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Abstract

If E is an elliptic curve, then the Galois group of the extension gener-
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1 Introduction and notation

The quadratic reciprocity law is a well known theorem in number theory. It
asserts that if p, q are two different odd prime numbers, then

(
p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)

where the Legendre symbol
(
p
q

)
is 1 if p is a square modulo q, and −1 other-

wise. It was first conjectured by Euler in 1782, and the first (incomplete) proof
was given by Legendre [3] in 1788. In 1801, Gauss gave a complete proof by
induction [2]. Since then, more than 220 different proofs have been published,
among them at least 17 since year 2000.

We shall present in this article yet another proof of this law. To achieve
this, we will study the cyclotomic character θ on the Galois group of the field
extension generated by n-torsion points of an elliptic curve. We will prove that
the image of this morphism is included in the kernel of the Jacobi symbol modulo
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n if and only if (−1)
n−1

2 n is a square in the base field. Then taking an elliptic
curve over a finite field with p elements, and n = q gives us the usual quadratic
reciprocity law.

Let K be a field of characteristic χ 6= 2, 3 and let E be an elliptic curve
defined over K by a Weierstrass equation

E : y2 = x3 + a4x+ a6.

Let n be an odd integer, relatively prime to χ. The subgroup E[n] of n-torsion
points on E defined over an algebraic closure K of K generates a Galois extension
L = K(E[n]) ⊂ K of K. The aim of this paper is to show the following quadratic
reciprocity law (theorem 2):

Im(θ) ⊂ Ker(Jn) ⇔ (−1)
n−1

2 n is a square in K

where Jn is the Jacobi symbol modulo n. This reciprocity law is an extension
of the usual quadratic reciprocity law (corollary 4).

We refer to [4, 5] for the theory of elliptic curves, and we will use its notation.
When studying torsion on elliptic curves, it is natural to look at division

polynomials ψn. They have the property that a point P = (x, y) ∈ E(K) is n-
torsion if and only if ψn(x, y) = 0. They are defined recursively in the following
way:

ψ1 = 1

ψ2 = 2y

ψ3 = 3x4 + 6a4x
2 + 12a6x− a2

4

ψ4 = 2y
(
x6 + 5a4x

4 + 20a6x
3 − 5a2

4x
2 − 4a4a6x− 8a2

6 − a3
4

)

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 (m > 2)

2yψ2m = ψm
(
ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1

)
(m > 3)

The interested reader will find an explanation of the recursive equations in [7].
Replacing y2 by x3 + a4x + a6, the polynomials ψ2m+1 and ψ2m

2y are in K[x],

and actually in Z[a4, a6, x]. Those are the polynomials we will consider in the

sequel, and we denote them by ψ̃m. Note that the property of ψ̃2m+1 remains

the same, while the zeroes of ψ̃2m are just the x-coordinates of points of 2m
torsion that are not 2-torsion. The leading coefficient of ψ̃m is equal to m if m
is odd, or m

2 if m is even.
If(α1, · · · , αs) is a s-tuple, we denote it by (αi). By (αi)

′, we mean the
(s − 1)-tuple (α1, · · · , αs−1). Finally, if (αi) and (βi) are two s-tuples, then
δ((αi), (βi)) = #{i| αi 6= βi}.

In the sequel, n is an odd integer relatively prime to χ. We prove the
quadratic reciprocity law itself by looking at the action of Gal(L,K) on E[n].
More precisely, we show that there is a non-canonical group homorphism from
Gal(L,K) into GL2(Z/nZ), and if Mσ is the image of σ ∈ Gal(L,K), then the
signature of the action of σ on E[n] coincides with the Jacobi symbol of the
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determinant of Mσ. This enables us to describe the extension K(
√
δn), where

δn is the discriminant of ψn.
As a corollary, we find the usual quadratic reciprocity law by considering

elliptic curves over finite fields.

2 Relation between the discriminants of the el-

liptic curve and of the division polynomial

We will need several lemmas and propositions in order to prove theorem 1. We
prove first that the discriminant of the division polynomial is a cusp form of the
desired weight and without zeroes on the upper half plane. As a consequence,
it has to be a constant multiplum of a power of the discriminant of the curve.
It thus just remains to compute this constant. Throughout this section, the
positive integer l is fixed.

2.1 The discriminant is a cusp form

Lemma 1. Let τ ∈ H and (a, b) ∈ N
2
l−1\{(0, 0)}. Then

℘a,b

(−1

τ

)
= τ2℘l−b,a(τ).

Proof. We have

℘a,b(τ) =
1

(
a+bτ
l

)2 +
∑

(m, n) ∈ Z
2

(m, n) 6= (0, 0)

[
1

(
a+bτ
l −m− nτ

)2 − 1

(m+ nτ)2

]

so that

℘a,b

(−1

τ

)
=

τ2

(
aτ−b
l

)2 +
∑

(m, n) ∈ Z
2

(m, n) 6= (0, 0)

[
τ2

(
aτ−b
l −mτ + n

)2 − τ2

(mτ − n)
2

]

= τ2℘−b,a(τ)

= τ2℘l−b,a(τ),

the last equality coming from the periodicity of ℘ in the elements of the defining
lattice.

Corollary 1. Let τ ∈ H. Then

δl

(−1

τ

)
= τ2#D(#D−1)δl(τ)
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Proof. We know that the definition of δl(τ) is independent of the choice of
representatives (a, b) for the x-coordinates of points of l-torsion and of the order
on this set. In this case, we choose

D = {(a, 0), a ∈ N
∗
l−1
2

} ∪ {(a, b), a ∈ Nl−1, b ∈ N
∗
l−1
2

}

if l is odd, and

D = {(a, b), a ∈ N
∗
l
2−1

, b ∈ {0, l
2
}} ∪ {(a, b), a ∈ Nl−1, b ∈ N

∗
l
2
}

if l is even, with any order (for example (a, b) < (a′, b′) ⇔ al + b < a′l + b′).
Obviously, when (a, b) runs over D, then (l − b, a) runs over another set of
representatives for the x-coordinates of points of l-torsion.

Lemma 2. Let τ ∈ H and (a, b) ∈ N
2
l−1\{(0, 0)}. Then

℘a,b(τ + 1) = ℘a+b,b(τ).

Proof. From the q-expansion of ℘, we can deduce a r-expansion of ℘a,b, where

r = e
2iπτ

l and ζl = e
2iπ

l . Namely, we have:

1

(2iπ)2
℘a,b(τ) =

∑

n∈Z

rln+bζal

(1 − rln+bζal )
2 +

1

12
− 2

∑

n>1

rln

(1 − rln)
2

But, under the transformation τ 7→ τ + 1, we have r 7→ rζl and thus

1

(2iπ)2
℘a,b(τ + 1) =

∑

n∈Z

rln+bζln+b
l ζal(

1 − rln+bζln+b
l ζal

)2 +
1

12
− 2

∑

n>1

rlnζln
(
1 − rlnζlnl

)2

=
∑

n∈Z

rln+bζa+bl(
1 − rln+bζa+bl

)2 +
1

12
− 2

∑

n>1

rln

(1 − rln)
2

=
1

(2iπ)2
℘a+b,b(τ)

Corollary 2. Let τ ∈ H. Then

δl(τ + 1) = δl(τ).

Proof. We choose the sameD as in the previous corollary. Then when (a, b) runs
over D, (a+ b, b) runs over another set of representatives for the x-coordinates
of the points of l-torsion.We have therefore

δl(τ + 1) = C
∏

(a, b), (a′, b′) ∈ D

(a, b) < (a′, b′)

(℘a,b(τ + 1) − ℘a′,b′(τ + 1))
2

= C
∏

(a, b), (a′, b′) ∈ D

(a, b) < (a′, b′)

(℘a+b,b(τ) − ℘a′+b′,b′(τ))
2

= δl(τ).
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Proposition 1. The function

δl : H −→ P1(C)
τ 7−→ δl(τ)

is a cusp form of weight 2k = 2#D(#D − 1) for SL2(Z). It has a unique zero
in i∞.

Proof. The r-expansion of ℘a,b(τ) shows that it is a meromorphic function on
H. Actually, this is a holomorphic function since the only poles of the function
℘ are at the points of the lattice, and we always evaluate the functions outside
of these points. Since δl is a combination of finite sums and products of these
functions, it is also a meromorphic function on H. The corollaries 1 and 2 show
that δl is then a modular function of weight 2k. Using the r-expansion of ℘a,b
again, we see that δl(i∞) = 0 so that δl is a cusp form. Finally, we have for
τ ∈ H and (a, b), (a′, b′) ∈ N2

l−1\{(0, 0)},

℘a,b(τ) = ℘a′,b′(τ) ⇔ (a, b) = ±(a′, b′) mod l.

This shows that δl has no zeroes on H.

Corollary 3. There exists a constant kl (depending on l) such that

δl = kl∆
k/6.

Proof. We know ([5], cor. I.3.8) that

1

2
ordi(δl) +

1

3
ordρ(δl) + ordi∞(δl) +

∑

τ ∈ X(1)
τ 6= i, ρ, i∞

ordτ (δl) =
k

6
.

We also know that the only possible zero or pole of δl is at i∞ so that

ordi∞(δl) =
k

6
.

The function ∆k/6 is also a cusp form of weight 2k with the same zeroes and
poles, so that they have to differ by a multiplicative constant.

We shall now make this constant explicit.

2.2 Computation of the constant kl

We will compute dl, the term of lowest degree of the r-expansion of δl, and
compare it to the term of lowest degree of ∆k/6. The latter one is known to be
(2π)2kqk/6. Let us denote fa,b,a′,b′ the term of lowest degree of the r-expansion
of ℘a,b − ℘a′,b′ . We will then have

dl =
∏

(a,b)<(a′,b′)

f2
a,b,a′,b′ .
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We have

1

(2iπ)
2 (℘a,b(τ) − ℘a′,b′(τ)) =

∞∑

n=0

(
rln+bζal

(1 − rln+bζal )
2 − rln+b′ζa

′

l(
1 − rln+b′ζa

′

l

)2

)

+

∞∑

n=0

(
rln−bζ−al(

1 − rln−bζ−al
)2 − rln−b

′

ζ−a
′

l(
1 − rln−b′ζ−a

′

l

)2

)

and since

rln±bζ±al(
1 − rln±bζ±al

)2 =

{
rln±bζ±al + O

(
rln±b

)
if ln± b 6= 0

ζ±a
l

(1−ζ±a
l )2 + O(1) otherwise,

looking carefully at the terms of lowest degree, we find that

Lemma 3. Keeping the same notation,

1

(2iπ)
2 fa,b,a′,b′ =






ζa
l

(1−ζa
l )2 − ζa′

l

(1−ζa′

l )2 if b = b′ = 0

ζa
l

(1−ζa
l )2 if 0 = b < b′

(
ζal − ζa

′

l

)
rb if 0 < b = b′ < l

2

ζal r
b if 0 < b < b′(

ζal + ζ−al − ζa
′

l − ζ−a
′

l

)
r

l
2 if b = b′ = l

2 .

To ease the computation, we introduce the following notation:

ga,b =
∏

(a′b′)>(a,b)

f2
a,b,a′,b′

so that
dl =

∏

(a,b)∈D

ga,b.

We have to distinguish two cases, namely l odd and l even. As we are just
interested in the case l odd in the sequel, this is the case we will develop. We
will mention the result when l is even, without proof. The interested reader
may find it on [6]. From now on, l is odd.

Recall that in this case, we choose the set D to be

D =
{
(a, 0), a ∈ N

∗
⌊ l

2 ⌋

}
∪
{
(a, b), a ∈ Nl−1, b ∈ N

∗
⌊ l

2 ⌋

}

We first compute the ga,b, and we distinguish two cases, namely b = 0 and b > 0.
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In the first case, we have

ga,0 =

l−1
2∏

a′=a+1

f2
a0,a′,0

l−1
2∏

b′=1

l−1∏

a′=0

f2
a,0,a′,b′

=

l−1
2∏

a′=a+1

(2iπ)
4

[
ζal

(1 − ζal )
2 − ζa

′

l(
1 − ζa

′

l

)2

]2 l−1
2∏

b′=1

l−1∏

a′=0

(2iπ)
4 ζ2a

l

(1 − ζal )
4

=
(2π)

2l2−2−4a

(1 − ζal )
2l2−2−4a

ζ−a−2a2

l

l−1
2∏

a′=a+1

(
1 − ζa

′−a
l

)2 (
1 − ζa

′+a
l

)2

(
1 − ζa

′

l

)4

and in the latter

ga,b =
l−1∏

a′=a+1

f2
a,b,a′,b

l−1
2∏

b′=b+1

l−1∏

a′=0

f2
a,b,a′,b′

=

l−1∏

a′=a+1

(2iπ)
4
(
ζal − ζa

′

l

)2

r2b

l−1
2∏

b′=b+1

l−1∏

a′=0

(2iπ)
4
ζ2a
l r2b

= (2π)
2l2+2l−4bl−4−4a

rbl
2−2b2l+bl−2b−2ab

l−1∏

a′=a+1

(
ζal − ζa

′

l

)2

We now compute the product of all the ga,b when (a, b) runs through D. We
then get:

dl

rlk/6 (2π)
2k

=

∏ l−1
2
a=1 ga,0

∏ l−1
2

b=1 ga,b

rlk/6 (2π)
2k

=




l−1
2∏

a=1

ζ−2a−2a2

l

(1 − ζal )2l
2−2−4a

l−1
2∏

a′=a+1

(
1 − ζa

′−a
l

)2 (
1 − ζa

′+a
l

)2

(
1 − ζa

′

l

)4







l−1
2∏

b=1

l−1∏

a=0

l−1∏

a′=a+1

(
ζal − ζa

′

l

)2




After a little bit of combinatorics, we find that

l−1
2∏

a=1

l−1
2∏

a′=a+1

(
1 − ζa

′

l

)4

=

l−1
2∏

a=1

(1 − ζal )
4a−4

while
l−1
2∏

a=1

l−1
2∏

a′=a+1

(
1 − ζa

′−a
l

)2

=

l−1
2∏

a=1

(1 − ζal )l−1−2a .
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Let us now look at the quantity

l−1
2∏

a=1

l−1
2∏

a′=a+1

(
1 − ζa

′+a
l

)2

.

Given a 1 6 c 6 l−1
2 , how many couples (a, a′) in the product are such that

a+ a′ = c or a+ a′ = l− c? It actually depends on the parity of c: if c is even,
then there exists respectively c

2 − 1 and c
2 such couples, while if c is odd, then

the numbers are both equal to c−1
2 . When c is even,

∏

a+a′≡±c [l]

(
1 − ζa+a

′

l

)2

=
∏

a+a′=c

(1 − ζcl )
2

∏

a+a′=l−c

(
1 − ζ−cl

)2

= (1 − ζcl )
c−2 (−ζ−cl

)c
(1 − ζcl )

c

=
(1 − ζcl )

2c−2

ζc
2

l

,

while the same computation shows that when c is odd,

∏

a+a′≡±c [l]

(
1 − ζa+a

′

l

)2

=
(1 − ζcl )

2c−2

ζc
2−c
l

.

Computing the product of all these quantities when 1 6 c 6
l−1
2 shows that

l−1
2∏

a=1

l−1
2∏

a′=a+1

(
1 − ζa+a

′

l

)2

=
µ(l)

∏ l−1
2
c=1(1 − ζcl )

2c−2

ζ
l(l2−1)

24

l

,

where

µ(l) =





ζ

(l−1)2

16

l if l ≡ 1 (mod 4)

ζ
(l+1)2

16

l if l ≡ 3 (mod 4)
.

If we gather everything in our original formula, we obtain

dl =

(2π)
2k
µ(l)

(∏
16a<a′6 l−1

2

(
ζal − ζa

′

l

)2
) l−1

2

rlk/6

ζ
(l−1)(l+1)(l+2)

8

l

∏ l−1
2
a=1 (1 − ζal )

2l2−l−3

=
(−1)

l−1
2 (2π)

2k
l

l(l−1)
2 µ(l)rlk/6

ζ
(l−1)(l+1)(l+2)

8

l

∏ l−1
2
a=1 (1 − ζal )

2l2−l−3

8



Finally

l−1
2∏

a=1

(1 − ζal )
2

=

l−1
2∏

a=1

(1 − ζal )

l−1
2∏

a=1

(−ζal )
(
1 − ζ−al

)

= (−1)
l−1
2 ζ

l2−1
8

l

l−1∏

a=1

(1 − ζal )

= (−1)
l−1
2 ζ

l2−1
8

l l,

and putting everything together, we get

dl =
(−1)

l−1
2 (2π)

2k
µ(l)l

l−1
2 rlk/6

ζ
(l−1)(l+1)2(2l−1)

16

l l
(l+1)(2l−3)

2

=
(−1)

l−1
2 (2π)

2k
µ(l)ζ

(l−1)(l+1)2

16

l rlk/6

l
l2−3

2

.

Considering the two cases l ≡ 1 (mod 4) and l ≡ 3 (mod 4), it is then easy to
see that

µ(l)ζ
(l−1)(l+1)2

16

l = 1

and thus

dl = (−1)
l−1
2 r

l(l4−4l2+3)
24 (2π)

l(l4−4l2+3)
2 l

3−l2

2 .

Theorem 1. Keeping the same notation, we have

δl =

{
(−1)

l−1
2 l

l2−3
2 ∆

l4−4l2+3
24 if l is odd

(−1)
l
2−1 16l

l2−6
2 ∆

l4−10l2+24
24 if l is even

.

Proof. This is a direct consequence of the above computations, corollary 3 and
the fact that

disc(λP ) = λ2 deg(P )−2disc(P )

3 Main result

Let n be an odd integer such that (n, d) = 1. Let Tn = (Z/nZ)
2 \
{[

0
0

]}
and

Vn is obtained from Tn by identifying v with −v. There are obvious actions of
GL2(Z/nZ) on Tn and Vn that we denote by τ and τ respectively. Let σ and σ
be the signature on Sym(Vn) and Sym(Tn) respectively.

Proposition 2. With the previous notation, we have:

∀M ∈ GL2(Z/nZ), σ ◦ τ(M) = σ ◦ τ (M) =

(
det(M)

n

)

where
(
·
·

)
is the Jacobi symbol.
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Proof. Since GL2(Z/nZ) is generated by S =

[
0 −1
1 0

]
, T =

[
1 1
0 1

]
and for

d ∈ (Z/nZ)
∗
, Ud =

[
d 0
0 1

]
, it suffices to show the equalities for these matrices.

Moreover, if we write n =
∏m
i=1 p

αi

i , then (Z/nZ)
∗

is generated by m elements
di such that di ≡ 1 (mod pj) if i 6= j, and di is a generator of (Z/pαi

i Z)
∗
. It

is then sufficient to show the equalities for d = di, and since the argument will
be similar for all i, one may assume without loss of generality that i = m, and
that d = dm.

It is a well known fact that a permutation on a finite set has signature
(−1)q−o where q is the set’s cardinality, while o is the number of orbits.

Let M ∈ GL2(Z/nZ). If < t > is the orbit of t ∈ Tn under the action of M ,
let

Ω1 = {< t > | − t ∈< t >, t ∈ Tn}
and

Ω2 = {< t > | − t 6∈< t >, t ∈ Tn}
Let ωi = #Ωi for i = 1, 2. Obvioulsy, ω2 is even. The obvious map from the
orbits of M acting on Tn onto the orbits of M acting on Vn is 1−1 on Ω1, while
it is 2 − 1 on Ω2. Then

σ(τ(M)) = (−1)(n
2−1)−(ω1+ω2) = (−1)ω1

while

σ(τ (M)) = (−1)
n2−1

2 −(ω1+
ω2
2 ) = (−1)ω1+

ω2
2 .

The first equality in the proposition holds if ω2 ≡ 0 (mod 4).

If M = S, then it is easy to see that ω1 = n2−1
4 , ω2 = 0, and since det(M) =

1, the proposition holds in this case.

If M = T , then for r ∈ Z, M r

[
x
y

]
=

[
x+ ry
y

]
, and once again, ω1 = 0. This

shows also that if y 6= 0, the length l of the orbit of

[
x
y

]
is the smallest positive

integer r such that ry = 0. If we write y = y′
∏m
i=1 p

βi

i with (y′, n) = 1, then

ry = 0 ⇔ r

m∏

i=1

pβi

i = 0 in Z/nZ ⇔ ∃λ ∈ N, r = λ

m∏

i=1

pαi−βi

i

and therefore l =
∏m
i=1 p

αi−βi

i . Given y 6= 0, there are exactly n points of the

form

[
x
y

]
, and each of them lie in an orbit of length

∏m
i=1 p

αi−βi

i . This gives

∏m
i=1 p

βi

i such orbits. Given a m-tuple (βi), there are exactly φ(
∏m
i=1 p

αi−βi

i )

elements y that are of the form y = y′
∏m
i=1 p

βi

i with (y′, n) = 1. If we add to
this the n− 1 fixed points coming from y = 0, we get

ω2 = n− 1 +

(αi)∑

(βi)=(0)

(βi) 6=(αi)

(
m∏

i=1

pβi

i φ

(
m∏

i=1

pαi−βi

i

))
.
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If δ((αi), (βi)) > 2, then a factor (pi − 1)(pj − 1) appears in φ(
∏m
i=1 p

αi−βi

i ),
which makes the corresponding term congruent to 0 modulo 4. We just need to
consider terms with δ((αi), (βi)) = 1, which gives, modulo 4,

ω2 ≡ n− 1 +
m∑

k=1

αk−1∑

βk=0




m∏

i=1

i6=k

pαi

i


 pαk

k φ(pαk−βk

k )

≡ n− 1 +

m∑

k=1

αk−1∑

βk=0




m∏

i=1

i6=k

pαi

i


 pαk

k (pk − 1)pαk−βk−1
k

≡ n− 1 +

m∑

k=1

αk
n

pk
(pk − 1)

≡ n− 1 +

m∑

k=1

pk≡3 (mod 4)

2αk
n

pk

≡ n− 1 + 2

m∑

k=1
pk≡3 (mod 4)

αk≡1 (mod 2)

n

pk

Let E = {k| pk ≡ 3 (mod 4), αk ≡ 1 (mod 2)} and e = #E. Then

n =

m∏

i=1

pαi

i ≡ 3e (mod 4) and
n

pk
≡ 3e−1 (mod 4).

This sums up to
ω2 ≡ 3e − 1 + 2e3e−1 ≡ 0 (mod 4)

independently on the parity of e, and the first equality is proved. Since det(M) =
1, once again, the proposition holds for M = T .

If M = Ud, then for r ∈ Z, M r

[
x
y

]
=

[
drx
y

]
. Then if t =

[
x
y

]
,

−t ∈< t >⇔ y = 0 and ∃r, drx = −x.

Write x = x′
∏m
i=1 p

γi

i with (x′, n) = 1. Then drx = −x ⇔ dr = −1 in

Z/(
∏m
i=1 p

αi−γi

i )Z. The choice of d implies γi = αi for i < m. Thus

−t ∈< t >⇔ t =

[
x′pγm

m

∏m−1
i=1 pαi

i

0

]

for (x′, n) = 1 and 0 6 γm < αm. If t is of this kind then the length of the
orbit < t > is equal to the order of d in Z/(pαm−γm

m )Z, that is φ(pαm−γm
m ). On

the other hand, there are exactly φ(pαm−γm
m ) many x of that kind, which means

11



that for every 0 6 γm < αm, there is exactly one orbit of length φ(pαm−γm
m ) in

Ω1. We have thus proved that ω1 = αm.
Now, if x = x′

∏m
i=1 p

γi

i , (x′, n) = 1, the same argument shows that the

length of the orbit generated by

[
x
y

]
is φ(

∏m
i=1 p

αi−γi

i ). But, this is equal to

φ(pαm−γm
m ) by the choice of d = dm. Given an m-tuple (γi), there are exactly

φ(
∏m
i=1 p

αi−γi

i ) many x of the form x = x′
∏m
i=1 p

γi

i , (x′, n) = 1. In order to
find ω2, we have to be careful to eliminate all the m-tuples (α1, . . . , αm−1, γm)

which give an orbit in Ω1, and not to forget the fixed points of the form

[
0
y

]
.

This gives, modulo 4:

ω2 ≡ n− 1 + n

(αi)∑

(γi)=(0)

(γi) 6=(αi)

φ(
∏m
i=1 p

αi−γi

i )

φ(pαm−γm
m )

− #ω1

≡ n− 1 + n

(αi)∑

(γi)=(0)

(γi) 6=(αi)

φ

(
m−1∏

i=1

pαi−γi

i

)
− #ω1

≡ n− 1 − αm + n




(αi)
′∑

(γi)
′=(0)

(γi)′ 6=(αi)′

αm∑

γm=0

φ

(
m−1∏

i=1

pαi−γi

i

)
+

αm−1∑

γm=0

φ(1)




≡ (n− 1)(αm + 1) + n(αm + 1)

(αi)
′∑

(γi)
′=(0)

(γi)′ 6=(αi)′

φ

(
m−1∏

i=1

pαi−γi

i

)

≡ (n− 1)(αm + 1) + n(αm + 1)

m−1∑

k=1

pk≡3 (mod 4)

αk−1∑

γk=0

φ(pαk−γk

k )

≡ (n− 1)(αm + 1) + n(αm + 1)

m−1∑

k=1

pk≡3 (mod 4)

2

αk−1∑

γk=0

pαk−γk−1
k

≡ (n− 1)(αm + 1) + n(αm + 1)

m−1∑

k=1

pk≡3 (mod 4)

(3αk − 1)

≡ (n− 1)(αm + 1) + n(αm + 1)

m−1∑

k=1
pk≡3 (mod 4)

αk≡1 (mod 2)

2
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If αm ≡ 0 (mod 2), then obviously, ω2 ≡ 0 (mod 4). If not, then let

e = #{k| 1 6 k 6 m, pk ≡ 3 (mod 4), αk ≡ 1 (mod 2)}
= #{k| 1 6 k 6 m− 1, pk ≡ 3 (mod 4), αk ≡ 1 (mod 2)}.

Then
ω2 ≡ (3e − 1)(αm + 1) + 2e3e(αm + 1) ≡ 0 (mod 4)

idependently on the parity of e. This shows once again the first equality. Since

d generates (Z/pmZ)
∗
, it can not be a square there, and

(
d
pm

)
= −1. We also

have that
(
d
pi

)
= 1 for i < m. Then,

(
det(M)

n

)
=

m∏

i=1

(
d

pi

)αi

=

(
d

pm

)αm

= (−1)αm = σ ◦ τ(M),

and the proposition holds in this case too.

We can now prove our quadratic reciprocity law. Let E be an elliptic curve
defined over a field K and n > 3 be an odd integer prime to the characteristic of
K. Let δn be the discriminant of the n-th division polynomial ψn. Let L be the
extension of K generated by E[n]. This is a Galois extension of K with Galois
group G. This group acts canonically on E[n]. If < P,Q > is a basis of E[n],
then we have a natural embedding

ϕP,Q : G →֒ GL2(Z/nZ).

We also have
det : GL2(Z/nZ) → (Z/nZ)∗ .

The morphism θ = det ◦ ϕP,Q is independent of P and Q. Let H = Im(θ),
and S ⊂ (Z/nZ)∗ be the kernel of the Jacobi symbol Jn =

(
·
n

)
. We have the

following quadratic reciprocity law:

Theorem 2. The following assertions are equivalent:

H ⊂ S,

δn is a square in K,

(−1)
n−1

2 n is a square in K.

Proof. Let w ∈ L be a square root of δn. It is given by

w = ±
∏

(x(P ) − x(P ′))

where P, P ′ in E[n]\{0} run over ordered pairs modulo the action of {±Id}.
Let λ ∈ G. Then λ induces a permutation on {x(P )| P ∈ E[n]}, and thus

13



λ(w) = ±w. By proposition 2, we have, for < P,Q > any basis of E[n],

λ(w) = w ⇔ σ ◦ τ (ϕP,Q(λ)) = 1

⇔
(
θ(λ)

n

)
=

(
det ◦ ϕP,Q(λ)

n

)
= 1

⇔ θ(λ) ∈ S.

Then we have

δn is a square in K ⇔ w ∈ K ⇔ ∀λ ∈ G, θ(λ) ∈ S ⇔ H ⊂ S.

From theorem 1, we know that δn = (−1)
n−1

2 n
n2−3

2 ∆
n4−4n2+3

24 . This is a

square if and only if (−1)
n−1

2 n is a square. For a detail proof of [1], see [6]

4 The standard quadratic reciprocity law

As a corollary, we can prove the usual quadratic reciprocity law:

Corollary 4. Let p, q be two odd primes. Then

(
p

q

)
=

(
(−1)

q−1
2 q

p

)
= (−1)

p−1
2

q−1
2

(
q

p

)
.

Proof. Let E be any elliptic curve defined over Fp. Take n = q. As we are
dealing with finite fields, the Galois group G is generated by the Frobenius
endomorphism Fr. Let < P,Q > be any basis of E[q], and write ϕP,Q(Fr) =[
a b
c d

]
. Since < P,Q > is a basis of E[q], the root of unity ζq = eq(P,Q), where

eq is the Weil pairing, is primitive. By the properties of the Weil pairing, we
have:

Fr(eq(P,Q)) = Fr(ζq) = ζpq

= eq(Fr(P ), F r(Q)) = eq(aP + bQ, cP + dQ)

= eq(P,Q)ad−bc = ζdet◦ϕP,Q(Fr)
q .

By the primitivity of ζq, we have then

θ(Fr) ≡ p (mod q).

This gives us
H =< θ(Fr) >=< p > .

By the previous theorem, p is a square in Z/qZ if and only if (−1)
q−1
2 q is a

square in Fp.
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