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Chapter 1

Introduction

1.1 Background

Gas phase calculations for Quantum chemical systems have well defined and reliable
results which can be used to predict properties from several systems in vacuum. Although,
it is rare for an experimental chemist to work with gas phase properties. Most of the
processes of interest chemical pricesses and mechanisms happen while in a solvent [1].
Therefore it is important to be able to produce reliable results when working with these
systems. Many models exist to solve this system, outlined in chapter 4, but, in this thesis,
we will mainly focusing on Polarizable Continuum Model (PCM).

A big hurdle for PCM is working with the sharp transition between solvent and solute.
Numerous methods have been implemented in order to minimize the discontinuity at this
boundary [2]. Our approach is to define both the solvent and substrate environments as
an analytical function represented with Multiwavelet (MW) basis.

MW are a part of a family of basis classified under MRA. MW basis sets have useful
characteristics for development of solutions of partial differential equations. These are
orthogonality of wavelet spaces, vanishing moments and locally adaptive representations
of functions, which allow for further refining critical areas of a system.

1.2 Summary of results

The main goal with this project was to have a working implementation of solvent effect in
MW basis by following in Fosso–tande’s footsteps [1]. Another objective was to implement
a variational formulation of the Generalized Poisson Equation (GPE) as defined in [3].

We found that the implementation managed to produce values that did not differ
significantly from exact calculations of the properties tested, these being the Born energy
of the solvent [4] and Gauss’ theorem as defined in [5]. The energy calculations yielded
results that converged towards Gaussian results as the radii increased. We also tested the
Variational formulation of the GPE shown in [3], which gave promising results for small
systems, such as Li+, but showed room for improvement for bigger systems.

1.3 Structure of the thesis

In chapter 2 of this thesis the quantum and computational Chemical formalism will
be presented along with methods used to solve systems. Among these are the Born–
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2 CHAPTER 1. INTRODUCTION

Oppenheimer approximation, variational principle, Hartree–Fock (HF) method and Den-
sity Functional Theory (DFT).

Some examples of Wavelet basis are shown and Chapter 3 will mention some basis
sets and define MW the implementation of different operators is described.

Chapter 4 describes the particular system we work with in this thesis, namely, solvent
effect and the reaction potential. This chapter will also introduce a new variational
formulation of the GPE used in solving the electrostatic reaction field problem.

Chapter 5 describes how the reaction field Potential was implemented using MRChem .
It will also describe the way the variational formulation was implemented.

Chapter 6 Goes through the systems that were used to test the implementation, along
with the type of tests that were performed. The results will be tabulated and some figures
will be shown. Finally an analysis and discussion of the results will be presented along
with points of improvement and future development.

1.4 Notation

Notation differs slightly between works in computational and Quantum Chemistry. Most
of the equations and formulas use the same standard notation, while others might dif-
fer slightly in accents and other details in their notations. Therefore in this section a
summarization of notation used in this thesis will be given.

The following Table 1.1 shows most of the notation used for common objects in math-
ematics and quantum mechanics.

Object Description of notation Examples

vectors lower case letter, or symbol, with an arrow above them ~r, ~x, ~Ψ

vector elements lower case letter, or symbol, with an arrow above them and index subscripts ~ri, ~x1, ~Ψx

matrices Upper case letter or symbols with a line above them Ā, F̄ , S̄

matrix elements Upper case letter with a line above them and index subscripts (rows, columns) Āij, F̄11, S̄µν

Operators Presented as a symbol with a ˆ above it Ô, Ĥ, F̂

functions presented by a letter with their input variables enclosed in parentheses () f(x),Ψ(~r)

functionals presented by a letter with their input functions enclosed in square brackets [] E[f ], F [Ψ]

Table 1.1: Notation used in this thesis

Because we are working with atomic units, many of the common constants are reduced
to unit value. The constants used in this thesis are the elementary charge e the reduced
Planck constant ~, the electron mass me and vacuum permittivity εin are all unit value.

Finally, we will be working in Dirac notation, which means we write a state vector of
a wave function Ψ as |Ψ〉 and its complex conjugate as 〈Ψ|. The scalar product in Dirac
notation is defined as

〈Ψ|Φ〉 =

∫
R3

Ψ?Φd~r (1.1)

https://github.com/MRChemSoft/mrchem


Chapter 2

Quantum Chemistry

2.1 Quantum Mechanics

2.1.1 The postulates of quantum mechanics

Quantum Mechanics (QM) are based on a set rules that define operations and states. We
will present these rules as six different postulates of QM (sometimes divided as 5) [6, 7].

First postulate

The first postulate states that everything known about a physical system can be extracted
from the wave function Ψ(x, t) of that system [6]. The wave function is defined as a
function vector, or state vector, |Ψ(t0)〉 ∈ L2 that has a defined finite scalar product as
shown in Equation 1.1 [7]

Second postulate

A generic observable O is represented by a generic operator Ô. Two such observables are
the position and momentum of a particle. These are represented by q̂i and p̂i respectively,
where i = {x, y, z}. These operators fulfill the following commutation relations [6, 7]:

[qi, pj] = i~δij
[qi, qj] = 0

[pi, pj] = 0

(2.1)

The Operators that represent observables are linear and Hermitian.

Third postulate

When measuring an observable O on a system |Ψ〉, the only possible values of the mea-
surement are eigenvalues of the corresponding operator Ô onto the measured system Ψ
at its current state |Ψi〉. The eigenvalues are solutions to the following equation [7]

Ô |Ψi〉 = oi |Ψi〉 (2.2)

This holds true even if the state measured is not an eigenstate of Ô.

3



4 CHAPTER 2. QUANTUM CHEMISTRY

A system state vector |Ψ〉 that is not an eigenstate of Ô as a linear combination of
eigenstates |i〉 of the operator can be represented as

|Ψ〉 =
∑
i

ci |i〉 (2.3)

where the coefficients ci are computed as the projection of |Ψ〉 onto the eigenstates of the
operator

ci = 〈i|Ψ〉 . (2.4)

Let us say that we apply the generic operator on one of its eigenstates that is multiplied
with the projection coefficient ci from Equation 2.4. This gives us

Ôci |i〉 = ciÔ |i〉 = cioi |i〉 = oici |i〉 (2.5)

Since ci |i〉 is one of the components in the eigenstate |Ψ〉 applying the operator on it will
always give us exactly one of its eigenvalues, with different probabilities depending on its
projection on the set of eigenstates of the operator [7].

Fourth postulate

The fourth postulate states the possible probabilities of getting a specific eigenvalue for
a given measurement. Let |i〉 be an eigenfunction of Ô such that:

Ô |i〉 = oi |i〉 (2.6)

and

|Ψ〉 =
∑
i

ci |i〉 (2.7)

has no degenerate eigenvalue. The probability of measuring eigenvalue oi from |Ψ〉 is
given by [7]:

P(oi) = |〈i|Ψ〉|2

=
∑
j

c?i cj 〈i|j〉

=
∑
j

c?i cjδij

= |ci|2

(2.8)

Following the Equation 2.8 the probability of measuring the eigenvalue oi from |Ψi〉 is
just one. The sum of all the probabilities for each eigenvalue is:∑

i

P(oi) =
∑
i

|ci|2 = 1 (2.9)

Here we have ignored the case for degenerate eigenvalues and continuous spectra of eigen-
values, where the method is analogous to the one used above. The reader is invited to
look them up themselves in [6, 7].
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Fifth postulate

The fifth postulate states that immediately after a measurement where the eigenvalue was
oi the state of the system |Ψ〉 collapses into a state where the only value one can measure
is oi, which is |i〉 using the conventions stated in postulate 3 and 4. This is because before
measuring, the probabilities for any eigenvalue is as stated in the fourth postulate. When
the value has been measured the uncertainty does not exists, as the state of the system
must be one that gives exactly that value. The following Equation 2.10 represents the
postulate.

|Ψ〉 oi⇒ |Ψi〉 (2.10)

Sixth postulate

When undisturbed, the system changes in a deterministic way [7]. This change is governed
by the time dependent Schrödinger Equation (SE) [7, 6]:

i~
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 (2.11)

Where Ĥ is the Hamiltonian operator which has the total energy of the system as its
eigenvalues.

2.1.2 The Schrödinger equation

Lets consider the following SE for a particle allowed to move in only one dimension and
where its potential energy varies with position (e.g., the Harmonic oscillator model [7, 8]).

ĤΨ =

(
− ~2

2m

∂2

∂x2
+ V̂ (x)

)
Ψ = i~

∂

∂t
Ψ (2.12)

We can substitute
Ψ(x, t) = ψ(x)τ(t)

into 2.12 by assuming that the wave function can be separated into spatial and time
dependent functions [6]: (

− ~2

2m

∂2

∂x2
+ V̂ (x)

)
ψτ = i~

∂

∂t
ψτ

− ~2

2m
τ
d2ψ

dx2
+ V̂ (x)ψτ = i~ψ

dτ

dt

− ~2

2m

1

ψ

d2ψ

dx2
+ V̂ (x) = i~

1

τ

dτ

dt

(2.13)

In the last step of the Equation 2.13 we divided both sides with 1
τψ

. This shows that,
since the left-hand side of the equation is only dependent on x and the right-hand side is
only dependent on t, no matter how much we change each of the coordinates, they must
always equal to a constant. This constant will be denoted by E as it is the energy of the
system. This gives us the following set of equations [6]:

− ~2

2m

d2ψ

dx2
+ V̂ (x)ψ = Eψ (2.14a)

i~
dτ

dt
= Eτ (2.14b)
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Equation 2.14b can be solved by observation as [6, 7] :

τ(t) = e−iE
t
~ (2.15)

while the remaining Equation 2.14a can be rewritten as

Ĥψ = Eψ (2.16)

which is the time-independent SE.
The energy of the system can be calculated as follows [9]:

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

= E (2.17)

If the wave function is normalized the denominator becomes 1.

2.2 Two-particle system

A two-particle system (such as the H or the He+ atoms) has a simple Hamiltonian of the
form

Ĥ = T̂N + T̂e + V̂ (2.18)

where T̂N and T̂e are the kinetic energy operators of the nucleus N and of the electron e
and V̂ is the Coulomb potential for two-particles [8, 10]. This system has an analytical
solution in which one follows these steps:

1. Set a center of mass coordinate system.

2. Change to spherical coordinates so that the potential operator becomes a simple
function of the radius.

3. Separate into radial function R(r) and angular function Y (θ, φ). The angular func-
tion can be separated into two more functions Θ(θ) and Φ(φ).

4. Solve as three sets of differential equations [11].

Following the steps above, the two-particle system is analytically solvable for the center
of mass and angular motion when the potential energy is defined as function of only the
distance between the nucleus and the electron. Examples are the harmonic oscillator and
the Coulomb potential.

2.3 Many-body systems

For bigger systems, there is no practical way to analytically solve the SE [10]. For one,
for each particle, the amount of dimensions that need to be evaluated increases by three,
that is, one can expect the wave function dimension to increase by a factor of 3N for each
particle N [9].

Additionally, the potential energy operator becomes more complicated, as it would
not just have the attractive forces between electron-nuclei, but also the repulsive forces
between all the electrons and between all the nuclei. Both of these problems add more
terms per particle and thus would be impossible to be solved in a realistic time frame [10].
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2.3.1 The Born–Oppenheimer approximation

A many-body system consists of N nuclei with mass mI for each nucleus I and n electrons
with mass mi for each electron i. Each nucleus has a charge ZIe and each electron has a
charge −e, where ZI is the atomic number of the nucleus I and e is the elementary charge
[8]. The N nuclei and n electrons are located in a three-dimensional coordinate system

where each nucleus I has coordinates ~RI = (xI , yI , zI) and each electron has coordinates
~ri = (xi, yi, zi).

To calculate the total energy and wave functions of the system we define a time
independent SE where the wave function is dependent on the coordinates of both the
electrons and the nuclei, which we will use a single ~R to the coordinates of all the nuclei
and a single ~r to denote the coordinates of all the electrons.

ĤΨ(~r, ~R) = EΨ(~r, ~R) (2.19)

Here the Hamiltonian, as with the two-particle system, has a potential energy V̂ and
a kinetic energy T̂ operator. As with the two-particle system, we can divide T̂ as a sum
of two contributions, an electron contribution T̂e and a nuclear contribution T̂N . The only
difference is that these contributions are sums over all the particles instead of just one
each[9]

T̂e =
n∑
i

~
2mi

∇2
i (2.20)

T̂N =
N∑
I

~
2mI

∇2
I (2.21)

where ∇2
k is the Laplacian operator operating on particle k

∇2
k =

(
∂2

∂x2
k

+
∂2

∂y2
k

+
∂2

∂z2
k

)
. (2.22)

The potential operator, which we define as a sum of Coulomb potentials, is now much
more complicated. It consists of three contributions: the nucleus-electron attraction V̂Ne,
the nucleus-nucleus V̂NN repulsion and the electron-electron repulsion V̂ee [9].

V̂Ne =
N∑
I

n∑
i

− ZIe
2∣∣∣~RI − ~ri
∣∣∣ (2.23)

V̂NN =
1

2

N∑
I 6=J

ZIZJe
2∣∣∣~RI − ~RJ

∣∣∣ (2.24)

V̂ee =
1

2

n∑
i 6=j

e2

|~ri − ~rj|
(2.25)

where I, J iterate through the nuclei and i, j iterate through the electrons. The Hamil-
tonian is therefore dependent on the positions of all the electrons and all the nuclei [10]

Ĥ(~r, ~R) = T̂e + T̂N + V̂Ne + V̂NN + V̂ee (2.26)
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Both repulsion potentials V̂NN , V̂ee have N(N−1)
2

and n(n−1)
2

terms respectively, while the
other terms have much simpler sums sums over one index in the case of the kinetic energies
and N · n terms in the attraction potential V̂Ne.

In the Born–Oppenheimer (BO) we assume that the nuclei of the molecule are much
heavier than the electrons (a single proton is approximately 1836 times heavier than an
electron [12]) the electrons can instantaneously respond to any change in the configuration
of the nuclei [6]. That means that we can solve an electronic problem for any given nuclear
geometry as if the nuclei were static [8, 9, 10].

Following this assumption we separate the wave function into an electronic Ψe and a
nuclear wave function ΨN

Ψ(~r, ~R) = ΨN(R)Ψe(~r; ~R). (2.27)

Notice that the nuclear wave function is only dependent on the nuclear coordinates, while
the electronic has both the electron and nuclear coordinates as input. From our assump-
tion above we say that we solve an electronic SE for each geometry of the molecule, thus
the nuclear coordinates are parametric variables of the electronic wave function (symbol-
ized by the semicolon divider ;) which remain constant for each solution of the SE.

The electronic SE is as follows

Ĥe(~r; ~R)Ψe(~r; ~R) = Ee(~R)Ψe(~r; ~R) (2.28)

Where the electronic energy Ee becomes a function of ~R which is solved as a constant for
each nuclear geometry. In the electronic Hamiltonian we assume that the kinetic energy
of the nuclei is zero, but we still need to compute the nuclear repulsion VNN . As we are
solving for any given geometry VNN becomes a constant [9]. The electron Hamiltonian
Ĥe is as follows

Ĥe(~r; ~R) = T̂e + V̂Ne + V̂ee + V̂NN (2.29)

Solving the electronic SE for all possible nuclear geometries will give a Potential Energy
Surface (PES) defined by the electronic energy for all the different geometries. With this
we can go on to solve the total SE [10][

TN + Ee(~R)
]

ΨN(~R) = EtotΨN(~R) (2.30)

In the following sections we will be talking mostly about solving the electronic SE,
where we will drop the subscript and simply denote the electronic wave function as Ψ and
its Hamiltonian as Ĥ.

2.3.2 Variational principle

Consider a complete set of orthonormal eigenfunctions Ψi of the Hamiltonian Ĥ. From
Equation 2.7 we build a representation of an arbitrary wave function Φ with a linear
combination of the eigenfunctions with projection coefficients ci.

Φ =
∑
i

ciΨi (2.31)

For ease of notation we assume that Φ is normalized. This the following

〈Φ|Φ〉 =
n∑
i

c2
i = 1 (2.32)
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Additionally, the energy associated with the Hamiltonian can be calculated as in Equation
2.17 to give us

〈Φ|Ĥ|Φ〉 =
n∑
i

c2
iEi (2.33)

This tells us the energy of the wave function Φ can be determined by knowing the energies
Ei of each eigenfunction ψi and the coefficients ci associated with the linear combination
that describes Φ [9].

We know that for this to be a quantum mechanical system there must be a lowest
energy among all energies Ei. We choose to call this lowest energy E0. Subtracting E0

from Equation 2.33 to find the difference between the calculated energy of the arbitrary
wave function Φ with respect to the ground state eigenvalues:

n∑
i

c2
i (Ei − E0) = 〈Φ|Ĥ|Φ〉 − E0 (2.34)

We know that each term ci must be greater or equal to zero (non-trivial) and that the
term (Ei−E0) must be greater or equal to zero as well [9], as each individual Ei may add
more energy to the ground state. This leads to the following set of inequalities.

〈Φ|Ĥ|Φ〉 − E0 ≥ 0

〈Φ|Ĥ|Φ〉 ≥ E0

(2.35)

It can be inferred from 2.17 that the inequality in the last term in 2.35 shows that the
energy calculated as an eigenvalue of Φ is always greater or equal to zero. This lets us
construct our trial wave functions for the ground state of a system with any basis set.
We can assess the quality of the guess by their associated energies, attempting to reach
as low a value as possible [9].

2.3.3 Self-consistent field

In the previous sections we showed two main points about solving the SE for many-body
systems. The first one, with the BO approximation, is that we, instead of solving for
the energy of the whole system at the same time, can solve an electronic SE for each
geometry of the molecule. Secondly we can construct the wave function with a basis set
representation of our choice, for which its accuracy is evaluated by how low the calculated
energy is.

Next, we intend to find a way to systematically create wave functions and minimize
them as in the variational principle. This is done with an iterative procedure called the
SCF.

Slater determinant

The electronic wave function seen in section 2.3.1 needs to include all the coordinates
that identify an electron. These properties are the spatial coordinates x, y, z, and the
spin coordinate s. Another characteristic is that it needs to be anti-symmetric, that
is it must change sign whenever the coordinates of two electrons, spatial and spin, are
interchanged.
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The characteristics stated above can be summarized by writing the wave function as
a Slater determinant as [9, 13]

ΨSD =
1√
n!

∣∣∣∣∣∣∣∣∣
φ1(1) φ2(1) . . . φn(1)
φ1(2) φ2(2) . . . φn(2)

...
...

. . .
...

φ1(n) φ2(n) . . . φn(n)

∣∣∣∣∣∣∣∣∣ , (2.36)

where each φi is a one-electron spinorbital, a wave function constructed as a product of a
spatial function and a spin function[13], n is the total amount of electrons, the coefficient
outside the determinant is a normalization constant and each of the spin orbitals are
orthonormal to each other.

In a Slater determinant each column represent a spinorbital and each row one electron.
The spatial orbitals can, and are mostly, built using a basis set as described in Equation
2.7. The spin functions are orthonormal eigenfunctions of the operator Ŝz and have only
two eigenvalues ±~

2
[9].

In certain situations it might be needed to express a wavefunction as a sum of Slater
determinants, but here we will work only as if our wave function can be constructed by a
single determinant wave function.

Energy of a Slater determinant

The energy of a single Slater determinant is expressed as

E =
n∑
i

〈φi|ĥ|φi〉+
1

2

n∑
ij

(
〈φj|Ĵi|φj〉 − 〈φj|K̂i|φj〉

)
+ V̂N , (2.37)

where

ĥ |φi〉 =

−1

2
∇2
i −

N∑
I

ZI∣∣∣~RI − ~ri
∣∣∣
 |φi〉 , (2.38)

Ĵi |φj(2)〉 =

〈
φi(1)

∣∣∣∣ 1

|~r1 − ~r2|

∣∣∣∣φi(1)

〉
|φj(2)〉 , (2.39)

K̂i |φj(2)〉 =

〈
φi(1)

∣∣∣∣ 1

|~r1 − ~r2|

∣∣∣∣φj(1)

〉
|φi(2)〉 , (2.40)

V̂N is the nuclear repulsion, the operator ĥi is a one-electron Hamiltonian containing the
electronic kinetic energy and the nucleus-electron Coulomb attraction and Ĵi and K̂i are
the Coulomb integral operator and the exchange integral operator respectively [13, 9]
which apply the two-electron integrals of the same name on a orbital φj.

Variational principle on a Slater determinant

The energy of a Slater determinant, defined in 2.37, can be minimized with respect to the
orbitals variations under the constraint that the occupied orbitals stay orthonormal [10].
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We construct a Lagrange equation as in [13]:

L = E −
∑
ij

λij (〈φi|φj〉 − δij) (2.41)

δL = δE −
n∑
ij

λij(〈δφi|φj〉+ 〈φi|δφj〉) (2.42)

where

δE =
n∑
i

(
〈δφi|ĥ|φi〉+ 〈φi|ĥ|δφi〉

)
+

1

2

n∑
ij

(
〈δφi|Ĵj − K̂j|φi〉+ 〈φi|Ĵj − K̂j|δφi〉

)
+

1

2

n∑
ij

(
〈δφj|Ĵi − K̂i|φj〉+ 〈φj|Ĵi − K̂i|δφj〉

)
(2.43)

and λij is the Lagrange multiplier. The goal is to find a set of orbitals that give us a
minimum of the Lagrange equation δL = 0.

Hartree–Fock equations

We can remove the multiplication by a half outside the sums as the third and fourth terms
count the same operations, and so do the fourth and sixth terms. We can also substitute
the Fock operator F̂ into equation 2.43 as [10]

δE =
n∑
j

(〈
δφi

∣∣∣F̂ ∣∣∣φi〉+
〈
φi

∣∣∣F̂ ∣∣∣ δφi〉) (2.44)

F̂ = ĥ+
n∑
j

(
Ĵj − K̂j

)
(2.45)

We substitute 2.44 into 2.43 and use properties of complex conjugates to manipulate
the equation as shown in [10] to give us the HF equations

F̂ φi =
n∑
j

λijφj (2.46)

where we can construct a n×n matrix out of these sums called the Fock matrix. We then
diagonalize the Fock matrix and get the following set of eigenvalue equations

F̂ φ′i = εiφ
′
i (2.47)

where the εi is the energy of each orbital. When diagonalizing the matrix the orbitals get
changed slightly, creating new orbitals. We denote these new orbitals with a ′ superscript.

In order for an orbital to be known, one must know the rest of the orbitals. We solve
this by iteratively forming the Fock matrix, diagonalizing it and using these new orbitals
to construct a new Fock matrix and repeat the process until the change in the orbitals
reach below a predetermined threshold [14, 9]. This iterative method is called SCF.
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The sum of the orbital energies do not give us the total energy of the system. For
each electron, we are accounting for the repulsion and exchange interactions with all the
other electrons, we end up counting twice. Which means we have to subtract half of these
interactions from the total orbital energy. This gives the total energy E as [10]

E =
n∑
i

εi −
1

2

n∑
ij

(
Ĵij − K̂ij

)
(2.48)

An important point to note is that at the start of this section we assumed our wave-
function to consist of a single determinant. This is part of the HF approximation, where
we only take into account the lowest energy level of the system, and we assume that a
single Slater determinant is enough to describe it.

2.3.4 Density Functional Theory

Another SCF method is DFT. In this method we iterate over a density that is dependent
the spatial dimensions only.

The density

In DFT we calculate the energy directly as a functional of the electron density distribution
[5, 9] described by

ρ(~r) = n

∫
|Ψe(~r, ~r2, ..., ~rn)|d~r2...d~rn (2.49)

which is an integral over all the possible configurations of the electrons. The coefficient
n is the total amount of electrons on the system. This method, DFT, allows to discard
computing the wave function in the iterative process and simply use the density instead.

The electron density has properties that are characteristic to each system, the molecule,
it is constructed from. The first is that its integral over all space is equal to the amount
of electrons n on the system [9] ∫

R3

ρd~r = n (2.50)

The second is that the density has maxima on the positions of the nuclei, and these
maxima have the following value dependent on the nuclear charge of said nuclei [9].

∂

∂~r
ρ(~r)

∣∣∣∣∣
~r=~RI

= −2ZIρ(~r) (2.51)

Hohenberg–Kohn theorems

In DFT the electrons interact both with each other and with an external potential Vext,
such as the nucleus-electron attraction potential. In order to compute the total energy, we
need to know how to determine both of those interactions. We know from the definitions
above that the electrons can be described by the density. The Hohenberg-Kohn existence
theorem states that the ground-state density of the system determines the Vext [9]. The
Hamiltonian of the system can thus be defined and from it one can define the wave
function of the system.

Now that both the Hamiltonian and the wave function are determined by the ground
state density we can go forth to solve for the energy of the system. Applying the variational
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principle tells us that, for any such construction of wave functions and Hamiltonians, the
energy computed will always be bigger or equal to the true ground state energy. This
brings us to the Hohenberg–Kohn variational theorem, which states that we can keep
choosing different densities to construct Hamiltonians and wave functions, and the ones
that give us lower energy will be closer to the correct density [9].

The important points from the Hohenberg–Kohn theorems are that the energy of
the system is entirely determinable from the ground-state density, and that we can get
densities closer to the true density by minimizing the energy.

Kohn–Sham theory

The energy is determined by a functional E[ρ] made of functionals representing the kinetic
energy of the electrons T [ρ], the attraction potential energy VNe[ρ], and the two-electron
repulsion energy Ve[ρ] [5, 15]

E[ρ] = VNe[ρ] + T [ρ] + Ve[ρ] (2.52)

In Kohn–Sham theory, in order to compute the Kinetic energy functional, we assume that
we can describe the energy of the system as the exact kinetic energy TS of a single Slater
determinant describing a charge distribution ρ of a fictitious system of non-interacting
electrons, composed of orbitals φi [10].

ρ =
n∑
i

|φi|2 (2.53)

TS =
n∑
i

〈
φi

∣∣∣∣−1

2
∇2

∣∣∣∣φi〉 (2.54)

The attraction potential functional VNe[ρ] is easily determined as its classical definition
[10]

VNe[ρ] = −
N∑
I

∫
ZIρ(~r)∣∣∣~RI − ~r

∣∣∣d~r. (2.55)

We can also divide the two-electron repulsion into Coulomb J [ρ] and exchange K[ρ]
contributions. Since we are describing ρ as in Equation 2.53 we can evaluate the Coulomb
energy in the classical way as [10].

J [ρ] =
1

2

∫ ∫
ρ(~r)ρ(~r ′)

|~r − ~r ′|
d~rd~r ′, (2.56)

Some of the kinetic energy is lost when we use the form in 2.54 since we are calculating
from fictitious system of non-interacting electrons, and the exchange functional K[ρ] is
not known. We gather these terms in a exchange correlation functional Exc[ρ] as [10]

Exc[ρ] = (T [ρ]− TS) + (Ve − J [ρ]) (2.57)

We can now redefine a new energy functional EDFT [ρ] from 2.52 By substituting the
definitions mentioned above [10]:

EDFT [ρ] = TS[ρ] + VNe[ρ] + J [ρ] + Exc[ρ] (2.58)
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different ways of defining Exc can are outlined in [9, 10].
By the variational principle discussed previously, we are trying to minimize the energy

to get the best representation of the system with the given basis. Here we try to find
minima by differentiating 2.58 with respect to ρ giving us

∂

∂ρ
E[ρ] =

∂

∂ρ
(VNe[ρ] + TS[ρ] + J [ρ]) + Vxc (2.59)

Where Vxc is the functional derivative ∂
∂ρ
Exc[ρ] [9]. We can see that Vxc seems to be

a correction to the gradient to our first definition of the the energy 2.52. The system
described by Equation 2.52 is the fictitious system of non-interacting electrons. In this
system we can define one-electron operators ĥKSi as

ĥKSi φi = εiφi (2.60)

ĥKSi = −1

2
∇2
i + vNe + ve(ρ) + Vxc (2.61)

where vNe and ve(ρ) are one-electron operators for the nuclear-electron attraction and
the two-electron potentials. We can start the SCF by creating a first guess ρ with a
non-interacting Slater determinant. We can then solve set of one orbital SE created from
2.60 and get new orbitals, which can be used to start over and iterate in much the same
manner as in HF theory.



Chapter 3

Multiwavelet Basis

As stated in the previous chapter 2, the main goal of computational chemistry is to
approximate systems in order to calculate their energy through the SE. These systems
are completely described by wave functions [7].

In order to construct a solution (wave function) to the SE of a given system one uses
sets of functions with differing properties. These sets of functions construct a basis for the
space on which the wave functions are projected into. These sets are thus called basis sets
[9] and they are essential to solving many-body systems. In this text we will be focusing
in the MW basis from MRA methods.

3.1 Different types of basis sets

We have mentioned constructing solutions of systems using basis sets represented as Lin-
ear Combination of Atomic Orbitals (LCAO), sums of basis functions multiplied with
projection coefficients. In this section we discuss some basis sets used to solve quantum
chemical systems.

3.1.1 Atom centered basis sets

Some of the first basis sets to be developed were based on the assumption of centering the
functions on the atom nucleus. These basis sets are called Slater-type orbitals (STO) and
Gaussian-type orbitals (GTO). The basis functions (orbitals) follow from the separation
of variables used in solving for one-electron atoms

Ψ(~r) = R(r)Ylm(θ, φ), (3.1)

where R is the radial part of the wave function and Y is the angular part of the wave
function.

Slater-type orbitals

These basis functions are constructed from the observation that the wave function should
decay exponentially to zero when the distance from the nucleus extends to infinity. They
are typically of the form [10, 16]

χSTO(~r) = P (r)e−ζrYlm(θ, φ), (3.2)

15
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where P is a polynomial representing the radial decay and ζ represents the how diffuse
the function is. These functions are characterized for them having a cusp at the nucleus,
which follows from the treatment of the nucleus as a point charge. This cusp makes
computing integrals and derivatives a complex problem.

Gaussian-type orbitals

GTO are based on the same reasoning behind STO, but instead of letting the exponential
decay be to the rate of r we let it be to the rate of r2, that is, we work with Gaussian
functions [16]. They have the following forms, both polar coordinates

χGTO(~r) = P (r)e−αr
2

Ylm(θ, φ), (3.3)

and Cartesian coordinates

χGTO(~r) = (x− Ax)k(y − Ay)l(z − Az)me−α|~r−
~A|2 , (3.4)

where the vector ~A and its components represent the center of the atom. In this basis we
remove the problem the STOs had of trying to evaluate the cusp of the function. The lack
of a cusp also allows to treat the nucleus as more than a point charge. Another advantage
is the fact that the functions are no longer constrained to a spherical coordinate system
and can be evaluated on Cartesian coordinates. They are also separable in the Cartesian
coordinate system as a product of one variable Gaussians.

On the other hand, the GTO decay too fast in comparison to the STO and do not
describe the nucleus cusp correctly either, meaning that we have to make more considera-
tions to the exponents and possibly have more functions per atom in order to find better
solutions.

Contracted Gaussian-type orbitals

In order to diminish the problem of the cusp in STO one tries to represent the STO
as linear combinations of GTOs. This way the decay is properly modeled and the cusp
is no longer a difficult problem to solve. This has the obvious weakness of needing to
compute more basis functions for a single orbital, which increases the cost of running
the calculations [9]. In order to remove this we define the GTOs as being represented
by another linear combination of GTOs, but the coefficients for this one are known and
static. This way we can have a better representation of STOs with GTOs [10].

3.1.2 Periodic basis sets

Periodic basis sets are a type of basis sets that are not centered on an atom. These
basis sets are best at describing, as the name implies, systems with periodic boundary
conditions. Two examples are metals and ion crystals.

Plane wave basis functions

In metals, one can think of the valence electrons as free electrons with periodic boundary
conditions. The wave functions of these type of systems are described by either complex
exponentials or cosine and sine functions [10].
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On infinite systems the molecular orbitals, due to the space between different energy
levels vanishing, can be described by a basis of plane waves. The definition in three
dimensions is then a complex exponential.

To finish this section on basis sets we can comment on the applicability of these
basis sets. Atom based basis sets are best at describing the electrons nearest the nucleus.
STOs are more accurate in the decay, but the cusp at the nucleus is harder to differentiate,
therefore, GTO basis sets are used to simplify the near nucleus differentiation. GTOs do
not decay in the correct manner so one might want to use contracted GTOs.

Plane wave functions excel at describing slowly varying delocalized electron densities.
An example is the valence and conduction bands in metal. They are not that good
at describing internal electrons, where the oscillation frequency near the nuclei need to
increase a lot in order to properly approximate the orbital [10].

3.2 Multiresolution analysis

3.2.1 Definition

Consider that we have a function ϕ ∈ L2(R) where its translations and dilations are
described as [17]

ϕjk(x) = 2
j
2ϕ(2jx− k), j, k ∈ Z, (3.5)

and the function ϕ(x) satisfies the two-scale difference relations [18, 17, 5]

ϕ(x) = ϕ(2x) + ϕ(2x− 1),

ϕjk(x) = ϕj+1
2k (2j+1x− 2k) + ϕj+1

2k+1(2j+1x− 2k − 1),
(3.6)

where j is the scale of the function and k is the translation of the function [5]. A normal-
ization constant is included in the definition of ϕ. A space V n is spanned by translations
of ϕnk. This space forms a hierarchical chain of linear subspaces [18]

V 0 ⊂ V 1 ⊂ ... ⊂ V j ⊂ ... ⊂ L2(R), (3.7)

where V 0 is spanned only by ϕ0,0(x) = ϕ(x) [5].
If relation 3.7 and the following refinement equation holds for ϕj,k(x) one can call the

subspaces V n or the functions ϕj,k(x) build a MRA of L2(R).

ϕjk(x) =
∑
k∈Z

hj+1
k ϕj+1

k (x), (3.8)

where h is a coefficient characteristic to the transformation between scales.

3.2.2 The Haar wavelet

From now we will work with the Haar basis for simplicity [18]. Let us define the Haar
function [17] as

ϕ0
0 = ϕ(x) =

{
1 for x ∈ [0, 1)

0 elsewhere
. (3.9)

Let us now define a second set of subspaces W n. These are the orthogonal complements
of V n [19], also called difference subspaces, defined as [18, 5, 19]

W n ⊕ V n = V n+1. (3.10)
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The subspaces W n are then spanned by a set of functions defined by the translations and
dilations of ψ(x)

ψjk(x) = 2
j
2ψ(2jx− k), j, k ∈ Z, (3.11)

where ψ(x) is called the Haar wavelet [17] and is defined as

ψ0
0 = ψ(x) =


1 for x ∈ [0, 1

2
)

−1 for x ∈ [1
2
, 1),

0 elsewhere

(3.12)

and ϕ is related to ψ by the following two-scale difference relation [18, 17, 5]:

ψ(x) = ϕ(2x)− ϕ(2x− 1),

ψjk(x) = ψj+1
2k (2j+1x− 2k) + ψj+1

2k+1(2j+1x− 2k − 1).
(3.13)

The functions ϕjk and ψjk are orthonormal and dense in L2(R) [18, 5, 20].

The definition on Equation 3.10 can be applied recursively in order to get any space
V n as long as one knows the first subspace V 0 and one has a method for constructing the
subspace Wm from V 0 and Wm−1

V 0 ⊕W 0 ⊕W 1 ⊕ ...⊕W n−1 = V n. (3.14)

Projecting a function f(x) onto this basis would be then a weighted linear combination
of the Haar functions, but taking into account the definition on Equation 3.14 one arrives
at [5]

f(x) ≈
2j−1∑
k

sjkϕ
j
k = s0

0ϕ
0
0 +

N−1∑
j

2j−1∑
k

djkψ
j
k, (3.15)

where d are the difference coefficients and s are the scaled averages of dyadic intervals of
the function f(x).

The scaling coefficients sjk are computed by the projection 〈ϕjk(x)|f(x)〉. Likewise, the
difference coefficients djk(x) are computed by the projection
〈ψjk(x)|f(x)〉. Because of the way the Haar function is defined, we can define the scaling
coefficients as scaled averages of f(x) at intervals 2−j [5, 18]

sjk =

∫
R
ϕjk(x)f(x)dx =

∫ 2−j(k+1)

2−jk

f(x)dx. (3.16)

The subsequent scaling coefficients can be obtained as

sjk =

∫
R
ϕj−1
k (x)dx

= 2
j
2

∫
R
ϕ(2jx− k)f(x)dx

= 2
j
2

∫ 2−jk

2−j(k−1)

f(x)dx.

(3.17)
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We can then obtain the difference coefficients by using Equations 3.16, 3.11 and 3.13:

dj−1
k =

∫
R
ψj−1
k (x)f(x)dx

= 2
j−1
2

∫
R
ψ(2j−1x− k)f(x)dx

= 2
j−1
2

(∫
R
ϕ(2jx− 2k)f(x)dx−

∫
R
ϕ(2jx− 2k − 1)f(x)dx

)
= 2

j−1
2

(∫ 2−j(2k+1)

2−j2k

f(x)dx−
∫ 2−j(2k+2)

2−j(2k+1)

f(x)dx

)
=

1√
2

(
sj2k − s

j
2k+1

)
.

(3.18)

The result of Equations 3.18 and 3.17 show us that we can represent the projection of
coefficients onto a coarser scale as an orthogonal matrix [5, 18]:(

djk
sjk

)
=

(
1√
2
− 1√

2
1√
2

1√
2

)(
sj+1

2k

sj+1
2k+1

)
. (3.19)

Projecting the coefficients into a more refined scale is just a transpose of the above matrix:(
sj+1

2k

sj+1
2k+1

)
=

(
1√
2

1√
2

− 1√
2

1√
2

)(
djk
sjk

)
. (3.20)

3.2.3 Projecting a Gaussian function example

As an example, let us approximate the function f(x) = 10√
π
e−100(x−0.5)2 in L2(R) with Haar

basis up to scale 5 using 3.15. This gives us the plots in the following Figure 3.1.

3.3 Multiwavelet MRA

3.3.1 Constructing the basis functions in one dimension

Following the same basics as in the Haar basis from the previous section we can define a
hierarchical set of multiresolution spaces V j

l where [21]

V j
l

def
= {f : all polynomials of degree 6 l

on (2−jk, 2−j(k + 1)) for 0 6 k < 2n,

f vanishes elsewhere}
(3.21)

and
V 0
l ⊂ V 1

l ⊂ ... ⊂ V j
l ⊂ ... ⊂ L2(R). (3.22)

We again define subspaces W, as the orthogonal complements of V l
j [19] defined as

V j
l ⊕W

j
l = V j+1

l , (3.23)

with orthogonal basis functions ψjlk which are translations and dilations of functions ψi

ψjik(x) = 2
j
2ψi(2

jx− k), i = 1, ..., l; k ∈ Z. (3.24)
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(a) Haar basis projection to the 1st scale (b) Haar basis projection to the 2nd scale

(c) Haar basis projection to the 3rd scale (d) Haar basis projection to the 4th scale

(e) Haar basis projection to the 5th scale (f) Analytical plot of f(x)

Figure 3.1: Projecting Gaussian function f(x) = 10√
π
e−100(x−0.5)2 with Haar basis up to

scale 5 on interval (0, 1)

The functions ψ1, ..., ψl are piece-wise polynomial, orthogonal to lower order polynomials
and vanish outside [0, 1] and their subscripts denote the polynomial order [19]

∫ 1

0

ψi(x)xmdx = 0, m = 0, 1, ..., l − 1. (3.25)

The basis functions φi(x) of the subspace V 0
l can be defined using the following two-

scale difference equations [22], which are analogous to the two-scale difference equations
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in 3.13

ψi(x) =
√

2
l−1∑
j=0

(
H̄

(0)
ij ψj(2x) + H̄

(1)
ij ψj(2x− 1)

)
, i = 0, ..., l − 1, (3.26)

φi(x) =
√

2
l−1∑
j=0

(
Ḡ

(0)
ij ψj(2x) + Ḡ

(1)
ij ψj(2x− 1)

)
, i = 0, ..., l − 1, (3.27)

where H̄ and Ḡ are quadrature mirror filter matrices [22] which have the following prop-
erties:

H̄(0)H̄(0)T + H̄(1)H̄(1)T = Ī , (3.28)

Ḡ(0)Ḡ(0)T + Ḡ(1)Ḡ(1)T = Ī , (3.29)

H̄(0)Ḡ(0)T + H̄(1)Ḡ(1)T = 0̄, (3.30)

which can be summarized in the orthogonal block matrix Ū [22]

Ū =

(
H̄(0) H̄(1)

Ḡ(0) Ḡ(1)

)
. (3.31)

This lets us put the two two-scale difference equations in the following way [5](
~ψ(x)
~φ(x)

)
=
√

2

(
H̄(0) H̄(1)

Ḡ(0) Ḡ(1)

)(
~ψ(2x)

~ψ(2x− 1)

)
, (3.32)

and subsequently (
~ψ(2x)

~ψ(2x− 1)

)
=

1√
2

(
H̄(0) Ḡ(0)

H̄(1) Ḡ(1)

)(
~ψ(x)
~φ(x)

)
, (3.33)

where the function vectors ~φ and ~ψ represent the set of all l − 1 functions φi and ψi of
order i = 1, 2, ..., l respectively.

3.3.2 Choices of scaling functions

Now that we have stated how to build the scaling and wavelet basis functions we need to
make a choice of functions f to build said basis. Here we will briefly show two examples
of polynomial functions used to create the basis. These two are the Legendre polynomials
and the Lagrange interpolating polynomials [18, 22].

Legendre basis The Legendre scaling function is defined as follows

φj(x)

{√
2j + 1Pj(2x− 1), x ∈ [0, 1)

0, x /∈ (0, 1)
, (3.34)

where Pj are the Legendre polynomials of order j defined in [−1, 1] [18]. Following are
some examples of the polynomials together with figures of the first few terms of the
functions. These functions have the advantage of being simple to compute, since each
incremental polynomial order only adds a single term to the function.
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Lagrange interpolating basis

ϕi =
1
√
wi
li(x), i = 0, ...,M − 1, (3.35)

li(x) =
M−1∏

k=0,k 6=i

x− xk
xi − xk

, (3.36)

wi =
1

MP̂ ′M(2xi − 1)PM−1(2xi − 1)
, (3.37)

where M is the scale of the subspace, the P functions are the Legendre polynomials and
x0, ..., xM−1 are the roots of PM(2x−1) [18]. These scaling functions have the characteristic
of li(xj) = δij simplifying integrals and thus projections of the basis.

Going from one dimension to d dimensions is to use a tensor product method as shown
in [21].

3.4 Operators

3.4.1 Non-standard form representation of operators

Let us define two projection operators P̂ n and Q̂n and their relation as:

P̂ n : L2([0, 1])→ V n, (3.38)

Q̂n : L2([0, 1])→ W n, (3.39)

P̂ n+1 = P̂ n + Q̂n, (3.40)

P̂ n = P̂ 0 + Q̂0 + Q̂1 + ...Q̂n−1, (3.41)

where we, for now, have dropped the polynomial order subscript l for ease of notation.
A function f would then be projected into a scale n by applying the operators as [21]

f (n) = P̂ nf. (3.42)

Its projection onto a more refined scale would then be [21]

f (n+1) = f (n) + df (n),

df (n) = Q̂nf.
(3.43)

Following Equation 3.41 we can expand the equation above to

f (N) = f (0) + df (0) + df (1) + ...+ df (N−1), (3.44)

which, for a given refinement level N , is a good approximation of f

f ≈ f (N). (3.45)

The representation of a linear operator T̂ onto a scale n is

T̂ n = P̂ nT̂ P̂ n, (3.46)
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and onto a more refined scale

T̂ n+1 = P̂ n+1T̂ P̂ n+1

= (P̂ n + Q̂n)T̂ (P̂ n + Q̂n)

= P̂ nT̂ P̂ n + P̂ nT̂ Q̂n + Q̂nT̂ P̂ n + Q̂nT̂ Q̂n.

(3.47)

We define a set of 3 operators which will help us describe the more refined operator T̂

Ân
def
= Q̂nT̂ Q̂n : W n → W n, (3.48)

B̂n def
= Q̂nT̂ P̂ n : V n → W n, (3.49)

Ĉn def
= P̂ nT̂ Q̂n : W n → V n, (3.50)

so we can rewrite the last term in Equation 3.47 as

T̂ n+1 = Ân + B̂n + Ĉn + T̂ n. (3.51)

Repeating this iteratively we get

TN = T 0 +
N∑
n=0

(
Ân + B̂n + Ĉn

)
, (3.52)

which we can say, given a refinement level N is a good approximation of T

T ≈ TN . (3.53)

Let us now define a function g = T̂ f which is the resulting function from applying the
unprojected operator T̂ onto the unprojected f . We want to represent this operation in
the MW basis as

g(n) = P̂ ng = P̂ n
(
T̂ f
)
, (3.54)

but we do not know what g looks like. We have the projected function f (n) and the
representation of the operator T̂ n. We do the following set of manipulations to define a
new projected function g̃(n) [21]:

g(n) = P̂ ng = P̂ n
(
T̂ f
)

= P̂ nT̂
(
P̂ n + 1− P̂ n

)
f

= P̂ nT̂ P̂ nP̂ nf + P̂ nT̂
(

1− P̂ n
)
f

= T̂ nf (n) + P̂ nT̂
(

1− P̂ n
)
f,

g̃(n) def
= T̂ nf (n),

(3.55)

where we know T̂ n and f (n) as defined above and we focus only in finding g̃(n). We
substitute Equations 3.43 and 3.51 into the last term of Equation 3.55 to get

g̃(n) =
(
Ân−1 + B̂n−1 + Ĉn−1 + T̂ n−1

) (
f (n−1) + df (n−1)

)
, (3.56)

g̃(n) =ḡ(n−1) + dḡ(n−1), (3.57)

ḡ(n−1) =
(
Ĉn−1 + T̂ n−1

) (
f (n−1) + df (n−1)

)
, (3.58)

dḡ(n−1) =
(
Ân−1 + B̂n−1

) (
f (n−1) + df (n−1)

)
, (3.59)
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and

Ĉn−1f (n−1) ≈ 0 ; T̂ n−1df (n−1) ≈ 0

ḡ(n−1) def
= ĝ(n−1) + g̃(n−1)

ĝ(n−1) =Ĉn−1df (n−1)

g̃(n−1) =T̂ n−1f (n−1)

(3.60)

We find ḡ(0) as

ḡ(0) = g̃(0) + ĝ(0) = T̂ 0f (0) + Ĉ0df (0), (3.61)

and iteratively find g̃(n) as [21]

g̃(0) = T̂ 0f (0),

g̃(1) = ḡ(0) + dḡ(0)

= g̃(0) + ĝ(0) + dḡ(0)

= T̂ 0f (0) + Ĉ0df (0) +
(
Â0 + B̂0

) (
f (0) + df (0)

)
,

g̃(2) = ḡ(1) + dḡ(1)

= g̃(1) + ĝ(1) + dḡ(1)

= ḡ(0) + dḡ(0) + ĝ(1) + dḡ(1)

= g̃(0) + ĝ(0) + dḡ(0) + ĝ(1) + dḡ(1),

...

g̃(N) = T̂ 0f (0) +
N∑
n=0

Ĉndf (n) +
(
Ân + B̂n

) (
f (n) + df (n)

)
,

(3.62)

and we assume that for a given refinement level N we have a good approximation of g

g̃(N) ≈ gN = (T̂ f)N . (3.63)

In multiple dimensions d we can expand the Non-Standard form into a tensor product
of the four operators as shown in [21].

3.4.2 Examples of operators

Derivative operator

We let T̂ represent a derivative operator ∂
∂x

and T̂ nl represent its projection onto scale n
with order l as defined as in Equation 3.46. For a function f for which we want to apply
the operator on we define the expansions for P̂ n

l and T̂ nl [22]

(
P̂ n
l f
)

(x) =
2n−1∑
m=0

l−1∑
j=0

snjmφ
n
jm(x),

(
T̂ nl f

)
(x) =

2n−1∑
k=0

l−1∑
i=0

s̃nikφ
n
ik(x),

(3.64)
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where φ and s are scaling coefficients and functions as defined above and s̃ is

s̃nik =
2n−1∑
m=0

l−1∑
j=0

[rnkm]ij s
n
jm, (3.65)

where [rnkm] is a l × l transition matrix which we are trying to solve for

[rnkm]ij =

∫ 2−n(l+1)

2−nk

φnik(x)
∂

∂x
φnjm(x)dx = 2nd [rk−m]ij , (3.66)

[rk]ij =

∫ 1

0

φi(x)
∂

∂x
φj(x+ k)dx. (3.67)

Since the derivative operator is in-homogeneous we can represent it on scale n by rescaling
by powers of two

rnkm = 2nrk−m, (3.68)

and given that the operator acts only on the neighboring intervals we can remove a sum
from Equation 3.65 as follows

s̃nik = 2n
l−1∑
j=0

(
[r1]ij s

n
j,k−1 + [r0]ij s

n
jk + [r−1]ij s

n
j,k+1

)
. (3.69)

We can now introduce a vector multiplication notation for the sum in Equation 3.69

Sn =
(
sn00, . . . , s

n
l−1,0, s

n
01, . . . , s

n
l−1,1, . . . , s

n
0,2n−1, . . . , s

n
l−1,2n−1

)T
,

S̃n =
(
s̃n00, . . . , s̃

n
l−1,0, s̃

n
01, . . . , s̃

n
l−1,1, . . . , s̃

n
0,2n−1, . . . , s̃

n
l−1,2n−1

)T
,

R̄n = 2n {rk−m}k,m=0,...,2n−1 ,

(3.70)

where Equation 3.69 can be rewritten into a matrix equation as

S̃n = R̄nSn, (3.71)

R̄n = 2n


r0 r−1

r1
. . . . . .
. . . . . . r−1

r1 r0

 , (3.72)

where each block ri is a l× l and r1 and r−1 describe the interactions between neighboring
intervals [22]. Computations of this transition matrix R̄ are shown in [22] and there it
is assumed that the rest of the operators Ân, B̂n, Ĉn are computed by rescaling the
representation explained above.

Poisson operator

In order to solve a system where an electrostatic field V is affected by a charge distribution
ρ changes throughout space one attempts to solve a Poisson equation

∇2V = −4πρ. (3.73)
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In MW one makes use of the Poisson operator P̂ to find the electrostatic potential induced
by the charge distribution

P̂[ρ(~r)] =

∫
1

4π ‖r − r′‖
ρ (r′) dr′, (3.74)

which is a simplified version of the Poisson kernel shown in [21]. The Poisson operator
can be projected as is outlined in section 3.4.1 above.

3.5 SCF method in multiwavelet basis

When performing the SCF mentioned in chapter 2 one computes the sets of one-orbital
eigenfunctions from Equation 2.47. Let us expand that equation into its single kinetic
and potential energy contributions(

T̂ + V̂n + Ĵ − K̂ + V̂xc

)
φi = εiφi, (3.75)

where V̂xc is the exchange-correlation potential, which is part of the DFT SCF and can
be removed for HF We will not dwell on it much more and assume it is known.

The kinetic energy operator T̂ from Equation 3.75 consists of a double derivative. We
saw from the previous section on operators that representing a derivative operator on MW
basis is not a simple matter. In order to solve this we need to represent the derivative
operator in a slightly different manner.

First let us rearrange Equation 3.75 and multiply each side with operator Ĝµ which is
much easier to project to the MW basis

Ĝµ =
(
∇2 + µ2

)−1
=
e−µ|~r|

4π|~r|
, (3.76)

µ
def
=
√
−2εi, (3.77)

Ĝµ

(
T̂ − εi

)
φi = −Ĝµ

(
V̂n + Ĵ − K̂ + V̂xc

)
φi,(

∇2 + µ2
)−1
(

1

2
∇2 − εi

)
φi = −

(
∇2 + µ2

)−1
(
V̂n + Ĵ − K̂ + V̂xc

)
φi,

1

2
φi = −Ĝµ

(
V̂n + Ĵ − K̂ + V̂xc

)
φi,

φi = −2Ĝµ

(
V̂n + Ĵ − K̂ + V̂xc

)
φi.

(3.78)

Using the last equation above one can perform a SCF procedure by iteratively applying

−2Ĝµ

(
V̂n + Ĵ − K̂ + V̂xc

)
on an unconverged orbital to attain a new orbital. This process

is then repeated until the change between the orbitals is below a predetermined threshold.



Chapter 4

Solvent Effect

In chapter 2 we saw how to approximate and solve systems of molecules in vacuum. This
was done using both HF and DFT in iterative SCF procedures. Results obtained from
these methods would then be used to determine certain properties, or observables, from
these systems. Results obtained from systems in vacuum can be called gas phase values.

The goal of these computations are to both to approximate systems and to manage to
make predictions in regards to these approximation. It makes sense then that one of the
type of systems one would be most interested in approximating as a chemist are solvation
systems. This is because most chemical processes of interest in chemistry, such as reaction
mechanisms or acid-base reactions, happen in solvent.

Our aim is to be able to simulate a solvent system in an appropriate way, such that
the models let us predict rates, mechanisms and other specific processes which occur in
solutions [4].

A straightforward approach, consistent with the QM methods defined up to now,
is to make a system a substrate atom surrounded by solvent molecules, all defined by
quantum mechanical methods. One can imagine the substrate to be a single atom ion
and the solvent to be water. The first problem that arises is the quantity of water
molecules needed to simulate the solution system. A straight forward answer would be to
have enough water molecules to surround the ion in one layer of them, and just do our
calculations from that point.

Let us put the molecules in a cube-like fashion around the cation, with each water
molecule in a face of the cube, totaling 6 water molecules. Our calculations could be
performed from this point, but one should see that the system is ordered, and that it is
not necessarily in a minimum with respect to the geometry. The next course of action
should be to perform a geometry optimization on these 7 molecules, or 19 nuclei. The
first problem with this method appears in these geometry optimization. Since we have so
many nuclei, the PES will be affected by all of them simultaneously. This causes the PES
to have many small, local minima, making it harder to find the global minimum of the
surface [9]. This is still doable with full QM methods, given that these type of calculations
are done on greater systems than just 19 nuclei, such as hydrocarbons, or small proteins.

Another question we can ask ourselves is how representative is this model to the real
system we are trying to simulate. After all, the water molecules on a solvent interact
with themselves and the substrate. As our model is now the water molecules are only
interacting with the ones beside them, while elsewhere there are no other water molecules.
Our model is representing a group of a substrate molecule surrounded by water molecules
on a vacuum. This is not what we are trying to model. We can add more layers of water

27
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molecules, so as to simulate the interactions of water with itself, but we will always have
a set of water molecules facing vacuum. We can add water molecules until the amount of
molecules facing vacuum is negligible with respect to the ones in a solvent environment.
This will be an extremely big system suffering of a PES with many local minima and
nuclei, making both geometry optimizations and energy calculations expensive [10].

The system explained above is both expensive and not representative of the system we
are trying to model. Solvent models, presented in this chapter, present a solution to the
dilemma above. These solvents models, which will be the focus of this chapter, reference
the case of a very dilute solution, where we can assume the substrate is surrounded by
the solvent only.

4.1 Outlining the problem

Solvation models describe one or more molecules (substrate) surrounded by a set of other
molecules (solvent). Most reactions of interest occur in a solvent where the geometry,
energy and kinetics of the reactants and products are affected by their environment[23].

We can describe the total Hamiltonian Ĥsol of a solvent-solute system as [4]

Ĥsol = Ĥ0 + V̂sol, (4.1)

where H0 is the gas phase Hamiltonian (in vacuo) and V̂sol is the potential arising from
the interactions between solvent and solute. These interactions can be considered as
perturbations to the in vacuo system. The SE of the system is as follows [4]

ĤsolΨ
(f) = E(f)Ψ(f), (4.2)

where f denotes the degree of rigidity of the interactions (0 being with completely static
solvent molecules and rigidity decreasing with increasing index). In most practical uses,
we are interested in the polarization interaction between the solvent and solute, meaning
that one can replace the wave function Ψ with the total charge distribution of the solute
ρtot [4]

ρtot(~r; ~Q) = ρnuc(~r, ~Q) + ρel(~r; ~Q),

ρnuc(~r; ~Q) =
∑
α

Zαδ
(
~r − ~Qα

)
,

ρel

(
~q1; ~Q

)
= −

∫ ∣∣∣Ψ(f)(q, ~Q)
∣∣∣2 d~q2 . . . dqNel

,

(4.3)

where α is an index that iterates over all the nuclei of the molecule, Zα is the nuclear charge
of each nucleus, ~q1, ..., ~qNel

represents the coordinates of the electrons, ~Qα represents the
coordinates of the nuclei and ~r is a vector variable describing a point in three dimensions.

There are four main interactions affected by solvent which one might be interested
in solving. These are electrostatic interactions, cavitation, changes in dispersion and
changes in bulk solvent structure [9]. In this thesis we work mostly with the electrostatics
interactions of the solute-solvent interface and the reaction field they create.

4.1.1 Reaction field

Let us consider a system where a solute A with a dipole moment ~µA is introduced to a
solvent S where each solvent molecule Si has its own dipole moment ~µSi

. On equilibrium
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the different Si would be placed randomly, giving an average electric field of zero. When
A is introduced, its ~µA will induce an electric field that will affect all the ~µSi

of the Si.
The Si will reorient themselves so that their ~µSi

lie along the electric field induced by ~µA.
This is so that they are in a more energetically favorable position in the electric potential
of the field induced by ~µA, but in doing this, they will act against their own electric field
and lose conformational freedom, which will cost energy. This will, in turn, change the
electric field of S so that it no longer behaves uniformly. The electric field of S will then
affect A so that ~µA lies along the new electric field of S for the same reason stated above,
using free energy in doing so [9].

The process outlined above will repeat itself until the energy gain from reorienting
A and S is outweighed by the required energy of such a reorientation. The energy at
such a point is equal to half the total interaction energy between S and A [9]. The new
field obtained at the equilibrium position of this interaction is called the reaction field
Ur for the interaction of A and S. This interaction can be represented as a statistical
average over all degrees of freedom of the interaction. This is done by replacing the
solvent molecules with a continuous electric field that is affected by the introduction of
the substrate. This is done so that one does not need to represent the charge distribution
of the solvent explicitly [9], which can be expensive with bigger systems. Solvent models
that represent the charge distribution explicitly are called explicit solvation models. The
models that do not represent it explicitly are implicit solvation models.

4.2 Explicit solvation models

The explicit method is necessary when the solvent molecules’ geometry and states are
important to the measurement of the interactions of the substrate [9]. One way to simplify
the problem is to partition the system into two parts, the solvent, modeled using molecular
mechanics (MM) and the solute, modeled using QM, this method is called QM/MM [23].

The main point of this model is that the energy contribution from the solvent can
be described as a sum of bonding and non-bonding contributions [9] where the solvent
bonds are described as springs [23] and the atoms as weights. The bonding contributions
can be divided into bending, stretching and torsion of the bonds. Both the bending and
the stretching of the bonds can be described with the Harmonic Oscillator (HO) and the
torsion with a periodic function [23]. The non-bonding interactions can be described with
Coulomb’s law, or other equivalent expressions of potentials, with the atoms as point
charges. More information on this can be read on [9, 10].

4.3 Implicit solvation models

Most implicit models describe the solvent as a linear isotropic continuum characterized
by the static dielectric constant εout characteristic of the bulk of the solvent [4, 1]. In this
continuum only the electrostatic interactions contribution are significant [4]. The energy
needed to create a cavity in the continuum in which the substrate is contained and the
dispersion and repulsion forces between the solvent and the substrate often cancel out, or
at least the contribution becomes negligible [9]. This means that the interaction potential
V̂sol in Equation 4.1 becomes an electrostatic potential V̂σ [4]

V̂int = V̂σ (q,Q, ρtot, εout) =
∑
α

ZαUr (Qα)−
∑
i

Ur (qi) , (4.4)
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where Ur is the reaction field potential. The contribution of the interaction between the
solvent and the substrate to the total energy E(f) is given by

Wtot =

∫
<3

Ψ(f)?V̂σΨ(f)dq...dqNel
= 〈ρtot(~r)|Ur(~r)〉 . (4.5)

This means that determining the reaction potential as well as knowing the coordinates
of the different particles will solve the Equation 4.2. Since we are looking at the effect
the charge distribution of a solute has on the interaction potential, we set up a Poisson
equation. We also know that the change in the potential must also be related to the
dielectric constant that characterizes the continuum ε. We try to find the solution to the
following electrostatic potential equation, also called the GPE

∇
(
ε(~r)∇U(~r)

)
= −4πρtot, (4.6)

where U(~r) is the electrostatic potential of the interaction between the solute and the
solvent.

There are two main ways of solving the GPE that are implemented in PCMs. These
are either direct solutions of Equation 4.6, or introducing boundary conditions where
the Volumes inside and outside the cavity are separated by the a two dimensional cavity
surface. In the latter method the problem is solved at the surface and is represented as
an apparent surface charge σ distributed along the surface.

4.3.1 Cavity

All continuum models make use of a cavity in which the solute A resides [4, 9, 2]. The
shape of the cavity must be defined so it includes the whole molecule A and its charge
distribution. Although, since the charge distribution of any molecule persists to infinity
there will always be an overlap with the charge distributions of the medium in real systems.
The charge that is not contained within the cavity is often called escaped charge [2].

The size of the cavity is critical to the calculated results of the model, if the cavity
is too big the solvation effects are dampened, if it is too small various errors may arise
in the computation of the interactions to be studied [4]. The cavity shape should closely
resemble the shape of the molecule itself [2]. There are two main ways of defining the
shape and size of the cavity: (1) regular shapes and (2) molecular shapes.

Regular shapes such as spheres, cylinders and ellipsoids have the advantage of faster
and simpler computations than molecular shapes. The fact that the cavity should resemble
the molecule and its charge distributions still stands, and it is not realistic to assume that
all molecules have regular shapes (apart from maybe single atoms and linear molecules)
[2].

Molecular shapes give a better representation of the solute in the solvent due to the
fact that they more closely follow the shape of the solute molecule. There are three
main molecular shapes I wish to mention: interlocking spheres, surfaces traced by solvent
probes and isodensity surfaces.

Molecular surface shapes

The interlocking spheres model The interlocking spheres model consists of creating
spheres centered at the nuclei of the molecule. Other centers can be in functional groups,
so that they envelope a whole group, or in specially designated spaces around the molecule
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so that the give an accurate representation of the parts of the substrate molecule the
solvent has access to [4]. The latter is explained more in the next section.

The consensus for the radius of each cavity Ri is that it has to be close to the van der
Waals (vdW) radius Rvdw of the atom the sphere is centered in. One of the most used set
of radii for this are the the radii provided by Bondi [24, 2] and are generally scaled by a
coefficient f that is close to 1. The following relation holds [4]

Ri = fRvdw, (4.7)

where f has been found to be, by statistical analysis, f = 1.2± 0.1 in order to yield the
best results. Its value is 1.2 for water while it can vary with other solvents [4]. Although
this only stands for neutral solutes. Some results imply that the best radius for cations
is the covalent radius and the best one for anions is the ionic radius [4].

Solvent probe tracing surfaces This family of surfaces are based on the interlock-
ing spheres model in that a solvent probe (normally a spherical probe) is rolled around
the Interlocking sphere surface to trace a new surface. The inwards facing face of the
probe traces a surface which the solvent cannot access. This surface is called the Solvent
Excluded Surface (SES) [2, 23]. One can think of this as smoothing so as to not get
polarization in areas around the molecule which should not be accessible to the solvent.
Both SAS and SES are shown in the following Figure 4.1

Figure 4.1: SAS and SES surfaces



32 CHAPTER 4. SOLVENT EFFECT

Isodensity surfaces A third type of surface is one defined by a certain value of the
charge density. This is usually defined by setting a threshold value of the charge density
for which the surface will be drawn (usually 0.0004− 0.001 a.u.)[2].

4.3.2 Boundary conditions

As stated before, in continuum models the solvent is represented by an isotropic continuum
defined by the dielectric constant εout characteristic to the bulk solvent [4]. The interface
between the solute and the continuum is the cavity. One way to think of the value of the
continuum is by defining a function epsilon with the cavity as a boundary condition [2, 4]

ε(~r) =

{
εout for ~r ∈ C
1 for ~r /∈ C

, (4.8)

where C is the cavity. We then solve the polarization problem at the surface of the cavity.
We define an Apparent surface charge σ which defines the polarization of the electric field
as charges at the surface of the cavity. Apparent surface charge methods are used to solve
for the polarization. We define this problem by partitioning the volume of the system into
two parts, one inside the cavity and one outside the cavity [4]. Another assumption that
is made is to say that we have an ideal charge distribution that does not reach outside
the cavity [9, 4]. This means that [4]

ρtot(~r) = 0 ~r /∈ C. (4.9)

This lets us define the Poisson equation inside and outside the cavity as follows [5, 4]:

∇2U(~r) = −4πρtot(~r) ~r ∈ C,
εout∇2U(~r) = 0 ~r /∈ C,

(4.10)

where, for a point ~s and a normal outwards vector ~n on the surface of the cavity, the
following conditions are true [5, 4]

Uin(~s) = Uout(~s),

∂Uin
∂~n

= εout
∂Uout
∂~n

,
(4.11)

where U(~r) is the sum of the potential of the substrate in vacuo Uvac and the reaction
field potential Ur[5, 1]

U(~r) = Uvac(~r) + Ur(~r). (4.12)

4.3.3 Approaches to a solution

Apparent surface charge

In this family of solutions we look at the classical electrostatics description of the problem.
we do this by defining an apparent charge distribution σ confined to the surface of the
cavity Γ [4, 2]. The apparent surface charge distribution at the boundary between two
regions i, j is defined as

σij = −(~Pj − ~Pi) · ~nij, (4.13)
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where ~nij is the unit vector pointing from i to j and ~P is the polarization vector of a
region of constant isotropic permitivity (such as the continuum in PCM) defined as

~Pi(~r) = −εi − 1

4π
∇U(~r), (4.14)

where εi is the permitivity constant of region i [2]. In a solvation model we only have two

regions, one inside and one outside. We know that εin = 1 so ~P0 = 0 leaving only the
outside region to construct σ. This gives us [2]

σ(~s) =
εout − 1

4πεout

∂

∂~n
(Uvac + Uσ)in ; s ∈ Γ, (4.15)

and we find the reaction potential of the apparent surface charge Uσ with the following
integral

Uσ(~r) =

∫
Γ

σ(~s)

|~r − ~s|
d~s ; s ∈ Γ, (4.16)

If we divide the surface into a set of finite elements, tesserae [2, 5], with set areas A that
are small enough to be able to assume that σ does not change inside each of these tesserae,
will let us define the integral as a sum over all the tesserae

Uσ(~r) '
∑
k

σ(~sk)Ak
|~r − ~sk|

d~s =
∑
k

qk
|~r − ~sk|

, (4.17)

where qk = σ(~sk)Ak is the point charge of each tesserae [2]. Many slightly different types
of Apparent Surface Charge (ASC) have been implemented as of now. Some of these
are Conductor-like Screening model (COSMO), Integral equation formalism (IEF) and
Surface and Volume Polarization for Electrostatic (SVPE).

COSMO In this version of ASC we proceed as normal except that we define εout =∞.
This way we determine the ASC (σ?) by the local value of the electrostatic potential
instead of computing the normal component of its gradient [2]. We then scale σ? as

σ(~s) =
εout − 1

εout + k
σ?(~s), (4.18)

where k is small [2].

IEF In this method we define the electrostatic potentials in terms of Green integral
functions. The Green function G(~x, ~y) is the potential produced at a point ~x by a unit
charge at ~y [2]. We define the electrostatic potentials as follows

U(x) =

∫
R3

Gs(x, y)ρM(y)dy,

Uvac(x) =

∫
R3

G(x, y)ρM(y)dy,

Ur(x) =

∫
R3

Gr(x, y)ρM(y)dy,

(4.19)

where G(~x, ~y) = 1/|x− y| is the Green kernel for the operator −∇2, Gs(~x, ~y) is the Green
function of −∇(ε(~r)∇) and Gr(x, y) = Gs(~x, ~y)−G(~x, ~y). Then the reaction potential Ur
can be represented as [2]
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Ur(x) =

∫
Γ

σ(~y)

|~x− ~y|
d~y∀~x ∈ R3, (4.20)

where the surface charge σ is given by solving the following equation[
2π

(
ε+ 1

ε− 1

)
−Di

]
Siσ = − (2π −Di)Vvac, (4.21)

where Si and Di are two of the four components of the Calderon projector [2].

SVPE The main focus of this method is that the solute charge distribution has a trailing
”tail” that reaches outside the surface [2]. We define the reaction potential as consisting
of a ASC term Uσ and a exterior term Uβ

Ur(~x) = Uσ(~x) + Uβ(~x),

Uβ(~x) = −εout − 1

εout

∫
ext

ρtot(~y)

|~x− ~y|
d~y,

(4.22)

where x, y are defined as above.

Multipole expansion

In this solution we write the total electrostatic potential U(~r) in terms of Legendre poly-
nomials. This way the potential is reduced to a set of two spherical harmonics functions,
one outside and one inside the cavity.

Uin(~r) =
∞∑
l=0

1

rl+1

l∑
m=−l

BlmY
m
l (θ, φ)

+
∞∑
l=0

(l + 1)(εout − 1)

l + (l + 1)εout

rl+1

a2l+1

l∑
m=−l

BlmY
m
l (θ, φ),

Uout(~r) =
∞∑
l=0

2l + 1

l + (l + 1)εout

1

rl+1

l∑
m=−l

BlmY
m
l (θ, φ),

(4.23)

where Y m
l is the spherical harmonics with angular momentum l and projection along the

z-axis m, a is the radius of the cavity and Blm is a set of constants which need to be found
[4]. It goes without saying that since we are using spherical harmonics, the cavities used
in this method must be spherical. Some methods exist to work with ellipsoidal cavities
and even interlocking spheres, which are outlined in [4] and [2].

4.3.4 Solving the generalized Poisson equation in multiwavelet
basis

Following Fosso–Tande [1] the cavity is defined as a molecular shape interlocking spheres
cavity. We start by defining a normal signed distance function si of a point ~r away from
the surface of the sphere Ci with radius Ri = 1.2 · Rvdw

i and centered on atom i with
coordinate ~ri [1]

si(~r) = |r − ri| −Ri. (4.24)
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The cavity for the i-th atom is defined as

Ci(~r) = 1−Θ(si(~r)) = Θ(−si(~r)), (4.25)

where Θ is a heavyside-like function that enables to smoothly transition from the inside
of the cavity (value 1), to the surface of the cavity (value 1

2
) and to the outside of the

cavity (value 0) [5, 1]. We use the error function erf(x) to define Θ and a parameter σ
characterizing the width of the transition between the inside and outside of the cavity

Θ (si) =
1

2

(
1 + erf

(si
σ

))
. (4.26)

The function for the complete set of interlocking spheres C for a molecule with N atoms
is given by

C(~r) = 1−
N∏
i=1

(1− Ci(~r)). (4.27)

This function can then be used further in creating a dielectric function ε that switches
smoothly from εin (permitivity of free space with value 1 [1]) to εout either with a linear
representation

ε(~r) = εout + (εin − εout)C(~r), (4.28)

or with an exponential representation

ε(~r) = εin exp

((
log

εout
εin

)
(1− C(~r))

)
, (4.29)

which is better suited for the computation of its log-derivative. This is important because
differentiating the dielectric function directly will give us a slope that is not entirely
centered at the cavity surface, which gives rise to instabilities in the results [1]. The
log-derivative for the exponential representation is defined as [1]

∇ log ε(~r) =
∇ε(~r)
ε(~r)

=

(
log

εin
εout

)
∇C(~r). (4.30)

The log derivative of the linear dielectric function is expressed as

∇ log
(
ε(~r)

)
=
∇ε(~r)
ε(~r)

=
(εin − εout)

ε(~r)
∇C(~r). (4.31)

With either of those dielectric functions, the GPE can be constructed [5, 1]

∇ ·
(
ε(~r)∇U(~r)

)
= −4πρtot(~r), (4.32)

∇2U(~r) = −4π
ρtot
ε(~r)
− ∇ε(~r) · ∇U(~r)

ε(~r)
. (4.33)

We define the effective charge distribution ρeff and the surface charge distribution γs [1]

ρeff (~r) =
1

ε(~r)
ρtot(~r), (4.34)

γs(~r) =
1

4π

∇ε(~r)
ε(~r)

· ∇U(~r), (4.35)
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and substitute them into Equation 4.32

∇2U(~r) = −4π
(
ρeff (~r) + γs(~r)

)
. (4.36)

Which, if we were to define ρ as entirely contained in the cavity, would mean that the
polarization is completely defined by γs and Equation 4.36 would take the form of Equation
4.15. This means that γs is equivalent to σ. We get the total iteration potential U(~r)

between the substrate and the solvent by applying the Poisson operator P̂ as defined in
Equation 3.74 to equation 4.36

U(~r) = P̂
(
ρeff (~r) + γs(~r)

)
. (4.37)

We can then find the reaction potential following Equation 4.12 and rearranging it so we
get the following

Ur(~r) = U(~r)− Uvac(~r). (4.38)

The reaction field energy is given as [1]

Etot = −Evac +
1

2
Er, (4.39)

Er = 〈Ur|ρtot〉 . (4.40)

and Evac is the gas phase energy of the substrate. This means that we can easily add the
energy contributions from the reaction field to the SCF energy as a simple addition.

Since the solution of the total potential has itself in both sides of the equation we will
need to iterate with an initial guess. This is called SCRF and will be implemented more
thoroughly in Chapter 5.

4.4 Variational formulation of the Generalized Pois-

son equation

Following Lipparini [3, 25] I’ll arrive at a functional where minimizing with respect to U
of the solvent energy contribution to the total energy Gs will give a way to determine Ur
variationally.

Starting from the GPE defined from [1] we project it into a suitable space with test
functions ψ

∇(ε∇U) = −4πρ,

−〈ψ|∇|ε∇U〉 = 4π 〈ψ|ρ〉 .
(4.41)

Applying the following vector identity

∇(ψε∇U) = ∇ψε∇U + ψ∇ε∇U + ψε∇2U, (4.42)

we get the integral

−
∫
<3

ψ∇ε∇Udr −
∫
<3

ψε∇2Udr =

∫
<3

∇ψε∇Udr −
∫
<3

∇(ψε∇Udr). (4.43)
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The test functions vanish at infinity. Applying Gauss’ theorem [25] we can turn the
rightmost integral into an integral on the surface, thus vanishing. This gives us

− 〈ψ|∇|ε∇U〉 = 〈∇ψ|ε|∇U〉 , (4.44)

which we substitute into Equation 4.41

〈∇ψ|ε|∇U〉 = 4π 〈ψ|ρ〉 , (4.45)

which lets us write the functional for the energy as [3]

G(U) =
1

8π
〈∇U |ε|∇U〉 − 〈U |ρ〉 . (4.46)

We now find the gradient of the functional in order to minimize with respect to U

δ

δU
G(U) =

∂

∂U
G−∇ · ∂

∂∇U
G

= −∇ 1

8π

∂

∂U
〈∇U |ε|∇U〉 − ∂

∂U
〈U |ρ〉

δ

δU
G(U) =

1

4π
ε∇U − ρ

(4.47)

where, if we set δ
δU
G(U) = 0 we get the GPE from [1] and thus we can use any type of

minimization method to reach the right potential.
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Chapter 5

Implementation of the generalized
Poisson equation

5.1 Generalized Poisson equation on multiwavelet ba-

sis

In the following chapter we will outline our implementation of the GPE for solvent systems.
We took Fosso–Tande’s and Harrison’s paper in [1] as a starting point. There they defined
how to solve a GPE that included a dielectric function which was analytical through the
cavity boundary. This model was explained with more detail in chapter 4 and it will not
be explained again.

5.1.1 Cavity Function

The first step was to create a cavity function as in [1]. This was done by creating a cavity
object that stored the coordinates of nuclei ~rI and their characteristic radii RI . When a
point ~r is evaluated in the Cavity function it will return 0 if it is outside and 1 if it is
inside and will have a sigmoidal shape at the boundary of the Interlocking spheres cavity
defined by the nuclei coordinates and their radii. Additionally we wanted to be able to
change the width of the boundary with a parameter σ. The structure of the cavity object
is as in Algorithm 1

This Object was implemented as a derived class of RepresentableFunction, a C++
class in MRChem .

5.1.2 Dielectric Function

In Equations 4.29 and 4.28 we defined both a linear εlin(~r) and exponential εexp(~r) di-
electric function. These were implemented as presented in those two equations, with no
changes to them, except for minor syntax related adjustments. Their log derivatives had
to be implemented separately, this was done in order to have better convergence [1]. The
log derivative of the exponential dielectric function is represented as the derivative of the
Cavity multiplied by a constant. The cavity of water as implemented above can be seen
in Figure 5.1 as a slice through the xz plane.

39

https://github.com/MRChemSoft/mrchem
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Algorithm 1 Cavity object

Initialize C(~r)
Input : Molecular Coordinates, Radii, Width
σ ← Width
Set Ctot(~r) = 1
for All Nuclei I do
~rI ← Molecular CoordinateI
RI ← RadiusI

end for

When Evaluating C(~r)
Input: ~r
for All Nuclei I do
sI(~r) = |~r − ~rI | −RI

ΘI(~r) = 1
2

(
1 + erf

(
sI(~r)
σ

))
CI(~r) = 1−ΘI(~r)
Ctot(~r)← Ctot(~r) · (1− CI(~r))

end for
return 1− Ctot(~r)

Figure 5.1: Interlocking spheres cavity function slice for water as implemented in algo-
rithm 1
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5.1.3 Effective volume charge distribution

When Running a SCF calculation one calculates with electron densities in order to solve
an electron SE as is consistent with the BO approximation [9, 26], whereas the GPE needs
the total molecular density ρtot. This is computed as a sum of the electron density ρel
and the nuclear density ρnuc based on the geometry and charge of the nuclei

ρtot = ρel + ρnuc (5.1)

. Algorithm 2 shows how we calculated the nuclear density ρnuc for the total density by
use of point charges represented as Gaussian functions centered at each nucleus.

Algorithm 2 Nuclear charge density

Input : Nuclear coordinates, ZI
α = 1000
β = (α

π
)
3
2 · ZI

~rI(~r) = Nuclear coordinateI
Set ρnuc = 0
for All nuclei I do
ρI(~r) = βe−α·‖~r−~rI‖

2

ρnuc(~r) = ρnuc(~r) + ρ
(I)
nuc(~r)

end for
return ρnuc(~r)

Where α represents the width of the Gaussian function, β is the normalization constant
multiplied with the charge, ~rI is the position of the nucleus and ρ

(I)
nuc is the Gaussian

representing the a point charge at the nucleus.
We then go on to create the effective volume charge distribution by the following

equation.

ρeff =
1− ε
ε

ρtot (5.2)

This differs from Fosso–Tande’s effective charge distribution in that we incorporate the
subtraction of Uvac to it from the start [1]. This way we will be solving directly for the
reaction field potential Ur. The alternative is to instead compute the total potential U and
then subtract the gas phase potential to get the Reaction potential as in [1]. Calculating
the Reaction potential with the latter method brings loss of accuracy by adding numerical
noise.

5.1.4 Surface charge distribution

Given the total interaction potential of U of a solvation system with dielectric function ε
defined with cavity C, we compute the surface charge distribution γs as shown in algorithm
3.

In algorithm 3 we use the definition of the log derivative for both εlin(~r) and εexp(~r)
from equations 4.30 and 4.31. This is the same as just writing

γs =
1

4π

∇ε∇U
ε

,

which is the same equation as in 4.34.
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Algorithm 3 Surface charge distribution

γs[U, ε[C]]:
Input : U potential, ε[C] dielectric function
if ε is exponential then
k = 1

4π
log εin

εout
return k∇C · ∇U

else if ε is linear then
k = 1

4π
(εin − εout)

return k
ε
∇C · ∇U

end if

5.1.5 The iterative SCRF method

In this method we Compute the Reaction field of the solvation system by iteration. Here
we follow the equation for the Reaction field potential in section 4.3.4. In that section
we see that, in order to compute the reaction potential, we need to compute the surface
charge distribution of the reaction potential. This paradox is resolved by an iterative
process. In this section I will explain how this process works.

The first potential that is calculated will be a gas phase potential Uvac this potential
is found by applying the Poisson operator P̂ defined in Equation 3.74 on only the total
charge density ρtot. This is then used to make the zeroth Surface charge distribution γ

(0)
s .

This zeroth gamma is then added to the effective volume charge distribution ρeff and
the Poisson operator is applied to the sum in order to get the reaction potential. This
reaction potential is then used next iteration if the SCRF to compute the first surface
charge distribution, which is then used to compute the next and so on. This is done until
the norm of the difference between the previous reaction potential and the new one is
less than a user defined precision. This is shown in Algorithm 4. The SCRF can then be

Algorithm 4 SCRF iterative method

Zeroth iteration:
Uvac ← P̂(ρtot)

γ
(0)
s ← γs

[
Uvac, ε

]
U

(1)
r ← P̂(ρeff + γ

(0)
s )

n-th iteration:
Input : precision
error = 10
while error > precision do
γ

(n)
s ← γs

[
(Uvac + U

(n)
r ), ε

]
U

(n+1)
r ← P̂(ρeff + γ

(n)
s )

error = ‖U (n+1)
r − U (n)

r ‖
U

(n)
r ← U

(n+1)
r

end while
return U

(n)
r

implemented by itself inside a SCF cycle. The converged Reaction potential for water in
a water solvent can be seen in Figure 5.2.
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5.2 Variational implementation

The variational implementation is very similar to the iterational one described. All the
steps outlined above are the same during the first SCF cycle. Except that in the end, we
compute the next γ

(n)
s with the converged Ur before moving on to the next SCF cycle.

This γ
(n)
s is then used in the next cycle to compute only one iteration of the SCRF without

checking the error against the precision. After the one iteration we use the new UR to
compute the γ

(n+1)
s for the next iteration. If one is using a convergence accelerator one

can make use of the old surface charge distribution γ
(n)
s and the new one just computed

γ
(n+1)
s to accelerate the convergence of the Reaction field potential. This is outlined in

algorithm 5. Where γ
(n+1)′
s is an optimized γ

(n+1)
s which is used in the next iteration. The

Algorithm 5 SCRF variational method

Zeroth step:

Do The iterative SCRF → U
(converged)
r

γ
(n+1)
s ← γs

[
(Uvac + U

(converged)
r ), ε

]
n-th step:
On every SCF cycle do
γ

(n)
s ← γ

(n+1)
s

U
(n+1)
r ← P̂(ρeff + γ

(n)
s )

U
(n)
r ← U

(n+1)
r

γ
(n+1)
s ← γs

[
(Uvac + U

(n)
r ), ε

]
Accelerator[γ

(n)
s , γ

(n+1)
s ]→ γ

(n+1)′
s

γ
(n+1)
s ← γ

(n+1)′
s

first Iterative SCRF was done so that we would start the Optimizing of the potential with
an already good guess.

5.3 Software used

The problem was first implemented in VAMPYR [27] which is a python interface to the
MRCPP [28] code. Then it was implemented in C++ using MRChem [29]. All of the
above software are MW software developed at Hylleraas centre of Quantum molecular
sciences. Both implementations are identical, except for slight changes for performance
improvement, such as using a KAIN accelerator,

https://github.com/MRChemSoft/mrchem
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Figure 5.2: Reaction potential of water across the XZ plane



Chapter 6

Results

6.1 Overview of tests

We divided the tests of this implementation into four main types, (1) theoretical correct-
ness, (2) parametrization, (3) comparison and (4) tests of the variational implementation.

1. Theoretical correctness: In the tests of theoretical correctness we test if our
implementation gives the results to problems as expected. The tests for this were
comparisons to the energy of Li+ in an environment with dielectric constant εout
with the value we would get from the Born model. In the Born model the energy of
a one-atom ion in a solvent is the same as the energy of a point charge in the same
solvent. This energy is described as [4]

EBorn
R = −ε− 1

2ε

q2

R
(6.1)

In the Born model the cavity is defined as a sharp two-dimensional surface. Because
of this it is not expected that our results, with a smooth cavity, should converge
to the same values as the Born model. A second comparison was done with Gauss’
theorem[5] where we tested for the following relation that should hold for a point
charge ∫

γsdr =
1− εout
εout

q (6.2)

the integral evaluates the reaction charge of the system.

2. Parametrization: The parametrization tests were done by changing one param-
eter at a time while comparing this same change to Gaussian calculations with
different basis sets. First we only checked the dependency on the radius and how
changing it would affect the reaction field energy with respect to Gaussian calcula-
tions of the same radii. We then compared Gaussian calculations of radius R against
MRChem calculations of radius R+0.2 in an attempt to see an improvement in the
results. A second parametrization test was done with only Li+ where we changed
the relative precision of the MRChem calculations to see how they affect the energy
with respect to the Gaussian energies. This was also done on different radii.

3. Comparison: We then took 4 molecules that were tested by Chipman in [30]
and compared the results from the computations against Gaussian results. The
molecules used were H2O, NO+, CN– and CH3CONH2. These tests are classified
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into spherical cavity tests and molecular-shaped cavity tests. Spherical cavity tests
are performed by varying the radius of the cavities for each molecule. The spherical
cavity test was done for all molecules except for CH3CONH2 as it was too big, which
made calculations in both Gaussian and MRChem extremely slow.

The molecular-shaped cavity tests consist of making interlocking spheres centered
on each atom with radius equal to the atom’s van der Waals radius. The set of radii
by Bondi [24] are scaled by 1.2 as outlined by [4]. These radii were later shifted
by 0.2 Bohr so that we were comparing MRChem calculations of bigger radii to
Gaussian calculations.

4. Variational tests: As stated before in Chapters 4 and 5 a variational formulation
of the reaction field Problem was implemented in this thesis, The tables in Appendix
A show a row which is labeled ”Variational”, though the variational implementation
behaved in a irregular way. We will show the reaction energy plots for the variational
implementation for both H2O and Li+ as those are the ones that had the most
data points. We leave the reader to evaluate the variational energies for the other
molecules.

All MRChem tests were done with relative precision of 1e− 6, HF method and SAD_DZ

as a starting guess [29]. All Gaussian calculations were ran with HF method, Dunning’s
correlation consistent basis sets[31] of increasing completeness, scrf(pcm, read) option
with nocav, nodis and norep keywords. Both Gaussian and MRChem computations
were run with optimized geometries from Gaussian using b3lyp/cc-pVQZ.

6.2 Data

6.2.1 Theoretical correctness tests

We calculated the integral on the left hand side of Equation 6.2 for a point charge with
charge q = 3 and compared it to the exact value calculated as shown in the right hand
side of the same equation. This is shown in Tables 6.1 and 6.2.

We then evaluated the reaction field energy of the same point charge and compared it
to an exact value calculated as in Equation 6.1. Tables 6.3 and 6.4 show this.

For both the tests above we calculated the values with two radii, R = 3.0, 4.0 Bohr,
two sets of dielectric constants, εout = 2, 80, two transition widths, σ = 0.1, 0.2, and two
values for the relative precision, 1e− 4, 1e− 6.
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Radius Prec. σ =0.2 Rel. Diff. σ =0.1 Rel. Diff.
3.0 1E-04 -1.499964 -2.41E-05 -1.504559 3.04E-03

1E-06 -1.499999 -7.43E-07 -1.500001 4.17E-07
4.0 1E-04 -1.499602 -2.66E-04 -1.503913 2.61E-03

1E-06 -1.500002 1.21E-06 -1.499659 -2.27E-04
Exact -1.500000 -1.500000

Table 6.1: Reaction charge for a point charge of q = 3 and εout = 2 calculated with
differing precision, transition width (σ) and cavity radius (Bohr) compared to the exact
values

Radius Prec. σ =0.2 Rel. Diff. σ =0.1 Rel. Diff.
3.0 1.00E-04 -2.96495 8.26E-04 -2.96167 -2.81E-04

1.00E-06 -2.96250 2.92E-07 -2.96235 -5.16E-05
4.0 1.00E-04 -2.96400 5.06E-04 -2.95605 -2.18E-03

1.00E-06 -2.96243 -2.20E-05 -2.96215 -1.17E-04
Exact -2.96250 -2.96250

Table 6.2: Reaction charge for a point charge of q = 3 and εout = 80 calculated with
differing precision, transition width (σ) and cavity radius (Bohr) compared to the exact
values

Radius Born energy Prec. σ =0.2 Rel. Diff. σ =0.1 Rel. Diff.
3.0 -0.7500 1E-04 -0.7586 1.14E-02 -0.7560 7.96E-03

1E-06 -0.7586 1.15E-02 -0.7539 5.15E-03
4.0 -0.5625 1E-04 -0.5670 7.95E-03 -0.5660 6.27E-03

1E-06 -0.5671 8.17E-03 -0.5645 3.53E-03

Table 6.3: Reaction field energy for a point charge of q = 3 and εout = 2 calculated with
differing precision, transition width (σ) and cavity radius (Bohr) compared to the values
from the Born model

Radius Born energy Prec. σ =0.2 Rel. Diff. σ =0.1 Rel. Diff.
3 -1.48125 1.00E-04 -1.55781 5.17E-02 -1.51700 2.41E-02

1.00E-06 -1.55658 5.09E-02 -1.51731 2.43E-02
4 -1.1109375 1.00E-04 -1.15306 3.79E-02 -1.12961 1.68E-02

1.00E-06 -1.15241 3.73E-02 -1.13093 1.80E-02

Table 6.4: Reaction field energy for a point charge of q = 3 and εout = 80 calculated with
differing precision, transition width (σ) and cavity radius (Bohr) compared to the values
from the Born model
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6.2.2 Parametrization Tests

We first varied the radius of the cavity for H2O and lithium. The following Table 6.5
presents the data for the energy calculations of H2O with the three first cavity radii used
in the calculations These are the total energy of the system including the solvent effect
contributions.

Basis vacuum E 3.6 3.7 3.8
cc-pVDZ -76.02663793 -76.03908811 -76.03763579 -76.03641832
cc-pVTZ -76.05697112 -76.07006812 -76.06851635 -76.06721439
cc-pVQZ -76.06463074 -76.07784858 -76.07628127 -76.07496499
cc-pV5Z -76.06688831 -76.08017253 -76.07860146 -76.07728122
aug-cc-pVDZ -76.04126545 -76.05445572 -76.05289986 -76.05159320
aug-cc-pVTZ -76.06042913 -76.07366704 -76.07209913 -76.07078170
aug-cc-pVQZ -76.06580140 -76.07902254 -76.07745594 -76.07613970
aug-cc-pV5Z -76.06711902 -76.08034209 -76.07877365 -76.07745617
daug-cc-pVDZ -76.04174340 -76.05497166 -76.05340824 -76.05209489
daug-cc-pVTZ -76.06052322 -76.07376602 -76.07219809 -76.07088031
daug-cc-pVQZ -76.06582414 -76.07904691 -76.07748036 -76.07616414
daug-cc-pV5Z -76.06712250 -76.08034610 -76.07877753 -76.07745995
mrchem -76.06728320 -76.08531969 -76.08277751 -76.08071980

Table 6.5: Total Energy Calculations example for H2O in Water. Energy in Hartree and
radii of the cavity in Bohr

To calculate the reaction field energy we took a gas phase calculation of a basis set and
subtracted it from the total energy calculated with the same basis set. In MRChem this
was done using the same relative precision for both the gas phase and the solvent calcu-
lations. The following equation was used to calculate the reaction field Energy Er

Er = Etot − Evac (6.3)

Examples of Er for the first three cavity radii for H2O obtained from the operation in
Equation 6.3 can be seen in Table 6.6

The Tables 6.5 and 6.6 do not show the total amount of results that were used to plot
the Energies. The results for the remaining radii can be seen in Appendix A.

We now plot the data from the total energy and reaction energy tables for both H2O
and Li+. In this chapter we will be plotting only against double augmented basis sets.
The rest of the plots for the other basis sets can be seen in Appendix B.

The plots for the reaction energy of H2O for both the Gaussian and MRChem calcu-
lations can be seen in Figure 6.1. The same type of plots for Li+ can be seen in Figure
6.2. In both of these figures we are comparing the energy from MRChem to sets of four
curves formed each of double, triple, quadruple and quintuple zeta Dunning’s correlation
consistent basis sets[31] as implemented in Gaussian [32].

The MRChem energy values EMRChem for each radius were compared to the corre-
sponding values of each of the different basis set calculations in Gaussian Ebasis

Gaussian by
finding the relative difference dr between them as

dr =
Ebasis
Gaussian − EMRChem

EMRChem

(6.4)
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basis 3.6 3.7 3.8
cc-pVDZ -0.01245017 -0.01099786 -0.00978039
cc-pVTZ -0.01309700 -0.01154523 -0.01024327
cc-pVQZ -0.01321784 -0.01165053 -0.01033425
cc-pV5Z -0.01328422 -0.01171314 -0.01039291
aug-cc-pVDZ -0.01319027 -0.01163442 -0.01032775
aug-cc-pVTZ -0.01323791 -0.01167000 -0.01035257
aug-cc-pVQZ -0.01322114 -0.01165454 -0.01033831
aug-cc-pV5Z -0.01322306 -0.01165463 -0.01033715
daug-cc-pVDZ -0.01322826 -0.01166484 -0.01035150
daug-cc-pVTZ -0.01324280 -0.01167487 -0.01035709
daug-cc-pVQZ -0.01322276 -0.01165622 -0.01033999
daug-cc-pV5Z -0.01322360 -0.01165503 -0.01033745
mrchem -0.01803648 -0.01549431 -0.01343659

Table 6.6: [Er for H2O in Water sample]Reaction Field Energy Calculations example for
H2O in water, Energy in Hartree and radii of the cavity in Bohr

The operation in Equation 6.4 was applied to both H2O and Li+. The results for H2O
and Li+ are presented in Figures 6.3 and 6.4 respectively.

We then shifted the cavity radius of the MRChem calculations for both H2O and
Li+ so they were 0.2 Bohr bigger and compared them to Gaussian calculations with an
unshifted radius. The relative Difference plots for H2O and Li+ can be seen in Figures
6.5 and 6.6 respectively.

Lastly we computed the reaction field energies of Li+ with four different relative pre-
cision; 1e − 3, 1e − 4, 1e − 5, and 1e − 6. We compared these to the reaction field en-
ergies calculated with the most complete basis set: daug-cc-pV5Z as described in 6.4
Figure 6.7 shows the plots of the operation in Equation 6.4 as applied to the different
precision values of the MRChem calculations for Li+. First all of the relative differ-
ences plotted together, then the second one contains only the results for relative precision
1e(−4), 1e(−5), and 1e(−6) since the results with relative precision 1e(−3) are over five
times larger than the other ones.
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Figure 6.1: Reaction field energy of H2O in a water solution, calculated with relative
precision e− 05 in MRChem and with double augmented basis sets in Gaussian

Figure 6.2: Reaction field energy of Li+ in a water solution, calculated with relative
precision e− 05 in MRChem and with double augmented basis sets in Gaussian
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Figure 6.3: Relative difference between the reaction field energy of H2O in a water solution
calculated with with relative precision e−05 in MRChem against double augmented basis
sets in Gaussian

Figure 6.4: Relative difference between the reaction field energy of Li+ in a water solution
calculated with relative precision e − 05 in MRChem and with double augmented basis
sets in Gaussian
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Figure 6.5: Relative difference between the reaction field energy of H2O in a water solution
calculated with with relative precision e−05 in MRChem and radius +0.2 Bohr and with
double augmented basis sets in Gaussian

Figure 6.6: Relative difference between the reaction field energy of Li+ in a water solution
calculated with relative precision e − 05 in MRChem and radius +0.2 Bohr and with
double augmented basis sets in Gaussian
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(a) All precision values plotted

(b) All precision values plotted, except for precision value 1e− 03

Figure 6.7: Relative difference between the reaction field energy of Li+ in a water solu-
tion calculated with different relative precisions in MRChem and same calculations in
Gaussian with daug-cc-pV5Z
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6.2.3 Comparison Tests

The substrates studied in these tests are the same 4 substrates studied by Chipman in [30],
namely, H2O, NO+, CN– and CH3CONH2. Two sets of comparison tests were performed.
Firstly, spherical cavity calculations where for each calculation the radius of the cavity
was varied. Secondly, molecular-shaped cavities calculations were performed on all the
substrates. Of the second type of test only two sets of radii were calculated, for each
substrate, cavities based on the Bondi radii multiplied by 1.2, and the same cavities but
their radii were increased by 0.2 Bohr. This is done to compensate for the thickness of
the cavity surface.

The results for the spherical cavity tests for H2O can be seen in Figures 6.1 and 6.3,
and the results for the molecular-shaped tests for H2O can be seen on Table 6.7. For NO+

the plots for the single sphere cavity tests can be seen in Figures 6.8 and 6.10 and the
molecular shape cavity test result can be seen in Table 6.8. For CN+ one can see the plots
for the single sphere cavity on Figures 6.9 and 6.11 while the molecular-shaped results
are on Table 6.9. The molecular-shaped test for the incremented radii did not converge
for CN– , but comparisons between the standard scaled Bondi radii and the single sphere
cavity can still be done.

Some of the data points for CN– and NO+ are missing. The reason for this is that
the calculations for these values either never completed or gave extreme outliers, due to
yet not understood numerical instability. These outliers were removed from the plots in
order to better visualize the trend correctly converged values. All of the available values,
those which completed, can be seen in their corresponding tables in Appendix A.

There are no single sphere cavity tests for CH3CONH2 due to the size of the molecule
making single sphere calculations extremely slow for both Gaussian and MRChem . The
only tests that were ran where molecular-shaped tests. Gaussian did not converge after 72
hours of running with daug-cc-pV5Z, therefore, the comparison values are missing from
the tables. The CH3CONH2 results are presented in Table 6.10.

The molecular-shaped cavity results shown are just the relative difference between
MRChem and Gaussian values as shown in Equation 6.4. For the rest of the tables see
Appendix A.

basis Van der Waals Van der Waals + 0.2 Bohr
cc-pVDZ -0.15090654 0.04037456
cc-pVTZ -0.12829535 0.06807953
cc-pVQZ -0.12895265 0.06727416
cc-pV5Z -0.12925406 0.06690484
aug-cc-pVDZ -0.12913032 0.06705646
aug-cc-pVTZ -0.13428776 0.06073717
aug-cc-pVQZ -0.13683848 0.05761183
aug-cc-pV5Z -0.13631495 0.05825329
daug-cc-pVDZ -0.12816349 0.06824109
daug-cc-pVTZ -0.13378744 0.06135020
daug-cc-pVQZ -0.13648975 0.05803913
daug-cc-pV5Z -0.13623509 0.05835115

Table 6.7: Relative difference between Gaussian and MRChem results from molecular-
shaped cavity tests for H2O
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Basis Van der Waals radii Van der Waals radii +0.2 Bohr
cc-pVDZ -0.03598423 0.02044325
cc-pVTZ -0.03692221 0.01945037
cc-pVQZ -0.03747002 0.01887050
cc-pV5Z -0.03810456 0.01819881
aug-cc-pVDZ -0.03906862 0.01717832
aug-cc-pVTZ -0.03801963 0.01828871
aug-cc-pVQZ -0.03792710 0.01838665
aug-cc-pV5Z -0.03814585 0.01815510
daug-cc-pVDZ -0.03897379 0.01727870
daug-cc-pVTZ -0.03811073 0.01819228
daug-cc-pVQZ -0.03799786 0.01831176
daug-cc-pV5Z -0.03813936 0.01816197

Table 6.8: Relative difference between Gaussian and MRChem results from molecular-
shaped cavity test for NO+

Basis Van der Waals radii
cc-pVDZ 0.01805797
cc-pVTZ 0.00402722
cc-pVQZ -0.00689520
cc-pV5Z -0.01760704
aug-cc-pVDZ -0.02534307
aug-cc-pVTZ -0.02484616
aug-cc-pVQZ -0.02473155
aug-cc-pV5Z -0.02453156
daug-cc-pVDZ -0.02428967
daug-cc-pVTZ -0.02475331
daug-cc-pVQZ -0.02472359
daug-cc-pV5Z -0.02449823

Table 6.9: Relative difference between Gaussian and MRChem results from molecular-
shaped cavity test for CN–

basis vdw Vdw+0.2
cc-pVDZ -0.18617733 -0.02575734
cc-pVTZ -0.13954658 0.03006522
cc-pVQZ -0.12431320 0.04830139
cc-pV5Z -0.12131273 0.05189330
aug-cc-pVDZ -0.11396644 0.06068769
aug-cc-pVTZ -0.12038877 0.05299940
aug-cc-pVQZ -0.12258540 0.05036977
aug-cc-pV5Z -0.12243503 0.05054978
daug-cc-pVDZ -0.11719827 0.05681881
daug-cc-pVTZ -0.12128833 0.05192252
daug-cc-pVQZ -0.12247807 0.05049826

Table 6.10: Relative difference between Gaussian and MRChem results from molecular-
shaped cavity test for CH3CONH2
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Figure 6.8: Reaction field energy of NO+ in a water solution, calculated with
MRChem and with different double augmented basis sets in Gaussian

Figure 6.9: Reaction field energy of CN– in a water solution, calculated with
MRChem and with different basis sets in Gaussian
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Figure 6.10: Relative difference between the reaction field energy of NO+ in a water
solution calculated with MRChem and with different double augmented basis sets in
Gaussian

Figure 6.11: Relative difference between the reaction field energy of CN– in a water
solution calculated with MRChem and with different double augmented basis sets in
Gaussian
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6.2.4 Variational implementation tests

Figures 6.12 and 6.13 show the reaction field energy calculated with the variational im-
plementation for H2O and Li+, respectively. Figures 6.14 and 6.15 show the relative
difference as calculated with Equation 6.4 for H2O and Li+, respectively.

Figure 6.12: Reaction field energy for H2O in water using the variational and iterative
implementation

Figure 6.13: Reaction field energy for Li+ in water using the variational and iterative
implementation
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Figure 6.14: Relative difference between the reaction field energy of H2O calculated with
the variational implementation against the iterative implementation

Figure 6.15: Relative difference between the reaction field energy of Li+ calculated with
the variational implementation against the iterative implementation
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6.3 Discussion

6.3.1 Theoretical correctness

The results for the integral of the surface charge distribution γs for both dielectric con-
stants of 2 and 80 are on Tables 6.1 and 6.2 respectively. These results must coincide
with exact value calculated with Equation 6.2 if the implementation is theoretically cor-
rect. We can see that, since the relative difference is so small, that the implementation
is correct for both big and small dielectric constants. The values for εout = 80 have a bit
larger relative difference in comparison, which stems from the fact that the implementa-
tion has hardships in solving solvation systems with big dielectric constants. Increasing
the precision of the calculations decreases the relative difference, as expected.

Increasing the radius does not improve the differences of the integrals, except for
εout = 2 with σ = 0.1 and prec. = 1e−4, and for εout = 80 with σ = 0.2 and prec. = 1e−4
where it improves by 0.1% for εout = 2 and 0.03% for εout = 80. The cause for this decrease
in the quality of the MRChem results might be because of the surface charge effect being
diminished by the bigger cavity. The reason it gets better at only two sets of parameters
might be caused by numerical noise, given the size of the variation. The same behavior
is seen for tighter surfaces. The difference worsens when increasing tightness, and where
it gets better is most likely because of numerical noise, given the size of the variation.
These two observation show the difficulty this implementation still has at working with
sharp transitions and larger surface areas.

The energies, on the other hand, do not have the constraint of needing to be exactly
the same as the Born model values. This is simply because the Born model is a model
in which the cavity surface is a sharp transition. We can see that this is the case since
the relative difference increases or decreases by very small values when increasing the
relative precision of the calculations, telling us that the variation of our values between
themselves is much smaller than the difference with the Born model. It was expected as
well, that when the width of our cavity surface becomes small compared to the radius our
results would resemble the Born results more. Two ways of decreasing the width of the
surface relative to the size of the cavity exist, either by increasing the radius and/or by
decreasing the width of the transition. Both of these relations hold true, in our results,
for both dielectric constants.

The relative differences for the εout = 80 are not as good as for εout = 2. The most
likely cause is the transition becomes steeper relative to the width and radius parameters
due to the high difference between εout and εin. This leads to MRChem having difficulties
projecting the cavity, which in turn, increase the numerical noise in the calculation.

6.3.2 Parametrization

The values for H2O reaction energy with a cavity radius of 5 Bohr diverged, therefore we
removed them in order to better visualize the trends. We can see in Figures 6.3 and 6.4
that the relative difference decays, diminishes to a stable value, the bigger the cavity is.
The method Gaussian uses to calculate the reaction field describes the transition from
inside the cavity to the outside as happening at a boundary, this being the surface of the
cavity. The problem is solved at the surface of the cavity, which is assumed to be two
dimensional, so the transition is noncontinuous, as explained in Chapter 4. Our cavity
is defined as an analytical transition with a parameter σ which controls the width of the
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cavity surface, so that we get a smooth transition between the inside and the outside of
the cavity.

Two main factors are responsible for the decay in relative difference that we observe.
Firstly, the bigger the radius, the smaller the difference is relative to the size of the
cavity. This means that at larger distances our cavity resembles more and more that of
a discontinuous transition such as the ones used by Gaussian. The second factor is the
amount of the charge density that is contained within the cavity. The effect of this can
be seen on the tests that followed.

As we can see on the Figures 6.5 and 6.6 there is a significant improvement on the
relative difference when we compare with bigger radii of MRChem calculations to smaller
radii of Gaussian calculations. This is caused by the smooth cavity. Since the transition
is wider in our implementation there is more density that is situated outside the cavity
than in cavities of same radius from Gaussian calculations. This was accounted for when
we increased the radii, and we still see the same decay in difference that we saw in the
standard comparison.

The graphs from Figure 6.7 tell us two things about our results: Firstly at precision
lower than 1e− 03 we get results that are at least 20% different than the best Gaussian
results we could run for small radii and diverge from the Gaussian results for bigger radii.
Secondly we see that we don’t need a relatively high precision to get stable results which
are consistent with greater previsions and that also approach the Gaussian results at
bigger radii.

On the other hand, it is hard to decide if this is applicable to bigger systems, as the
Lithium cation is fairly simple, whereas other systems might not be so simple.

6.3.3 Comparison

Same as with the tests for Li+ and H2O, the Figures 6.10 and 6.11 show that both relative
differences for CN– and NO+ decay at higher radii.

The relative differences for the results for NO+ seem to decay faster than the other
molecules, but it is hard to see due to the lack of data points. Assuming that it decays
faster, one can explain this as being due to the fact that the electron density is closer to
the atoms, making it easier for the cavity to contain most of it. The opposite can be seen
for CN– . The explanation for this might go through the same line of thought as that
for NO+, but now since the molecule is negatively charged, the density is more diffuse,
making it harder to contain it in its entirety.

The divergence around the interval (4.0, 4.7) can be attributed to the way the functions
are projected. The cavity function is very sharp at the transition. In order to project it
correctly one needs to go to very low scales. Additionally, the intervals are powers of two,
meaning that there is always the discontinuity from the wavelets at the 4.0 point, which
is hard to correct. This discontinuity brings forth numerical noise that gets amplified
when the derivative of the function is calculated to solve the GPE. These errors occur
in this implementation as it is still in development. These problems are expected to be
diminished or removed in future revisions. One way we could attempt to fix is by defining
a better derivative for the cavity. Fosso–Tande defined the derivative of the cavity as
combinations of analytical derivatives [1]. This definition supposedly would help remove
numerical noise at the transition, since one can create these analytical derivatives before
projecting them into the MW basis.

The tables for the molecular-shaped cavity tests show us that for most the molecules,
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the relative difference doesn’t vary too much when going to molecular-shaped cavity or
that it gets much better, as is the case for NO+ in Table 6.8. It can be seen that, while
its spherical cavity plot, Figure 6.10, does not go lower than a relative difference of 10%,
its molecular-shaped cavity tests have a relative difference of less than 4%. The same can
be said for the results for CN– , in Table 6.9, which got to less than 3% from the Gaussian
results, while it never approached 10% with spherical cavity, Figure 6.11.

The H2O results, in Table 6.7 do not go too far from the best relative difference shown
in Figure 6.3. They do significantly better when increasing the radius of the interlocking
spheres, a decrease in the relative difference of around 6 − 9%. This decrease is seen in
the other molecules as well, where, for NO+, the decrease is around 1− 2%.

CH3CONH2, in Table 6.10 has a difference of at best 11.4% and at worst 18.6%.
Increasing the radii of the interlocking spheres has the same effect that was observed for
H2O, but stronger. Here they decrease by 5 − 16%. This tells us that in MRChem ,
in order to get comparable results to Gaussian, one need to define a cavity that is a bit
bigger than the one used in Gaussian. This makes sense as the cavity surface, because
of the width, starts earlier for us than it does for Gaussian. This leads to more of the
density escaping. Increasing the radius gives us a cavity that is effectively the same as
Gaussian’s.

6.3.4 Variational implementation

The results for the variational implementation of the GPE for H2O and Li+ is shown in
Figures 6.14 and 6.15 respectively.

Ideally, the results from the iterative and variational implementation should be almost
equal, with differences between them being for the most part caused by numerical noise.
This is because we are using the same GPE, but different implementation, for both of
them.

Li+ behaves almost as expected, with very small differences between implementations,
which can be explained as numerical noise. H2O on the other hand shows signs that, for
bigger systems, the errors are not numerical noise only. The H2O differences imply that
there is an error in the implementation, which gets augmented for bigger systems. This
is further strengthened by the fact that the variational values for the other molecules had
the same trend, as can be seen in the Tables of Appendix A.

Something worth noting is that the values appear to behave systematically, which
strengthens the possibility of something being implemented wrongly, and most impor-
tantly, that it can be accounted for and corrected in future revisions of this implementa-
tion.

6.4 Concluding remarks

The theoretical correctness tests showed that the implementation is, at its base, theoret-
ically correct.

We saw that when increasing the radii of the cavity in calculations, the difference
between the Gaussian calculations and the MRChem calculations decayed, as is expected.
Having a tighter precision than 1e − 4 helps to have better results, but is not entirely
necessary, as the difference between the models is larger than the improvement upon
moving to better precision values.

https://github.com/MRChemSoft/mrchem
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We see that all the solutes used in [30] have relative differences that decay with bigger
radii. We also saw that using bigger MRChem cavities where Gaussian used smaller gave
us better relative differences in molecular-shaped Cavities. The MRChem calculations
did not converge for some values of CN– and NO+ which is most likely caused by insta-
bilities in the derivatives of the cavity, which can be improved by following Fosso–Tande
[1].

The variational implementation gives acceptable results for small systems such as
Li+ but for bigger systems, it shows clear signs of errors in the implementation. The
variational implementation is still in its early days when it comes to development, and
the results still behave systematically, which tells us that they can be accounted for and
improved upon. We have also seen that for most of our comparisons we could not expect
out values to actually converge to what we were testing against. This is because there
still are not many equivalent implementations to test against.

6.5 Areas of improvement/future development

Given that the iterative values gave results as expected we can say that the implementation
is correct. An improvement would be to try to change the cavity definition so as to take
into account more of the electron density. One way that is possible right now is to decrease
the width of the transition, another is to simply use bigger cavities as these are shown
to give better results. Both of those are possible with the implementation used now, but
decreasing the width of the transition might make the cavity harder to project.

A better solution to this is to implement the derivative of the cavity as a combination
of analytical derivatives, as Fosso–Tande did in [1], which might let us get better results
with the same parameters used in the tests of this chapter.

The goal in the future is to apply these solutions and test if they better the results
of the variational method. After that we will start seeing how molecular properties are
affected by this.

Another goal is to attempt better stability at sharper cavity surfaces as there is clearly
a trend where the narrower the surface, the harder it is to actually converge it.

https://github.com/MRChemSoft/mrchem
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Appendix A

Data tables

Here are all the Data tables for all tests performed
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T
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2 O
.
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s
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top

row
in

B
oh

r
an

d
en

ergies
in

H
artree

B
asis

3.6
3.7

3.8
3.9

4.0
4.1

4.2
4.3

4.4
4.5

4.6
4.7

4.8
4.9

5.0
cc-p

V
D

Z
-0.01245017

-0.01099786
-0.00978039

-0.00874992
-0.00787004

-0.00711277
-0.00645730

-0.00588443
-0.00538158

-0.00493780
-0.00454422

-0.00419359
-0.00387993

-0.00359826
-0.00334473

cc-p
V

T
Z

-0.01309700
-0.01154523

-0.01024327
-0.00914118

-0.00820070
-0.00739219

-0.00669387
-0.00608431

-0.00555044
-0.00508041

-0.00466458
-0.00429507

-0.00396536
-0.00367004

-0.00340491
cc-p

V
Q

Z
-0.01321784

-0.01165053
-0.01033425

-0.00921916
-0.00826703

-0.00744819
-0.00674102

-0.00612350
-0.00558271

-0.00510669
-0.00468571

-0.00431175
-0.00397823

-0.00367963
-0.00341173

cc-p
V

5Z
-0.01328422

-0.01171314
-0.01039291

-0.00927373
-0.00831745

-0.00749448
-0.00678343

-0.00616200
-0.00561750

-0.00513801
-0.00471381

-0.00433690
-0.00400067

-0.00369962
-0.00342953

au
g-cc-p

V
D

Z
-0.01319027

-0.01163442
-0.01032775

-0.00922036
-0.00827413

-0.00745956
-0.00675533

-0.00613958
-0.00559965

-0.00512382
-0.00470252

-0.00432790
-0.00399349

-0.00369387
-0.00342491

au
g-cc-p

V
T

Z
-0.01323791

-0.01167000
-0.01035257

-0.00923583
-0.00828166

-0.00746049
-0.00675103

-0.00613091
-0.00558756

-0.00510907
-0.00468576

-0.00430967
-0.00397421

-0.00367389
-0.00340451

au
g-cc-p

V
Q

Z
-0.01322114

-0.01165454
-0.01033831

-0.00922267
-0.00826951

-0.00744930
-0.00674073

-0.00612144
-0.00557885

-0.00510107
-0.00467841

-0.00430291
-0.00396799

-0.00366815
-0.00339921

au
g-cc-p

V
5Z

-0.01322306
-0.01165463

-0.01033715
-0.00922075

-0.00826720
-0.00744685

-0.00673830
-0.00611921

-0.00557688
-0.00509940

-0.00467703
-0.00430182

-0.00396716
-0.00366756

-0.00339882
d

au
g-cc-p

V
D

Z
-0.01322826

-0.01166484
-0.01035150

-0.00923830
-0.00828706

-0.00746822
-0.00676047

-0.00614167
-0.00559922

-0.00512130
-0.00469829

-0.00432229
-0.00398676

-0.00368625
-0.00341661
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Z

-0.01324280
-0.01167487

-0.01035709
-0.00923979

-0.00828494
-0.00746306

-0.00675292
-0.00613216

-0.00558823
-0.00510925

-0.00468553
-0.00430910

-0.00397339
-0.00367287

-0.00340335
d
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V
Q

Z
-0.01322276

-0.01165622
-0.01033999

-0.00922433
-0.00827111

-0.00745080
-0.00674212

-0.00612270
-0.00557998

-0.00510206
-0.00467927

-0.00430365
-0.00396862

-0.00366869
-0.00339968

d
au

g-cc-p
V

5Z
-0.01322360

-0.01165503
-0.01033745

-0.00922099
-0.00826740

-0.00744703
-0.00673846

-0.00611935
-0.00557701

-0.00509950
-0.00467712

-0.00430189
-0.00396720

-0.00366758
-0.00339883

m
rch

em
-0.01803648

-0.01549431
-0.01343659

-0.01175089
-0.01035373

-0.00918648
-0.00819918

-0.00735770
-0.00663393

-0.00600921
-0.00546467

-0.00498791
-0.00456817

-0.00419678
1.39745748

variation
al

-0.17939296
-0.09288892

-0.02280693
0.03343679

0.07799333
0.11245532

0.13945012
0.15926968

0.17366527
0.18346729

0.18957143
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cc-p
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D
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-0.12481290

-0.12155491
-0.11849085

-0.11561166
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-0.10327402
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-0.12488828
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-0.11854170
-0.11564894
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-0.11031932
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-0.10550452

-0.10326274
-0.10111970

-0.09906744
cc-p

V
Q

Z
-0.14042376

-0.13604247
-0.13201651

-0.12828979
-0.12481889

-0.12156963
-0.11850906

-0.11562774
-0.11290037

-0.11031196
-0.10784983

-0.10550318
-0.10326269

-0.10112025
-0.09906818

cc-p
V

5Z
-0.14032002

-0.13594642
-0.13192931

-0.12821210
-0.12475086

-0.12151103
-0.11845949

-0.11558632
-0.11286621

-0.11028411
-0.10782736

-0.10548521
-0.10324841

-0.10110894
-0.09905934
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g-cc-p
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D

Z
-0.14050520

-0.13606377
-0.13199659

-0.12824357
-0.12475771

-0.12150180
-0.11843962

-0.11556152
-0.11283964

-0.11025784
-0.10780268

-0.10546282
-0.10322862

-0.10109180
-0.09904474

au
g-cc-p

V
T

Z
-0.14047704

-0.13607544
-0.13203290

-0.12829329
-0.12481289

-0.12155709
-0.11849210

-0.11560865
-0.11288063

-0.11029258
-0.10783152

-0.10548634
-0.10324753

-0.10110682
-0.09905646

au
g-cc-p

V
Q

Z
-0.14036020

-0.13598348
-0.13196250

-0.12824094
-0.12477521

-0.12153099
-0.11847532

-0.11559846
-0.11287518

-0.11029043
-0.10783155

-0.10548773
-0.10324968

-0.10110932
-0.09905906
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g-cc-p

V
5Z

-0.14031795
-0.13594388

-0.13192649
-0.12820914

-0.12474788
-0.12150811

-0.11845670
-0.11558368

-0.11286376
-0.11028185

-0.10782531
-0.10548336

-0.10324677
-0.10110749

-0.09905807
d

au
g-cc-p

V
D

Z
-0.14043038

-0.13601160
-0.13196308

-0.12822520
-0.12475142

-0.12150496
-0.11845035

-0.11557755
-0.11285944

-0.11028015
-0.10782650

-0.10548736
-0.10325328

-0.10111613
-0.09906846

d
au

g-cc-p
V

T
Z

-0.14039926
-0.13601162

-0.13198128
-0.12825221

-0.12478078
-0.12153253

-0.11847399
-0.11559567

-0.11287177
-0.11028701

-0.10782850
-0.10548528

-0.10324793
-0.10110828

-0.09905870
d

au
g-cc-p

V
Q

Z
-0.14033646

-0.13596211
-0.13194348

-0.12822423
-0.12476071

-0.12151857
-0.11846483

-0.11558972
-0.11286801

-0.11028466
-0.10782699

-0.10548421
-0.10324704

-0.10110742
-0.09905778

d
au

g-cc-p
V

5Z
-0.14031780

-0.13594360
-0.13192610

-0.12820866
-0.12474733

-0.12150752
-0.11845609

-0.11558307
-0.11286316

-0.11028129
-0.10782479

-0.10548288
-0.10324634

-0.10110711
-0.09905774

m
rch

em
-0.32883138

-0.25953612
-0.21649226

-0.18859863
-0.16968803

-0.12726885
-0.11537568

-0.11217941
-0.10923900

variation
al

1.03591050
1.17290937

1.08490199
0.89493973

0.67670226
3.32352362

N
/A

3.33079991
3.33411248

-0.02040741
-0.06849810

3.34294130
-0.11235089

-0.11729793
-0.11578217
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5
cc-p

V
D

Z
-0.12654620

-0.12587879
-0.12477243

-0.12331968
-0.12160138

-0.11968655
-0.11768818

-0.11553605
-0.11333289

-0.11110971
-0.10889087

-0.10669508
-0.10453641

-0.10242507
-0.10037619

-0.11581532
-0.11128108

cc-p
V

T
Z

-0.12195119
-0.12169531

-0.12099914
-0.11994589

-0.11860933
-0.11705339

-0.11539170
-0.11354405

-0.11161590
-0.10963838

-0.10763673
-0.10563113

-0.10363754
-0.10166831

-0.09974334
-0.11421917

-0.11019738
cc-p

V
Q

Z
-0.11941180

-0.11930032
-0.11876345

-0.11787990
-0.11671904

-0.11534060
-0.11385549

-0.11217831
-0.11041229

-0.10858641
-0.10672446

-0.10484581
-0.10296613

-0.10109797
-0.09926353

-0.11297662
-0.10925196

cc-p
V

5Z
-0.11768389

-0.11762090
-0.11713950

-0.11631816
-0.11522591

-0.11392196
-0.11251575

-0.11092283
-0.10924444

-0.10750839
-0.10573716

-0.10394878
-0.10215763

-0.10037506
-0.09862300

-0.11175803
-0.10823375

au
g-cc-p

V
D

Z
-0.11629149

-0.11629945
-0.11588924

-0.11513692
-0.11410983

-0.11286624
-0.11151548

-0.10997292
-0.10834035

-0.10664631
-0.10491407

-0.10316249
-0.10140666

-0.09965855
-0.09794047

-0.11087798
-0.10741592

au
g-cc-p

V
T

Z
-0.11665972

-0.11661657
-0.11615778

-0.11536136
-0.11429595

-0.11302035
-0.11164309

-0.11008073
-0.10843359

-0.10672929
-0.10499020

-0.10323427
-0.10147581

-0.09972614
-0.09800705

-0.11093450
-0.10749072

au
g-cc-p

V
Q

Z
-0.11673133

-0.11668078
-0.11621495

-0.11541189
-0.11434023

-0.11305883
-0.11167638

-0.11010916
-0.10845771

-0.10674972
-0.10500755

-0.10324917
-0.10148886

-0.09973788
-0.09801788

-0.11094754
-0.10748930

au
g-cc-p

V
5Z

-0.11675867
-0.11670774

-0.11624070
-0.11543566

-0.11436145
-0.11307718

-0.11169191
-0.11012192

-0.10846808
-0.10675815

-0.10501454
-0.10325518

-0.10149430
-0.09974305

-0.09802301
-0.11097029

-0.10750835
d
au

g-cc-p
V

D
Z

-0.11632305
-0.11634138

-0.11594254
-0.11520210

-0.11418686
-0.11295450

-0.11161437
-0.11008045

-0.10845472
-0.10676553

-0.10503614
-0.10328545

-0.10152873
-0.09977813

-0.09805647
-0.11099781

-0.10754003
d
au

g-cc-p
V

T
Z

-0.11667373
-0.11662666

-0.11616422
-0.11536470

-0.11429695
-0.11301989

-0.11164204
-0.11008000

-0.10843394
-0.10673132

-0.10499433
-0.10324075

-0.10148474
-0.09973745

-0.09802061
-0.11094507

-0.10750902
d
au

g-cc-p
V

Q
Z

-0.11673854
-0.11668771

-0.11622152
-0.11541798

-0.11434575
-0.11306375

-0.11168078
-0.11011306

-0.10846125
-0.10675306

-0.10501088
-0.10325265

-0.10149264
-0.09974206

-0.09802255
-0.11094845

-0.10749185
d
au

g-cc-p
V

5Z
-0.11676124

-0.11671031
-0.11624321

-0.11543807
-0.11436372

-0.11307929
-0.11169386

-0.11012366
-0.10846961

-0.10675947
-0.10501564

-0.10325608
-0.10149501

-0.09974359
-0.09802341

-0.11097408
-0.10751067

m
rch

em
-0.12254794

-0.12181920
-0.12094138

-0.11986719
-0.11718710

N
/A

-0.11393670
N

/A
-0.10850322

N
/A

-0.10477718
-0.10106222

-0.11376103
N

/A
variation

al
-5.34469526

-4.99818574
-4.64198778

-4.28094194
-3.92194122

-3.57124923
N

/A
-2.91429412

N
/A

-2.32849592
-2.08239369

-1.85032534
-1.64041723

-1.45135909
-1.28331141

-3.05118390
-2.42389132
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Basis gas phase E R = vdw ∗ 1.2 R + 0.2
cc-pVDZ -207.99616289 -208.01040179 -208.00814905
cc-pVTZ -208.05993722 -208.07499198 -208.07263760
cc-pVQZ -208.07568572 -208.09100701 -208.08864351
cc-pV5Z -208.07958414 -208.09495792 -208.09259553
aug-cc-pVDZ -208.01289874 -208.02840106 -208.02600367
aug-cc-pVTZ -208.06363709 -208.07902704 -208.07666608
aug-cc-pVQZ -208.07677471 -208.09212622 -208.08977064
aug-cc-pV5Z -208.07974233 -208.09509647 -208.09273570
daug-cc-pVDZ -208.01390429 -208.02935006 -208.02695457
daug-cc-pVTZ -208.06394178 -208.07931599 -208.07695391
daug-cc-pVQZ -208.07684910 -208.09220249 -208.08984495
daug-cc-pV5Z b
mrchem -208.08017977 -208.09767608 -208.09479511
variational -208.08017977 -210.77259049 -209.84193252

Table A.9: Total energies for CH3 CONH2 with molecular shaped cavity, radii in Bohr
and energies in Hartree

Basis R = vdw ∗ 1.2 R + 0.2
cc-pVDZ -76.03545667 -76.03391682
cc-pVTZ -76.06602470 -76.06443065
cc-pVQZ -76.07367749 -76.07208832
cc-pV5Z -76.07593194 -76.07434960
aug-cc-pVDZ -76.05031036 -76.04872816
aug-cc-pVTZ -76.06942047 -76.06784671
aug-cc-pVQZ -76.07476625 -76.07319603
aug-cc-pV5Z -76.07608931 -76.07451471
daug-cc-pVDZ -76.05079835 -76.04920787
daug-cc-pVTZ -76.06951976 -76.06794328
daug-cc-pVQZ -76.07479262 -76.07322153
daug-cc-pV5Z -76.07609362 -76.07451872
mrchem -76.07766927 -76.07575971
variational -76.38690086 -76.20453544

Table A.10: Total energies for H2O with molecular shaped cavity
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Basis R = vdw ∗ 1.2 R + 0.2
cc-pVDZ -129.05771485 -129.05081346
cc-pVTZ -129.09602536 -129.08913108
cc-pVQZ -129.10611331 -129.09925769
cc-pV5Z -129.10825575 -129.10142747
aug-cc-pVDZ -129.06402725 -129.05721593
aug-cc-pVTZ -129.09702058 -129.09016851
aug-cc-pVQZ -129.10636989 -129.09952705
aug-cc-pV5Z -129.10829226 -129.10146332
daug-cc-pVDZ -129.06486302 -129.05805796
daug-cc-pVTZ -129.09756228 -129.09072176
daug-cc-pVQZ -129.10644180 -129.09960328
daug-cc-pV5Z -129.10829964 -129.10147033
mrchem -129.11368615 -129.10627004
variational -129.16283468 -129.13294308

Table A.11: Total energies for NO+ with molecular shaped cavity

Basis R = vdw ∗ 1.2 R + 0.2
cc-pVDZ -92.41445816 -92.40992391
cc-pVTZ -92.44769726 -92.44367546
cc-pVQZ -92.45716524 -92.45344058
cc-pV5Z -92.45953785 -92.45601357
aug-cc-pVDZ -92.43512935 -92.43166729
aug-cc-pVTZ -92.45354978 -92.45010599
aug-cc-pVQZ -92.45889853 -92.45544029
aug-cc-pV5Z -92.45996252 -92.45650057
daug-cc-pVDZ -92.43548996 -92.43203218
daug-cc-pVTZ -92.45370877 -92.45027272
daug-cc-pVQZ -92.45891310 -92.45545650
daug-cc-pV5Z -92.45996917 -92.45650576
mrchem -92.46291128 N/A
variational -95.40033415 -94.77304157

Table A.12: Total energies for CN– with molecular shaped cavity
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Basis R = vdw ∗ 1.2 Vdw+0.2
cc-pVDZ -0.00881874 -0.00727889
cc-pVTZ -0.00905358 -0.00745953
cc-pVQZ -0.00904675 -0.00745758
cc-pV5Z -0.00904362 -0.00746128
aug-cc-pVDZ -0.00904491 -0.00746271
aug-cc-pVTZ -0.00899134 -0.00741758
aug-cc-pVQZ -0.00896485 -0.00739463
aug-cc-pV5Z -0.00897029 -0.00739568
daug-cc-pVDZ -0.00905495 -0.00746447
daug-cc-pVTZ -0.00899654 -0.00742006
daug-cc-pVQZ -0.00896847 -0.00739738
daug-cc-pV5Z -0.00897112 -0.00739623
mrchem -0.01038606 -0.00847650
variational -0.31961766 -0.13725224

Table A.13: Reaction field energies for H2O with molecular shaped cavity

Basis R = vdw ∗ 1.2 Vdw +0.2
cc-pVDZ -0.12928814 -0.12238674
cc-pVTZ -0.12916234 -0.12226806
cc-pVQZ -0.12908887 -0.12223324
cc-pV5Z -0.12900377 -0.12217549
aug-cc-pVDZ -0.12887447 -0.12206315
aug-cc-pVTZ -0.12901516 -0.12216309
aug-cc-pVQZ -0.12902757 -0.12218473
aug-cc-pV5Z -0.12899823 -0.12216930
daug-cc-pVDZ -0.12888719 -0.12208214
daug-cc-pVTZ -0.12900294 -0.12216243
daug-cc-pVQZ -0.12901808 -0.12217956
daug-cc-pV5Z -0.12899910 -0.12216979
mrchem -0.13411413 -0.12669802
variational -0.18326265 -0.15337106

Table A.14: Reaction field energies for NO+ with molecular shaped cavity
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Basis R = vdw ∗ 1.2 Vdw + 0.2
cc-pVDZ -0.11581532 -0.11128108
cc-pVTZ -0.11421917 -0.11019738
cc-pVQZ -0.11297662 -0.10925196
cc-pV5Z -0.11175803 -0.10823375
aug-cc-pVDZ -0.11087798 -0.10741592
aug-cc-pVTZ -0.11093450 -0.10749072
aug-cc-pVQZ -0.11094754 -0.10748930
aug-cc-pV5Z -0.11097029 -0.10750835
daug-cc-pVDZ -0.11099781 -0.10754003
daug-cc-pVTZ -0.11094507 -0.10750902
daug-cc-pVQZ -0.11094845 -0.10749185
daug-cc-pV5Z -0.11097408 -0.10751067
mrchem -0.11376103 N/A
variational -3.05118390 -2.42389132

Table A.15: Reaction field energies for CN– with molecular shaped cavity

Basis R = vdw ∗ 1.2 Vdw+0.2
cc-pVDZ -0.01423889 -0.01198616
cc-pVTZ -0.01505476 -0.01270038
cc-pVQZ -0.01532129 -0.01295779
cc-pV5Z -0.01537378 -0.01301139
aug-cc-pVDZ -0.01550232 -0.01310493
aug-cc-pVTZ -0.01538995 -0.01302900
aug-cc-pVQZ -0.01535152 -0.01299593
aug-cc-pV5Z -0.01535415 -0.01299338
daug-cc-pVDZ -0.01544577 -0.01305028
daug-cc-pVTZ -0.01537421 -0.01301212
daug-cc-pVQZ -0.01535340 -0.01299585
daug-cc-pV5Z N/A N/A
mrchem -0.01749631 -0.01461535
variational -2.69241073 -1.76175275

Table A.16: Reaction field energies for CH3 CONH2 with molecular shaped cavity
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(a) MRChem against normal basis sets

(b) MRChem against augmented basis sets

(c) MRChem against double augmented augmented basis sets

Figure B.1: Reaction field energy of H2O in a water solution, calculated with relative
precision e− 05 in MRChem and with different basis sets in Gaussian

https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
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(a) MRChem against normal basis sets

(b) MRChem against augmented basis sets

(c) MRChem against double augmented augmented basis sets

Figure B.2: Reaction field energy of Li+ in a water solution, calculated with relative
precision e− 05 in MRChem and with different basis sets in Gaussian

https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
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(a) MRChem against normal basis sets

(b) MRChem against augmented basis sets

(c) MRChem against double augmented augmented basis sets

Figure B.3: Relative difference between the Reaction field energy of H2O in a water
solution calculated with with relative precision e − 05 in MRChem and with different
basis sets in Gaussian

https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
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(a) MRChem against normal basis sets

(b) MRChem against augmented basis sets

(c) MRChem against double augmented augmented basis sets

Figure B.4: Relative difference between the Reaction field energy ofLi+ in a water solution
calculated with relative precision e − 05 in MRChem and with different basis sets in
Gaussian

https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
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(a) MRChem against normal basis sets

(b) MRChem against augmented basis sets

(c) MRChem against double augmented augmented basis sets

Figure B.5: Relative difference between the Reaction field energy of H2O] with a shifted
radius by 0.2 Bohr in a water solution calculated with with relative precision e − 05 in
MRChem and with different basis sets in Gaussian

https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
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(a) MRChem against normal basis sets

(b) MRChem against augmented basis sets

(c) MRChem against double augmented augmented basis sets

Figure B.6: Relative difference between the Reaction field energy of Li+ with a shifted
radius by 0.2 Bohr in a water solution calculated with relative precision e − 05 in
MRChem and with different basis sets in Gaussian

https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
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(a) MRChem against normal basis sets

(b) MRChem against augmented basis sets

(c) MRChem against double augmented augmented basis sets

Figure B.7: Reaction field energy of NO+ in a water solution, calculated with
MRChem and with different basis sets in Gaussian

https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
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(a) MRChem against normal basis sets

(b) MRChem against augmented basis sets

(c) MRChem against double augmented augmented basis sets

Figure B.8: Reaction field energy of CN– in a water solution, calculated with
MRChem and with different basis sets in Gaussian

https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
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(a) MRChem against normal basis sets

(b) MRChem against augmented basis sets

(c) MRChem against double augmented augmented basis sets

Figure B.9: Relative difference between the Reaction field energy of NO+ in a water
solution calculated with MRChem and with different basis sets in Gaussian

https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
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(a) MRChem against normal basis sets

(b) MRChem against augmented basis sets

(c) MRChem against double augmented augmented basis sets

Figure B.10: Relative difference between the Reaction field energy of CN– in a water
solution calculated with MRChem and with different basis sets in Gaussian

https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
https://github.com/MRChemSoft/mrchem
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