnostics [18,19].
As a compromise between 2D-cultures and PDXs, several studies
ve demonstrated that growth as 3D-cultures more accurately mimic
mor tissue architecture, development of hypoxia, and expression of
nes associated with tumorigenesis and therapy response [13,20,21]
d thus outperform drug response predictions in 2D assays. One
ample is the use of organoids, established from patient tumor tissue,
hich has emerged as promising preclinical models to study drug
ficacy, in particular in cancers of epithelial origin [22–24]. In
elanomas, the use of human cell lines grown in 2D or 3D cultures
2,25,26], as well as animal models, have been the standard assays to
aluate the performance of novel drugs, and to our knowledge, no
says have been developed where patient tumor cells are utilized for
ug sensitivity assessments (review in [27]). In the present study, we
ve developed and demonstrated clinical feasibility of an ex vivo drug
nsitivity assay using fresh tumor tissue from melanoma lymph node
etastases. The cells were kept in 3D, avoiding influences from
romal cells, and drug responses were evaluated after one-week
posure. Proof-of-principles was demonstrated by evaluating the
nsitivity to BRAF-MEK–ERK inhibitors, and comparing the
tput with molecular data. Based on data from the drug sensitivity
st, two tumors were found misclassified as BRAFwt according to
utine diagnostic examinations. Upon subsequent NGS, both
mors were confirmed to have less common BRAF mutations. In
nclusion, we have demonstrated that the ex vivo drug sensitivity
say is a fast and low-cost method showing potential to provide
nctional information that can supplement the molecular data.
ltimately this may enhance the diagnostic precision and assist in
inical decision-making.

aterials and Methods

atients

Randomly collected treatment naïve melanoma lymph node
etastases, resected at the Norwegian Radium Hospital, Oslo
niversity Hospital were included. The study was approved by the
egional Committee for Medical Research Ethics of South-East
orway (2014/2208, 2015/2434). Informed consent was obtained
om all patients according to national guidelines.

x vivo Drug Response Assay
Patient tumor tissue and PDXs were mechanically disaggregated
d treated with collagenase (125 U/ml) and 2.5 mg/ml DNase
igma Aldrich, St. Louis, MO, USA) for one hour. To remove debris
d large cell clumps the suspensions were filtered through 100 μm
lon Cell Strainer (BD Falcon, Franklin Lakes, NJ, US) and washed
ice-cold PBS. If required, red blood cells were removed by ACK
sis buffer (Lonza, Verviers, Belgium). The cells were washed in cold
BS and re-suspended in RPMI-1640 medium (Lonza) supplement-
with 5% fetal calf serum (FCS) (Sigma Aldrich), 2 mM L-

utamine, and penicillin/streptavidin (50 U/ml of each) (Lonza). To
alyze for drug response, approximately 20,000 viable cells (assessed
Trypan Blue exclusion), resuspended in RPMI-1640 containing
FCS and antibiotics, were plated per well in 96-wells round



bo
R
A
H
on
V
pe
sa
an
sh
ch
ha
m
PD
th

M

on
R
ex
eo
m
w
v2
C
ex
(T

op
H
su
w
A
us
or
sa
us
an
sa
D
(T
co

In

ob
SC
in
fla
T
pa

fla
un
w
w
m
m

by
m
di
vo
pr
E
M
re
an
(F

St

t-
D

R

E
V
N

fr
B
to
ly
sp
da
ch
re
as
m
12
re
th
ex
in
N
w
M
w

w
of
C
(1
bo
th
C
M
(M
B

C
T

re
ai
an

Translational Oncology Vol. 12, No. 7, 2019 3D Ex Vivo Assay in Melanoma Therapy Prediction Flørenes et al. 953
ttom low adhesion plates, allowing spheroids to form (Nunc A/S,
oskilde, Denmark). Drugs were added immediately after seeding.
fter 5 days of treatment with Vemurafenib (Selleck Chemicals,
ouston, TX, USA) and/or Cobimetinib (Selleck Chemicals), effect
viability was assessed using the CellTiter-Glo® Luminescent Cell

iability Assay (Promega, Madison, WI, USA) and reported as
rcentage viable cells in treated as compared to untreated control
mples. For each patient sample, three technical replicates were
alyzed. Several drug concentrations were initially applied, (data not
own), and 2 μM Vemurafenib and 50 nM Cobimetinib, were
osen as standard. Of the obtained tumor tissue, approximately 30%
d to be discarded due to lack of viable cells in the biopsy, little
aterial or lack of viability in control cells after analyses. However,
X models could still be made from some of the latter and used in
e ex vivo drug efficacy assay.

olecular Analyses
DNAwas extracted from 21 melanoma lymph node metastases and
e PDX by the AllPrep DNA/RNA Mini Kit and AllPrep DNA/
NA/miRNA Universal kit (Qiagen, Hilden, Germany). Prior to
traction, cryo-sections were made and stained with hematoxylin/
sin. Only samples with N10% tumor cells were subjected to
olecular analysis. The Ion Torrent PGM™ was used for sequencing
ith two different panels: the Ion AmpliSeq™ Cancer Hotspot Panel
covering ~2800 hotspot mutations in 50 genes, and the Oncomine
omprehensive Panel covering hotspot mutations in 73 genes, full
on coverage of 26 genes and copy number aberrations in 49 genes
hermo Fisher Scientific, Inc., San Francisco, CA, USA).
The Torrent Suite Variant Caller version 5.0 was run using panel-
timized parameters from AmpliSeq.com for Ion AmpliSeq Cancer
otspot Panel v2. Using hg19 as reference, single nucleotide
bstitutions that exceeded a 5% variant allele frequency threshold
ere identified. The variants were functionally annotated with
NNOVAR, using RefSeq as the underlying gene model [28] and
ing information from the 1000 Genomes Project [1000genomes.
g] and the Catalogue of Somatic Mutations in Cancer [cancer.
nger.ac.uk/cosmic]. Detected mutations were in addition checked
ing the Integrative Genomics Viewer (IGV) [29]. BRAFV600E/K

d NRAS mutation status were additionally established for all
mples by an in-house PCR based assay used in routine diagnostics.
ata supporting the findings are stored at Services for sensitive data
SD) – University of Oslo. Access can be arranged by contacting the
rresponding author (VAF) upon request.

vivo Studies
To establish PDX models, melanoma lymph node metastases
tained from surgery were implanted subcutaneously into NOD
ID gamma mice (success rate 77%). Briefly, tumor tissue was cut
to pieces of about 2 mm3 and implanted subcutaneously in the
nks of N6 months old female mice. The first passage was named P0.
otally 21 PDX models have been established, of which 16 were from
tient tumors analyzed for drug effects ex vivo.
Prior to in vivo treatment, the PDXs were re-implanted in the
nks of 6–8-week-old female atymic nude foxn1nu mice and
derwent two additional passages before treatment was initiated
ith bilateral implantation into new mice. After four weeks, the mice
ere randomized into a control (6 mice) and a treatment group (8
ice) each having an average tumor –volume distribution of 135
m3. The latter group was given 50 mg/kg Vemurafenib twice daily
oral gavage for 14 days. Controls were given 10% DMSO in 0,5%
ethylcellulose orally for the duration of the treatment. Tumor
ameters were measured twice a week by digital calipers and tumor
lume calculated by the formula 0.5 x length x width2. Data is
esented as average tumor volume ± standard error of the mean (S.
.M.). All mice were bred at the Department of Comparative
edicine, The Norwegian Radium Hospital and kept according to
gulations of the Norwegian Welfare Act. Experiments involving
imals were approved by the Norwegian Animal Research Authority
OTS application number 8554).

atistical Analysis
Statistical significance was determined by the Student's two-tailed
test using GraphPad Prism version 7.0 (GraphPad Software, San
iego, CA, USA).

esults

x Vivo Assessment of Patients Own Tumor for Response to
emurafenib Reveals A Close Correlation to Known BRAF/
RAS Mutation Status in Metastatic Melanoma
Here we aimed to establish a 3D ex vivo drug efficacy assay using
eshly harvested melanoma tissue samples. As a proof of concept, the
RAFi Vemurafenib was chosen as test drug and the results correlated
BRAF mutation status. Tissue from 38 treatment naïve melanoma
mph node metastases were disaggregated and cells plated as
heroids in the presence or without 2 μM Vemurafenib for five
ys before viability was assessed. 50% reduction in viability was
osen as a stringent cutoff to discriminate between responders/non-
sponders. As shown in Figure 1, the assay verified a strong
sociation between response and diagnostically detected BRAF
utation status (P b .0001). Of the 21 BRAFV600E mutated tumors,
(57%) were clearly responsive, whereas three were borderline

sponsive (Melmets-326, −376, −363), and six did not respond to
e treatment. These numbers are in agreement with clinical
periences demonstrating an objective response to BRAF inhibition
approximately 50% of patients with metastatic melanoma [30].
one of the BRAF wild-type tumors responded to Vemurafenib
hile several of the BRAFwt/NRASmut tumors (in particular
elmets-328, −349, −365,), showed a marked increase in viability
hen tested in the ex vivo assay (Figure 1).
It is not expected that BRAF wild-type and NRAS mutated tumors
ill benefit from BRAFi treatment. Therefore we also tested the effect
the MEKi Cobimetinib. The effect of Vemurafenib and

obimetinib was overall comparable in the BRAF mutated tumors
0 cases), but two tumors (Melmet-363, Melmet-376) that were
rderline responsive to Vemurafenib, responded to Cobimetinib. Of
e NRAS mutated tumors, four of seven clearly responded to
obimetinib. Surprisingly, in two NRAS mutated (Melmel-388,
elmet-432), and to a minor extent in one BRAF mutated tumor
elmet-397), the effect of MEKi was reversed when combined with

RAFi (Table 1).

omparable Ex Vivo Treatment Responses in Patient Derived
umor Cells And Corresponding PDXs
It has been previously documented that melanoma PDXs reliably
flect treatment responses seen in patients [14,31]. We therefore
med to examine whether therapy effects using patient tumor cells
d cells derived from the corresponding PDXs (n = 16) were

http://AmpliSeq.com
http://1000genomes.org
http://1000genomes.org
http://cancer.sanger.ac.uk
http://cancer.sanger.ac.uk
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Figure 1. Viability of patient derived melanoma samples analyzed ex vivo for response to Vemurafenib. Lymph node metastases from 38
patients were disaggregated and cells plated and exposed to 2 μM Vemurafenib for 5 days as described in “Materials and Methods”.
Viability was assessed using CellTiter-Glo® Luminescent Cell viability assay and results presented as percentage viable cells compared to
untreated controls and correlated to BRAFmutation status (P b 0.0001, Student’s two-tailed t-test). 50% reduction in viability was chosen
as cutoff for response/non-response. Gray bars; BRAF mutated, black bars; NRAS mutated, white bars; Double wild-type.
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Table 2. Viability of melanoma lymph node metastases and PDXs analyzed ex vivo after treatment
with Vemurafenib (2 μM)

Patient No. Mutation Relative viability (% of control)1

954 3D Ex Vivo Assay in Melanoma Therapy Prediction Flørenes et al. Translational Oncology Vol. 12, No. 7, 2019
mparable in the ex vivo assay. In addition, five PDXs where patient
mors had not been analyzed were included. The PDX tumors were
ndled and exposed to treatment ex vivo as the patient samples.
espite minor variations, a good concordance was maintained
roughout PDX-passages (Table 2 and data not shown). For some
DXs, however, later passages seemed to respond more similar to cells
rived directly from the patient's tumor (Melmet-347, Melmet-
ble 1. Relative viability of melanoma lymph node metastases analyzed ex vivo after treatment
th Vemurafenib and/or Cobimetinib

tient No. Mutation Relative viability (% of control) 1

Vemurafenib Cobimetinib Vemurafenib/Cobimetinib

(2 μM) (50 nM) (2 μM + 50 nM)

elmet-339 BRAF 34 38 n.a.*
elmet-347 BRAF 31 29 n.a.
elmet-363 BRAF 52 39 n.a.
elmet-368 BRAF 64 52 n.a.
elmet-376 BRAF 52 40 n.a.
elmet-380 BRAF 16 16 14
elmet-381 BRAF 26 10 16
elmet-382 BRAF 30 35 29
elmet-396 BRAF 24 17 20
elmet-397 BRAF 36 32 48
elmet-352 NRAS 81 78 n.a.
elmet-360 NRAS 127 55 n.a.
elmet-367 NRAS 91 117 n.a.
elmet-369 NRAS 74 40 n.a.
elmet-388 NRAS 89 48 83
elmet-399 NRAS 86 49 55
elmet-432 NRAS 108 42 73
elmet-370 Wt/Wt 70 92 n.a.

ercentage survival.
.a. = Not analyzed.
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1). Furthermore, in two cases (Melmets-350 and -356) several
DX passages showed no sign of viability in the controls when
ltivated ex vivo.
Lymph
node

PDX passage2,3

Lowest Highest

elmet-334 BRAF n.a.* 52 (4) - (n.a.)**
elmet-347 BRAF 31 64 (1) 13 (3)
elmet-350 BRAF 59 - (0) - (1)
elmet-351 BRAF n.a. 57 (2) 56 (6)
elmet-356 BRAF 102 - (0) - (4)
elmet-363 BRAF 52 43 (7) 28 (8)
elmet-376 BRAF 52 33 (2) 43 (6)
elmet-380 BRAF 16 26 (0) 42 (3)
elmet-381 BRAF 30 87 (4) 11 (7)
elmet-382 BRAF 35 17 (2) 18 (5)
elmet-389 BRAF n.a. 61 (0) 12 (6)
elmet-393 BRAF n.a. 30 (3) 20 (6)
elmet-358 NRAS 132 86 (0) 107 (5)
elmet-365 NRAS 201 122 (1) 116 (5)
elmet-367 NRAS 91 118 (7) n.a. (n.a.)
elmet-369 NRAS 74 169 (0) 271 (3)
elmet-388 NRAS 89 67 (0) 125 (7)
elmet-256 Wt/Wt 83 86 (0) 80 (7)
elmet-370 Wt/Wt 70 98 (1) 103 (10)
elmet-374 Wt/Wt n.a. 79 (3) 103 (5)
elmet-404 Wt/Wt 116 77 (0) 103 (1)

ercentage survival.
umber of passages in parentheses.
DX for Melmet-350, -356 not analyzed due to control sample not growing.
.a. = Not analyzed due to limited tumor material available.
Only one PDX passage analyzed.
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Figure 2. Antitumor efficacy of Vemurafenib in vivo. Melmet-382
PDX was treated with Vemurafenib (50 mg/kg) given twice daily by
oral gavage for 14 days. Control mice were given 10% DMSO in
0,5% methylcellulose orally. Tumor volume was measured twice a
week and results presented as relative volume related to tumor
volume at initiation of the treatment. Error bars represent ±S.E.M.
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As a final confirmation step, PDX of Melmet-382 (passage 4) was
amined in vivo for response to Vemurafenib. As was observed in the
vivo assay performed on patient- and PDX-derived material, a

rong significant response was achieved (Figure 2).
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argeted Sequencing of Patient Tumor Samples Combined
ith Ex Vivo Drug Sensitivity Assessment Provide Precise
iagnostic Information
In attempt to reveal molecular mechanisms of treatment response,
rgeted sequencing (IonTorrent™Oncomine and/or Cancer Hotspot
nel) was performed on 21 of the patient samples and one PDX. The
quence data were filtered against databases for common mutations
000 Genomes) and known cancer mutations (COSMIC).
llowing variant calling, non-synonymous mutations were reported
igure 3 and Table S1 for complete list of mutations). As expected,
RAFV600E (62%) was the most common mutation followed by
DKN2A (33%) and NRAS (29%). It appeared that the mutation
ad was higher in NRAS compared to BRAF mutated tumors. The
elmet-323 tumor, found highly responsive to BRAFi (viability,
% of control) was shown to have a rare dinucleotide BRAF
utation yielding a complex V600E variant (c.1799_1800TG N
A). This tumor had previously been diagnosed as BRAF/NRAS
Sample n=22
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gure 3. Distribution of mutations in 21 melanoma lymph node meta
ing IonTorrent Oncomine (blue and cancer Hotspot (gray) panels. M
aller version 5.9 and annotated using ANNOVAR as described in Mate
r; sensitive (green), resistant (red).
ild-type by a PCR based assay routinely used for diagnostic evaluation.
kewise, the PDX from Melmet-389 (patient tissue not analyzed)
agnosed as BRAF wild-type showed remarkable response to Vemur-
enib when analyzed ex vivo. In this case, targeted sequencing revealed a
uble BRAF mutation (V600E and K601 N). Two other tumors
rrying double BRAF mutations, BRAFV600E/K601E (Melmet-363) and
RAFV600E/S605R (Melmet-273), were found borderline sensitive and
sistant, respectively.
Interestingly, despite that aberrations in the PI3K/Akt pathway and
F1 mutations have been associated with BRAFi resistance, two highly
sponsive BRAFV600E mutated tumors (Melmet-380, Melmet-381)
ere shown to have a PIK3CA (p.H1047R) or NF1 mutation (Melmet-
0). Other candidate genes with suggested impact on treatment
sponse [32,33] and found affected included three TP53, two IDH1 and
e EZH2 mutations (Figure 3 and Table S1).
iscussion
espite promising molecular anti-cancer targets, lack of model
stems and/or biomarkers identifying responders have clearly limited
e success of targeted therapy. Melanoma is one of the most
terogeneous cancer forms and differences in BRAF mutation status
ve been observed between primary tumors and corresponding
etastases, between different metastases as well as intra-tumorally
4,35]. This makes it difficult to identify patients likely to benefit
om targeting therapy based solely on molecular screening of a single
opsy. During the last decades, various 3D-culture systems [36,37]
d organoid models, the latter in particular from epithelial derived
ncers [23], have been developed to assess response to anti-cancer
eatment. However, no ex vivo assay based on the patient's own
mor cells has, to the best of our knowledge, so far been established
routine diagnostics [23,38]. In the current study, we applied a
odified version of the ATP-based tumor sensitivity- [39] and
treme drug resistance assays [40] that we previously successfully
ve used to predict primary platinum resistance in ovarian cancer
tients [41]. Here, when melanoma lymph node metastases were
alyzed for response to Vemurafenib ex vivo, two important
servations were made. First, a strong correlation between response
d verified BRAF status were achieved in the sense that all patients
at responded to the treatment harbored a BRAF mutation, whereas
is was not the case for any of the NRAS or BRAF wild-type tumors.
cond, and in agreement with intrinsic resistance seen in the clinic,
t all BRAF mutated tumors responded to the treatment.
rthermore, ex vivo analysis of tumor material harvested from
rious passages of corresponding PDXs retained the response profile
Panels and Sensitivity
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stases and one PDX (melmet 389). Sequencing was performed
utation analysis was performed using the Torrent Suite Variant
rials and Methods. Response to Vemurafenib is shown in bottom
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en in the matching patient tumor samples, as was also seen when
eating the PDX in vivo.
Numerous studies have concluded that permanent cancer cell lines
own as adherent 2D-cultures poorly reflect the complexity of a solid
mor [12]. Furthermore, most melanoma cell lines have been
rived from highly proliferative tumors [42], exposed to high
lection pressure due to BRAF or NRAS mutations and loss of
DKN2A [43],. This may partly explain the high failure rate of novel
rgeted therapy since the test system usually has been based on the
e of such cell lines. During the course of this study, we aimed to
tablish adherent in vitro cell lines from some of the tumors and
DXs. In cases where we successfully were able to establish
rmanent cell lines, they all seemed to be highly proliferative
ersonal observation) and to harbor BRAF or NRAS mutations. In
dition, we experienced, as also has been reported by others [42],
at the primary cultures were easily over-grown by fibroblasts. In
ntract, stromal cells will not grow anchorage-independently making
e 3D assay superior to the more time consuming establishment of
ably growing cell cultures in 2D.
Studies have suggested that assay-guided therapy more accurately
entifies ineffective than effective drugs [44,45]. Using the stringent
% reduction in viability as cutoff to discriminate between
sponders and non-responders [46], all NRAS mutated or wild-
pe tumors were resistant to Vemurafenib, and some showed
creased viability as compared to controls. The latter is in accordance
ith studies showing paradoxical reactivation of MAPK signaling and
creased proliferation when wild-type or NRAS mutated tumors are
eated with BRAFi [47].
In accordance with clinical observations [48], approximately 60%
the BRAF mutated tumors responded in the 3D assay. In

reement with a recent study, in which melanoma tissue was
ltured as micro tumor fragments [49], complete loss of viability
llowing BRAF or MEK inhibition was, however, not achieved, a
nding that may be explained by intra-tumor heterogeneity and/or
e presence of normal cell infiltration.
Both pre-clinical and clinical studies have demonstrated that
mbined BRAF and MEK inhibition may be beneficial for patients
ith BRAF mutated tumors. Moreover, selective MEK inhibition has
own efficacy in NRAS mutated melanoma (reviewed in [49]). In
e current study, response of BRAF mutated tumors to Vemurafenib
d/or Cobimetinib was in most cases comparable, and in accordance
ith previous studies [50], half of the NRAS mutated tumors
sponded to MEK inhibition. Response to MEK inhibition was,
wever, less pronounced in NRAS mutated tumors than response to
RAF inhibition in BRAF mutated tumors. Of particular note, in a
cent study [51], BRAFi were shown to amplify the effect of MEKi
NRAS mutated melanomas whereas in another study [49], an
tagonistic effect of combining MEK and mutated BRAF inhibition
as observed. In support of the latter, in three cases (two NRAS and
e BRAF mutated) the combined treatment was less efficient than
e mono-treatments. Taken together this clearly demonstrates that
ere is a need to extend the current molecular examinations with
nctional tests reporting on drug sensitivity to provide precise
agnostics for guidance of clinical treatment decisions.
Two tumors, originally diagnosed as BRAF wild-type by PCR-
sed in-house routine pathology examination, showed excellent
sponse to Vemurafenib in the ex vivo assay. Based on this, targeted
quencing was performed and both were found to be BRAF
utated. Several reasons may explain the discrepancy such as the
nsitivity of the molecular analyses or intra-tumoral heterogeneity. In
pport of the former, one tumor was found to harbor a complex
RAF mutation that was not analyzed for in the diagnostic assay.
rthermore, in support of heterogeneity, a study by Saint-Jean et al.
2] demonstrated that seven percent of melanomas diagnosed as
RAF wild-type by the first biopsy examination, revealed BRAF
utations following analysis of repeated biopsies. Likewise, a recent
eta-analysis revealed intra-tumoral discrepancy in BRAF status
ong patients with metastatic melanoma [53]. The current cohort
samples consisted exclusively of stage III lymph node metastases
at were not offered treatment besides removal of the malignant
sion. Some, however, developed distant metastases (stage IV) and
e of these (two sensitive and three resistant from the ex vivo assay)
ceived BRAFi treatment. In contrast to responses observed in the ex
vo assay the general clinical response was in all cases poor. For three
tients a mixed response was observed; some metastases declined
hereas some grew progressively, a finding strongly supporting
elanoma heterogeneity. Together, these results strongly suggest
ore thorough molecular analysis of cases where discrepancy between
vivo viability results and clinical diagnosis is observed and
derscores the necessity, in a diagnostic setting, to examine multiple
opsies from each tumor [34]. The ex vivo assay will, however, to some
tent account for intra-tumor heterogeneity as a larger fraction of the
sion is disaggregated and examined for drug sensitivity. It should be
entioned also that ameta-analysis comprisingmore than 15,000 tumors
monstrated that drug resistance could be foreseeable with high accuracy
ing various assays, whereas sensitivity, on the other hand, was less
edictable [38], as also supported by our findings.
Except for mutated NRAS being strongly associated with BRAFi
sistance, no other mechanisms of resistance were revealed.
berrations in the PI3K/Akt pathway as well as NF1 mutations
ve been associated with BRAFi resistance [4]. This is in contrast to
r findings demonstrating co-existence of PIK3CA mutations and
e NF1 mutation in two of the most BRAFi responsive tumors. In
reement with our findings, however, it has been claimed that
cogenic PIK3CA mutation does not play a major role in
emurafenib resistance [54], and a study by Krauthammer et al.
ggested that loss of NF1 not necessarily is associated with BRAFi
sistance [55].
The high success rate of establishing melanoma PDX models, and
eir ability to reliably recapitulate patient tumor architecture,
notype and response to treatment, have made them powerful tools
develop new and improved therapeutic strategies [14,56,57]. In a
udy by Einarsdottir et al. [58], PDX models in passage three were
aimed to develop fast enough to guide treatment decisions.
lthough the use of PDXs in routine diagnostic may not be a
alistic goal due to variability in engraftment, latency period, number
animals required and costs [14], they may provide an unlimited
source of tumor cells for both small-scale as well as large-scale ex
vo drug screening. Here we demonstrated that PDXs assessed for
eatment responses using the ex vivo assay show a high degree of
ncordance with results observed when analyzing the corresponding
tient tumors directly, or when treating PDXs in vivo, supporting
evious observations that early PDX passages resemble the original
mor [59]. In agreement with our findings, short-time ex vivo
ltures of breast cancer PDXs were recently found to predict in vivo
ug responses [60]. When analyzing several PDX passages for
eatment response ex vivo, concordance was in most cases achieved,
dicating PDX stability [61]. Notably, although cells from the
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rental tumors in general were easy to cultivate ex vivo, serial PDX-
ssages from two of the tumors showed no sign of viability,
ggesting dependence of factors provided by the host or tumor
romal cells. However, in general, in cases where the amount of
mor material is scarce, PDX models may be established and used as
indefinite source of tumor material for ex vivo drug testing.
In conclusion, the presented data strongly support the potential of
e ex vivo assay to provide valuable functional information in the
tient tumor. The fast and reliable analyses, combined with the low
st, make the assay attractive to supplement molecular data in
inical decisions. Furthermore, the findings underscore the impor-
nce of considering intra-tumor heterogeneity as well as heteroge-
ity between various metastases in the individual patients when
alyzing drug effects ex vivo. Finally, we hypothesize that analyzing
ug effects ex vivo will be of particular importance in pinpointing
tients that are not likely to respond to targeted therapy.
Supplementary data to this article can be found online at https://
i.org/10.1016/j.tranon.2019.04.001.
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