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“To find out what one is fitted to do and to secure an
opportunity to do it is the key to happiness.”

–John Dewey





Abstract
The main goal of this thesis is to study finite reflection groups (Coxeter groups)
W and to use these to generate polytopes in two and three dimensions. Such
polytopes will be generated as the convex hull of theW -orbit through an initial
point λ. We prove an efficient recipe for finding the stabilizer of λ, and examine
several examples of such polytopes and illustrate how many vertices, edges
and faces these polytopes have. At last we will illustrate how this information
can be pictorially encoded on the marked Coxeter diagram for λ.
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1
Introduction
In this thesis we will use finite reflection groups (Coxeter groups) to generate
two and three-dimensional polytopes. Such groups act as the symmetries of
these objects. Polytopes in two dimensions are polygons, which are geometrical
figures such as squares, triangles, pentagons and so on. The polytopes in
three dimensions are called polyhedra, and examples of polyhedra are the five
Platonic solids:

Figure 1.1: The five Platonic solids: tetrahedron, cube, octahedron, dodecahedron and
icosahedron.

These are all well known, and pictorially and abstractly we want to figure out
how many vertices, edges and faces that more general polyhedra consist of.
For the three dimensional polyhedra we will use Zometool to build models of
these geometrical figures [Hart, 2001]. Abstractly, we will examine the action
of Coxeter groups on different initial points λ, and then get a recipe to encode
the marked Coxeter diagrams.

1



2 CHAPTER 1 INTRODUCT ION

In the Norwegian school geometric figures in two and three dimensions such
as squares, triangles, parallelograms, rhombus, rectangles, cubes, tetrahedrons,
prisms and pyramids are an important part of the curriculum. After upper
elementary school, students shall be able to explore and describe different
properties of such two and three dimensional figures. An important property
of these figures is their symmetry group. They shall also be able to reflect
points in R2 through the x -axis and the y-axis. So the geometrical figures we
generate, how we generate them by reflections and the symmetry group are
relevant for the Norwegian school.

1.1 Structure of the thesis
Chapter 2 introduces reflections, finite groups generated by reflections (Coxeter
groups), and Coxeter diagrams and Dynkin diagrams. Chapter 3 we will get
pictorial reflection recipes expressed in terms of Coxeter diagrams and the
Dynkin diagrams. We also find a recipe for finding the stabilizer for a given
initial point λ. Chapter 4 we first will define polytopes. Then we will apply
Coxeter groups to an initial point λ to generate polytopes in two and three
dimension. A last we will encode the marked Coxeter diagram to figure out
what kind of polytope we have.



2
Coxeter/ Dynkin diagram
2.1 Reflections and rotations
Let (V , 〈·, ·〉) be a finite-dimensional (real) inner product space. A reflection inV
is a linear transformation in V that sends any vector λ ∈ V to its mirror image
with respect to a hyperplane P (passing through the origin). Equivalently,
given a nonzero vector α ∈ V (in the orthogonal complement P⊥) define a
reflection in V by

Sα (λ) = λ − 2
〈λ,α〉

〈α ,α〉
α . (2.1.1)

Note that Sα (λ) = λ if λ ∈ P and Sα (λ) = −λ if λ ∈ P⊥. Since S2α = 1, then a
reflection is its own inverse, so its order is two. Also note that 〈Sα (λ), Sα (µ)〉 =
〈λ, µ〉 for all λ, µ ∈ V , i.e. Sα is an orthogonal transformation.

The orthogonal transformations in V are denoted by

O(V ) = {T : V → V linear : 〈Tv,Tw〉 = 〈v,w〉∀v,w ∈ V },
and any T ∈ O(V ) satisfies det(T ) = ±1. Note that O(V ) is a group, and it
contains the subgroup

SO(V ) = {T ∈ O(V ) : det(T ) = 1}.

We refer to any T ∈ SO(V ) as a rotation. When V = Rn , we use the notation
O(n) and SO(n) respectively. In particular,O(n) consists of orthogonal matrices

3



4 CHAPTER 2 COXETER/ DYNK IN DIAGRAM

A satisfying AAT = ATA = I , and the columns of A form an orthonormal basis
of Rn .

For example, consider a matrix inO(2). Its first column is a unit vector
( cos θ
sin θ

)
,

while the second column is unit and perpendicular to the first. Thus, we have
two possibilities:

A =

(
cosθ sinθ
sinθ − cosθ

)
B =

(
cosθ − sinθ
sinθ cosθ

)
.

Note that det (B) = 1 and it represents a counterclockwise rotation of the
plane about the origin through an angle of θ . On the other hand, det (A) = −1,
and A has eigenvalues 1 and −1 with eigenvectors

(
cos ( θ2 )
sin ( θ2 )

)
and

(
− sin ( θ2 )
cos ( θ2 )

)
respectively. Thus, A is a reflection in the line P corresponding to the +1
eigenspace.

We see that if A ∈ O(2) with det(A) = −1, then A corresponds to a reflection.
When n ≥ 3, having A ∈ O(n) with det (A) = −1 does not necessarily imply
that A corresponds to a reflection, e.g.

(
−1 0 0
0 cos θ − sin θ
0 sin θ cos θ

)
.

We will be interested in finite reflection groups, i.e. finite subgroups of O(V )
generated by reflections. Let us study the two-dimensional case first.

2.2 Dihedral group
Let G be a finite subgroup of O(V ). The set of rotations H in G forms a
subgroup.

Let us first show that H is a cyclic subgroup. For any rotation T ∈ H , let
θ (T ) ∈ [0, 2π ) denote its corresponding angle of (counterclockwise) rotation.
Suppose H , 1. Since H is finite, we can choose 1 , R ∈ H with θ (R)minimal.
Given T ∈ H , choose an integer k such that kθ (R) ≤ θ (T ) < (k + 1)θ (R), so
then

0 ≤ θ (T ) − kθ (R) < θ (R).

But θ (T ) − kθ (R) = θ (R−kT ) and R−kT ∈ H is a counterclockwise rotation
through θ (T ) followed by −k rotations through θ (R), and since θ (R) is minimal
we must have R−kT = 1, i.e.T = Rk . Thus,H is a cyclic subgroup. Letm = |H |
be its order. Since Rm = 1, then θ (R) = 2π

m .

Now suppose that H , G. If S,T ∈ G are two reflections, then det (ST ) =
det (S) det (T ) = 1, so ST ∈ H . This implies that the left cosets SH and TH
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agree, and soH has index 2 inG. GivenH = {1,R, . . .Rm−1}, we obtain

G = {1,R, . . . ,Rm−1, S, SR, . . . SRm−1},

so |G | = 2m. Since RS is a reflection, then (RS)2 = 1 and RS = SR−1 = SRm−1.
The group G is called the dihedral group (of order 2m). It consists ofm reflec-
tions andm rotations through integer multiples of 2π

m . We also writeG = 〈R, S〉
to denote that G is generated by R and S . Note that T = SR is a reflection and
G = 〈T , S〉, so G is a finite reflection group.

Proposition 2.2.1. If dimV = 2, then a finite subgroup ofO(V ) is either a cyclic
group Cm or a dihedral group Dm . Any dihedral group is a reflection group.

The dihedral group is the symmetry group of a regularm-gon. For example, if
m = 3 we have an equilateral triangle,m = 4 a square,m = 5 an equiangular
pentagon and so on.

Figure 2.1: A triangle with its reflection lines.

Consider them = 3 case as in Figure 2.1. Let R be counterclockwise rotation
by 2π

3 and let S be the reflection in the green line. Then SR is the reflection
in the orange line, and SR2 is the reflection in the blue line. Any element of
G = D3 permutes the vertices, so if we label the vertices as above, we can
express elements of G in permutation notation:

1 R R2 S SR SR2

1 (123) (132) (23) (13) (12)

Thus, G is isomorphic to the permutation groupS3 on 3 symbols.
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2.3 Root systems
We will be interested in finite subgroups of O(V ) that are generated by reflec-
tions. Since any reflection is determined by a hyperplane or, via 〈·, ·〉, by some
vector α , we are led to consider subsets Φ ⊂ V \{0} that are invariant under
Sα for all α ∈ Φ.

Definition 2.3.1. Φ ⊂ V \{0} is a root system if ∀α ∈ Φ,
1. −α ∈ Φ,

2. SαΦ = Φ.

Any α ∈ Φ is called a root. The Weyl group of Φ is the subgroupW =W (Φ) of
O(V ) generated by {Sα : α ∈ Φ}.

Remark 2.3.2. We do not make any assumption on the lengths of the roots.
Also, given any root system Φ, note that Φ̃ := { α

|α | : α ∈ Φ} is a root system.

Example 2.3.3 (Im2 root system). Let V = C. Regard this as a two-dimensional
real vector space with inner product 〈z,w〉 = <(zw) = 1

2 (zw + zw) for z,w ∈ C.
Define Φ = {ζk := e

π ik
m : k ∈ Z/2mZ}, i.e. the 2m-th roots of unity. Note that

−ζk = ζk+m ∈ Φ, while

Sζk (ζl ) = ζl −
2〈ζl , ζk 〉ζk
〈ζk , ζk 〉

= ζl − (ζlζk + ζlζk )ζk = −ζlζ
2
k = ζ2k−l+m .

Thus, Φ is a root system. Its Weyl group is the dihedral group Dm . Note that I32
is also denoted A2. This root system is shown is Figure 2.2

Figure 2.2: The A2 root system.
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Fix t ∈ V such that 〈t ,α〉 , 0 for all α ∈ Φ. We say that α ∈ Φ is positive
(and write α > 0) if 〈t ,α〉 > 0, or negative otherwise. The positive system is
Π = {α ∈ Φ : α > 0}, so that Φ = Π ∪ (−Π).

Definition 2.3.4. We say ∆ = {α1, . . . ,αn} ⊂ Φ is a simple system (and each
αi is a simple root) if ∆ is a basis for span(Φ), and for any α ∈ Φ, we have
α =

∑
imiαi with either allmi ≥ 0 or allmi ≤ 0 (we do not requiremi ∈ Z).

Existence and uniqueness of simple systems is established in the theorem below
[Humphreys, 1990, Thm 1.3].

Theorem 2.3.5. If ∆ ⊂ Φ is a simple system, there is a unique positive system Π
containing ∆. Conversely, every positive system Π ⊂ Φ contains a simple system
∆ ; in particular, a simple system exists.

Remark 2.3.6. For the root systems the rank is defined as the number of simple
roots. The rank is independent of the choice of simple system.

Definition 2.3.7. Let cosθi j =
〈αi,α j 〉
|αi | |α j |

∈ (0,π ) denote the angle between αi and
α j .

Then [Benson, 1985, Prop 5.1.1]

Proposition 2.3.8. There exists an integer pi j ≥ 1 such that

θi j = π −
π

pi j
. (2.3.1)

Moreover, for i , j, pi j ≥ 2 is the order of SiS j inW .

Example 2.3.9. For the Im2 root system, choose Π = {ζk }0≤k≤m−1 and simple
roots α1 = ζ0 and α2 = ζm−1. Then

cos(θ12) =
〈ζ0, ζm−1〉

|ζ0 | |ζm−1 |
= <(ζm−1) = cos

(
π (m − 1)

m

)
.

Thus, θ12 = π − π
m , which confirms (2.3.1).

Example 2.3.10 (An root system). ConsiderRn+1 with the standard orthonormal
basis {ϵi }n+1i=1 and coordinates {xi }n+1n=1 with respect to this basis. Let V be the
hyperplane x1 + x2 + · · · + xn = 0. On V , define Φ = {ϵi − ϵj }1≤i,j≤n+1 and
take Π = {ϵi − ϵj }1≤i<j≤n+1 to be the positive system. The simple roots are

α1 = ϵ1 − ϵ2, . . . , αn = ϵn − ϵn+1.

We have θi,i+1 = 2π
3 for 1 ≤ i ≤ n and θi j = π

2 when |i − j | ≥ 2. Note that all
roots have the same length. In Figure 2.3 below we have the A3 root system
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Figure 2.3: The A3 root system with the white nodes as roots.

Example 2.3.11 (Bn root system). Let V = Rn with the standard orthonormal
basis {ϵi }ni=1. Define the root system Φ = {±ϵi }

n
i=1∪ {±ϵi ±ϵj }1≤i<j≤n and take

Π = {ϵi }
n
i=1 ∪ {ϵi ± ϵj }1≤i<j≤n as the positive system. The simple roots are

α1 = ϵ1 − ϵ2, α2 = ϵ2 − ϵ3, . . . , αn−1 = ϵn−1 − ϵn, αn = ϵn .

We have θi j = π
2 if |i − j | ≥ 2, and

θ12 = θ23 = · · · = θn−2,n−1 =
2π
3
, θn−1,n =

3π
4
.

Note that not all of the roots have unit length and
√
2|αn | = |αn−1 | = · · · = |α1 |.

In Figure 2.4 below we have the B3 root system,
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α3

α1

α2

α1+α2+α3

α1+2α2+α3

α1+α2+2α3
α1+α2

α2+2α3α2+α3

Figure 2.4: The B3 root system with white nodes as roots.

Define the normalized root system for Bn as B̃n = { α
|α | : α ∈ ∆}. Here, all roots

have the same length.

Example 2.3.12 (H3 root system, [Humphreys, 1990, Section 2.13]). Let τ =
2 cos

( π
5

)
= 1+

√
5

2 , which is better known as the golden ratio. Two quantities a,b
satisfy the golden ratio if a

b =
a+b
a = τ . Solving for τ we get

τ 2 = τ + 1 (2.3.2)

Then letV = R3, andwe define the root systemΦ = {±ϵi }1≤i≤3∪{(±
τ
2 ,±

1
2 ,±

τ−1
2 )}∪

{all even permutations of each coordinates}. Therefore H3 will have 30 roots,
where the simple roots are

α1 =

(
τ

2
,
−1
2
,
τ − 1
2

)
, α2 =

(
−τ

2
,
1
2
,
τ − 1
2

)
, α3 =

(
1
2
,
τ − 1
2
,−
τ

2

)
.

We have
θ12 =

4π
5
, θ23 =

2π
3
, θ13 =

π

2
.

It is easily checked that all the roots in H3 have unit length. The H3 root system
can be pictured on an icosadodecahedron like in Figure 2.5 where all the vertices
correspond to roots in H3.
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Figure 2.5: An icosadodecahedron where all vertices form the H3 root system.

Root systems that arise from Lie theory [Humphreys, 1972] satisfy an addi-
tional crystallographic condition:

Definition 2.3.13. A root system Φ is crystallographic if ∀α , β ∈ Φ,
〈α , β∨〉 ∈ Z, (2.3.3)

where β∨ is the coroot of β , defined by

β∨ =
2β
〈β, β〉

. (2.3.4)

The An root system is crystallographic. The Bn root system as in Example
2.3.11 is also crystallographic, but the normalized root system B̃n is not crys-
tallographic. Also, H3 is not crystallographic, and Im2 is only crystallographic
whenm = 3.

2.4 Cartan matrix
Let Φ be a root system with the simple roots ∆ = {αi }ni=1.

Definition 2.4.1. The Cartan matrix Ci j is defined by

Ci j = 〈αi ,α
∨
j 〉 =

2〈αi ,α j〉
〈α j ,α j〉

.
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By Definition 2.3.7 and Proposition 2.3.8, this can be rewritten as:

Proposition 2.4.2. The Cartan matrix Ci j for (Φ,∆) is computed by

Ci j = −
2|αi |
|α j |

cos
(
π

pi j

)
,

where θi j = π − π
pi j

is the angle between αi and α j .

Example 2.4.3 (Cartan matrices). In order to compute the Cartan matrices for
Im2 , An , Bn , B̃n and H3 we will use the lengths and the angles between the simple
roots from the examples in Section 2.3. Therefore we get

Root system Ci j

Im2

(
2 −2 cos

( π
m

)
−2 cos

( π
m

)
2

)

An

©­­­«
2 −1 0
−1 2 −1 0
0 −1 2 −1 0

. . .
. . .
. . .

0 −1 2 −1 0
0 −1 2 −1

0 −1 2

ª®®®¬
Bn

©­­­«
2 −1 0
−1 2 −1 0
0 −1 2 −1 0

. . .
. . .
. . .

0 −1 2 −1 0
0 −1 2 −2

0 −1 2

ª®®®¬
B̃n

©­­­­«
2 −1 0
−1 2 −1 0
0 −1 2 −1 0

. . .
. . .
. . .

0 −1 2 −1 0
0 −1 2 −

√
2

0 −
√
2 2

ª®®®®¬
H3

©­«
2 −τ 0
−τ 2 −1
0 −1 2

ª®¬
Remark 2.4.4. For the crystallographic root systems,m = Ci jCji can only take
the values 0, 1, 2, 3.

Proof.

m = Ci jCji = 〈αi ,α
∨
j 〉〈α j ,α

∨
i 〉 =

4〈αi ,α j〉2

〈α j ,α j〉〈αi ,αi 〉
=

4|αi |2 |α j |2(cos(θi j ))2

|αi |2 |α j |2

= 4(cos(θi j ))2.
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By Definition 2.3.13 and 2.4.1 〈αi ,α∨j 〉 = Ci j ∈ Z and also Cji , therefore
m = 4(cos (θi j ))2 ∈ Z and 0 ≤ m = 4(cos(θi j ))2 ≤ 4. But we cannot have an
angle of 0 or π , since αi and α j are linearly independent som only can take
the value 0, 1, 2, 3. �

2.5 Coxeter diagrams and Dynkin diagrams
Let Φ be a root system with simple roots ∆ = {αi }ni=1. Then:

Definition 2.5.1. The Coxeter diagram of (Φ,∆) is the graph with:

• nodes corresponding to simple roots;

• nodes corresponding to distinct αi and α j are connected by a bond ifpi j > 2.
The bond is marked with pi j underneath if pi j > 3. (The pi j = 3 occurs
frequently, so by convention we omit this.)

For the root systems mentioned in Section 2.3 and the rest of the connected
Coxeter diagrams are given in Table 2.1 for details of the classification see
[Benson, 1985, Ch. 5]:
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Graph
An (n ≥ 1) . . .

Bn (n ≥ 2) . . .
4

Dn (n ≥ 4) . . .

Im2 m

H3
5

H4
5

F4
4

E6

E7

E8

Table 2.1: The complete classification of all connected Coxeter diagrams.

Note that the Bn and B̃n root systems have the same Coxeter diagram.

If we are looking at the crystallographic root systems like An , Bn , they arise
as the Weyl groups of simple Lie algebras. Here relative length of roots are
important, and these can be encoded in Dynkin diagrams.

Definition 2.5.2. The Dynkin diagram of a crystallographic root system (Φ,∆)
is the graph with:

• nodes corresponding to simple roots;

• nodes corresponding to distinct αi and α j are connected by a bond if and
only if Ci j , 0. The bond has multiplicity Ci jCji and it is directed towards
the shorter root. (If Ci jCji = 1, then the two roots have same length and
the bond is undirected.)
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Remark 2.5.3. From the Coxeter diagrams we only encode angles between the
simple roots, but in the Dynkin diagrams we can encode angles and relative
lengths.

For the crystallographic root systems mentioned in Section 2.3, and the rest
of the connected Dynkin diagrams are given in Table 2.2. For details of the
classification see [Humphreys, 1972, Ch. 11].

Graph Dynkin diagram
An (n ≥ 1) . . .

Bn (n ≥ 2) . . .

Cn (n ≥ 3) . . .

Dn (n ≥ 4) . . .

G2

F4

E6

E7

E8

Table 2.2: The complete classification of all connected Dynkin diagrams.

2.6 Coxeter group
Definition 2.6.1 ([Benson, 1985][p. 37]). A Coxeter group is a finite effective
subgroupW ≤ O(V ) that is generated by a set of reflections.

Here effective means {x ∈ V : Tx = x∀T ∈W } = 0. Given a root system Φ, let
W =W (Φ) be the subgroup ofO(V ) generated by the reflections {Sα : α ∈ Φ}.
We refer toW as the Weyl group of Φ. This is an instance of a Coxeter group.
Given a simple system ∆ = {αi }

n
i=1, refer to all Si := Sαi as simple reflections.

These in fact determine the structure ofW as the following two theorems show:
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Theorem 2.6.2 ([Humphreys, 1990, p. 11]). The simple reflections S1, . . . , Sn
generateW .

Theorem 2.6.3 ([Benson, 1985, Proposition 5.1.1]). All the relations inW are
generated by S2i = 1 and (SiS j )pi j = 1, where pi j ≥ 2 for i , j was defined in
Proposition 2.3.8.

If pi j = 2, then 1 = (SiS j )2 = SiS jSiS j , i.e. SiS j = S jSi . Therefore, Si and S j
commute when pi j = 2.

Example 2.6.4. ForW (A2), we have (S1S2)3 = 1, so

W (A2) = 〈S1, S2〉 = {1, S1, S2, S1S2, S2S1, S1S2S1 = S2S1S2}.

Therefore |W (A2)| = 6.

Example 2.6.5. ForW (B2) we have (S1S2)4 = 1, so

W (B2) = 〈S1, S2〉

= {1, S1, S2, S1S2, S2S1, S1S2S1, S2S1S2, S1S2S1S2 = S2S1S2S1}.

Therefore |W (B2)| = 8.

Example 2.6.6. Consider the symmetric group Sn+1. Given σ ∈ Sn+1, then
we define a linear transformation such that σ : ϵi 7→ ϵσ (i), and extend it
linearly σ (x) = σ (

∑
i xiϵi ) =

∑
i xiσ (ϵi ). It is known thatSn+1 is generated by

transpositions (i, i + 1) for 1 ≤ i ≤ n. Then
( 1
...
1

)
is fixed by every permutation.

Let V be a hyperplane in Rn+1 given by x1 + · · · + xn = 0. This means V is the

orthogonal complement to
( 1
...
1

)
. From Example 2.3.10 we have the simple roots

of the An root system: αi = ϵi − ϵi+1 for 1 ≤ i ≤ n. Let us look at the action of
reflection Si :

Si (αi ) = −αi = ϵi+1 − ϵi

Note that the transposition (i, i +1) indices a swap of i and i +1, and which is the
same as sending αi to its negative. ThereforeW (An) act as the symmetric group
on n + 1 symbols. Thus, |W (An)| = (n + 1)!.

The order of the rest of the connected Coxeter groups is [Benson, 1985, p.
82]:
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Φ Im2 An Bn Dn H3
|W (Φ)| 2m (n + 1)! 2nn! 2n−1 · n! 120

Φ H4 F4 E6 E7 E8
|W (Φ)| 14400 1152 51 840 2903040 696729600

Table 2.3: The order of the connected Coxeter groups.

2.7 Fundamental domain
LetW be a finite subgroup of O(V ), and let T ∈ W , then a subset F of V is
called a fundamental domain forW if and only if:

1. F is open.

2. F ∩TF = ∅ if T , 1.

3. V = ∪T ∈W cl(TF ), where cl(TF ) is the closure of TF .

The open setsTF are often called open chambers, andW acts simply transitively
on the set of all open chambers, i.e. any (open) chamber has trivial stabilizer,
and given any two chambersC1 andC2, we haveC2 = w(C1) for somew ∈W .
In particular, |W | is the number of chambers.

In order to construct a fundamental domain forW , we can do the Fricke-Klein
construction [Benson, 1985, Chapter 3]: SupposeW = {T0 = 1,T1, . . . ,Tk−1},
where k ≥ 1. Choose a point x0 ∈ V that is only fixed by T0 ∈ W , so the
W -orbit through x0 is Orb (x0) := {x0,x1, . . . ,xk−1}, where xi = Tix0. For
i , 0, the line segment [x0xi ] = {x0 + γ (xi − x0) : 0 ≤ γ ≤ 1} has the
perpendicular bisector

Pi = (x0 − xi )
⊥ = {x ∈ V : |x − x0 | = |x − xi |}

passing through the midpoint 1
2 (xi + x0). Consider the open half-spaces deter-

mined by Pi , denoted Li :

Li = {x ∈ V : |x − x0 | < |x − xi |}.

We then find that a fundamental domain is given by

F =
k−1⋂
i=1

Li . (2.7.1)
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Example 2.7.1. Let us consider the B2 root system Φ, where the roots are defined
in Example 2.3.11.

Figure 2.6: The B2 root system.

Then from Example 2.6.5 we have the elements inW (B2). The reflection hyper-
planes α⊥ (for α ∈ Φ) divideV into eight congruent chambers as shown in Figure
2.7. Choose x0 to be off all the reflection hyperplanes. Then theW -orbit to x0 as
well the fundamental domain F = L1

⋂
· · ·

⋂
L7 = L1

⋃
L2 are shown in Figure

2.7.

Figure 2.7: The B2 root system with its reflection hyperplanes, theW -orbit to x0 and
the fundamental domain indicated in blue.

2.8 Fundamental weights
Fix a simple system ∆ = {αi }

n
i=1 for a root system Φ. Let {λi }ni=1 denote the

fundamental weights, defined by

〈λi ,α
∨
j 〉 = δi j , (2.8.1)
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for all i, j, where δi j is defined as

δi j =

{
1 for i = j

0 for i , j .

This means αi is perpendicular to λj when i , j. Given the Cartan matrix Ci j ,
from Definition 2.4.1 and its inverse Ci j , we have

Lemma 2.8.1. αi =
∑

j Ci jλj and λi =
∑

j C
i jα j

Proof. Write αi =
∑n

j=1 ai jλj . So we want to show that ai j = Ci j . Take the
inner product on both sides with α∨k .

Cik = 〈αi ,α
∨
k 〉 =

n∑
j=1

ai j 〈λj ,α
∨
k 〉 =

n∑
j=1

ai jδ jk = aik

�

This means the Cartan matrix is the transition matrix between the basis of
simple roots and the basis of fundamental weights.

Example 2.8.2. For A2 we get

Ci j =

(
2 −1
−1 2

)
Ci j =

1
3

(
2 1
1 2

)
.

Therefore {
α1 = 2λ1 − λ2
α2 = −λ1 + 2λ2

{
λ1 =

2
3α1 +

1
3α2

λ2 =
1
3α1 +

2
3α2

The A2 root system and the fundamental weights for A2 are shown in Figure 2.8
below.

Figure 2.8: The simple roots and the fundamental weights in A2.
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Given a root system Φ with the simple system ∆ = {αi }
n
i=1, a fundamental

domain F forW =W (Φ) is

F = {x ∈ V : 〈x ,αi 〉 > 0,∀αi ∈ ∆}.
Note that F has boundary given by the walls α⊥i = span{λj }j,i . Moreover,
the closure cl(F ) of F is the positive convex cone spanned by {λi }ni=1, i.e. any
x ∈ cl(F ) has x =

∑
i riλi , where ri ≥ 0.

Example 2.8.3. Consider the B3 root system, then the fundamental domain is:

Figure 2.9: The B3 root system with its simple roots, fundamental weights and fun-
damental domain indicated with the red arrows.

We see that if we divide the root system into such congruent chambers we get 24
chambers, which is |W (B3)|.





3
Reflection recipes andstabilizers
3.1 Coxeter diagram and Dynkin diagram

reflection recipes
Let Φ be a root system with the simple system ∆ = {αi }

n
i=1 and let the funda-

mental weights be {λi }ni=1.

Proposition 3.1.1. If λ =
∑

j r jλj , then Si (λ) =
∑

j r̂ jλj , where

r̂ j = r j − riCi j = r j + 2ri
|αi |

|α j |
cos

(
π

pi j

)
.

Proof. We use (2.1.1), (2.8.1), and Lemma 2.8.1 to calculate:

Si (λ) = λ − 〈λ,α
∨
i 〉αi

=
∑
j

r jλj −
∑
j

r j 〈λj ,α
∨
i 〉αi

21
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=
∑
j

r jλj −
∑
j

r jδ jiCikλk

=
∑
j

(r j − riCi j )λj

�

Let us encode λ =
∑

j r jλj by inscribing the coefficients r j over corresponding
nodes in the Coxeter diagram (or Dynkin diagram).

Example 3.1.2. With respect to the H3 root system λ = λ3 corresponds to

5
0 0 1 . Recall that p12 = 5, p13 = 2 and p23 = 3.

Proposition 3.1.1 gives us a pictorial reflection recipe:

Corollary 3.1.3 (Coxeter diagram reflection recipe). Suppose all simple roots
have the same length. We calculate Si (λ) from λ =

∑
j r jλj by:

1. Change the coefficient ri over the i-th node to its negative.

2. If node j is connected to node i, we replace r j by r j + 2 cos
(
π
pi j

)
ri .

If node j is not connected to node i, then the coefficient r j is not affected under
Si .

Remark 3.1.4. If ri = 0, then the reflection Si does not change λ. Therefore it
is convenient just to reflect in the nonzero positive nodes.

Example 3.1.5. Recall from example 2.3.12 the H3 root system and τ = 2 cos(π5 ),
which satisfies τ 2 = τ + 1. The Cartan matrix for H3 is found in Example 2.3.12.

TheW -orbit through λ =
5

0 0 1 is shown in Figure 3.1.
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5
0 0 1

5
0 1 -1

5
τ -1 0

5
-τ τ 0

5
1 -τ τ

5
-1 0 τ

5
1 0 -τ

5
-1 τ -τ

5
τ -τ 0

5
-τ -1 0

5
0 -1 1

5
0 0 -1

Figure 3.1: TheW (H3)-orbit through λ3.
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For the Dynkin diagram recipe we have to consider relative lengths. We have
two cases consider for the Dynkin diagrams,when i , j and either |αi | < |α j | or
|αi | > |α j |. For |αi | < |α j | we know thatCi j = −1 so by Proposition 3.1.1

r̂ j = r j − riCi j = r j + ri .

For |αi | > |α j |, Ci j has the values −m = −1,−2,−3 ∈ Z, wherem = Ci jCji is
the number of bonds in the Dynkin diagrams.

r̂ j = r j − riCi j = r j +mri .

For the Dynkin diagrams we get the following reflection recipe:

Corollary 3.1.6 (Dynkin diagram reflection recipe). For Dynkin diagrams we
calculate Si (λ) from λ =

∑
j r jλj by:

1. Change the coefficient ri over the i-th node to its negative.

2. If node j is connected to node i, we either

(a) we replace r j by r j + ri if the arrow is pointing towards node i

(b) we replace r j by r j +mri , wherem = Ci jCji , if the arrow is pointing
towards node j or there are no arrow.

Example 3.1.7 (B3). TheW -orbit through λ = 1 0 0 0 is:
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1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 2

0 0 1 −2

0 1 −1 0

1 −1 0 0

−1 0 0 0

Figure 3.2: TheW (B4)-orbit through λ1

3.2 Stabilizer
In this section we will describe the stabilizer and give the recipe for finding
the stabilizer for λ.

Definition 3.2.1. GivenW ≤ O(V ) and λ ∈ V , then the stabilizer Stab (λ) of λ
is the subgroup given by Stab (λ) = {w ∈W : w(λ) = λ}. Ifw ∈ Stab (λ) we say
w fixes λ.

The following theorem and proof for stabilizers is based on [Benson, 1985,
Thm 5.4.1]. The case there is for λ = λj , but we adapted it to the general case
λ =

∑
j r jλj .

Theorem 3.2.2. Let Φ ⊂ V be a root system with span{Φ} = V . Let {αi }ni=1 be
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simple roots and {λ}ni=1 be fundamental weights. Let 0 , λ =
∑n

j=1 r jλj ∈ V .
The stabilizer inW =W (Φ) of λ is

Stab(λ) = 〈S j〉j ∈I ,

where I = {j : r j = 0} ( {1, . . . ,n}.

Proof. If I = ∅, then λ is in the (open) fundamental domain see Section 2.7,
so Stab(λ) = 1. Suppose I , ∅. Set K = 〈S j〉j ∈I and H = Stab(λ). We want
to show K = H . Clearly, K ≤ H , since for j ∈ I , 〈λ,α∨j 〉 = 〈

∑n
k=1 rkλk ,α

∨
j 〉 =∑n

k=1 rk 〈λk ,α
∨
j 〉 = r j = 0. So S j (λ) = λ − 〈λ,α∨j 〉α j = λ. Now we want to

show that H ≤ K . Let X1 := {x ∈ V : |x | = |λ |} be a sphere. Note that
λ ∈

⋂
j<I

Lj , where Lj is the open half-space from Section 2.7. Since λ , 0, then⋂
j<I

Lj is non-empty and open. Therefore there exists d > 0 sufficiently small

such that X2 := {x ∈ V : |x − λ | = d} ⊂
⋂
j<I

Lj . Since H ≤ O(V ), then H

preserves distances, so HX1 ⊂ X1 and HX2 ⊂ X2. Therefore HX ⊂ X , where
X = X1 ∩ X2 (since H also stabilizes λ).

Since
⋂
j ∈I

Lj , ∅ is open, there exist x0 ∈
⋂
j ∈I

Lj not fixed by any non-identity

element ofH . The Fricke-Klein construction from Section 2.7 applied to x0 ∈ V
gives fundamental domains F (K) and F (H ) for K and H respectively. Since
K ≤ H and x0 ∈

⋂
j ∈I

Lj , then F (H ) ⊆ F (K) ⊆
⋂
j ∈I

Lj . We also get fundamental

domains for K and H in X , given by:

FX (K) = F (K) ∩ X , FX (H ) = F (H ) ∩ X .

Since X ⊂
⋂
j<I

Lj , then FX (K) ⊆

(⋂
j ∈I

Lj

)
∩

(⋂
j<I

Lj

)
= L1 ∩ · · · ∩ Ln = F (W ),

which is the fundamental domain forW is by (2.7.1). If FX (H ) , FX (K), then
pick x ∈ FX (K) r FX (H ), y ∈ FX (H ) and T ∈ H such that Tx = y and
x , y. But since x ,y ∈ Fx (K) ⊆ F (W ) , then this is impossible since only the
identity element inW preserves F (W ). Therefore FX (H ) = FX (K). Since the
fundamental domains are the same, then H and K have the same number of
chambers, so |H | = |K |. Therefore H = K . �

Example 3.2.3. If we have λ =
4

0 1 0 , then

Stab(λ) = 〈S1, S3〉 = {1, S1, S3, S1S3 = S3S1} =W (A1 ×A1).

Recall that the size of theW -orbit Orb(λ) and the stabilizer Stab(λ) are related
by:



3.2 STAB IL IZER 27

Proposition 3.2.4. | Orb (λ)| = |W |
| Stab(λ) |

Example 3.2.5. Consider λ = 0 1 0 as in Example 3.2.3. Then using Table
2.3

|W (B3)| = 233! = 48
|W (A1 ×A1)| = 2 · 2 = 4

| Orb(λ)| =
|W (B3)|

| Stab (λ)|
=

48
4
= 12.





4
Polytopes
4.1 Definitions
A polytope can be in any dimension, but the most interesting polytopes for
us are in dimension two and three. A polytope in two dimensions is called a
polygon, or p-gon.

Definition 4.1.1. Ap-gon is a circuit ofp line segments l1l2, l2l3, . . . , lpl1, joining
consecutive pairs of p points l1, l2, . . . , lp such that no line segment is crossing
over another line segment.

The points l1, l2, . . . , lp are called vertices, and the line segments l1l2, l2l3, . . . ,
lpl1 are called edges. For p = 3, we have a triangle, which has 3 vertices and
3 edges. The length of the edges and the angles are arbitrary as long as the
triangle is closed. If the length of the edges are equal, then the polygon is
equilateral, and if all interior angles between two edges are equal, then the
polygon is equiangular. If p = 1 or p = 2, then we only get a vertex or an
edge respectively. But if p ≥ 3, then the polygon can be either equiangular,
equilateral or both at the same time. If p = 4, a rhombus is only equilateral, a
rectangle is only equiangular and a square is both.

Definition 4.1.2. [Coxeter, 1973, p. 2] A p-gon is regular if it is both equilateral
and equiangular.

A square is a regular polygon, and if all the angles in a triangle is 60◦ it is

29
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regular.

A set of points is convex, if for all points we can take the line segment between
any two points and it is still in the set.

Definition 4.1.3. A polytope is convex if it is a convex set of points.

A consequence of Definition 4.1.2 is that all regular polygons are also convex
polygons, but not vice versa.

(a) A regular and convex
pentagon.

(b) A convex, but not reg-
ular pentagon

Figure 4.1: Two convex polygons, where one of them is also regular.

As we see in Figure 4.1 both of them are convex, but (b) is not regular since it
is not equilateral.

A polytope in dimension three is called a polyhedron.

Definition 4.1.4. A polyhedron is a finite connected set of plane polygons, such
that every edge of one polygon belongs to another polygon.

An example of a polyhedron is the cube, which consists of six squares where
three squares meet at each vertex. A polyhedron consists of vertices, edges and
faces. Each polygon in the polyhedron is called a face.

Definition 4.1.5. A regular polyhedron is a convex polyhedron, where all the
faces are congruent regular polygons and all interior angles are the same.

In fact there are only five regular polyhedra: the tetrahedron, the cube, the
octahedron, the dodecahedron and the icosahedron. These are called the Pla-
tonic solids and are found in Figure 1.1. The tetrahedron consists of four regular
triangles, the cube consists of six squares where three of them meet at each
vertex, the octahedron consists of eight regular triangles where four of them
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meet at each vertex, the dodecahedron consists of twelve regular pentagons
where three of them meet at each vertex, and the icosahedron consists of
twenty regular triangles where five of them meet at each vertex.

The Euler characteristic is χ = v − e + f , where v is the number of vertices, e
is the number of edges and f is the number of faces. The Platonic solids and
all other convex polyhedra satisfies χ = 2.

Example 4.1.6. The octahedron has 6 vertices, 12 edges and 8 faces, so χ =
6 − 12 + 8 = 2.

The number of edges, vertices and faces for the five Platonic solids are shown
4.1.

Vertices Edges Faces
Tetrahedron 4 6 4
Cube 8 12 6
Octahedron 6 12 8
Dodecahedron 20 30 12
Icosahedron 12 30 20

Table 4.1: The number of vertices, edges and faces in the five Platonic solids.

From Table 4.1 we see that the cube has the same number of vertices as the
number of faces of the octahedron and vice versa. We also have the same
relation for the icosahedron and the dodecahedron. Therefore we say that the
cube and octahedron, and the dodecahedron and icosahedron are duals. If we
take the center of every face in a polyhedron and draw an edge from each
center to the centers in the adjacent faces we get the dual polyhedron. If our
starting polyhedron is a cube, then we get an octahedron inside the cube. If we
do the same with the tetrahedron we only get another tetrahedron, therefore
it is self-dual.

Figure 4.2: The cube and its dual, namely the octahedron.
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Until now we have looked at polytopes in two and three dimensions, but in
general a n-polytope is:

Definition 4.1.7 ([Coxeter, 1973, p. 126]). A n-polytope is a finite convex region
in n-dimensional space enclosed by a finite number of hyperplanes.

As for polygons and polyhedra we will define regular.

Definition 4.1.8. If P is a convex polytope inV with dimension n, then a sequence

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn = P ,

with Fi a face of P of dimension i is called a flag of faces of P .

Definition 4.1.9. A convex polytope P in V is regular if the full symmetry group
acts transitively on all flags of P .

Therefore a polygon is regular if the symmetry group acts transitively on
vertices and edges, and a polyhedra is regular if the symmetry group acts
transitively on vertices, edges and faces. In the icosadodecahedron in Example
2.3.12 the symmetry group acts transitively on vertices and edges, but not on
faces. Therefore it is not regular.

The convex hull conv (X ) of the finite set of points X is the convex combination
of all points. Here, a convex combination is a linear combination of points xi
where all coefficients ri add up to 1. The convex hull of X can therefore be
written as

conv (X ) =

{
n∑
i=j

rixi : ri ≥ 0∀i,
n∑

ri = 1

}

We can therefore generate a polytope by starting with a finite number of points,
and then take the convex hull of these points.

4.2 Our construction of polytopes
In this section we will generate polytopes by starting withW -orbit through λ,
and then take the convex hull of these points. We denote this polytope P(λ).
UsingW , we may assume that λ lies in the closure of the fundamental domain.
Thus, it suffices to take λ =

∑
j r jλj with r j ≥ 0. The rank two Coxeter groups

generate polygons, the rank three Coxeter groups generate polyhedra and the
rank n Coxeter groups generate n-dimensional polytopes.
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4.2.1 Polygons
Since we will generate polygons from the rank two Coxeter groups we consider
the action ofW (Im2 ) on λ. Recall that form = 3 andm = 4 this is the same as
W (A2) andW (B2) respectively. For polygons we need to generate vertices and
edges. The vertices are generated by theW (Im2 )-orbit through λ, which we get
by using Proposition 3.1.3. This orbit gives us the coordinates of the vertices in
terms of λi and | Orb(λ)| is the number of vertices. The edges of P(λ) passing
through λ is generated by:

Definition 4.2.1. An edge in P(λ) with endpoint λ are generated by reflections in
the walls α⊥1 ,α

⊥
2 , . . . ,α

⊥
n .

The edge ei is a line segment between λ and Si (λ), where Si do not fix λ.
We denote these edges as ei = [λ, Si (λ)]. To get the other edges we apply
W (Im2 ) to ei to reflect it around. What gives us a regular polygon will therefore

depend on λ =
m

a b , where a,b ≥ 0. Rescaling λ induces a rescaling of

P(λ), which we will view as geometrically equivalent. Therefore we have four

cases to consider,
m

1 0 ,
m

0 1 ,
m

a b where a , b, and
m

a b

where a = b.

Definition 4.2.2. LetW ≤ O(V ). A convex polytope P(λ) isW -regular ifW acts
transitively on all flags of P .

When we are considering regular polytopes we have to distinguish between
regular as in Definition 4.1.9 andW -regular. If a polytope isW -regular it is
also regular as in Definition 4.1.9, but not vice versa.

Proposition 4.2.3. LetW =W (Im2 ). Then:

1. P(
m

1 0 ) generatesW -regularm-gon.

2. P(
m

1 1 ) generates 2m-gon that is notW -regular.

3. if P(
m

a b ) is regular, then a = b.
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Proof. Consider λ =
m

1 0 , by Theorem 3.2.2 Stab(λ) = 〈S2〉, and therefore

by Proposition 3.2.4 and Table 2.3 | Orb (λ)| =
|W (Im2 ) |
| Stab(λ) | =

2m
2 = m. From

Section 2.2, R = S1S2 is a rotation by 2π
m , and recall the order of R ism. Then

Orb(λ) = {Rk (λ1) : k ∈ Z} and P = conv(Orb(λ)). The edges in P are between
consecutive vertices

ek = [R
k (λ1), R

k+1(λ1)],

for k = 0, . . . , m − 1. Therefore we getm edges. Since R(ek ) = ek+1, thenW

act transitively on vertices and edges and P(λ) isW -regular. For λ =
m

0 1

it is similar.

Let λ =
m

1 1 . By Theorem 3.2.2 Stab(λ) = e, and by Proposition 3.2.4

and Table 2.3 | Orb(λ)| =
|W (Im2 ) |
Stab λ = 2m

1 = 2m. But P(λ) is a 2m-gon with
2m edges. Then one edge is generated by e1 = [λ, S1(λ)]. Note that this
edge has Stab(e1) = 〈S1〉, since the other elements of W do not fix e1. By
using Proposition 3.2.4 and Table 2.3 the size of the W -orbit through e1 is
|W (Im2 ) |
| Stab(e1) |

= m. Since this only generates m edges, the edge e2 = [λ, S2(λ)]

generates the rest. Therefore P(
m

1 1 ) is notW -regular.

If λ =
m

r1 r2 , then it is regular if the length of the edges is the same, so

|ei | = |λ − Si (λ)| = λ − (λ − 〈λ,α∨i 〉αi ) = ri . This means the edges only
have the same length if r1 = r2. Therefore a , b does not generate a regular
polygon. �

Let us consider three examples withm = 3:

Example 4.2.4. Let λ = 1 0 and λ = 0 1 , then
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(a) The regular polygon P(λ1) gen-
erated byW (I32 ).

(b) The regular polygon P(λ2) gener-
ated byW (I32 ).

Figure 4.3: Two regular triangles generated byW (I32 ).

Example 4.2.5. Let λ = 1 2 , then:

Figure 4.4: The non-regular polygon P(λ1 + 2λ2) generated byW (I32 ).

This polygon we clearly see that is not regular, since the edges do not have the
same length.

Example 4.2.6. Let λ = 1 1 , then
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Figure 4.5: The regular polygon P(λ1 + λ2) generated byW (I32 ).

When we applyW to λ we have two possibilities for edges. We could either reflect
in the orange line α⊥1 or in the purple line α⊥2 . Therefore we get two edges, the
red edge and the green edge. By applyingW to these two edges it is not possible
to reflect the green edges and the red edges to each other, and therefore it is not
W -regular.

We also have one more possibility to generate a regular polygon by considering
W (A1 × A1), which has the Coxeter diagram . For the A1 × A1 root
system the angles between the simple roots and the fundamental weights are

the same, namely π
2 . A consequence of that is if λ = 1 0 or λ = 0 1 ,

then W just generates a single edge. But if we consider λ = 1 1 , we
get

Figure 4.6: The regular polygon P(λ1 + λ2) generated byW (A1 ×A1).
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We see that P(λ1 + λ2) generates a regular square, but not a W -regular
square.

4.2.2 Polyhedra
The rank three Coxeter groups generate the polyhedra. Therefore we will
consider the action of W (A3), W (B3) and W (H3) on λ. Here, λ is either

a b c ,
4

a b c or
5

a b c , where a,b, c ≥ 0. We want

all the edges to have the same length a = b = c ≥ 0.

For polyhedra we need to generate vertices, edges and faces, and how we gen-
erate these will be explained with an example. Let us consider λ = 1 0 0 ,
where theW -orbit through λ is found in Figure A.1 in the appendix. This orbit
has four elements, and as for polygons theW -orbit through λ is the vertices of
P(λ). From Table 4.1 we see that the tetrahedron has four vertices, six edges
and four faces, so P( 1 0 0 ) could be a tetrahedron. To get the edges
we can compute the midpoint of the edges by taking the average of any two
vertices in the W -orbit through λ. Then we will get all the elements of the
W -orbit through λ2 by a multiple. Therefore the second orbit in Figure A.1
generates the edges for P(λ).

Example 4.2.7. Consider the two first elements in the W -orbit through λ1,
1 0 0 and -1 1 0 . Then the average is 1

2(
0 1 0 ). If we multiply

by 2, then we get λ2.

To generate the faces we know that a face is two dimensional, and has to be
spanned by two edges. Then we can compute the center of a face by taking the
average of any three vertices in theW -orbit through λ. So we get four elements,
and by looking at theW -orbit through λ3 the centers are the elements of this
orbit by a multiple. Therefore theW -orbit through λ3 generates the faces for
P( 1 0 0 ).

Example 4.2.8. Consider the three first elements in the W -orbit through λ,
1 0 0 , -1 1 0 and 0 -1 1 . Then the average is 1

3 (
0 0 1 ),

and if we multiply by 3 we get λ3.

ForP( 1 0 0 )we nowhave four vertices, six edges and four faces, therefore
this is a regular tetrahedron.

As for polygons we want to figure out what generates a regular polyhedron.
We have already seen that P( 1 0 0 ) generates aW -regular tetrahedron.
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Which λ that generates the rest of theW -regular polyhedra are shown in Figure
4.2.

Platonic solid P(λ)

Tetrahedron P( 1 0 0 ) and P( 0 0 1 )

Cube P(
4

0 0 1 )

Octahedron P(
4

1 0 0 )

Dodecahedron P(
5

1 0 0 )

Icosahedron P(
5

0 0 1 )

Table 4.2: Platonic solids encoded by marked Coxeter diagrams.

Recall from Section 4.1 that the cube and the octahedron, and the dodecahedron
and the icosahedron are duals, while the tetrahedron is self-dual. From the
Table 4.2 we see thatW (B3) generates the octahedron and the cube,W (H3)

generates the dodecahedron and icosahedron, while W (A3) generates two
triangles. These relations occurs since they are duals. To figure out what kind
of polyhedra we get from the other λ, we will encode the marked Coxeter
diagram for λ by considering equivalence classes for edges and faces.

4.3 Encode equivalence classes in terms of a
recipe

GivenW , we know all vertices in P(λ) are equivalent under the action ofW .
But this may not be the case for edges and faces. By examine the marked
Coxeter diagram (or Dynkin diagram) for λ we hope to determine the number
ofW inequivalent edge and face representatives. An element which belongs
to a equivalence class is called a representative. For us the equivalence classes
are the different orbits for vertices, edges and faces with respect to the Weyl
group. Therefore if we have more than one representative for edges and/or
faces, then the polytope is notW -regular. Even though it can be regular as
in Definition 4.1.9, but that depends on if all the faces are congruent regular
polygons.
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4.3.1 Edges
To figure out how many equivalence classes there are for edges by encoding
the marked Coxeter diagram for λ, we need to look at what generates an edge.
By Definition 4.2.1 an edge is generated by reflecting in one of the nonzero
nodes. We will show that the number of edge representatives are the same as
the number of nonzero nodes. Let ei = [λ, Si (λ)] be an edge, then we put a
box around the i-th node to illustrate the representative. Therefore we encode
the marked Coxeter diagram for λ by putting a box around the nodes where
r j is nonzero. Note that we only draw one box at the time, since we want to
find the stabilizer for each representative.

Example 4.3.1. Let λ = 1 1 0 , then the edge representatives are:

1 1 0 1 1 0

Example 4.3.2. For λ = 1 0 0 , the initial edge is e1 = [λ, S1(λ)]. By
looking at the midpoint of e1, we get q = 1

2 (
0 1 0 ). The midpoint must sta-

bilize e1, therefore by Theorem 3.2.2 Stab(e1) = Stab(q) = 〈S1, S3〉. TheW -orbit
through e1 therefore generates by Proposition 3.2.4 and Table 2.3 | Orb(e1)| =
|W (A3) |

| Stab(e1) |
= 24

4 = 6. It is then clear that from theW -orbit through λ we generate
three edges. The first one is e1, the second is e2 = [S1(λ), S2S1(λ)] and the third
one is e3 = [S2S1(λ), S3S2S1(λ)]. The rest of the edges we get by using Stab(λ)
on these edges: e4 = S2(e1) = [λ, S2S1(λ)], e5 = S3S2(e1) = [λ, S3S2S1(λ)] and
e6 = S3(e2) = [S1(λ), S3S2S1(λ)]. And we see that this is another way to find the
edges than we did in Section 4.2.3.

Example 4.3.3. For λ = 1 0 1 we could either apply S1 or S3 to λ, so by
Theorem 3.2.2 Stab(λ) = 〈S2〉. Therefore two edges will be e1 = [λ, S1(λ)] and
e3 = [λ, S3(λ)]. By applying Stab(λ) to e1 and e3 we get the two other edges
passing through λ:

e ′1 = S2(λ) = [λ, S2S1(λ)] e ′3 = S3(λ) = [λ, S2S3(λ)]

So from each vertex in P(λ) there will be four edges. If we look at what stabilize
e1 we see it is only 〈S1〉, and for e3 it is only 〈S3〉. Therefore the number of edges
we get from e1 and e3 are:

| Orb(e1)| =
|W (A3)|

| Stab(e1)|
| Orb(e3)| =

|W (A3)|

| Stab(e3)|

=
24
2
= 12 =

24
2
= 12

Therefore P(λ) has 24 edges.
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Proposition 4.3.4. Given 0 , λ =
∑n

j=1 r jλj . Suppose ri , 0, then consider the
edge ei = [λ, Si (λ)]. The stabilizer inW of ei is

Stab(ei ) = 〈S j〉j ∈Ei ,

where Ei = {i} ∪ {j : r j = 0,Ci j = 0}.

Proof. Let q be the midpoint of ei , then Stab(ei ) ⊂ Stab(q) is clear. So let us
calculate q to figure out Stab(q). To calculate q we take the average of λ and
Si (λ). By (2.1.1) and Lemma 2.8.1 we get:

q =
1
2
(λ + Si (λ)) = λ −

1
2
〈λ,α∨i 〉Ci jλj

This means for the i-th node the average is zero. The average for the j-th
node adjacent to the i-th becomes positive since for λ, r j ≥ 0 and for S1(λ),
r j replaced by r j + 2ri cos

( π
m

)
, where m ≥ 3. The average of the nodes not

adjacent to the i-th node is 1
2r j since r j is not affected under Si .

By Theorem 3.2.2 Stab(q) is consist of the nodes in q with r j = 0. This means
Si and S j where r j = 0 and Ci j = 0 are the elements of Stab(λ). Therefore
Stab(q) = 〈S j〉j ∈Ei .

To show that Stab (q) ⊂ Stab(ei ) we apply Stab(q) to ei . Since Si (ei ) =
[Si (λ), SiSi (λ)] = ei , then Si is an element of Stab (ei ). Consider S j , where
r j = 0 and Ci j = 0, then Si and S j commute so S j (ei ) = [S j (λ), S jSi (λ)] =
[λ, SiS j (λ)] = ei . Therefore S j where {j : r j = 0,Ci j = 0} stabilize λ. Therefore
Stab(ei ) = Stab(q).

�

Example 4.3.5. Consider
5

1 0 1 0 . Then the edge representatives are

5
1 0 1 0

5
1 0 1 0

Then we get the edges e1 = [λ, S1(λ)] and e3 = [λ, S3(λ)], and the stabilizers of
these are:

Stab(e1) = 〈S1, S4〉 Stab(e3) = 〈S3〉

A pictorial way to find the stabilizer for edge representatives for a marked
Coxeter diagram for λ is to use the following recipe.
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Proposition 4.3.6 (Recipe for finding the stabilizer for the edge representa-
tives). Given any λ =

∑
j r jλj , then the recipe for finding the stabilizer of the

edge ei , where Si do not fix λ is : Remove nodes adjacent to the i-th node and
remove the other nodes with a nonzero number over.

Example 4.3.7. Consider λ =
4

1 0 1 , then λ has these representatives

4
1 0 1 and

4
1 0 1 . The stabilizers of these are

Stab(
4

1 0 1 ) =W (◦) = 〈S1〉 =W (A1)

Stab(
4

1 0 1 ) =W (◦) = 〈S3〉 =W (A1) .

The number of edges #e in P(
4

1 0 1 ) is by Proposition 3.2.4 and Table

2.3:

#e =
|W (B3)|

| Stab(
4

1 0 1 )|

+
|W (B3)|

| Stab(
4

1 0 1 )|

=
48
2
+

48
2
= 48

We will in the next section find the number of faces and what kind of faces this
polytope consists of.

4.3.2 Faces
As for edges we also want to find face representatives and the stabilizer of
these to compute the number of faces. From the face representatives we also
want know what kind of polygon it generates.

Example 4.3.8. Consider λ = 1 0 0 , and let f be a face and by applying
W to λ we may assume that f contains the edge generated by the first reflection.
Then we need two edges to span the face, since f is two dimensional. From
Example 4.3.2, λ has one edge representative and the edges through λ are:

e1 = [λ, S1(λ)]

e ′1 = [λ, S2S1(λ)]

e ′′1 = [λ, S3S2S1(λ)].
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We see that e ′′1 = S3(e
′
1) and S3(e1) = e1, therefore S3 maps the face determined

e1 and e ′1 to the face determined by e and e ′′. Therefore we get that

f = [λ, S1(λ), S2S1(λ)] = conv (H · λ),

where H = 〈S1, S2〉, since S2 stabilize λ we get

f = conv ({λ, S1(λ), S2S1(λ)}).

Abstractly, f is generated by W ( 1 0 ) , so f is a triangle. This face is
parallel to span{α1,α2}, and the normal vector is λ3. So Stab (f ) ⊂ Stab (λ3)
and by Theorem 3.2.2 Stab(λ) = 〈S1, S2〉. We can check if Stab (λ3) stabilize f
by applying Stab(λ3) to f :

S1(f ) = conv {S1(λ), λ, S1S2S1(λ) = S2S1S2(λ) = S2S1(λ)} = f

S2(f ) = conv {λ, S2S1(λ), S1(λ)} = f

Therefore Stab (f ) = Stab (λ3) = 〈S1, S2〉. By Proposition 3.2.4 and Table 2.3,
the number faces #f of P( 1 0 0 ) are:

|A3 | = 24
| Stab (f )| = |〈S1, S2〉| = |I32 | = 6

#f =
|A3 |

| Stab (f )|
=

24
6
= 4.

Therefore P( 1 0 0 ) is regular tetrahedron. Since we have one representative

for edges and one for faces it is alsoW -regular. Since 1 0 is a face repre-
sentative, we actually can see this from the marked Coxeter diagram by drawing

a box, 1 0 0 . We have seen that the stabilizer of this representative is

〈S1, S2〉 =W ( ), so we could have got the stabilizer by removing the nodes
not in the the box.

Example 4.3.9. Consider λ = 1 0 1 , then from Example 4.3.3, λ has two
representatives for edges and the edges through λ are:

e1 = [λ, S1(λ)] e3 = [λ, S3(λ)]

e ′1 = S2(e1) = [λ, S2S1(λ)] e ′3 = S2(e3) = [λ, S2S3(λ)]
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Figure 4.7: The four edges through λ in P(λ1 + λ2) generated byW (A3).

We want a face to be generated by two adjacent edges. By looking at Figure 4.7,
one face f1 will be determined by e1 and e ′1.

f1 = {λ, S1(λ), S2S1(λ)} = conv (H1 · λ)

Where H1 = 〈S1, S2〉 = {1, S1, S2, S1S2, S2S1, S2S1S2 = S1S2S1}. We see that
f1 is spanned by three elements, and abstractly it is generated byW ( 1 0 ).
Therefore f1 is a regular triangle. Since f1 is parallel to span{α1,α2} and the nor-
mal vector is λ3, then Stab (f1) = Stab (λ3) = 〈S1, S2〉 =W (A2). By Proposition
3.2.4 and Table 2.3 compute the order of theW -orbit through f1:

#f1 =
|A3 |

| Stab (f1)|
=

24
6
= 4

Similarly we get two other faces f2 and f3, f2 will be determined by e3 and e3′

and f3 is determined by e1 and e3, so:

f2 = conv {λ, S3(λ), S2S3(λ)} f3 = conv ({λ, S1(λ), S3(λ), S3S1λ})
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Abstractly, these two faces are generated by W ( 0 1 ) and W ( 1 1 )

respectively, and therefore f2 is a triangle and f3 is a square. The stabilizers for
these faces are

Stab (f2) = 〈S2, S3〉 =W (A2) Stab (f3) = 〈S1, S3〉 =W (A1 ×A1).

Therefore the total number of faces #f are:

#f = 4 +
24
6
+

24
4
= 14

This polyhedron consists of six squares, and eight triangles, so this is a cubeocta-
hedron.

Figure 4.8: The polyhedron P(λ1 + λ3) generated byW (A3).

Since we have three representatives for faces and P(λ) consists of triangles and
squares it is not regular. If we look at λ we can see these three representa-

tives by drawing boxes: 1 0 1 , 1 0 1 and 1 0 1 . For

1 0 1 we have seen that the stabilizer is W ( ) , which is the

same as removing the nodes that is not in the box representative face. And for the
other two face representatives we can do the same.

In more general, to find the face representatives by looking at the marked Cox-

eter diagram for λ, we will therefore look for
m

1 0 ,
m

0 1 ,
m

1 1

and 1 1 since these generate a regular polygons. Therefore we encode
the marked Coxeter diagram for λ by drawing boxes around the representa-
tives. Note that we only draw one box at the time.
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Example 4.3.10. Let λ =
5

1 1 0 , then the face representatives are

5
1 1 0

5
1 1 0 .

So P(λ) consists of decagons and triangles, and is a truncated dodecahedron.

Figure 4.9: The polyhedron P(λ1 + λ2) generated byW (H3).

In Example 4.3.8 and 4.3.9 we have seen that the stabilizer for face representa-
tives we could have gotten by removing the nodes not in the box representative
face. Suppose this is works for all the other face representatives, then we can
use this to calculate the number faces.

Example 4.3.11. Consider λ =
4

1 0 1 . We already have looked at the

edge representatives in Example 4.3.7, and for faces we have these representatives

4
1 0 1

, 4
1 0 1

and 4
1 0 1

. The first representative generates
triangles, the second representative generates squares, and the last one also gen-
erates squares, so this is not a regular polyhedron. The stabilizers for these
representatives are

Stab(
4

1 0 1 ) =W ( ) =W (I32 )

Stab(
4

1 0 1 ) =W (
4
) =W (I42 )

Stab(
4

1 0 1 ) =W ( ) =W (A1 ×A1) .

By Proposition 3.2.4 and Table 2.3 the number of faces #f are

#f =
48
8
+

48
6
+

48
4
= 26
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Since it consists of six triangles and twenty squares this is a rhombicuboctahedron:

Figure 4.10: The polyhedron P(λ1 + λ3) generated byW (B3).

We can also check the Euler characteristic since every convex polytope must satisfy
this. We have not computed the number of vertices #v, so let us do that by using
Theorem 3.2.2, Proposition 3.2.4 and Table 2.3.

Stab(λ) =W (A1)

#v =
|W (B3)|

|W (A1)|
=

48
2
= 24

Then χ = 24 − 48 + 26 = 2, so the Euler characteristic is satisfied.

Instead considering theW -orbit through λ and then take the convex hull of
these points to generate polytopes, we have seen that by encoding the marked
Coxeter diagram for λ we can easily figure out the number vertices, edges and
faces for P(λ). By looking at the face representatives for a marked Coxeter
diagram for λ we can also easily figure out what kind of faces P(λ) consists
of. Therefore when we have another λ than we have considered, we can easily
figure out what kind of polytope it is.
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A
Weyl group orbits
In Chapter 2 we considered Coxeter groups, which are finite groups generated
by reflections. These we denotedW =W (Φ), where Φ is a root system as in
Section 2.3. In Section 3.1 we gave a pictorial reflection recipe for the Coxeter
diagrams and the Dynkin diagrams. Here we will give theW -orbits through
λ1, λ2 and λ3 for the rank three Coxeter groups.

1 0 0 0 1 0 0 0 1

-1 1 0 1 -1 1 0 1 -1

0 -1 1 -1 0 1 1 0 -1 1 -1 0

0 0 -1 -1 1 -1 -1 0 0

0 -1 0

Figure A.1: TheW (A3)-orbits through λ1, λ2 and λ3.

For the B3 case we will use the Dynkin diagram:

51
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1 0 0 0 1 0 0 0 1

−1 1 0 1 −1 2 0 1 −1

0 −1 2 −1 0 2 1 1 −2 1 −1 1

0 1 −2 −1 2 −2 2 −1 0 −1 0 1 1 0 −1

1 −1 0 1 −2 2 −2 1 0 −1 1 −1

−1 0 0 1 0 −2 −1 −1 2 −1 1 −1

−1 1 −2 0 0 −1

0 −1 0

Figure A.2: TheW (B3)-orbits through λ1, λ2 and λ3.
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-τ τ -τ
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1 -τ 0

5
-1 0 0

Figure A.3: TheW (H3)-orbit through λ1.
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5
0 1 0
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τ -1 1
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-τ τ 1

5
τ 0 -1
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1 τ −τ 2
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−τ τ 2 -1
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-1 0 τ 2
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1 1 −τ 2
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5
-1 τ 2 -τ 2
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τ 2 -1 -τ
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5
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5
-τ 1 -1

5
0 -1 0

Figure A.4: TheW (H3)-orbit through λ2.
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