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Abstract 
Peatlands constitute the largest natural reservoir of carbon on the planet making them key 
components in the global carbon balance. Peatlands are mostly found in the northern 
hemisphere under cold conditions. As the world is warming and arctic peatlands are becoming 
heavily influenced by increasing temperatures, an increased interest in the peat soil microbial 
systems have arisen. Methane, a potent climate gas, is produced in the anaerobic environment 
of peatlands by methanogenic archaea which are supplied with carbon, energy and nutrients 
through a complex network of microbes. How these communities are influenced by changes in 
temperature is crucial for our understanding on the effects of climate change. In this master 
thesis the effect of gradually increasing temperatures  on CH4 producing microorganisms in 
Arctic peat was studied within a seasonal timescale. The major aim was to provide a better 
understanding of how CH4  producing microorganisms in peat react to temperature changes 
over time. Multiple incubations were set up and gradually moved from 2°C to 9°C, through 3, 
5 and 7.5°C. Throughout the incubations gas measurements and samples for chemical analysis 
were collected. Analysis of growth and enzyme activity was performed at the end of the 
experiment. Analyses of 16S rRNA genes were performed for samples at the start and end of 
incubation. Only small changes in the community composition were observed and no 
differences in the biomass between the start and end, or between temperature treatments. There 
was also no difference in the extracellular enzyme activity for the different temperature 
treatments. The CO2 production showed the same trend for all treatments throughout the 
experiment, while the CH4 production demonstrated a clear temperature dependence. 
Furthermore, using the Arrhenius equation it was shown that the temperature dependence of 
CH4 production rates as well as the growth rates for the whole community were comparable to 
that of pure culture of methanogens, but that the rates right after temperature change were not 
in accordance with the Arrhenius equation. This demonstrates that biological adaptations occur 
directly after temperature change. We suggest that this biological acclimatization is in part a 
result of initial biomass buildup after temperature change that is subsequently balanced by cell 
death and necromass degradation feeding into CH4 production. Alterations in the microbial loop 
in the short-term might help to explain the microbial community changes observed and why the 
temperature effects on CH4 production in these Arctic peat soils are time-dependent. 
 

 
Keywords: 
Temperature effects, methanogens, peatland, CH4 production, temperature dependence, 
necromass, biomass, adaptation over time, Arrhenius.   
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1 Introduction 

1.1 Arctic peatlands 

Peatlands cover about 3% of Earth’s land surface area and exists at all latitudes but are mostly 

found in the northern hemisphere (figure 1) (Xu, et al., 2018). Peatlands are estimated to contain 

400 – 600 gigatonnes (Gt) of carbon (Tarnocai, et al., 2009; Yu, et al., 2010; Page, et al., 2011; 

Yu, 2012), amounting to about one third of the global soil organic carbon (SOC) (Joosten & 

Couwenberg, 2008; Strack, et al., 2008). This makes peatlands the largest natural reservoirs of 

carbon on the planet. Peatlands are important carbon dioxide (CO2) sinks and sources of 

methane (CH4) emissions to the atmosphere (Strack, et al., 2008) and thus important for the 

global carbon balance.   

 

Figure 1 Global peatland distribution estimates of PEATMAP © (Xu, et al., 2018).  

In the polar and circumpolar regions of the northern hemisphere much of the carbon is sealed 

in permafrost (Tarnocai, et al., 2009). Permafrost soils are defined as soils that have remained 

below 0°C for at least two consecutive years (Permafrost Subcommittee, 1988). The layer above 

the permafrost, which is termed the active layer, thaw during spring and re-freeze during 

autumn. The active layer has a higher microbial activity and biomass compared to the 

permafrost layer below (Hultman, et al., 2015). Many Arctic peatlands form when the 

underlying permafrost hinders water drainage, causing the subsurface active layer to become 
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waterlogged. This water saturation, along with a high content of intact and partially degraded 

organic material, are the main characteristics of peatlands (Xu, et al., 2018; Strack, et al., 2008). 

Due to the high water content, a combination of solubility limitations, mass transfer limitations 

and microbial respiration reduces oxygen (O2) concentrations with depth, resulting in most of 

the soil column being anaerobic.  

Dead organic plant material accumulates in peat soils because of an imbalance between the 

production of new organic material and decomposition of dead matter (Frolking, et al., 2011). 

The rate of this accumulation is dependent on the speed of plant growth relative to the microbial 

decomposition rate. The degradation processes are limited by the lack of oxygen as an electron 

acceptor, low temperature, low pH and limited nutrient availability (McLatchey & Reddy, 

1998). It has been suggested that microbial decomposition activities are constrained primarily 

due to high concentrations of phenolic compounds which inhibits microbial enzymes (Freeman, 

et al., 2001; Fenner & Freeman, 2011). Phenolic compounds can be degraded by phenol 

oxidases, but these enzymes require O2 and are therefore not functional under anaerobic 

conditions, (McLatchey & Reddy, 1998) causing the accumulation of phenolics in the water-

logged peatlands.   

Arctic peatlands are exposed to long winters at sub-zero temperatures, and short and cold 

summers. However, in the era of man-made global warming, the Arctic is warming faster than 

other regions of the world (Anisimov, 2007), a phenomenon called polar amplification 

(Bekryaev, et al., 2010; Holland & Bitz, 2003). There is growing concern that the efflux of 

greenhouse gases (GHG) from peatlands will increase as a result of increased temperatures that 

lead to thawing of permafrost, drought and peat fires (Strack, et al., 2008). Elevated emissions 

of Arctic peat carbon in the form of microbially produced CH4 and CO2 could have a 

considerable impact on the greenhouse gas content in the atmosphere. It is therefore imperative 

that we understand how microbial ecosystems in Arctic peatlands react to climate change.  

1.2 Carbon cycling in Arctic peatlands 

Methane is considered to be the one of the most important GHG after CO2 in global warming 

(Myhre, et al., 2013). Methane has a lifetime in the atmosphere of about 10-12 years (Myhre, 

et al., 2013), and hence a shorter life-time compared to CO2, which stays in the atmosphere for 

about 100 years (Solomon, et al., 2007). However, CH4 is a more potent climate gas and has 28 
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times the global warming potential of CO2 over a time frame of 100 years on a weight to weight 

basis, which takes into account both the ability of the gases to absorb and emit infrared radiation 

and its lifetime in the atmosphere (Myhre, et al., 2013). 

CH4 is produced geologically either by the breakdown of organic matter at elevated 

temperatures and pressure, called thermogenic CH4 formation (Schoell, 1988), or abiotically 

involving inorganic compounds in magmatic processes or via gas-water-rock reactions (Etiope 

& Lollar, 2013). Biogenic sources for CH4 include both natural and anthropogenic systems. 

Major anthropogenic sources are livestock farming (Thornton, 2010), rice paddies, coal mining, 

landfills, wastewaters and fossil fuel production (Blaha, et al., 1999; Bousquet, et al., 2006). 

The largest natural source of CH4 is biogenic production by methanogenic archaea 

(methanogens) in anoxic environments such as wetlands and marshes (Bousquet, et al., 2006). 

 

Figure 2 Overview of degradation processes in peat. Each yellow box corresponds to metabolic processes, dark 
brown circle corresponds to the product of the metabolic processes and the white circles are the main monomers 
produced by the upstream decomposition. Modified from figure 4 of (Tveit, et al., 2013). 
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Methanogens can use certain substrates as carbon and energy sources: acetate, CO2 and H2, and 

C1 compounds including methanol and mono-, di- and tri-methylamines (Whitman, et al., 

2006). These substrates are supplied to the methanogens through a network of microbial 

decomposition where complex organic matter including polysaccharides, proteins and lignin is 

degraded into smaller molecules by a broad range of Bacteria with different metabolisms (figure 

2). 

1.2.1 Polymer degradation 

In arctic peatlands grasses and mosses make up the majority of the plant cover (Noble, et al., 

2019; Breeuwer, et al., 2009). Plants use solar energy to yield high-energy chemical compounds 

such as adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate 

(NADPH) which are used in the Calvin cycle to fix CO2 to synthesize sugars that are assimilated 

into complex polymers essential for the growth and maintenance of the plant (Freeman & 

Macmillan, 2013). Plant cells are composed of a cell wall, a large component of the plan cell, 

that surrounds membrane polymers and other cell constituents made up of carbohydrates, 

proteins and lipids. The cell wall consists of the polymer cellulose, along with pectin, 

hemicellulose, lignin as well as several proteins which all cross-link into a complex three-

dimensional matrix (Keegstra, 2010). These polymers are unavailable for any bacterial 

decomposers as long as the plant is still alive, but as the plant dies, these compounds become 

available for microbial decomposition. The polymer degradation process is initiated by 

microorganisms that excrete polymer degrading enzymes (figure 2). 

The major polymer cellulose is a polysaccharide that is hydrolysed into oligo- and 

monosaccharides (figure 2) by a type of enzymes called cellulases. There are several types of 

cellulases, e.g. Endocellulases that catalyse the hydrolysis of the β-(1→4) glycosidic bonds of 

cellulose, exocellulases which cleaves at the ends of the exposed cellulose chain to create tetra- 

or disaccharides (Lynd, et al., 2002), and β-glucosidases which hydrolyse the exocellulase 

products further into singular monosaccharides (Lynd, et al., 2002). Pectins and hemicelluloses 

are also polysaccharides, but are structurally heterogenous, composed of multiple different 

monosaccharides in addition to glucose (Sarkar, et al., 2009). Cleavage of the bonds in these 

compounds require several different enzymes  (Sun, et al., 2012). There are many fungi and 
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Bacteria, and even some Archaea that express cellulases and utilize cellulose as a carbon and 

energy source (Lynd, et al., 2002). Tveit et al. (2015) reported a low abundance of fungi in 

anoxic peat from Svalbard compared to that observed in the upper oxic layers  (Tveit, et al., 

2013), which indicates a higher importance of bacterial groups in this process in the deeper 

layers of Arctic peat. The same report indicated members of the phyla Actinobacteria, 

Verrucomicrobia and Bacteroidetes as the main polymer degraders in the peat soil of Svalbard. 

When later considering only the anoxic peat soil, this was modified to Actinobacteria, 

Firmicutes and Bacteroidetes (Tveit et al. 2015). 

Degradation of proteins (figure 2) occurs by hydrolysis of the peptide bonds between amino 

acids in peptide chains (Petsko & Ringe, 2009). A wide array of enzymes are responsible for 

proteolysis, e.g. aminopeptidases which cleaves off amino acids at the N-terminus of the protein 

(Gonzales & Robert-Baudouy, 1996; Taylor, 1993). Many proteases are ubiquitous and not 

very specific, but can have a higher affinity for some residues, for instance the leucine 

aminopeptidase which reacts fastest when cleaving off leucine residues (Gonzales & Robert-

Baudouy, 1996). Soil Bacteria and fungi excrete proteases into the environment to decompose 

available proteins. The resulting amino acids can then be attained by the microorganisms and 

used as a carbon, nitrogen and energy source for growth or maintenance inside the cell.   

Lignin is a polymer consisting of multiple units of phenolic compounds and is most abundantly 

distributed in secondary cell wall structures (Van Acker, et al., 2013) of for instance grasses. 

Mosses do not contain lignin (Sarkar, et al., 2009). Both fungi and Bacteria are known to break 

down lignin, but the process has been more deeply studied in fungi (Janusz, et al., 2017). 

Lignin-degrading Bacteria has been mainly found in the phylum Actinobacteria, and the α- and 

γ-Proteobacteria (Bugg, et al., 2011). Peroxidases and phenol oxidases (also called laccases) 

are two enzymes that are involved in lignin degradation (Bugg, et al., 2011), the latter of which 

requires O2.  

1.2.2 Fermentation 

Fermentation is a form of energy metabolism without the use of an electron transport chain, as 

opposed to aerobic and anaerobic respiration. This type of metabolism is more common in 

environments where electron acceptors are depleted (Madigan, et al., 2015). Following polymer 

degradation, monosaccharides, amino acids and phenolics are acted upon by primary fermenters 
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to produce fatty acids such as acetate, propionate and butyrate, alcohols and hydrogen (H2) - 

and CO2 gas (Tveit, et al., 2015). Acetate and the gasses H2 and CO2 can be used directly by 

acetotrophic methanogens and hydrogenotrophic methanogens, respectively, to produce CH4 

and CO2 (Tveit, et al., 2015).  

Through sugar fermentation ATP is generated solely by the glycolysis pathway which converts 

glucose to pyruvate (Madigan, et al., 2015). Importantly, for the glycolysis to be maintained 

the oxidized version of the electron carrier NADH (NAD+) needs to be regenerated. To do this 

pyruvate is reduced to produce molecules such as commonly known lactic acid or ethanol, but 

also many other types of alcohols, and fatty acids such as butyrate, propionate (Madigan, et al., 

2015; Tveit, 2014) or oxidized to acetyl-CoA to from acetate (Tveit, 2014). In many of these 

types of fermentation the electrons are transferred to ferredoxin and further oxidized by 

hydrogenase to H2 (Valentine & Wolfe, 1963). 

Amino acid fermentation is not very well studied, and little is known about specific pathways 

and the functions in the environment. However, main products are generally ammonia, CO2 

and H2 and acetate (Ramsay & Pullammanappallil, 2001) . It could also lead to the production 

of methylamines which are utilized by methylotrophic methanogens (Tveit, 2014). Aromatic 

compounds can be degraded through fermentative processes but are usually not 

thermodynamically favourable unless products are being depleted from the environment by 

syntrophic partners (Tveit, 2014).  

After primary fermentation a large part of the polymeric carbon has been transformed into 

alcohols and fatty acids which cannot be used by most methanogens. These compounds are 

further metabolised by secondary fermenters to acetate or H2 and CO2, which are substrates for 

the majority of methanogens. Most secondary fermenters depend on syntrophic partners such 

as methanogens for removal of hydrogen, formate and acetate produced during breakdown of 

the short chain fatty acids and alcohols (Conrad, 1999). The reason for this is that by lowering 

the product concentration, highly unfavourable reactions such as the conversion of propionate 

to acetate (eq.1) become thermodynamically favourable, e.g. in the syntrophic oxidation of 

propionate by a bacterium in syntrophy with a H2 utilizing methanogen (Mucha, et al., 1988).  

𝐶𝐶𝐶𝐶3𝐶𝐶𝐶𝐶2𝐶𝐶𝐶𝐶𝑂𝑂− + 3𝐻𝐻2𝑂𝑂 ↔  𝐶𝐶𝐶𝐶3𝐶𝐶𝐶𝐶𝑂𝑂− + 𝐻𝐻𝐻𝐻𝐻𝐻3− + 𝐻𝐻+ + 3𝐻𝐻2         ∆𝐺𝐺°` =  +76.1 𝑘𝑘𝑘𝑘   (𝑒𝑒𝑒𝑒. 1)  
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1.2.3 Methanogenesis 

To date, seven orders of methanogenic Archaea are known, where five of them are only known 

to contain hydrogenotrophic methanogens (Methanopyrales, Methanococcales, 

Methanobacteriales, Methanomicrobiales and Methanocellales). Members of the order 

Methanomasiliiicoccales constitute, as far as we know, only obligate methylotrophic 

methanogens, while the Methanosarcinales is the most diverse group with members that 

perform both hydrogenotrophic, acetotrophic and methylotrophic methanogenesis (Buan, 

2018).  

All known methanogens are obligate anaerobes and produce CH4 as a waste product of their 

metabolism. They can be found in anoxic environments such as wetlands and marshes, 

sediments and the intestinal tract of ruminants (Thauer, et al., 2008). Where there are high 

concentrations of sulphate, nitrate, manganese and iron, methanogens are usually outcompeted 

by Bacteria utilizing these substances (Thauer, et al., 2008) and are therefore mostly found in 

reduced environments. In Arctic peat from Svalbard the Methanosarcinales, 

Methanobacteriales and Methanomicrobiales are the most dominant orders of methanogens 

(Tveit, et al., 2013).  

Hydrogenotrophic methanogens utilize CO2 and most commonly H2 as an electron source for 

reduction (Enzmann, et al., 2018). Some also use formic acid and sometimes alcohols for 

energy production (Zabranska & Pokorna, 2018; Thauer, 2012; Enzmann, et al., 2018). The 

reduction of CO2 to CH4 is a cyclical process where the first step, reduction of CO2 to formyl-

methanofuran (CHO-MFR) (figure 3.1), and the last step, reduction of Coenzyme B–Coenzyme 

M–heterodisulfide (CoM-S-S-CoB) to Sulfhydryl CoB (HS-CoB) and Sulfhydryl CoM (HS-

CoM) (figure 3.7), is coupled.  

Acetotrophic methanogenesis uses acetate for energy production and growth and is the largest 

contributor to CH4 production in the biosphere (Ferry, 2010). The process happens through the 

transfer of a phosphate group and coenzyme A from ATP and Sulfhydryl CoA (HS-CoA) to 

acetate to produce acetyl-CoA (blue pathway, figure 3). The methyl group of acetyl-CoA is 

then transferred to tetrahydromethanopterin (H4MPT), and further converted to CH4 as in 

hydrogenotrophic methanogenesis (figure 3) (Enzmann, et al., 2018). The remaining CO of the 

acetyl is oxidized to CO2.  
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A third way of CH4 production is methylotrophic methanogenesis which utilizes C1- 

compounds that are methylated (green pathway figure 3). The methyl group of the compounds 

is transferred to Coenzyme M through a two-step methyltransferase pathway (Zydowsky, et al., 

1987). Next, the methylotrophic methanogen either reduces the methyl-CoM to CH4 (figure 

3.7) or uses parts of the reverse methanogenesis pathway to oxidize the methyl-CoM to CO2 

(Timmers, et al., 2017).   

The last step (figure 3.7) which produces CH4 from methyl-coenzyme M is common for all 

methanogens and the gene coding for the α-subunit of the methyl-coenzyme M reductase (Mcr) 

which catalyzes the reaction is therefore commonly used as a phylogenetic marker for 

methanogens. All methanogenic pathways lead to the production of both a proton (H+
) and 

sodium (Na+) ion gradient, which are used for ATP synthesis by the membrane-bound A1AO -

ATP synthase (McMillan, et al., 2011; Mayer, et al., 2015).  

 

Figure 3 Schematic overview of hydrogenotrophic (black arrows), acetotrophic (blue arrows) and methylotrophic 
(green) methanogenesis. In hydrogenotrophic methanogenesis CO2 is reduced to CH4 through a series of steps 
which require coenzymes such as MFR, H4MPT, F420, CoM and CoB (Thauer, 2012). Acetotrophic methanogenesis 
involves the conversion of acetate to Acetyl-CoA which then enters the same pathway of hydrogenotrophic 
methanogenesis as methyl-H4MPT. Methanol, methylamines and other C1-molecules of methylotrophic 
methanogenesis can either be converted to CH4 (~75%) or to CO2 (~25%) through reverse hydrogenotrophic 
methanogenesis.  
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1.2.4 Methane oxidation and release to the atmosphere 

The gases produced by methanogenesis in deeper peat or other soil layers diffuses to upper and 

more oxic layers where the CH4 is trapped and oxidized by methanotrophic Bacteria to form 

biomass and CO2 or released into the atmosphere. Most CH4 oxidizing Bacteria requires oxygen 

and is therefore found in the top oxic soil layers (Murrell, 2010). However, there is also 

evidence of anaerobic CH4 oxidation by some Archaea (Pancost, et al., 2000; Schouten, et al., 

2003; Schouten, et al., 2001) and Bacteria (Oswald, et al., 2017). A large fraction of the CH4 

produced by methanogens is oxidised by methanotrophic organisms (Reeburgh, 2007), but the 

residual CH4 and the CO2 produced is released to the atmosphere where they act as green-house 

gases.   

1.2.5 Microbial loop and Necromass degradation 

While the majority of energy and carbon transformed in anoxic peat ecosystems originates from 

the degradation of plant litter, a substantial proportion comes from microbial necromass (dead 

microbial cells). A large amount of these deaths arises from grazing and predation on the 

Bacteria and Archaea by eukaryotic, predatory protists and nematodes, as well as some 

predatory Bacteria for instance belonging to the Bacteroidetes (Lueders, et al., 2006). In 

addition, there are viruses that can infect and lyse bacterial and archaeal host organisms 

(Bratbak, et al., 1994). Death of the organisms makes the cell constituents of these dead cells 

become available for degradation by living cells, including cell wall polysaccharides, lipids, 

proteins and nucleic acids. Effectively, these molecules become integrated into the cell biomass 

or used for the production of energy which release compounds into the cycling of nutrients. 

Whether the living microbial biomass will increase will depend on the relationship between the 

rate of deaths to the rate of growth (Bradley, et al., 2018). There have been indications of 

Bacteroidetes among a limited number of phyla being responsible for mineralization of dead 

biomass in a fjord system in Svalbard (Müller, et al., 2018), and Planctomycetes responding 

with increased abundances in the presence of extracellular DNA (Morrissey, et al., 2015). 

1.3 Effect of temperature on biological systems 

Temperature is a physical measurement of hotness or coldness, and affects the phase, density 

and solubility properties of matter, the rate of chemical reactions and the amount of heat 
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radiating from or to an object. When the kinetic energy of atoms and molecules increase these 

will gain increased motion. The more motion the system has the higher the temperature of that 

system will be. This also increases the possibility of collisions between particles and the 

particles having enough energy to break their old bonds, making the rate of chemical reactions 

higher with increased temperatures.   

1.3.1 Effect of temperature on enzymes 

Like any chemical reactions, enzyme-catalyzed reaction rates increase as the temperature 

increases. If the temperature becomes too high the enzymes will denature and lose their activity. 

At temperatures below zero, enzymes might lose their activity completely if the water around 

them freezes. Typically, enzymes have a range of temperatures where they function optimally 

(Feller & Gerday, 2003). Different enzyme adaptations have made it possible for organisms to 

optimize their life to different temperatures. Examples of structural modifications that can bring 

more flexibility to an enzyme are reduction of cysteine residues that can form disulfide bridges, 

reduction in proline content and a higher amount of glycine and less hydrophobic and ionic 

interactions. As an example, a high lysine-to-arginine ratio has been seen to conformationally 

destabilize a cold adapted α-amylase (Siddiqui, et al., 2006). Generally, a reduction in residues 

that can form strong interactions with each other or the environment will have negative impact 

on the stability of an enzyme. As a consequence of higher flexibility, cold-adapted enzymes 

have efficient catalytic activity at low temperatures. For high temperatures the case is often 

opposite, where a more rigid structure will keep the enzyme from denaturing (Radestock & 

Gohlke, 2011).  

1.3.1.1 The Arrhenius equation 

The Arrhenius equation is a formula that describes the temperature dependency of a chemical 

reaction. Using the Boltzmann constant, the formula is given as: 

𝑟𝑟 = 𝐴𝐴𝑒𝑒
−𝐸𝐸𝑎𝑎
𝑘𝑘𝐵𝐵𝑇𝑇                                                                    (𝑒𝑒𝑒𝑒. 2)                                                                   

Where r is the rate of CH4 production or growth, Ea is the activation energy of the reaction ( in 

eV), kB is the Boltzmann constant (8.617×10-5 eV K-1), T is the temperature (in kelvin (K)) and 
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A is the pre exponential factor (a constant). It is also common to take the natural logarithm of 

the equation to obtain the equation in a form of a straight line: 

ln 𝑟𝑟 (𝑇𝑇) =  −𝐸𝐸𝑎𝑎
1
𝑘𝑘𝐵𝐵𝑇𝑇

+ ln𝐴𝐴                                                       (𝑒𝑒𝑒𝑒. 3) 

Where ln r is the natural logarithm of the reaction rate and ln A is the natural logarithm of the 

pre-exponential factor. For a reaction with rate that follows the Arrhenius equation a plot of ln 

r against T-1 will yield a straight line, where the activation energy of the reaction can be 

determined by the slope. The activation energy is the amount of energy required to initiate a 

certain reaction. If the activation energy changes over time, that is an indication that the rate 

limiting reaction of the system becomes a different one. When the overall effect of increased 

temperatures is increased catalytic rates, the metabolic rates of the organisms that expresses the 

enzymes are expected to increase as a result, and thus the rate of growth and formation of 

respiratory or fermentative end-products.  

Gabriel Yvon-Durocher et al. (2014), showed in their study that many ecosystems and 

methanogenic isolates respond to increase in temperature in a way that can be predicted by the 

Arrhenius equation. Other studies have shown that this is not the case. Ratkowsky et al. (1983), 

showed that growth rates of microorganisms responded to temperature increases in a way that 

deviated from the Arrhenius equation (Ratkowsky, et al., 1983). Later, Tveit et al., showed that 

the temperature response of Arctic peat methanogenic systems also deviated from that predicted 

by the Arrhenius equation (Tveit, et al., 2015). The discrepancies observed may be explained 

by the consideration of different temperature ranges. Both Tveit et al. and Ratkowsky et al. 

(1983) considered temperature ranges spanning as much as 30 °C. There were speculations by 

Tveit et al. (2015) that adjustments in the gene expression and number of predatory protists 

grazing on prokaryotes and the lack of increases in the microbial biomass with increasing 

temperature were linked to the CH4 production rate and thus its deviation from the Arrhenius 

prediction, but it was never understood how. 

The data presented by Yvon-Durocher et al., contains multiple data points that deviate from 

their prediction as commented by Hoehler and Alperin (Hoehler & Alperin, 2014). For 

example, approximately 40% of the studies considered by Yvon-Durocher had Arrhenius plot 

correlation coefficients (r2) of less than 0.5. This means that less than half of the variation in 

the data is explained by the Arrhenius equation, showing that the Arrhenius equation can predict 
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a large fraction of temperature dependencies in CH4 producing microbial ecosystems, but far 

from all. A broad temperature range can account for some of the lacking explanatory power in 

the use of the Arrhenius equation as enzymes simply fail to function appropriately when the 

temperature becomes sufficiently high or low.  

1.3.2 Effect of temperature on cells  

Microorganisms can react to changes in temperature by changing a variety of cellular structures. 

As already described, temperature has significant effects on proteins, but membranes are also 

known to be influenced by temperature. Membranes can become more rigid or fluid due to 

larger proportions of saturated or unsaturated fatty acids as a response to higher or lower 

temperatures as cells cannot grow at temperatures below or above the solidification or melting 

point of the membrane (Marr & Ingraham, 1962). It was for instance shown that the expression 

of desA in Cyanobacteria, a gene encoding a desaturase which inserts double bonds to fatty 

acids, was increased 10-folds by decreasing the temperature from 36°C to 22°C (Los, et al., 

1993).  

DNA is very resilient to increases in temperature as PCR is evidence of. However, there are 

some strategies employed by prokaryotes living at very high temperatures to protect their DNA 

such as increased levels of cytoplasmic salts, novel polyamines (Terui, et al., 2005), positive 

supercoiling of the DNA (Los, 2004) and histone-like structures that weave the DNA into tight 

structures (Grosjean & Oshima, 2007). The replicational and transcriptional apparatus is 

probably more susceptible to temperature, such as DNA and RNA polymerase.  

Ribosomes, the translational units of the cell, contain two components: the small and large 

ribosomal subunits (30S and 50S in prokaryotes, respectively) which are both composed of 

ribosomal RNA (rRNA) and multiple ribosomal proteins (Reuveni, et al., 2017). Ribosomes 

are important for the cells, and their abundance and efficiency have been seen to be closely 

associated with constraints on microbial growth (Scott, et al., 2014).The ratio of rRNA to 

protein in ribosomes can vary from between 20-70% rRNA (Reuveni, et al., 2017). It has been 

suggested that ribosome can change their composition in response to differences in 

environmental stimuli (Samir, et al., 2018) and as a mean of regulation of translation (Mauro 

& Matsuda, 2016). It has been shown that the rRNA of the thermophilic Bacillus 

stearothermophilus  contains a higher quantity of cytosine and guanine compared to the rRNA 
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of Escherichia coli (Friedman, et al., 1967) and that the genes of r-proteins of  an Antarctic 

ciliate had mutations that produced amino acids which caused increased structural flexibility 

(Pucciarelli, et al., 2005).  

1.3.3 Temperature effects on microbial communities 

Generally, there is a temperature range where each individual microorganism can sustain life. 

Different microbes will have different ranges, and generally the range narrows as one considers 

different modes of life from simply surviving, to growing, to reproducing. When the 

environment of the cells undergoes changes, there is usually a period of acclimatization where 

the organisms change physiological processes in response to the environmental change.  

Although microorganisms respond individually to temperature changes, the effects on 

communities might be more severe because of the combined response of multiple members of 

the microbial community. In pairs of competitors one side might be more tolerable to 

temperature change and therefore outcompete the other side. Changes to organisms upstream 

in a decomposition chain could potentially lead to increased or decreased production of 

substrates for downstream microorganisms. There is evidently a complex dynamic present 

between members of a microbial community, and while the major temperature effects on 

chemical processes and microbial cells are well described, the effects of temperature on 

microbial communities are inconsistent and not well understood (Radujkovic, et al., 2018). 

Several studies have shown small or no changes in microbial communities as a result of 

temperature (Radujkovic, et al., 2018). However, some studies claim to have identified 

microbial groups that consistently respond to temperature changes in soil (Oliverio, et al., 

2016). Very few studies have investigated the functional roles of microbial community 

members that respond to temperature changes. In Arctic peat soil from Svalbard it was shown 

that temperature increases led to few changes in the microbial community, but large changes in 

the transcriptional activity of the microorganisms, especially predatory protists and the 

syntrophic fermenters and methanogens at the end of the decomposition chain (Tveit, et al., 

2015).  
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1.3.4 Community driven processes  

As the effect of temperature on microbial communities are not well explained, the effect of 

changing microbial communities on the rates of CH4 and CO2 production are also poorly 

understood. Essentially, for temperature to alter a microbial community, temperature must have 

a disproportionally large effect on one or a few populations of microorganisms, enough for 

these organisms to either grow much faster or much slower than the other organisms in the 

ecosystem. Second, for these increasing or decreasing populations to make CH4 or CO2 

production rates higher or lower than corresponding to the temperature effect on the chemical 

reactions their enzymes catalyze, their role in the ecosystem must be a role that becomes more 

or less important with temperature change.  

1.4 Objective 

The main goal of this master thesis is to look at how time plays a role in the effect of temperature 

on CH4 production in Arctic peat soil. Secondly, we intended to identify the responses in the 

microbial community associated to the CH4 production. The experiment was set up with a 

temperature gradient meant to simulate a natural increase in temperature from late spring to 

summer on Svalbard, with a high enough number of replicates and time-points to decipher the 

time-response in both CH4 production and the microbial community. By using replicates 

originating from the same homogenous batch of soil slurry, we aimed to minimize 

heterogeneity in the soil that is unrelated to the questions asked. 

1.5 Hypotheses  

1. Being within a narrow temperature window, the temperature effect on CH4 production 

is predicted by the Arrhenius equation at the end-point of incubation at all temperatures. 

This hypothesis is derived from the results of Ratkowsky et al. (1982), Yvon-Durocher 

et al. (2014) and Tveit et al., (2015). These studies show that the temperature effect on 

CH4 production and microbial growth rates can be predicted by the Arrhenius equation 

within narrow temperature ranges. Ratkowsky et al. and Tveit et al. showed that with 

extended temperature ranges, the Arrhenius equation loses its predictive ability. 
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2. Immediately after temperature change, the Arrhenius equation cannot predict the 

temperature effect on CH4 production. This hypothesis is derived from the biological 

adaptations observed in Tveit et al. (2015) and the unexplained variance in Yvon-

Durocher et al. (2014).  
 

3. The community composition does not change as a result of temperature changes. This 

hypothesis is derived from the lack of consistent changes observed in microbial 

communities exposed to temperature change (Radujkovic, et al., 2018) and the lack of 

community composition changes in Tveit et al. (2015). Nevertheless, we decided to test 

this hypothesis because the number of replicates is consistently low in most published 

studies tackling these issues, while the amount of soil heterogeneity is very high. Using 

samples from one homogenous batch of soil slurry and multiple replicates for each 

condition a new test of this hypothesis is justified.  
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2 Materials and methods 

2.1 Sampling and setup 

The peat soil used in the experiment was sampled at Knudsenheia, Ny-Ålesund, Svalbard in 

August 2016. The soil was mixed in a 1:1 (w/w) ratio with water under anaerobic conditions 

and poured into a 1.5L stainless steel bottle and stored at 4°C until May 2017. The soil slurry 

was then moved to 2°C where it remained until the start of this experiment (April 2018). The 

bottle was shaken once per day for 30 seconds during the entire incubation period to achieve a 

homogenous microbial ecosystem.  

From the soil slurry homogenate 42 ml was transferred into each of seventeen 120 ml headspace 

flasks. Two ml of slurry from each flask was transferred to 1.5 ml plastic tubes and frozen at -

80°C, before the flasks were capped. The capped flasks were then flushed in 3 intervals with 

nitrogen to get rid of oxygen and carbon dioxide before starting the experiment. First flushing 

lasted for 5 minutes, directly after capping the flasks. Second flushing was 3 days later and was 

performed as 2 x 7 min. The last flushing was performed the same day as the first sampling, the 

day after the second flushing, and lasted for 3 min. Flushing in intervals was necessary to ensure 

that oxygen and CO2 dissolved in the water would diffuse to the headspace to be removed in 

the later intervals.  

The temperature incubation experiment was designed to simulate the natural increase in 

temperature on Svalbard from Spring into summer, with the highest temperature in the 

experiment being above the average past observations at the height of summer (figure 4).  
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Figure 4 The average air temperature over a year at Svalbard and 2-standard deviation error bars indicating the 
variation within each month. Based on temperature data from Adventdalen over the last 120 years. © Metrological 
institute of Norway.  

All 17 sample flasks were incubated at ~2°C for the 14 first days. Thereafter, 13 of the flasks 

were moved to a higher temperature (~3°C), while 4 randomly (selected using the list 

randomizer at www.random.org) chosen flasks were left at 2°C. The 13 flasks remained at ~3°C 

for 7 days and was then moved to ~5°C where they remained for 6 days. After this period 9 of 

the flasks were moved to incubation at ~7.5°C, while 4 randomly selected flasks remained at 

5°C. After 7 days at 7.5°C the flasks were moved to 9°C. Nine flasks were then at 9°C, four at 

5°C and four at 2°C until the end of the experiment which was 53 days after the first sampling 

began. The position of the flasks in the incubators were shifted after each sampling to avoid 

biases based on localization within the incubator.  
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Figure 5 Schematic overview of the experimental setup of the temperature incubations. 

2.2 Gas sampling and measurement 

Gas samples were collected from all seventeen sample flasks approximately 4 times per week 

of the incubation for the measurement of CO2 and CH4 concentrations. Twenty-nine exetainer 

vials with caps containing septa were prepared each time.  One per sample for a total of 17, six 

for the standards containing 0.1% CH4 and 0.2% CO2, and six for the standards containing 1% 

CH4 and 1% CO2. Air was drawn from each exetainer for 30 secs using Edwards KNF 

Neuberger vacuum pumps. The exetainers were then flushed with nitrogen (N2) for 30 secs and 

subsequently pierced with a needle to release any overpressure.  

The VICI Pressure-Lok® Precision analytical syringe was used to obtain the gas samples from 

the sample flasks as well as the standards. For the two sets of standards (0.1% CH4 + 0.2% CO2 

and 1% CH4 + 1% CO2), the syringe was first flushed three times with N2 (99.999% purity, 

Alphagaz™ 1 Stickstoff, Air Liquide Austria GmbH. A volume of 0.25 ml of standard gas was 

extracted with the empty syringe. These 0.25 ml were injected into a “standard” exetainer. This 

was done for 6 standard exetainers without flushing in between. Before the next set of standards, 

the syringe was flushed again three times with N2 before repeating the same procedure.  
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For the samples, the syringe was flushed three times with N2 (99.999% purity, Alphagaz™ 1 

Stickstoff, Air Liquide Austria GmbH). Then, 0.25 ml of N2 was drawn into the syringe. 

Pressure was released from the syringe by opening the valve. The sample flask was shaken, and 

the syringe was pierced through the septum of the sample flask. The nitrogen content of the 

syringe was expelled into the flask to avoid changes in gas pressure, and 0.25 ml sample was 

extracted. The sample was then injected into the respective exetainer. This flushing and 

sampling procedure was repeated for each of the 17 sample flasks. The samples were then 

analyzed on a gas chromatograph TRACE GC Ultra with a Flame Ionization Detector (FID) 

from Thermo Scientific.  

A new gas extraction syringe was used as of day 27 because of problems with the original 

syringe between day 21 and 26, which led to faulty measurements during these days.   

2.3 Determination of microbial growth 

Estimation of growth was performed at the department of Terrestrial Ecosystem Research at 

the University of Vienna according to the 18O incorporation method as used in (Walker, et al., 

2018) which allows for estimations of average microbial growth rate based on the amount of 
18O incorporated into microbial DNA from H2

18O. This was performed on the last day of the 

incubation period on the same samples as for the enzyme assays. Water content of the soil was 

calculated from the drying at 100°C for 24 h of 2 grams of wet soil slurry. The water content 

of the soil was used for calculations of the 18O enrichment in the soil water later.  

Three hundred and fifty mg of soil was weighed into two sets of 1.2 ml Semadeni cryovials for 

every sample, one set for the determination of the natural abundance of 18O (control) and one 

for the enrichment. The vials were confined in airtight headspace vials. A volume of 145 µl 

Mol. Bio grade water was added to the control samples, and 145 µl 18O water was added to the 

enrichment samples. A gas sample was taken at t0 and the vials were then flushed to get rid of 

CO2. All vials were incubated at their respective temperatures (2, 5 and 9°C) for 24 h to 48 h. 

After incubation a new gas sample was collected for every sample. The headspace vials were 

opened, and the cryovials were quickly closed and frozen in liquid N2.  

DNA was extracted from the samples using the MP Bio DNA Fast Spin Kit (MP Biomedicals) 

as according to the protocol of appendix I.A. The DNA was then quantified specifically for the 
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18O experiment with PicoGreen (Quanti-iT™ PicoGreen, Life Technologies). DNA extracts 

were diluted in 1X Tris-EDTA (TE) buffer and 100 µl pipetted in a black microtiter plate, along 

with prepared DNA standards and blanks. One hundred µl PicoGreen reagent diluted in 1X TE 

was added to samples, standards and blanks. The plate was incubated at room temperature for 

5 min and fluorescence was measured at excitation 480 nm and emission 520 nm. Full protocol 

can be seen in appendix I.B. 

2.4  Extracellular enzyme assays 

Extracellular enzyme activity was measured by the department of Terrestrial Ecosystem 

Research at the University of Vienna at the end of the incubation period. The enzymatic activity 

of the hydrolytic, extracellular enzymes betaglucosidase and leucine aminopeptidase (protease) 

in the four 2°C samples, the four 5°C control samples and four randomly chosen samples of the 

9°C treatment (samples 1, 5, 9 and 13) was determined using microplate fluorometric assays. 

Two grams of peat soil slurry was suspended in 50 ml Na-acetate buffer (50 mM, pH 6.5) and 

sonicated for some seconds to reach and energy output of 350 J. Subsequently, 200 µl of the 

soil suspension and 50 µl substrate (4-Methylumbelliferyl-β-D-glucopyranoside and L-leucine-

7-amido-4-methylcoumarine, respectively) were pipetted into black microtiter plates in 5 

technical replicates. Methylumbelliferyl (MUF) was used as a standard for the betaglucosidase 

while aminomethylcoumarin (AMC) was used to calibrate protease activity. All plates were 

incubated at 6°C for 15 min in the dark and measured at 365 nm excitation and 450 nm emission 

(using a Tecan Infinite M200fluorimeter, Werfen, Austria) every 30 minutes for 7 time points 

with incubation at 6°C between every measurement. Measuring at the same temperature ensures 

that the activity is dependent only on the number of enzymes accumulated through incubation 

and not the thermokinetic effect in addition. Extracellular enzyme activities were calculated 

using the increase in fluorescence over time, corrected for the amount of soil that was weighed 

in and expressed in [nmol g-1 DW h-1].  
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2.5 Determination of microbial community compositions 

2.5.1 Sample preparation 

Samples were prepared for extraction by soil grinding. There were two sets of 17 samples taken 

from the 17 flasks at the start (S1-S17) and end (E1-E17) of the experiment. The sample tubes 

were carefully broken with a pestle in a cooled down mortar. Plastic pieces were removed, and 

the soil was grinded through 4 rounds of liquid nitrogen addition, until reaching a fine powder. 

Approximately 0.2 g of soil from each sample was transferred to each of two pre-weighed lysis 

matrix E tubes. The tubes were weighed again for precise determination of soil weight, before 

being stored at -80°C. All equipment was washed with soap and rinsed with water followed by 

a rinse with 70% ethanol between each round of grinding a new sample.  

2.5.2 Total nucleic acid extraction 

Total nucleic acids were extracted with a phenol-chloroform protocol (Tveit, et al., 2013). Five 

hundred µl extraction buffer (5% Cetyl Trimethylammonium bromide (CTAB)/ 120 mM 

K2HPO4, pH 8) was added to the lysis matrix E tubes, along with 500 µl Phenol Chloroform 

Isoamylalchohol (PCI, 25:24:1). The tubes were bead beating at 5.0 for 30 seconds followed 

by centrifugation at 13000 g, 4°C for 10 min. Five hundred and fifty µl supernatant was 

transferred to a 2 ml tube. One volume (550 µl) of Chloroform Isoamylalchohol (CI 24:1) was 

added and mixed with supernatant by turning the tube a couple of times. The tubes were 

centrifuged for 5 min at 13000 g and 4°C. The top phase supernatant (550 µl) was transferred 

to a new 2 ml tube. A volume of 5.4 µl glycogen (5 mg/ml) was pipetted into the supernatant, 

after which 2 volumes (1.10 ml) of PEG-6000 (polyethylene glycol) was added. The content of 

the tube was mixed by flipping once, carefully, and left to precipitate on ice for 60 min.   

After precipitation the samples were centrifuged at 13000 g, 4°C for 60 min for a pellet to form. 

The supernatant was decanted in those cases where the pellet was firmly attached to the side of 

the tube or pipetted if pellet was loose. One ml of 70% ice cold ethanol (EtOH) was added, and 

the samples were centrifuge for 10 min at 13000 g and 4°C. Decanting of supernatant and EtOH 

wash was performed once more. The tubes were spun down for 5 sec to collect remaining EtOH 

which was removed by careful pipetting. The pellet was then dried in an Eppendorf 
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Thermomixer R at 50°C for 1-2 min. The pellets were eluted in 50 µl DEPC treated water and 

0.5 µl RNase inhibitor (RiboLock (40 U/, ThermoFisher Scientific) was added. Purity and 

concentration were measured using NanoDrop 1000 (ThermoFisher Scientific) before being 

stored at -80°C.  

2.5.3 DNA quantification and quality check 

Quantification of the amount of DNA in the samples were performed on the Qubit® 2.0 

Fluorometer (ThermoFisher Scientific) with the Qubit® DNA dsDNA HS Assay Kit . First, 200 

µl of working solution per sample and standard (to a total of 7.2 ml) was prepared by diluting 

the Qubit™ reagent 1:200 in Qubit™ buffer. A volume of 190 µl working solution was 

distributed to the thin-walled, clear 0.5 ml Assay tubes for the standards, and 10 µl of standard 

1 and 2 were added, respectively, for a total volume of 200 µl per tube. For the sample tubes, 

199 µl working solution was added. A volume of 1 µl of sample was then added to the respective 

tubes, for a total volume of 200 µl per tube.  All tubes were vortexed for 2 sec before being 

incubated at room temperature for 2 min. The two standards were  firstly measured for 

calibration of the Qubit Fluorometer. The DNA concentration of the samples were then 

measured and calculated back to the stock concentration by the Qubit.   

Two 1% agarose gel were produced for quality check of the DNA from the replicates. A volume 

of 1 µl of the samples were mixed with 1 µl of 6X MassRuler™ DNA Loading Dye (Thermo 

Scientific) and 4 µl  H2O. The total volume of 6 µl was loaded onto the gel along with 3 µl of 

the FastRuler™ Low Range DNA Ladder (Thermo Scientific) All samples contained visible 

DNA bands, except for the first replicate of sample S1 which had a smear (appendix I.C). This 

sample was therefore excluded from the sequencing.  

2.5.4 16S amplicon sequencing 

Untreated samples of total nucleic acids were sent to IMGM Laboratories GmbH (Martinsried, 

Germany) for amplicon sequencing. PCR was performed on all samples using a specific primer 

set for bacterial and archaeal 16S rRNA genes (table 1). This primer set was chosen because of 

its high coverage towards both Bacteria and Archaea. Detection for candidate divisions WS6, 

OP11, TM7 and OD1 is unlikely and can be low for Chlamydiae, Calidserica, Chloroflexi, 

SM2F11, Lazan-3B-28 and BHI80-139, and for the Archaea the phyla AA, MHVG-1, MHVG-
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2 and Nanoarchaeaeota can also be hard to detect  (Klindworth, et al., 2013). For percentage 

coverage of the primers refer to appendix I.D. Barcodes for multiplexed sequencing were 

introduced during index PCR using overhang tags. One amplicon library was prepared from the 

barcoded PCR products. 

Table 1 16S rRNA gene primer set used in PCR of samples. 

Primer 

name 

Position Primer sequence Region Amplicon 

size (bp) 

Reference 

A519F 519-533 5'- CAG CMG CCG CGG TAA -3' V4 Ca. 287 (Klindworth, 

et al., 2013) Bakt_805R 785-805 5'- GAC TAC HVG GGT ATC 

TAA TCC -3' 

 

The sequencing was performed on the Illumina MiSeq® next generation sequencing system 

(Illumina Inc.). Signals were processed to *.fastq files and the resulting 2×250 bp reads were 

demultiplexed and quality controlled using CLC Genomics Workbench 12.0. Raw *.fastq files 

were provided from the sequencing facilities.  

2.5.5 Data analysis 

2.5.5.1 Sequence analysis 

The provided raw *.fastq forward and reverse files were treated with a bioinformatics pipeline 

for amplicon sequences (Kalenitchenko, 2018). The files where imported into the QIIME2 

microbiome analysis software (Boylen & al., 2018). In qiime DADA2 denoise-paired the 

forward and reverse sequences were trimmed to remove primers with 15 bp in the forward and 

21 bp in the reverse and truncated to remove 5 bp and be left with 245 bp sequences. Reads 

with higher a number of expected errors than 1 was discarded. The forward and reverse reads 

were merged, and quality filtered with vsearch (Rognes, et al., 2018). Samples were 

concatenated with the mothur package (Schloss, et al., 2009) and then dereplicated and sorted 

by size with vsearch. OTUs were clustered at 97% with usearch (Edgar, 2010) and checked for 

chimeras. Taxonomy was assigned using the mothur package, and an OTU table was 

constructed with ‘biom()’.  
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2.5.5.2 Statistics and calculations 

All regressions and plots were generated using excel and the ‘ggplot2’ package (Wickham, 

2016) within the R Statistical Computing Platform version 3.5.2 and version 3.6.0 (R Core 

Team, 2018). Visualization of abundances by bar plotting was performed using the ‘phyloseq’ 

package (McMurdie & Holmes, 2013) and its ‘ggplot2’ extension.  

Calculation of gas concentrations 

The raw data of the gas (CO2 and CH4) measurements were provided as ppm and had to be 

converted to µmol/ml.  Firstly, data points with large drops in concentrations (outliers) were 

removed. This included all sampled concentrations for day 21, 22, 23 and 26. Calculations of 

the total amount of gas in the headspace of the flasks were then conducted using the formula: 

𝒙𝒙 µ𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  (𝑃𝑃𝑡𝑡0×𝑉𝑉)×4×78×106

(𝑇𝑇×𝑅𝑅)𝑝𝑝𝑝𝑝𝑝𝑝
106

                                    (𝑒𝑒𝑒𝑒. 4)  

Where Pt0 is the atmospheric pressure of the day the flasks were closed (in atm), V is the volume 

of the gas extraction syringe (0.00025 L), R is the gas constant (0.082057 L atm K-1 mol-1), T 

is the temperature (in kelvin (K)) and ppm is the measured gas concentrations (in parts per 

million). Ppm is divided by106 to get parts per 1. The equation is multiplied with 4 to get 

mol/ml. 78 to get mol/headspace and 106 to get µmol/headspace. The amount of gas was then 

adjusted for the proportion of gas that was removed for each gas extraction. As the total volume 

of the headspace was 78 ml, the 0.25 ml which was removed each time constituted 1/312 part 

of the volume. Then, the amount of gas that was dissolved in the liquid phase of the flasks were 

calculated as: 

𝒙𝒙  µ𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑝𝑝𝑝𝑝𝑝𝑝
106 × 𝑃𝑃𝑡𝑡0 ×

𝑘𝑘ℎ(𝑇𝑇)
103 × 𝑉𝑉 × 106                               (𝑒𝑒𝑒𝑒. 5)  

Where ppm is the measured gas concentrations (in parts per million), Pt0 is the atmospheric 

pressure at the time the flasks were closed (in atm), V is the volume of the liquid phase (42 ml) 

and kh(T) is the temperature dependent solubility constant for the respective gases CH4 and 

CO2 (in mol L-1). The ppm gas concentration was divided by 106 to get parts per 1. The solubility 

constant divided by 103 for mol per ml and multiplied with 106 to get µmol/liquid. Finally, the 
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sum was taken of the amount of gas in the liquid phase and the headspace and divided by the 

ml of slurry to get the µmol of gas per ml slurry.  

Arrhenius calculation 

Quantification of  the temperature dependency of CH4 production was calculated using the 

Boltzmann-Arrhenius equation as indicated by Yvon-Durocher et al. (2014) in the form given 

in equation 3 in the introduction (1.3.1.1 The Arrhenius equation). The rate was calculated as 

the slope of linear regressions fitted for the CH4 concentrations and the growth rates measured 

at each temperature. When assessing the rates at each temperature window, it was clear that for 

the 5ºC, 7.5 ºC and 9 ºC the rates were biphasic (appendix II.B). For each temperature the CH4 

production rates therefore split into two periods; ‘beginning meaning right after temperature 

change and ‘acclimatized’ which was at the end of the temperature window. This was done 

visually except for the 3°C which lacked enough time points for a good resolution and for the 

2°C which were already considered to be acclimatized after being incubated for 2 years at the 

respective temperature. The average temperature for each incubation was transformed to the 

kelvin scale and multiplied with the Boltzmann constant. Three plots of ln r versus kBT-1 was 

made for the CH4 production, one with both ‘beginning’ and ‘acclimatized’ production rates, 

one with only the ‘acclimatized’ rates and one with the ‘beginning’ rates. A plot of ln r versus 

kBT-1 was also produced for the growth rates. A linear regression model was fitted for each 

case, as well as polynomials for the ‘beginning’ samples of the CH4 production and the growth 

rates. The activation energy (Ea) was found by the multiplying the slope of the linear regression 

(can be calculated by ∆y/∆x) with -1.  

Significance tests 

Welch Two Sample t-test were performed with the t.test() function within core R to test for 

significant differences in means of the amount of TNA between start and end samples. One-

way ANOVA tests were used to test for significant differences in means where there were more 

than 2 groups. The ANOVAs were performed with the aov() function of core R to compare the 

TNA amounts between the different temperature treated end samples, to assess the difference 

in enzyme activity between the 3 different temperature treatments. To verify that the 

assumption of ANOVA of equal variance was satisfied a Levene’s test was performed before 

any ANOVA, using the LeveneTest() function under the ‘car’ package in R.  
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Correspondence analysis (CA) 

A correspondence analysis (CA) was performed on the OTU table obtained from the 

bioinformatic processing. CA was applied because it grants a larger impact of low-abundance 

variables in the analysis than alternative methods. First, preparation steps of the OTU table was 

conducted. This included computing a proportion matrix from the OTU table, making vectors 

from the totals of the rows and columns, and making the square root of the vectors into diagonal 

matrices using the ‘diag()’ function of R. The matrices were then multiplied using the %*% 

operator. The Singular Value Decomposition (SVD) was computed with the ‘svd()’ function, 

and the principal and standard coordinates were calculated using the %*% operator. The inertia 

of the table was calculated and lastly, the coordinates could be plotted to generate the graphical 

representation of the CA analysis.   
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3 Results 

3.1 Chemical  

3.1.1 Temperature log 

The initial temperatures of the incubations were meant to be 2°C, 4°C, 6°C, 8°C and 10°C to 

simulate a natural temperature increase at Svalbard during the transition from spring to summer. 

The temperatures of the incubation chambers were logged, and the real temperature of the 

chambers and the fluctuations are visualized in figure 6.  

 

Figure 6 Results of the temperature logging showing the real temperature and fluctuations for the incubations. 
Orange line shows the fluctuation in temperature of the 2°C incubations, cyan line shows fluctuation of 4°C 
incubation, purple line shows fluctuation at 6°C, dark red shows fluctuation at 8°C and dark blue shows fluctuation 
at 10°C.  

For the 2°C incubation the average temperature was 2.25°C, for the 4°C incubation the average 

was 2.82°C, for the 6°C the average temperature was 5.16°C, for the 8°C the average was 
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7.45°C and for the 10°C the average temperature was 9.29°C. Hereafter, the incubation 

temperatures will be named as 2°C, 3°C, 5°C, 7.5°C and 9°C.  

3.1.2 Soil water content and pH 

Drying of the soil and pH measurements at the end of the incubation period showed that the 

soil samples had high water contents ranging between 93.3% and 90.2% with an average of 

91.9%. The pH of the samples was slightly acidic and ranged between 6.47 and 6.25, with an 

average of 6.32.  Organic content was not measured as it is assumed to remain constant as all 

samples originate from the same homogenous soil slurry.  

 

Figure 7 Variation of water content (%) and pH in samples 1 to 17 at the end of incubation, sorted after which 
temperature treatment they received. 

3.1.3 CH4 and CO2 production 

The monitoring of the CH4 accumulation rate started the 17.04.18 after all 17 slurry flasks had 

been flushed with N2. All flasks remained at 2°C for the initial 14 days of incubation. During 

this time, the CH4 accumulation rates of all flasks followed the same trend (figure 8). At day 

15, 13 bottles were moved to 3°C. During the seven days at 3°C, there were no signs that the 

CH4 accumulation rate of these flasks deviated from those left at 2°C. At day 22 the flasks at 
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3°C were moved up to 5°C. Differences in the rate of CH4 accumulation between the 2°C 

control samples and those that had been moved to 5°C were noticeable immediately after 

increasing the temperature from 3°C to 5°C. After 30 days of incubation, nine samples were 

moved up to 7.5°C, while four where left at 5°C as controls. The CH4 accumulation rate then 

increased immediately, compared to the samples that had been left at 5°C. The same was 

observed after moving the samples from 7.5°C to 9°C. The production rates inferred from the 

slope of the linear regressions at the different temperatures (appendix II.A) were 0.0005 µmol 

ml-1 d-1 for the 2°C, 0.0006 µmol ml-1 d-1 for the 3°C, 0.0007 µmol ml-1 d-1 for the 5°C, 0.0007 

µmol ml-1 d-1 for the 7.5°C and 0.0016 µmol ml-1 d-1 for the 9°C incubations. The linear rates of 

production of the 5°C and the 7.5°C does not correspond to the trend indicated in the floating 

regression (figure 8). 

 

Figure 8 Concentration of CH4 (µmol per ml soil slurry) as a function of time (days) with 95% confidence intervals. 
Data points are shown for all samples with a loess regression fitted and 95% confidence interval bands. Marked as 
grey are samples that remained at 2°C throughout the incubation, blue are samples that were changed from 2°C to 
3°C at 15 days after incubation start and lastly to 5°C on day 22. The samples that were moved through all 
temperature incubations, from 2°C to 3°C after 15 days, to 5°C after 22 days, 7.5°C after 30 days and finally to 9°C, 
are marked in orange.  
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The temperature dependence of reaction rates 

can be calculated using the Arrhenius equation. 

Here we assessed whether the observed 

temperature effects on CH4 production follows 

the Arrhenius equation (figure 9). For each 

temperature window the CH4 production rates 

were split into two periods (appendix II.B); 

‘beginning’ meaning right after change in 

temperature and ‘acclimatized’ which were at 

the end of the temperature window. The 

analysis with ‘beginning’ and ‘acclimatized’ 

values combined indicated a temperature 

dependence of CH4 production by an activation 

energy (Ea) of 1.05 eV (The slope of the linear 

model fitted to the Arrhenius plot) with a 95% 

CI of 0.43 – 1.67 eV (figure 9.A) and R2 of 0.65. 

The ‘beginning’ data points for the 5°C and 

7.5°C lies outside the 95% CI.  

Removal of the ‘beginning’ rates for the 5-, 7.5- 

and 9°C incubations improved the fit of the data 

points to the linear regression model 

considerably with an R2 of 0.97 (figure 9.B). A 

linear regression analysis for the ‘beginning’ 

samples only gave an estimate of the 

temperature dependence of 0.53 with a 95% CI 

of -0.26 – 1.32. The linear regression had an R2 

of 0.47. A 3rd degree polynomial was better 

suited to explain the variation with an R2 of 1 

Figure 9 Arrhenius plot of (A) rates divided into beginning and acclimatized points (except for 2°C and 3°C) against 
1/kBT with a linear regression with slope 1.05 and a 95% CI shown in grey of [0.43-1.67], (B) ‘beginning’ points 
have been removed which resulted in a slope of 1.14, and a tighter 95% CI of [0.90-1.38] and (C) only beginning 
points with a linear regression (blue line) with slope 0.53 and a 95% of [-0.26 – 1.32] and a 3rd degree polynomial 
(red line) to show a better fitted regression model. The 3°C was included in all three plots.  
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(figure 9.C), suggesting that microbial acclimatization to temperature shifts were more 

pronounced in the 5 and 7.5°C temperature shifts than in the shift to 9°C. Too few data points 

existed for the 3°C shift to allow a split into ‘beginning’ and ‘acclimatized’ values, while no 

shift existed from a lower temperature to 2°C. Thus, these data points were ignored as such. 

 

Figure 10 Concentration of CO2 (µmol per g dry soil) as a function of time (days) with 95% CI bands. Data points 
are shown for all samples with a loess regression fitted and 95% confidence interval bands. Marked as grey are 

samples that remained at 2°C throughout the incubation, blue are samples that were changed from 2°C to 3°C at 

15 days after incubation start and lastly to 5°C on day 22. The samples that were moved through all temperature 
incubations, from 2°C to 3°C after 15 days, to 5°C after 22 days, 7.5°C after 30 days and finally to 9°C, are marked 

in orange. 

The CO2 measurements from all 3 temperature treatments have curves that resembles a 

saturation curve with a higher production rate at the start of the experiment, and then decreasing 

rates until the concentrations almost becomes constant, however, not completely. The 

treatments have very similar trends for the CO2 concentrations with overlapping 95% CI along 

the whole time series (figure 10).  From day 0 until the 7.5°C were moved to 9°C at day 30, all 
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samples show the same trend in CO2 concentration, even though the rest of the samples were 

separated from the 2°C control samples at day 15 and had been moved from 3°C to 5°C. After 

day 30 the samples separate more. The 9°C samples shows higher CO2 concentration than the 

2°C controls but has overlapping 95% CI with the 5°C control samples. The 5°C and 2°C 

controls have overlapping 95% CI, signifying a non-statistical difference between these 

samples.  

3.1.4 Mass specific growth 

To measure the growth rates of the microbiome an 18O incorporation experiment where the 

amount of 18O stable isotope incorporation into DNA from water enriched in 18O (H2
18O) was 

performed. A one-way ANOVA showed there was a significant difference among the 2-, 5- and 

9°C samples (F(2,9) = 21.5, p = 0.0003). Post hoc comparison using the Tukey’s pairwise 

indicated that the 9°C samples had significantly higher mass specific growth rate compared to 

the 5°C samples (p = 0.001) and the 2°C samples (p = 0.0005). However, the 2°C and 5°C did 

not significantly differ from the each other (figure 11). 

 

Figure 11 Mass specific growth with 95% CI bars for the 2°C, 5 °C and 9 °C treatments. A Levene’s test showed 
no homogeneity of the sample variances (p = 0.57). 
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Similarly, as for the CH4 production 

rates, we tested whether or not the 

temperature dependence of the growth 

rates could be predicted by the Arrhenius 

equation. The temperature dependence 

of growth reflected an Ea of 1.18 eV 

with a 95% CI of 0.56 – 1.80 and R2 of 

0.58 (figure 12.A). It can be seen in the 

plot that two lower outliers from the 2°C 

and 5°C incubations contribute to 

lowering the prediction from the linear 

model. Removing the outliers makes the 

linear model has a poor fit for the data. 

Replacing this with a 2nd degree 

polynomial model substantially 

improves the fit with an R2 of 0.90 

(figure 12.B), suggesting that the growth 

of the microorganisms cannot be 

predicted by the Arrhenius equation.   

 

3.1.5 Enzyme activity 

Potential enzyme activities of beta-glucosidase and leucine aminopeptidase was measured at 

the end of the incubation period for the evaluation of the temperature effect on microbial 

investment into extracellular decomposition of oligosaccharides and peptides. Activity was 

measured at 6°C, thus making sure that the it is the number of enzymes that is measured, not 

the combination of the thermokinetic effect and the number of enzymes. The activity of beta-

Figure 12 Arrhenius plot of (A) growth rates with 
outliers and a linear regression fitted with a 95% 
CI marked in grey, and (B) growth rates without 
outliers showing a linear regression (blue line) and 
a better fitting 2nd degree polynomial.  
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glucosidase (figure 13.A) was higher than the activity of leucine-aminopeptidase (figure 13.B).  

For the beta-glucosidase the activity was around 300 nmol g-1DW h-1, and around 125 nmol g-

1DW h-1 for the leucine-aminopeptidase. 

A one-way ANOVA to test for 

significant differences in 

activity was conducted for the 

three temperature treatments of 

the beta-glucosidase activity 

and for the leucine-

aminopeptidase activity. The 

assumption of homoscedasticity 

for the ANOVA was tested with 

the Levene’s test which showed 

that both the data for the beta-

glucosidase (p = 0.07) and the 

leucine-aminopeptidase (p = 

0.43) was not in violation with 

this assumption. The one-way 

ANOVA established that there 

were no significant differences 

in the enzyme activity at 

different temperatures for the 

beta-glucosidase (F(2,9) = 0.12, 

p = 0.89) and the leucine 

aminopeptidase (F(2,9) = 0.45, 

p = 0.65).  

Figure 13 Potential enzyme activities of (a) beta-glucosidase and (b) leucine-aminopeptidase for 2-, 5- and 9°C 
samples. Note: activity measurements were performed on 4 samples for each temperature. The measurement was 
performed at 6°C for all 12 samples. 
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3.2 Biological 

3.2.1 DNA amounts as indicator of biomass 

DNA amounts measured on the Qubit was used as an indicator of the quantity of 

microorganisms in the peat soil slurry to assess if there were changes in the microbial biomass 

from start to end of the experiment and between the temperature treatments (figure 14). In both 

the start and end samples the biomass variation was high. For the start samples, the DNA 

amount ranged from ~2700 ng/g soil in sample S09 to ~5700 ng/g in sample S01. In the end 

samples the highest measured amount was ~5300 ng/g soil in sample E09 and the lowest in 

sample E14 of ~2000 ng/g. The average amount was 4223 ng/g (95% CI = ± 364 ng/g) at the 

start and 3600 ng/g (95% CI = ± 397 ng/g) at the end. Overlapping CI signifies no statistically 

significant difference in the amount of DNA between the start and end samples.  

 

Figure 14 The amounts of DNA from extractions in ng of DNA per g of soil separated into start and end samples. 
Samples at 2°C marked in grey, samples of the 5°C treatment marked in blue, and samples of the 9°C treatment marked in 
orange. 
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The variation was also high within the temperature treatment groups of the end samples. The 

average DNA amount was 3505 ng/g soil (95% CI ± 1036 ng/g) in the 2°C treatment end 

samples, 3874 ng/g soil (95% CI ± 559 ng/g) in the 5°C treatment and 3520 ng/g soil (95% CI 

± 586 ng/g) in the 9°C treatment. The assumption of equal variances for the ANOVA was tested 

with a Levene’s test, which showed that the data of the three groups of temperature treatment 

had similar variation (p = 0.69). An ANOVA analysis showed that there were no significant 

differences between the three groups of temperature treatment (F(2,14) = 0.26, p = 0.78), 

signifying equal amounts of DNA across all treatments.   

3.2.2 Community composition 

Analyses on the community composition was performed to identify differences in the 

community structure between the start and the end of the experiment. The 16S rRNA gene 

amplicon sequence libraries were composed on average by 0.8 % Archaea, 97.7% Bacteria and 

1.5% which could not be assigned to a domain. Both start and end samples had highly similar 

abundances of Archaea and Bacteria, indicating no effect of temperature on the ratio of Bacteria 

to Archaea. The 20 most abundant OTUs belonged to Bacteria and belonged within the phyla 

Bacteroidetes, Actinobacteria, Verrucomicrobia, Proteobacteria, Firmicutes and Chloroflexi. 

The archaeal portion was composed of 61.3% Woesearchaeota, 21.9% belonging to unknown 

archaeal phyla, 13.8% Euryarchaeota, 1.56% Crenarchaeota, 0.32% Thaumarchaeota and 

0.16% Altiarchaeota.  

3.2.2.1 Differences in community between start and end samples 

A plot of the phyla representing more than 10% of the OTUs (figure 15) does not show any 

indication of differences in the abundance of phyla as a result of the temperature treatments. 

Furthermore, all the large phyla have similar abundances at the start and end.  
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Figure 15 Distribution of abundances of the phyla representing >10% of the total data set. Faceted into start and 
end samples to visualise the relationship between time, temperature and the bacterial community composition. 

The same type of plot only for archaeal phyla (figure 16) shows the same trend with similar 

distribution of the phyla at the start and end of the experiment. The two biggest phyla of Archaea 

were the Woesearchaeota and Euryarchaeota. A large portion of the archaeal sequences could 

not be assigned to an archaeal phylum and was thus named Archaea_unclassified.  
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Figure 16 Distribution of abundances of all the phyla within the Archaea. Faceted into start and end samples to 
visualise the relationship between time, temperature and the archaeal community composition. 

Euryarchaeota contain the methanogen classes Methanobacteria and Methanomicrobia as well 

as Thermoplasmata within which we find methylotrophic methanogens of the order 

Methanomasiliiicoccales and non-methanogenic taxa within Thermoplasmatales (Poulsen, et 

al., 2013) (figure 17). The distribution of the classes was similar at the start and end of the 

experiment. However, there was a large variation in the abundances of these classes between 

samples, irrespective of the temperature treatments.  
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Figure 17 Abundance distribution of the classes represented within the Euryarchaeota phylum between start and 
finish and sorted for the temperature treatments, to visualise t the relationship between time, temperature and the 
archaeal community composition. 

3.2.3 Correspondence analysis  

The bacterial and archaeal communities were highly similar on the phylum and class level of 

taxonomy across time and temperature treatments. In order to test whether OTUs within these 

large taxonomic groups responded to the experimental treatments we decided to perform a 

correspondence analysis (CA) using the bacterial (figure 18.A) and archaeal OTU abundances 

(figure 18.B).  

The Bacteria show a clear separation of start and end samples, as well as the different 

temperature treatments.  The start samples are clustering at the negative side of the x-axis while 

the end samples are spreading out from the middle of the plot and toward the positive side of 

the x-axis. The 2°C control samples (black, open triangles figure 18.A) clustered close to the 

start samples, with the exception of one outlier sample, while the 5°C clustered between the 

start and 2°C on the left side of the plot and the 9°C samples which clustered furthest to the 

positive side of the x-axis. Three OTUs were very influential in separating the start and end 

samples. OTU 229 (unclassified Bacteria) pulled strongly in the neagtive direction of the x-

axis, indicating that it has a higher abundance in the start samples and the samples at the lowest 
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temperature. OTU 1312 (unclassified Bacteria) and 10223 (VadinHA49, Planctomycetes) 

pulled strongly to the positive side of the x-axis suggesting that these OTUs have higher 

abundances in the end samples at the higher temperatures, 5 and 9°C. The samples showed 

weaker separation based on the Archaea community composition. We observed a clustering of 

start samples in the positive direction of the y-axis, and the end samples at the negative side of 

the y-axis. OTU 18328 (Bathyarchaea, Crenarchaeota) and 14226 (Woesearchaea, 

Woesearchaeota) pulled most downwards towards the negative y-axis indicating a higher 

abundance in the end and higher temperature samples, while OTU 10500 (Woesearchaea, 

Woesearchaeota) pulled strongly in the opposite direction indicating a higher abundance in the 

start and low temperature samples. 

  



 

42 

 

 

 

Figure 18 Correspondence analysis of (A) bacterial OTUs (99% threshold) and (B) archaeal OTUs (95% threshold). 
Start samples are marked as circle, end samples as open triangles. Green are the samples undergoing the 9°C 
treatment, red are the 5°C control samples and black are 2°C control samples. Sample E4 (2°C control sample) 
was removed from the CA. 
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3.2.4 Abundances of influential OTUS from CA 

In addition to the 6 bacterial and archaeal OTUs indicated as the most temperature-responsive 

community members above we wanted to further broaden the search for temperature responsive 

OTUs. We selected the 20 most influential OTUs from both the negative and positive directions 

of the CA axes that separated the communities of Bacteria and Archaea by temperature and 

plotted them as bar plots (Figure 19).  

 

Figure 19 Abundance plot of the most influential OTUs of the Bacteria (A) pulling the start samples in the negative 
direction of the x-axis, and (B) pulling the end samples in the positive direction of the x-axis of the CA plot. 
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The abundance of the 20 most influential OTUs of the Bacteria pulling the start samples to the 

negative side of the x-axis shows a big proportion of Actinobacteria, Proteobacteria, and 

Chloroflexi (figure 19.A). The figure also shows that the differences in relative abundance of 

these OTUs between the low and high temperatures are small. The major exception to this was 

a decrease in the proportion of unclassified Bacteria in the end samples of the higher 

temperature incubations (5 and 9 °C). Altogether, the OTUs shown in figure 19.A made up 10 

– 12% of the total community in the start samples and decreased to below 10% in the 9°C 

samples at the end of the incubation. It is also evident from the figure that more different OTUs 

respond to increased temperatures with a decrease in their relative abundance. The 20 most 

influential OTUs of the Bacteria of the CA plot that increased in abundance with increasing 

temperature (refer to figure 18.B) have very stable abundances within the start cluster. The 

largest proportion of these OTUs belong the Bacteroidetes phylum. The most prominent 

differences observed were higher abundances of the vadinHA49 (belonging to the 

Planctomycetes) class and some unclassified Bacteria at higher temperatures, while minor 

increases in OTUs belonging to Bacteroidetes and Firestonebacteria were also seen (figure 

19.B) .  

For the start samples of the Archaea, three phyla where responsible for pulling the start samples 

in the positive direction of the y-axis. These were members of the Diapherotrites, Euryarchaeota 

and the Woesearchaeota (figure 20.A). The largest group was the Woesearchaeota which varied 

a lot between samples. The total abundance of these OTUs varied between 0.04 – 0.06% of the 

total community in the start samples, with no major differences in the end samples. The OTUs 

responsible for pulling the end samples in the negative direction of the y-axis were from a larger 

set of phyla (figure 20.B). The main constituents were the Woesearchaeota and some 

unclassified Archaea. The overall abundance was around 0.03% of the total community in the 

start samples but increase to between 0.04 – 0.05% in the higher temperatures of the end 

samples.  
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Figure 20 Abundance plot of the most influential OTUs of the Archaea (A) pulling the start samples towards the 
positive direction of the y-axis, and (B) pulling the end samples in the negative direction of the y-axis of the CA 
plots. 
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4 Discussion 

4.1 Incubation temperatures 

The initial incubation temperatures were supposed to be 2-, 4-, 6-, 8- and 10°C. However, due 

to a lack of incubator precision,  2-, 3-, 5-, 7.5- and 9°C were the average temperatures 

experienced by the microbial communities during incubation. These temperatures were still 

appropriate for investigating the effect of temperature increases as they occur at Svalbard in the 

transition from spring to summer. In the analyses, the average temperatures; 2-, 3-, 5-, 7.5- and 

9°C; were used. However, it is important to recognize that the temperatures inside incubators 

varied on a daily basis. Especially, during days 27 to 49, the temperature of the 2°C incubator 

fluctuated substantially, (figure 6) but most of the variation was between 1.3°C and 2°C. This 

might have had an effect on the microbial productivity. In fact, a small reduction in the slope 

of the CH4 production for the 2°C right around day 30 was observed (figure 8). It is therefore 

possible that the calculated CH4 production rate for the 2°C incubations was slightly 

underestimated for the Arrhenius linear model. However, it is unlikely to have influenced our 

estimates or conclusions. Likewise, the actual temperature in what was supposed to be our 4°C 

incubation was lower and overlapping the temperature of the 2°C incubation for the same time 

period (figure 6). This probably explains why we did not observe changes in the CH4 production 

rate after moving incubation flasks from 2°C to 3°C.  

4.2 Primers  

The primer pair chosen for the 16S amplicon sequencing (A519F and Bakt_805R) was chosen 

based on the high coverage reported for both Bacteria and Archaea (Klindworth, et al., 2013). 

Klindworth et al. (2013) highlights the bacterial and archaeal groups that the primers did not 

match, including the archaeal phylum Nanoarchaeaeota. Curiously, among the archaeal OTUs 

of our dataset as much as 61% was classified as Woesearchaeota, a close relative to the 

Nanoarchaeaeota that was not yet described in 2013. Furthermore, the abundance of Archaea 

was considerably smaller than what has been indicated previously from peat soil from the same 

area (Tveit, et al., 2015). Archaea only constitute ~1% of the dataset but was by Tveit et al. 

(2015) estimated to be 3 – 5% of the 16S rRNA genes and 6 – 9% of the rRNA. This indicates 

that a primer bias might have caused an underrepresentation of Archaea in the datasets. 
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However, in our opinion, as long as the main objective was to compare a set of samples to 

identify temperature driven changes in the community, the data still suffice. It could be argued 

that for a more realistic understanding of the communities and their composition, sequencing 

of the bacterial and archaeal communities separately using different, domain-specific, primer 

pairs could increase the accuracy of the taxonomic representation. The ratio of Bacteria to 

Archaea would not have been assessed precisely by this method, leaving PCR free shotgun-

sequencing as a better but significantly more expensive method.  

4.3 Gas production 

The net CO2 accumulation (figure 10) did not respond with a higher production rate with 

increasing temperature as observed for CH4 (figure 8). In the first 10-15 days of the incubation 

the concentration of CO2 was increasing sharply, most likely due to release of dissolved CO2 

in the liquid phase as the equilibrium of the CO2 of the liquid and the headspace was unbalanced 

after flushing the headspace with N2. The CO2 production rates after this point were close to 

zero, but not entirely, meaning that there was an overall higher production than consumption. 

There was also a constant relationship between the temperature treatments showing that 

temperature had no effect on CO2 accumulation. CO2 production, like any enzyme catalyzed 

reaction, increases with temperature due thermokinetic effects on the enzymes as long as the 

CO2 producing microorganisms do not redirect the carbon for growth instead of CO2 production 

from energy generating processes (Bengtson & Bengtsson, 2007). However, the enzymes 

catalyzing the assimilation of CO2 would also be affected by temperature increase. Thus, there 

are two possible reasons for our observations; either CO2 is nearly not produced at all and there 

is no temperature effect on its production, or it is produced and then consumed, with both sides 

sharing the same temperature response. Both CH4 and CO2 are produced in energy generating 

processes where some of the carbon is assimilated for growth. CO2 is consumed in many 

metabolic reactions such as CO2 reduction with formylmethanofuran dehydrogenase by 

hydrogenotrophic methanogens, various carboxylase reactions and CO2 fixation by autotrophs 

via a range of different pathways (Fuchs, 2011).  

We observed a clear temperature effect on the production of CH4. The rate of CH4 production 

was equal for all samples during the entire incubation at 2°C and 3°C from day 0 up until day 

22 when the sample flasks were moved to 5°C. The change in temperature from 2°C to 3°C did 

not seem to have an effect on the CH4 production rates. This can simply be explained by the 
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variability in the incubator temperatures which in this case meant that the peat slurry flasks 

were at very similar temperatures (figure 6), differing by less than 0.5°C for most of the 

incubation time. When the samples were moved from 5°C to 7.5°C there was an immediate 

separation between the CH4 production rate in those samples and the rate in the four samples 

that were left at 5°C according to the floating regression (figure 8). The rates inferred from the 

linear regression of the 5°C and 7.5°C  however, does not correspond to the trend indicated in 

the floating regression, suggesting that small, possibly non-linear changes in the system state 

developing over time are not properly captured by linear regression.  

Based on what we see from the floating regression, the biological adaptations, if any, to the 

new temperature must be fast. We did not observe any difference in the amount of polymer 

degrading enzymes produced between the 2-, 5—and 9°C incubations (figure 13.A and B). This 

means that there were no differences in the extracellular enzyme production by polymer 

degrading Bacteria. Furthermore, we found no substantial differences in the microbial 

communities between the temperature treatments that could directly explain the increases in 

CH4 production. That raised the question if the increased CH4 production rates from the 

community at higher temperatures were solely due to the effect of temperature on enzyme 

kinetics, something which has been indicated by Yvon-Durocher et al. (2014).  

When looking at the data for the CH4 production rates, it was clear in the case of the 5°C, 7.5°C 

and 9°C that the rates where biphasic. There were not enough 3°C time points to properly 

evaluate the biphasic nature of this temperature window, and the 2°C had already been at 2°C 

for around two years, meaning the system had already acclimatized to that temperature. The 

rates for the other temperatures where divided into ‘beginning’ and ‘acclimatized’. The results 

showed that the linear regression model with both ‘beginning’ and ‘acclimatized’ CH4 

production rates had a temperature dependence with an Ea of 1.05 which was in accordance 

with the Ea found by Yvon-Durocher et al. (2014) to apply for pure culture of methanogens, 

anaerobic community incubations and at the ecosystem level. However, a broad 95% CI, an R2 

of 0.65 and the rates of two of the temperatures falling below the 95% CI suggest that the model 

is suboptimal and that the rates right after temperature change therefore cannot be predicted by 

the Arrhenius equation. This is further supported by the improved fit of the regression after 

removing the ‘beginning’ points (figure 9.B) and the non-linear relationship between the rate 

and the temperature when only the rates for ‘beginning’ points were plotted (figure 9.C). These 
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analyses display how the temperature dependence of CH4 production differs, depending on 

whether we take the acclimatization period into account or not, suggesting that the systems 

responsible for CH4 production changes with time. As the rates of the ‘beginning’ periods are 

consistently lower than that of the ‘acclimatized’ at equivalent temperatures the system 

acclimatization during this time seems to be causing a delay in the production of CH4. To our 

knowledge, very few have described this before.  

The CH4 produced by the anaerobic community is the product of methanogenesis from the 

combination of carbon substrates supplied through the breakdown of polysaccharides (Tveit, et 

al., 2015; Kotsyurbenko, 2005) and the decomposition of necromass from the microbial loop 

(Tveit, et al., 2015). As the temperature increases decomposition goes faster, which leads to an 

increase in the amount of carbon that goes into the production of CH4 as well as growth  (White, 

et al., 1991). The reason we see differences in the CH4 production rates at different time points 

after temperature change could possibly be linked to shifts in the balance between carbon 

assimilation into biomass, death rates of the microbes and the production of CH4. Essentially, 

the carbon processed in methanogenic decomposition might end up in different pools such as 

biomass or fermentation intermediates (Tveit, et al., 2015) before it reaches the end of the 

decomposition chain and is converted into CH4. Thus, the predictive power of the Arrhenius 

equation on the temperature dependence of CH4 production might not be the same if one 

considers the effect at different time points after the temperature change, something that was 

not considered in Yvon-Durocher et al. (2014).  

4.4 Growth rates 

At first glance the growth rates not only seemed to fit with the Arrhenius equation but also have 

the same temperature dependence as CH4 production, with an Ea of 1.18 and overlapping 95% 

CI (figure 12.A). Yvon-Durocher et al.(2014) saw that the temperature dependence of the 

growth rate of a pure culture of methanogens was the same as for methanogenesis. However, 

our growth-data had two outliers at 2- and 5°C , which are dragging the linear regression to a 

steeper slope. When removing these outliers, it became obvious that a linear regression model 

was over all a bad fit, which means that the temperature dependence of the growth of the whole 

community cannot be inferred by the Arrhenius equation. What we see is that there were no 

significantly higher growth rates at 5°C compared to the growth rates at 2°C, but much higher 
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growth rates at 9°C (figure 11). The fact that the CH4 production increases and the growth rate 

stays the same after increasing the temperature from 2 to 5°C indicates that the cells are mostly 

increasing their energy production, but not their investment into growth during this change. It 

is well known that organisms can live at temperatures beneath the range that allows growth and 

less energy is needed for survival and maintenance than for growth (Price & Sowers, 2004). 

However, growth was observed at both 2 and 5°C, just not an increase in growth from 2 to 5°C. 

Based on this, it is possible that at 5°C the temperature increases and the resulting increases in 

the fluxes of carbon, energy and nutrients are too low for the organisms to invest additional 

resources for growth within the timeframe of this experiment. Thus, an additional mechanism 

other than the growth and biomass conversion limitation hypothesized above might act as the 

bottleneck at 5°C. 

4.5 Community composition 

Despite the substantially higher growth rates at 9°C, there was not a corresponding increase in 

the amount of DNA present at the end compared to the start of the experiment (figure 14). This 

coincides with what has been shown previously (Tveit, et al., 2015), and can be seen in relation 

with a higher death rate due to predation by eukaryotic protists (Tveit, et al., 2015) and viral 

infections (Kuzyakow & Mason-Jones, 2018; Bratbak, et al., 1994). The resulting necromass 

can then be fed upon by necromass degraders who among other things degrade DNA, 

explaining why the biomass increase cannot be detected by DNA quantification methods 

(Morrissey, et al., 2015).  

In trying to understand why the CH4 production rates right after temperature change are lower 

than expected we propose that the energy and carbon going into the growth of the microbial 

biomass has not yet been balanced by death, which would cause imbalance between the carbon 

supplied for methanogenesis from polysaccharides and the necromass (figure 21). This could 

create a lag in the total CH4 production as carbon from necromass is still supplied in rates 

similar to before temperature change. So, whereas there is an immediate response in the CH4 

production from the polysaccharides of plants, there is a phase where the supply of carbon from 

the necromass is the same as before temperature change, until death through predation, 

competition and/or virus infection catches up with the increased biomass. An increased death 

rate makes more necromass available for necromass degraders that can then move more carbon 
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into the CH4 production, possibly through methylamines from degradation of amino acids and 

choline, which has been shown to be more important with increasing temperature (Tveit, et al., 

2015). 

As suggested above it is possible that parts of the lacking explanatory power of the Arrhenius 

equation (Yvon-Durocher et al. 2014) might derive from the temporal imbalance between 

increased biomass and death rates. We suggest that shortly after temperature change, enough 

carbon is still trapped in new microbial biomass that we cannot see the effect of temperature on 

the total CH4 production. At first glance we did not observe changes in the community 

composition (figure 15-17), but the CA revealed that some of the most influential OTUs in 

differentiating the high temperature end samples from the start samples were members of the 

phylum Bacteroidetes (figure x). Microorganisms within Bacteroidetes has previously been 

indicated as taking part in the degradation of necromass (Müller, et al., 2018) and predation 

(Lueders, et al., 2006).  

Members of the Planctomycetes also increased in relative abundance with increasing 

temperature. This fits with the observation of Planctomycetes as necromass degraders by 

Morrisey et al. (2015) who saw a correlation between the amount of extracellular DNA and the 

abundance of Planctomycetes. Tveit et al. (2015) showed in their study that the abundance of 

predatory protists increased with increasing temperature, displaying the most prominent shift 

in the entire microbial community. Having this in mind, the findings of increased abundances 

of putative necromass degraders with increasing temperature favors the notion that an increase 

in death rates and necromass decomposition is driven by temperature. While members of 

Bacteroidetes and Planctomycetes may have many different ecological roles in soil (Lueders, 

et al., 2006; Müller, et al., 2018; Morrissey, et al., 2015; Tveit, et al., 2013; Cobaugh, et al., 

2015) we consider this as a plausible explanation for our findings that deserve further 

investigations. 

In summary, it seems like part of the energy and carbon right after temperature change is still 

trapped in new organisms. As the biomass becomes balanced by predator- and virus-driven 

deaths, increased fluxes of necromass provide a window of opportunity in terms of energy, 

carbon and nutrients for increased growth rates of e.g. Planctomycetes and Bacteroidetes 

relative to other members of the microbial community. With the increased abundances of 
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necromass degraders as well as eukaryotic predators the system re-balances at a new steady 

state of growth-death balance after an initial biomass increase (figure 21). 

 

Figure 21 Proposed balance between carbon being used for biomass growth, CH4 production and necromass 
degradation. Before temperature change (black arrows) carbon is sequestered into both biomass growth and CH4 
production. After the temperature increase more carbon is going into both the biomass and the CH4 production (red, 
solid lines), but the number of deaths caused by predation and viral infection has not caught up, leading to the same 
amount of carbon going from the necromass into CH4 production as before temperature change (red, dotted lines). 
When predators and viral infections catch up the death rates increase and as a response, necromass degraders 
starts feeding more carbon into the production of CH4 (blue lines).  

4.6 Temperature range 

This study covers a narrower temperature range than most previous studies (Tveit, et al., 2015; 

Radujkovic, et al., 2018), and we see that the community of microorganisms which are present 

initially at 2°C can adapt to an increase in temperature up to 10°C with very few changes in its 

composition. With larger temperature increases the organisms of the initial community might 

not cope with the changes due to limited temperature ranges of enzyme function. Thus, more 

drastic shifts in the taxonomic composition may be observed at higher temperatures than in our 

narrow temperature range due to replacement of certain populations by taxa more suited for life 

at high temperatures.  
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5 Conclusion 

Here we show that between 2 and 10°C, the temperature effect on CH4 production can be 

explained by the Arrhenius equation if the system is granted sufficient time for acclimatization. 

Correspondingly, the CH4 production rate during the initial stage after temperature change 

cannot be predicted by the Arrhenius equation, confirming that biological changes occur in the 

transition to the predictable rate. Thus, hypotheses 1 and 2 of section 1.5 are confirmed. This 

study thus highlights how time must be considered in order to predict temperature dependent 

changes in CH4 production rates. Furthermore, we observed small shifts in the abundance of 

OTUs within Planctomycetes, Bacteroidetes and a few other taxa with increasing temperature, 

thus rejecting hypothesis 3. We suggest that these shifts are related to the observed temperature 

acclimatization that resulted in higher CH4 production rates, hypothesizing that the responsive 

OTUs are involved in the degradation of accumulating necromass. The overall community did 

not change, indicating that the far majority are not disproportionally affected by temperature 

and systemic changes. Overall, we propose predation and viral infections or other death-causing 

mechanisms as the primary biological mechanisms that limit temperature effects on CH4 

production. 

6 Outlook 

To confirm the proposed mechanisms behind the low CH4 production of the initial stage after 

temperature change, quantification of DNA and RNA after and before temperature change 

could be done to confirm changes in biomass in the acclimatization stage, and metagenomics 

and transcriptomics to look at predatory protist and function of putative necromass degraders. 

Isotope labelling of necromass and SIP-metagenomics could also be performed to look at the 

incorporation of the label in necromass degraders to track their identity. Furthermore, shotgun-

sequencing could be used to avoid primer biases, as we saw some indications that the A519F 

and Bakt_805R produced some biases.  
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Appendix I: Materials and methods 

 

A Determination of microbial growth: DNA extraction protocol. 
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B Determination of microbial growth: DNA quantification with PicoGreen 
(Quanti-iT™ PicoGreen, Life Technologies).  
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C DNA quantification and quality check: Gels 

 

Figure 22 Quality check of the DNA of the extraction replicates of the start samples. Replicate 1 of S1 had a smear 
and was subsequently not used for the 16S amplicon sequencing. All other replicates showed DNA bands.  

 

Figure 23 Quality check of the DNA of the extraction replicates of the end samples. All replicates showed DNA 
bands. 
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D 16S Amplicon sequencing: Percentage coverage of primers 

The percentage coverage of the A519F and the Bakt_805R primers used in this study for the 
16S amplification prior to sequencing.  
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Appendix II: Results 

A Linear regression plot of CH4 concentrations 

 

Figure 24 Linear regression models fitted for each temperature treatment. Red is for the 2°C incubations, yellow is 
for the 3°C incubations, green is the 5°C incubations, blue is the 7.5°C incubations and purple is for the 9°C 
incubations. 
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B Biphasic CH4 production rates 

 

Figure 25 The average concentration of CH4 for each temperature treatments plotted against time. Black, stippled 
lines shows how the biphasic rates were calculated. These are not exact, just indications of how it was done. All 
samples of the 2°C were plotted along with the average to confirm that the average was a good representation of 
all the samples. The rates for the 2°C and 3°C were not treated as biphasic. 
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