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Abstract
This thesis uses data from the Tromsø Study and weather data from the
Norwegian Meteorological Institute to study the mortality hazard rate and
incidence rate of myocardial infarction (MI) in Tromsø using a latent Gaussian
modelling framework. Inference is performed using integrated nested Laplace
approximations (INLA). This thesis presents the datasets and describes the
modelling and computational framework, before analysis is performed.

To study the mortality hazard rate after MI, a Cox proportional hazards model
has been implemented. A model without a seasonal effect with sex as a stratum
variable was deemed the best fit. The results show an increased risk in the
month after a MI. After the first month, the risk drops, before it increases with
age. The mortality hazard rate is slightly higher for men than for women.

To study the change in the rate of MI during the time of the study, a Bayesian
age-period-cohort model has been implemented. The model only includes the
men of the study. This model studies the rate of MI on three different time
scales: age, period, and cohort. The effects from age, period, and cohort are not
directly identifiable. However, second differences describing the curvature and
relative risk ratios are identifiable, as is the overall rate. The results show the
incidence rate of MI decreasing with period, and increasing with age.
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1
Introduction
1.1 Background
According to the Norwegian Institute of Public Health [2009], cardiovascular
diseases are the leading cause of death in Norway when looking at all age
groups combined, and myocardial infarction (MI) and strokes cause one in
four deaths on a world basis. Achieving a higher understanding of what leads
to MIs is essential to prevent them.

There are several known risk factors for cardiovascular disease, such as smoking,
diabetes, unhealthy diet, alcohol consumption, and low physical activity [Yusuf
et al., 2004]. An association with weather has also been shown by, among
others, Barnett et al. [2005], Auger et al. [2017], and Mohammad et al. [2018].
They have found links between the incidence rate of MI and temperature and
snowfall. However, findings from Mohammad et al. [2018] and Hopstock [2012]
indicate that the MI incidence rate in subarctic climates, such as the climate
in Tromsø, is not as affected by weather. Using new methods and studying the
data from another angle can serve to either falsify or confirm these previous
results.

The Tromsø Study includes data from close to 40,000 participants from the
municipality of Tromsø, over a time period of nearly 50 years. Weather data
from the Norwegian Meteorological Institute is available from their website
http://eklima.met.no and contains meteorological data fromweather stations
from all around Norway, including Tromsø. The Tromsø weather station has
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2 CHAPTER 1 INTRODUCT ION

been in operation since 1895, and records temperature, precipitation, snow
depth, and wind data. This allows us to connect weather data to the incidences
of MI from the Tromsø Study.

1.2 Aims and motivations of the thesis
The objective of this master thesis is threefold: To explore and study statistical
methods, to study the mortality hazard rate after a MI, and to study the
incidence rate of MIs in Tromsø. The hypothesis is that increased snowfall
and lower temperatures will lead to an increase in the MI incidence rate. The
incidence rate of MI is also expected to decrease during the time of the study.
The incidence rate is expected to be higher for men than women, and for older
age groups. These are known results from the Norwegian Institute of Public
Health [2009]. The mortality hazard rate is expected to be higher after a MI,
and increase with time as the participants age.

As this is a master’s thesis in education, another aim is to explore a subject
that is relevant for the Norwegian school system. In the new Norwegian
curriculum, one of the new interdisciplinary subjects will be "Folkehelse og
livsmeistring" ("Public health and life management skills") [Norwegian Ministry
of Education and Research, 2017]. In addition, the use of statistical methods
to study data is part of the mathematics curriculum [Norwegian Ministry of
Education and Research, 2006, 2013]. Statistical methods are essential in public
health research, and having an in-depth understanding of this type of research
is highly relevant when teaching the subject.

1.3 Outline of the thesis
Chapter 2 describes the Tromsø Study dataset and the weather dataset, with
introductory analysis of each dataset. Age and gender differences are studied,
as well as the seasonal variation.

Chapter 3 presents the methodology used to analyse the datasets. The latent
Gaussian modelling (LGM) framework and the inference method of integrated
nested Laplace approximations (INLA) is presented. In addition, the chapter
gives some useful prior models and model evaluation criteria.

Chapter 4 studies the hazard rate after a MI using a Cox proportional hazards
(PH) model. This chapter presents the Cox PH model, and how it can be cast
into a LGM framework. Several different model configurations are studied, and



1.3 OUTL INE OF THE THES IS 3

the simplest model with the best fit is chosen. The results of the analysis are
then presented and discussed.

Chapter 5 studies the incidence rate of MI during the time of the study using
a Bayesian age-period-cohort (APC) model. The chapter presents the model
itself, as well as the identification problem in APC analysis. The results of the
analysis are presented and discussed.

Chapter 6 summarises the results from chapters 4 and 5, and suggests some
further areas of research.





2
Datasets and introductoryanalysis
The data in this thesis comes from the Tromsø Study, a health study conducted
in the municipality of Tromsø. To analyse seasonal variation, registrations of
temperature and snow depth were collected from the Norwegian Meteorologi-
cal Institute’s website, http://eklima.met.no. In this chapter, the datasets are
presented, and analysed using basic methods. The presented topics include the
age and gender distribution of the dataset, the incidence rate of MI, and the
seasonal variation of MI.

2.1 The Tromsø Study
2.1.1 The dataset
The Tromsø Study is a repeated population-based health study conducted in
the municipality of Tromsø in Northern Norway. The study has been conducted
seven times: in 1974, 1979-80, 1986-87, 1994-95, 2001-02, 2007-8 and 2015-16.
Data collection was carried out by the Department of Community Medicine
at UiT The Arctic University of Norway in collaboration with the Norwegian
Institute of Public Health, the University Hospital of Northern Norway (UNN),
and Tromsø City Council. A total of 40,051 different people have participated in
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6 CHAPTER 2 DATASETS AND INTRODUCTORY ANALYS IS

at least one of the surveys of the Tromsø Study. Of these, 18,510 participants have
participated three or more times. Table 2.1 shows the number of participants
in the different studies and the invited age groups.

Table 2.1: Examination year, age, sex, and number of attending subjects (n). Data are
downloaded from http://tromsostudy.com.

Study wave Examination years Age (years) n Sex

Tromsø 1 1974 20-49 6,595 Men
Tromsø 2 1979-80 20-54 16,621 Men/women
Tromsø 3 1986-87 12-67 21,826 Men/women
Tromsø 4 1994-95 25-97 27,158 Men/women
Tromsø 5 2001-02 30-89 8,130 Men/women
Tromsø 6 2007-08 30-87 12,987 Men/women
Tromsø 7 2015-16 40-99 21,083 Men/women

The analyses in this thesis are based on data from Tromsø 1-6. The participants
have been linked to data from the Norwegian Causes of Death Registry to
record date of death. In addition, the date of MI has been recorded from
admissions to UNN, the only hospital in the region. Independent endpoint
committees have reviewed each case, ensuring that all cases of first-ever MI
have been recorded, also when admitted to other hospitals [Jacobsen et al.,
2012].

The dataset covers a total of 39,870 participants (19,896 men and 19,974
women). Of these participants, 4,248 (2,858 men and 1,390 women) have
experienced at least one MI. The dataset contains information about the date
of visit for each study, the participants’ age at this date (age group for Tromsø
1), sex, date of emigration, date of death, and date of first MI.

2.1.2 Age of participants
The study includes participants born between 1897 and 1978. The mean age at
first MI was 64.9 years, and the median age was 64 years, as shown in figure
2.1. In our dataset, Tromsø 1 only gives the age of the participants as a five-year
age group (e.g. 30-34, 35-39, and so on). For participants who first participated
in Tromsø 1, their age is set to the first year of their age group.

Figure 2.2 shows the mean age in each month of the total study. This time span
is defined from the date of the first MI in the study (August 1962) to the last
MI in the study (November 2014), including a total of 628 months. Participants
have been defined as entering the study in January of the year they reach 30
years, and exiting the study in the month of MI or death.

http://tromsostudy.com


2.1 THE TROMSØ STUDY 7

Figure 2.1: The distribution of age at first MI for the whole study sample. Mean age
at first MI was 64.9 years (dashed line) and median age at first MI was 64
(solid line).

The mean age of participants has increased with time due to the different age
groups invited for each study wave. Tromsø 4–6 invited older participants (as
shown in table 2.1), and excluded the younger age groups, leading to an ageing
study population.

Within each year, the mean age occasionally decreases. This is due to the
number of active participants in each month. Participants are removed from
the study upon MI or death, and most of these are older than the mean age.
New participants only enter the study in January of each year. This effect
is more pronounced after month 462, the month with the maximum number
of participants. As there are few new participants each year and the active
participants are older, the removal of older participants at death or MI has a
larger effect on the mean age.

The mean age at MI has increased among the participants during the time of
the study, from 44.1 years in the 1960s to 69.5 years in the 2010s. This is due
to the increased number of older participants, and other methods are needed
to study an eventual change in the mean age at MI.

Figure 2.3 shows the age distribution for first time participants. The age distri-
bution at first participation is highly influenced by the invitation age span seen
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Figure 2.2: Mean age of participants in each month of the study, beginning with month
1 (August 1962) and ending with month 628 (November 2014).

in table 2.1. The figure shows a peak around 30 years, and most participants
first participated in the Tromsø Study before they are 40 years. Combined with
the ageing study population shown in figure 2.2, this shows that participants
are participating in several Tromsø studies.

2.1.3 Gender
The number of men and women who have had a MI is shown in table 2.2.
Approximately 16.8 % of men have had a MI, while 7.48% of women have had
a MI. Men are expected to have a higher MI rate than women [Norwegian
Institute of Public Health, 2009].

Table 2.2: MI incidences by gender

Men Women Total
MI 2858 1390 4248
Not MI 17038 18584 35622
Total 19896 19974 39870
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Figure 2.3: Age distribution at first participation.

To test this hypothesis in the Tromsø Study, a Pearson’s chi-squared test is used
to compare the number of men who get MIs with the number of women who
get MIs. The observations are assumed to be independent. The test has test
statistic

χ2 =

2∑
i=1

2∑
j=1

(Oi, j − Ei, j )
2

Ei, j
= 573.47

Oi, j are the counts for each combination of the the two variables, while Ei, j
are the corresponding expected values. The test shows that the number of
participants who have had a MI is statistically significantly associated with
gender with p-value < 2.2 · 10−16, and that men and women have different
risks of having a MI.

2.1.4 MI rate and fatality ratio
According to the Norwegian Institute of Public Health [2009], the rate of
mortality due to cardiovascular disease has decreased in the past 40 years. The
rate of MI in the age group above 65 years has also decreased. However, this
decrease is not seen in the younger age groups between 25–44 years.

In our dataset, the number of MIs per year increase during the time of the
study. This is due to the increase both in the number of participants and their
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age. Studying the rate of MI over time requires more advanced methods to
separate the change in mean age and number of participants from the rate of
MIs.

A simple correction for this is to look at the age-specific rates of MI per 1000
individuals, which are corrected for the number of participants in this age
group at a certain time. Figure 2.4 shows the age-specific rate of MI per 1000
individuals during the time of the study. The age groups below 44 years and
above 75 years have been excluded due to small sample size. There are missing
years in some age groups due to the lack of MI in specific age groups at certain
times. These rates are fairly constant for the younger age groups, while the
rates for the older age groups increase at the start of the study and decrease
at the end. A further study of the incidence rate will be performed in chapter
5.

Figure 2.4: The rate of MI per 1000 for each age group over the time of the study.

About 12 % of deaths in the study are due to MI, and about 23 % of those who
have had a MI die from it. Death by MI is defined as death occurring within 28
days of a MI [Hopstock, 2012]. As MIs cause a significant number of deaths in
the study, studying the mortality hazard rate after MI and how it is affected by
sex or season is important. A further analysis of the mortality hazard rate will
be performed in chapter 4.
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2.1.5 Seasonal variation
Hopstock [2012] showed that while 42 of 49 studies found an effect of temper-
ature on MI, studies from the Nordic countries more often reported a lack of
seasonal variation, including in the Tromsø Study. Hopstock [2012] reported
that mean MI incidence was little affected by weather, but that winter weather
(decreasing temperatures and increasing snowfall) led to an increased risk of
MI in age groups above 65.

Figure 2.5 shows the mean number of MIs in each month of the year, adjusted
for the number of days in each month, showing the seasonal variation. The
figure shows a peak in the winter months November, December, and January.
In these months, the mean number of MIs per month is above 12, and they
clearly differ from the other months.

Figure 2.5: Seasonal variation for number of MIs per month, adjusted for the number
of days in each month.

A two sample t-test can be used to study the difference in the mean number of
MIs in the winter months and non-winter months. Winter months are defined
as November, December, and January, with mean x̄1, sample variance s2

1 and
size n1. The non-winter months have mean x̄2, sample variance s2

2 and size n2.
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The test statistic is

t =
x̄1 − x̄2√
s2

1
n1
+

s2
2
n2

=
392 − 341.3333√

301
3 +

338
9

= 4.31477

This shows that the mean number of MIs in the winter months November,
December, and January is statistically significantly different from the number
of MIs in the other months with a p-value of 0.015.

2.2 Weather data
2.2.1 The dataset
Weather data from the Norwegian Meteorological Institute is freely available
from their website http://eklima.met.no. The data in this thesis is from the
Tromsø observation station (station number 90450), and covers the time span
from August 1962 to November 2014. This thesis makes use of observations of
temperature (for each day, there has been recorded maximum, minimum, and
mean temperature) and snow depth.

2.2.2 Temperature
Mohammad et al. [2018] studied the effect of air temperature with day-to-day
incidence of MI in Sweden. They found a significant negative association with
air temperature in all regions of Sweden, except in the north. This is consistent
with the results shown by, among others, Hopstock [2012] and Barnett et al.
[2005].

A simple linear regression model shows that the mean temperature of each year
increases during the time of the study with a factor of approximately 0.03±0.01
°C per year. If there are more MIs at cold temperatures, the number of MIs
is expected to drop in recent years. However, the mean age of participants is
higher in recent years, so this effect may be cancelled out.

Figure 2.6 shows the mean number of MIs per day at each temperature. Only
temperatures with more than 40 MI incidents have been included. A simple
linear regression model shows that there is a slightly positive relationship with
temperature, which is not statistically significant with p-value 0.24. This is
despite the seasonal variation that can be seen in figure 2.5. This variation has
to be caused by other variables than temperature.

http://eklima.met.no
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Figure 2.6: Mean number of MIs per day at each temperature.

2.2.3 Snow depth
One common myth is that shovelling snow increases the risk of a MI. News arti-
cles advising people to take care after large snowfalls can be seen in Norwegian
media such as NRK (https://www.nrk.no/norge/hjerteleger-advarer-mot-
hard-snomaking-1.13923098) and TV2 (https://www.tv2.no/a/9691455/). A
connection between snowfall and risk of MI has also been shown by Auger et al.
[2017], where a study of hospital admissions or death due to MI and snowfall
in Quebec, Canada, showed that the risk of MI increased after snowfall among
men.

We do not know which participants have shovelled snow, but we should see an
effect on the number of MIs on days with large changes in snow depth if this
myth is true.

Figure 2.7 shows the mean number of MIs per day in the following groups
of snow depths (in cm): 1-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80,
81-90, 91-100, 101-110, 111-120, 121-130, 131-140, 141-150, 151-160, 161-170, 171-
180, and above 181. A simple linear regression model shows a slightly negative
relationship that is not statistically significant with p-value 0.724.

https://www.nrk.no/norge/hjerteleger-advarer-mot-hard-snomaking-1.13923098
https://www.nrk.no/norge/hjerteleger-advarer-mot-hard-snomaking-1.13923098
https://www.tv2.no/a/9691455/
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Figure 2.7: Mean number of MIs per day in each snow depth group.

Auger et al. [2017] suspect that men are more likely than women to shovel
snow, and may be more exposed to a potential risk from increased snowfall.
Therefore, the relationship between changes in snow depth and mean MIs per
day is studied separately for each gender. Figure 2.8 shows the mean number
of MIs per day for increases in snow depth between 1 and 20 centimetres for
men and women.

Simple linear regression models for each gender show a slight negative rela-
tionship between snow depth change and mean number of MIs. These rela-
tionships are not statistically significant with p-values 0.415 (men) and 0.596
(women).

In this dataset, there is no observable connection between shovelling snow and
having a MI, and the hypothesis that snowfall leads to an increased risk of MI
does not have support in this study. However, our dataset does not state which
participants have shovelled snow. A further study of this hypothesis would
require more information.
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Figure 2.8: Mean number of MIs per day for change in snow depth, for men (blue
dots) and women (red crosses).





3
Methodology
The last chapter showed that basic methods are not sufficient to analyse all
the questions raised. The topics chosen for further study in this thesis are the
mortality hazard rate and the MI incidence rate.

The methods used for analysis are presented in the following chapter. In this
thesis a Bayesian framework is used, and inference will be performed using
INLA, introduced by Rue et al. [2009]. INLA applies to the class of models
known as LGMs. This chapter presents the modelling and the computational
framework for inference for LGMs using INLA, as well as some relevant prior
models and scoring rules.

3.1 Bayesian inference
A Bayesian framework is flexible, allowing us to account for information that is
already known. Each parameter is viewed as a random variable, and inference
is based on the prior beliefs about the variables in combination with observed
data.

Bayes’ rule for events is given as

P(A|B) =
P(A)P(B |A)

P(B)

17
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It states that the conditional probability of A given B is dependent on the
joint probability of A and B. In other words, the probability of A changes
depending on the probability of B. When performing Bayesian inference, this
rule is applied to probability distributions.

The prior distribution is a subjective probability representing our prior beliefs of
how the parameters in the model will behave. The prior combinedwith the data
contains all the information about the experiment. The posterior distribution
is found by "updating" the prior with information from the experiment. The
posterior distribution of θ given y = [y1, ...,yn] is given by

π (θ |y) =
π (θ )p(y |θ )

д(y)
∝ π (θ )p(y |θ ) (3.1)

In this equation, π (θ ) is the prior distribution, д(y) is the marginal distribution
of y, and y is the data. When y1, ...,yn are conditionally independent given θ ,
the likelihood is given as p(y | θ ) =

∏n
i=1 p(yi | θ ).

In Bayesian inference, the goal is generally to find the posterior distribution of
the parameters, given the data. From this posterior distribution, it is easy to cal-
culate summary statistics, such as the posterior mean, median or mode.

Credible intervals can also be calculated using the posterior distribution. These
intervals are similar to confidence intervals in frequentist statistics; however,
while a confidence interval states that the interval will cover the true value of
the parameter with a given probability, a credible interval states that the true
value of the parameter will be within the interval with a given probability. A
value is considered statistically significant when the credible interval does not
cover zero.

For a long time, the issue with Bayesian inference has been how to perform the
inference itself. By the time of the 90s and the early 2000s,Markov chain Monte
Carlo (MCMC) methods had been developed, and computational frameworks
such as JAGS and BUGS made Bayesian inference feasible. However, these
methods are based on sampling, which can be time-consuming. In this thesis,
the INLA methodology presented in section 3.3 will be used instead. This
methodology uses approximation methods instead of sampling, and is therefore
more computationally efficient.
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3.2 Latent Gaussian models
Regression models are some of the most essential models in statistical analysis,
and are used to study the relationship between variables or make predictions.
The multiple linear regression model has predictor

ηi = E(Yi ) = µi = α +

nβ∑
j=1

βjzji , i = 1, ...,n (3.2)

where Y1, ....,Yn are independent random variables denoting the observations,
α is the intercept, z = [z1, ..., znβ ] is a vector of covariates, and β is a vector
of regression coefficients. This model only allows for linear effects, and the
observations have a normal distribution Yi ∼ N(µi ,σ 2).

To study random variables Y that are not necessarily normally distributed,
we can generalise the simple linear regression model. The expected values
µi = E(Yi ) are linked to the linear predictors ηi with a link function д(·)
so that д(µi ) = ηi [Nelder and Wedderburn, 1972]. This gives a generalised
linear regression model (GLM), where the random variables Y can have any
distribution from the exponential family. This family of distributions includes,
among others, the binomial, Poisson, and gamma distributions.

For this model, the linear predictor ηi has the same form as equation (3.2).

ηi = д(µi ) = α +

nβ∑
j=1

βjzji , i = 1, ...,n (3.3)

The GLM is a subclass of the general linear mixed model (GLMM), which
can also include unstructured random effects ϵi , which are assumed to be
independent and normally distributed with constant variance. The GLMM has
the following predictor

ηi = д(µi ) = α +

nβ∑
j=1

βjzji + ϵi , i = 1, ...,n (3.4)

Further generalisations include generalised additive models (GAM) and gener-
alised additive mixed models (GAMM), which allow for random or non-linear
effects in the predictor. Specifically, the predictor of the GAM has the form

ηi = д(µi ) = α +

nf∑
k=1

f (k )(uki ), i = 1, ...,n (3.5)

Here, the f s represent random or non-linear effects of covariatesu. The GAMM
also includes unstructured effects ϵi . All these models can be expressed as
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subclasses of a structured additive regression model [Fahrmeir and Tutz, 2001].
In this model, the structured additive predictor ηi has the form

ηi = д(µi ) = α +

nβ∑
j=1

βjzji +

nf∑
k=1

f (k )(uki ) + ϵi , i = 1, ...,n (3.6)

Here, the βs represent the fixed effects of the covariates z,while the ϵs represent
unstructured random effects. The functions f can describe many different
effects, causing this framework to be very flexible. Examples of these effects
can be temporally structured effects, spatially structured effects, random effects
or non-linear effects of the covariates u. It is clear that equations (3.2-3.5) can
be expressed by equation (3.6).

In Bayesian analysis, the aim is to find the posterior marginals of all random
quantities in the predictor ηi , shown in equation (3.6). To do this, a latent field
x is defined. This field contains all the random variables of the linear predictor,
in addition to the structured additive predictor η = [η1, ...,ηn], so that

x = [η,α , β, f (·)] (3.7)

The LGM is a special case of structured additive regression models where all
the elements of the latent field are assigned Gaussian priors [Rue et al., 2009].
LGMs represent a unified computational framework containing several of the
most common statistical models [Rue et al., 2009, 2017]. The models used in
this thesis can be expressed within this framework, allowing us to use methods
for inference applying to LGMs.

The LGM as a three-stage Bayesian hierarchical model has the following
stages:

1. The first stage specifies the conditional distribution of the observations
y | x ,θ1 ∼ π (y | x ,θ1), where the dimension of y is n.

2. The second stage specifies the prior distribution of unobserved (latent)
components x |θ2 ∼ π (x | θ2). The dimension of the latent field is usually
large, e.g. nx = 102-105.

3. The third stage specifies prior beliefs about the hyperparameters θ con-
trolling the components in the model. The hyperparameters have distri-
bution π (θ ) and the dimension is often quite small, e.g. nθ = 2-5.
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We assume that x has a multinormal distribution, x ∼ N(0, Σ). Observations
y are assumed to be mutually conditionally independent, given the latent field
x and the hyperparameters θ1.

y |x ,θ1 ∼

ny∏
i=1

π (yi |xi ,θ1)

The latent field is assumed to be a Gaussian Markov Random Field (GMRF).
A GMRF is a multinormal random vector with Markov properties [Rue and
Held, 2005]. This implies that the prior distribution of the latent field is defined
by

x | θ2 ∼ N
(
0,Q−1(θ2)

)
Q = Σ−1 is the precision matrix, the inverse of the covariance matrix Σ.

Precision matrices are commonly sparse. This is due to the fact that the
precision matrix gives the structure of the conditional independence properties
of the elements of x . Specifically, the Markov properties of the GMRF state that
xi ⊥ x j |x−i j ⇔ Qi j = 0, where x−i j represent all values of x apart from i and
j. That is, xi and x j are conditionally independent, given the other values x−i j
[Rue et al., 2009].

For example, an auto-regressive process of order 1 with

x1 ∼ N(0, (1 − ϕ2)−1)

xt | xt−1, ...,x1 ∼ N(ϕxt−1, 1), t = 2, ...,n

has hyperparameter ϕ and precision matrix

Q =

©«
1 −ϕ
−ϕ 1 + ϕ2 −ϕ

. . .
. . .

. . .

−ϕ 1 + ϕ2 −ϕ
−ϕ 1

ª®®®®®®¬
This is a sparse tridiagonal matrix, while the corresponding covariance matrix
Σ is dense. Numerical methods for sparse matrices are far quicker than calcu-
lations for dense matrices, giving huge computational advances when usingQ
rather than Σ [Rue and Held, 2005].

The parameters of both the likelihood and the latent field are referred to as
hyperparameters. The hyperparameters are not required to be Gaussian, and
are denoted θ = (θT1 ,θ

T
2 )

T . They have distribution θ ∼ π (θ ).
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The joint posterior distribution for the latent field and hyperparameters is then
summarised as

π (x ,θ | y) ∝ π (θ )π (x |θ )
n∏
i=1

π (yi | xi ,θ ) (3.8)

This formulation represents an extension of the formulation in equation
(3.1).

3.3 INLA
INLA is a computationally efficient method for Bayesian inference, requiring
no sampling. MCMC methods apply to a wide range of models, while INLA
only applies to LGMs, the type of model described in the previous section with
predictor ηi , shown in equation (3.6).

With certain adjustments, the models in this thesis are LGMs, allowing us to
use INLA to perform Bayesian inference. MCMC methods can also be used to
perform inference on LGMs, but it is not well suited to these models due to
the time required [Rue et al., 2009]. In addition, INLA is well suited to include
random and non-linear effects in our models.

The aim is to find the posterior marginals for all components of x and all hyper-
parameters. The joint posterior of x and θ is shown in equation (3.8).

The target marginals for the hyperparameters is given by

π (θ j | y) =

∫ ∫
π (x ,θ | y)dxdθ−j , j = 1, ...,nθ

=

∫
π (θ | y)dθ−j (3.9)

The target marginals for the components of the latent field is given by

π (xi |y) =

∫ ∫
π (x ,θ | y)dx−idθ , i = 1, ...,n

=

∫
π (xi ,θ | y)dθ

=

∫
π (xi | θ ,y)π (θ | y)dθ (3.10)
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INLA is performed in three steps [Rue et al., 2009, 2017]:

1. approximating the posterior marginal of θ , π (θ |y), by using the Laplace
approximation,

2. computing an approximation of π (xi | y,θ ) for selected values of θ ,

3. using numerical integration and interpolation to combine the two previ-
ous steps to find an approximation to the target marginals.

3.3.1 Approximating the posterior of θ
To find the approximation to equation (3.9), π (θ |y) is approximated by a
Laplace approximation. The definition of conditional probability means that
the posterior marginal of x can be written as

π (x | θ ,y) =
π (x ,θ | y)

π (θ | y)
⇔ π (θ | y) =

π (x ,θ | y)

π (x | θ ,y)

The Laplace approximation is not used directly, as the estimated distribution of
π (θ |y) is typically not Gaussian. Therefore, the expression is rewritten. Tierney
and Kadane [1986] showed that the Laplace approximation of a marginal
posterior distribution can be written as

π̃LA(θ |y) ∝
π (x ,θ |y)

π̃G (x |θ ,y)

where π̃G (x | θ ,y) denotes a Gaussian approximation evaluated at the mode
x∗(θ ). This approximation methodworks well, as π (x | θ ,y) is close to Gaussian
in most cases. The distribution of π (x ,θ | y) is given in equation (3.8).

This gives the Laplace approximation for π (θ | y)

π̃LA(θ | y) ∝
π (θ )π (x |θ )

∏n
i=1 π (yi | xi ,θ )

π̃G (x | θ ,y)

����
x=x ∗(θ )

(3.11)

Note that the expression for π (x | θ ,y) is originally given as

π (x |θ ,y) ∝ π (x | θ ) · π (y,θ | x)

∝ π (x | θ )
n∏
i=1

π (yi | xi ,θ )

∝ exp
{
−

1
2
xTQ(θ )x +

n∑
i=1

log(π (yi |xi ,θ ))
}
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The Gaussian approximation uses a Taylor expansion of the second order to
approximate this expression.

π̃G (x | θ ,y) ∝ exp
{
−

1
2
(x − x∗(θ ))TQ∗(θ )(x − x∗(θ ))

}
(3.12)

Here, x∗(θ ) is the location of the mode andQ∗(θ ) = Q(θ )+ diag(c(θ )). c(θ ) is
a vector containing the negative second derivatives of the log-likelihood with
respect to xi at x∗(θ ) [Rue et al., 2017].

3.3.2 Approximating the posterior of x
The next step is to approximate the posterior marginal of x , shown in equation
(3.10). This requires approximations to π (θ |y), which has already been found,
and to π (xi |θ ,y).

The approximation of the marginals of the latent field can be more challenging
than approximating the marginals of the hyperparameters, as the dimension
of x is assumed to be large. Using INLA, there are three options to estimate
π (xi | θ ,y), with varying speed and accuracy: 1) A Gaussian approximation, 2)
a Laplace approximation, and 3) a simplified Laplace approximation.

The Gaussian approximation uses the GMRF-approximation shown in equation
(3.12), calculated while approximating the posterior marginal of θ . However,
this can be inaccurate, as this approximation assumes that the distribution
is symmetrical, which is usually not the case. The Laplace approximation to
π (xi |θ ,y) gives highly accurate results, but is computationally expensive.

Therefore, in this thesis, the simplified Laplace approximation (SLA) will be
used to approximate the marginals of the latent field. The SLA is found by
doing a series expansion of the Laplace approximation π̃LA(xi | θ ,y) around
xi = µi (θ ) and fitting it to a skew-normal density.

log π̃SLA(xi | θ ,y) ∝ bxi −
1
2
x2
i +

1
6
dx3

i + · · ·

Then, b is a correction term for the mean and d is a correction term for
skewness [Rue et al., 2017]. This method gives very accurate results, and is less
computationally expensive than a full Laplace approximation.
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3.3.3 Numerical integration
The approximated posterior marginals returned by INLA has the following
forms [Martins et al., 2013]:

π̃ (θ j | y) =

∫
π̃ (θ | y)dθ−j (3.13)

π̃ (xi | y) =
∑
k

π̃ (xi | θk ,y)π̃ (θk | y)∆θk (3.14)

Rue et al. [2009] use π̃ (θ | y) to integrate out the uncertainty with regards
to the hyperparameters when approximating equation (3.14). To do this, it is
sufficient to have good evaluation points to perform the numerical integration.
To find the integration points {θk }, the mode of π̃ (θ | y) is located. Then, new
variables are constructed by using the negative Hessian matrix.

The Hessian matrix contains the second-order derivatives, and describes the
curvature of the distribution. The Hessian can be used to find a reparametri-
sation that corrects for scale and rotation to explore the distribution and find
relevant density values for integration [Rue et al., 2009]. π̃ (θk | y) are the
density values computed during this exploration [Martins et al., 2013].

As θ has a low dimension (nθ = 2-5), it is possible and not too computationally
expensive to derive the marginals for π (θ j | y) from the approximation to θ |y
using a grid exploration [Rue et al., 2017]. An integration free alternative to a
grid-based approach is given in Martins et al. [2013].

3.4 Useful prior models
In this section, some useful prior models for the random effects in the LGMs
are presented, being models for the f (·) effects in equation (3.6).

3.4.1 Random walk models of orders 1 and 2
Two common latent models are the random walk model of order 1 (RW1) and
of order 2 (RW2), which are used to model non-linear trends and non-linear
functions of covariates [Wang et al., 2018].

Rue and Held [2005] define the RW1 model with independent increments

∆xi = xi − xi−1 ∼ N(0,τ−1), i = 1, ...,n − 1 (3.15)
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with precision parameter τ = eθ . The density is given by

π (x | τ ) ∝ τ (n−1)/2 exp
(
−
τ

2

∑
(∆xi )

2
)

= τ (n−1)/2 exp
(
−

1
2
xTQx

)
Here,Q = τR and R is a tridiagonal structure matrix, defined by Rue and Held
[2005] as

R =

©«

1 −1
−1 2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2 −1
−1 1

ª®®®®®®®®®¬
Rue andHeld [2005] define the RW2modelwith independent second-increments

∆2xi = xi − 2xi+1 + xi+2 ∼ N(0,τ−1) (3.16)

with precision parameter τ = eθ . The density is given by

π (x | τ ) ∝ τ (n−2)/2 exp
(
−
τ

2

∑
(∆2xi )

2
)

= τ (n−2)/2 exp
(
−

1
2
xTQx

)
As in the RW1 model, Q = τR with structure matrix R. Rue and Held [2005]
give the structure matrix as

R =

©«

1 −2 1
−2 5 −4 1
1 −4 6 −4 1

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1
1 −4 6 −4 1

1 −4 5 −2
1 −2 1

ª®®®®®®®®®®®®®¬
In both cases, τ can be seen as a smoothing parameter which is assigned a
prior. The RW2 model smooths the effects more than the RW1 model.

In a LGM, x will represent one of the functions f (·), and τ = eθ will be a
hyperparameter. The prior is defined on θ .
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3.4.2 Independent random noise model
Another common prior model is the independent random noise model, where
random variables x are assumed to be independent and identically distributed
(iid) with density

π (x | τ ) ∝
n∏
i=1

1
√

2π

√
τ exp

(
1
2
τx2

i

)
(3.17)

The precision parameter is τ = eθ , and the prior is defined on θ .

3.5 PC priors
The chosen prior distribution of the hyperparameters might influence the
result. However, choosing a prior can be difficult. Rue et al. [2017] describe
several challenges surrounding the practice of choosing priors, and how priors
often have been chosen due to computational convenience or because they are
common in literature. Simpson et al. [2017] introduced a new class of priors,
the penalised complexity (PC) priors. These priors are weakly informative,
invariant to transformations, and penalise deviation from a base model.

Simpson et al. [2017] give the PC prior for the precision parameter τ of the
models in section 3.4 as the distribution

π (τ ) =
κ

2
τ−3/2 exp

(
− κτ−1/2), τ > 0,κ > 0 (3.18)

whereκ is a parameter indicating the penalty for deviating from the base model.
This is easily transformed to give a prior for θ . A more detailed description of
PC priors can be found in Simpson et al. [2017].

3.6 R-INLA and the BAPC package
The INLA methodology has been implemented in R, using the package R-INLA.
The software is available from http://r-inla.org. The Bayesian APC (BAPC)
model used in chapter 5 has also been implemented in the R package BAPC,
available from https://rdrr.io/rforge/BAPC/man/BAPC.html.

http://r-inla.org
https://rdrr.io/rforge/BAPC/man/BAPC.html
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3.7 Model evaluation criteria
3.7.1 Deviance information criterion
The deviance information criterion (DIC) is used to compare Bayesian models.
It is based on adequacy and complexity. Deviance is a measure of fit or adequacy,
and it is defined by Spiegelhalter et al. [2002] as

D(θ ) = −2 log(p(y |θ ))

Then, Spiegelhalter et al. [2002] define the DIC as

DIC = D(θ̄ ) + 2pD = D̄ + pD (3.19)

whereD(θ̄ ) is the posterior mean of the deviance, D̄ is the posterior expectation
of the deviance, and pD is the effective number of parameters.

Lower values of the DIC indicate a better fitted model. It is known that the
DIC may underpenalise complex models with many random effects [Plummer,
2008].

3.7.2 Logarithmic score
The logarithmic score (LS) was proposed by Good [1952] and can be given by
the conditional predictive ordinate (CPO) as

LSi = − log(π (yi | y−i )) = − log(CPOi ) (3.20)

Gneiting and Raftery [2007] propose to look at the mean LS, LSi = 1
n
∑n

i=1 LSi .
Lower values of the LS indicate a better fit.

Pettit [1990] defines the CPO as

CPOi = p(yi | y−i )

where y−i denotes all the observations except for yi and p(yi | y−i ) is the
predictive distribution. The CPO gives ameasure of the probability ofmeasuring
a value.

Rue et al. [2009] give the predictive distribution for a LGM as

π (yi | y−i ,θ ) =

∫
π (yi | xi ,θ )π (xi | y−i ,θ )dxi

The CPO is given by Held et al. [2010] as

CPOi =

∫
π (yi | y−i ,θ )π (θ | y−i )dθ (3.21)
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The effect of θ is then integrated out analogously as from equation (3.14),
using numerical integration. However, the accuracy of the numerical integration
depends on the approximation of π̃ (xi | y,θ ), which is required to approximate
equation (3.21). This can be corrected for by manually computing new CPO
values for the failed values [Held et al., 2010]. This is a built-in feature in the
R-INLA package.





4
The Cox proportionalhazards model
MIs are one of the leading causes of death worldwide and in Norway. A study
of the mortality hazard rate and the factors influencing this rate can help to
identify groups at risk. The mortality hazard rate represents the risk of death
after having a MI. The Norwegian Institute of Public Health [2009] state that
men are more at risk and that the risk increases with age, and this statement
will be studied. In addition, we want to study a potential effect of season on
the mortality hazard rate. To that end, a Cox PH model has been implemented.
In this chapter, some relevant survival analysis concepts are introduced, the
Cox PH model and its applications are described, and the results are presented.
The Cox PH model is used to study the mortality hazard rate after a MI, and
potential effects of sex, age, and season.

4.1 Survival analysis
The Cox PH model is one example of a survival model, which is utilised to
analyse the time until an event. The distribution F (t) of the survival time
T describes the probability that a participant has died before time t , while
the survival function S(t) describes the probability of a random participant

31
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surviving until time t . They are given by Kaplan and Meier [1958] as

F (t) = P(T ≤ t), t ≥ 0
S(t) = 1 − F (t) = P(T > t) (4.1)

T has density function f (t) = dF (t )
dt . When T is a continuous random variable,

this also implies that f (t) = −dS (t )dt .

The hazard function h(t) gives the probability of experiencing the event at
time t , given that the participant is alive at time t . Cox [1972] gives this hazard
function as

h(t) = lim
s→0

P(t ≤ T ≤ t + s | T ≥ t)

s
⇒ h(t) =

f (t)

S(t)
= −

d

dt
log S(t) (4.2)

The cumulative hazard function H (t) is then

H (t) =

∫ t

0
h(u)du = − log S(t) (4.3)

4.2 The Cox PH model
The Cox PH model was introduced by Cox [1972], and has since become one
of the most common models for survival analysis [Wang et al., 2018].

It assumes the following hazard rate hi (t) for individual i with covariates z.

hi (t) = h0(t) exp(β izi ), i = 1, ...,n (4.4)

h0(t) is a baseline hazard as a function of time and the predictor for an
individual i is β izi .

The ratio between two subjects a and b are constant in time, as h0(t) cancels
out [Cox, 1972]. This is known as the proportionality assumption.

ha(t)

hb (t)
=
h0(t) exp(βaza)
h0(t) exp(βbzb )

=
exp(βaza)
exp(βbzb )

This basic Cox PH model only allows for linear effects. To increase utility,
Martino et al. [2011] construct a piecewise log-constant proportional hazard
model. This model is semi-parametric, and assumes a finite partition of the
time axis 0 = s0 < s1 < · · · < sK with constant baseline hazard λk in each
time interval. The baseline hazard is given as

h0(t) = λk = exp(bk ) for t ∈ (sk−1, sk ], k = 1, ...,K .
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We have nβ covariates z and nf covariates u. An individual i has hazard rate
hi (t), where ηi is the predictor shown in equation (3.6), i.e.

hi (t) = h0(t) exp(ηi )

= exp
(
bk +

nf∑
j=1

f (j)(uji ) +

nβ∑
m=1

βmixmi

)
= exp(ηik ), t ∈ (sk−1, sk ]

Gaussian priors with unknown precision τb are assigned to the piecewise
constant hazard b = [b1, ...,bK ] and to the functions f . Then, the predictors
ηi are also Gaussian, and x = [η,b, β, f ] is a GMRF.

The log-likelihood contribution of the ith observation at data point (t ,δ ), where
t is the follow-up time and δ is an indicator variable stating whether death has
occurred, is given by Martino et al. [2011] as

l = log f (t) = log(h(t)δS(t))

As given in equation (4.2), f (t) = h(t)S(t). For censored data, we include the
indicator variable δ , which is 0 if the time has been censored and 1 if the event
has occurred. Equation (4.1) gives the value of S(t). Then, the log-likelihood
contribution is

l = δ logh(t) −
∫ t

0
h(u)du

= δ log(exp(ηk )) −
∫ t

0
exp(ηk )du (4.5)

The time axis is partitioned so that 0 = s0 < s1 < · · · < sK and t ∈ (sk−1, sk ],
k = 1, ...,K . The time t is not defined for time 0, so the integral in equation
(4.5) goes from s1 to t . Then, this expression can be rewritten as

l = δηk −

∫ t

sk
exp(ηk )du −

∫ sk

sk−1

exp(ηk−1)du − · · · −

∫ s2

s1

exp(η1)du

= δηk − (t − sk ) exp(ηk ) −
k−1∑
j=1

(sj+1 − sj ) exp(ηj ) (4.6)

As this log-likelihood contribution depends on η, which is part of the latent
field, INLA methods are not directly applicable. Martino et al. [2011] note
that this log-likelihood contribution is equal to the log-likelihood of a Poisson
regression model with k Poisson-distributed data points, which can be used to
cast the model into a LGM framework.

In this Poisson model, there is one data point with mean (t−sk ) exp(ηk ) that is 1
or 0 depending on whether the observation is censored, while k −1 data points
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are observed to be 0 with mean (sj+1 − sj ) exp(ηj ). The dataset is augmented
so that k Poisson-distributed data points represent each data point (t ,δ ). This
model is a LGM, making it possible to apply the INLA methodology.

4.3 Model specification
We assume a Cox PH model for the survival time after MI. This analysis only
applies to the 4,248 participants who have had an MI. The observed variables
y is the length of follow up time t , as well as an indicator variable δ stating
whether the participant has died (value 1) or if the time has been censored
(value 0).

The dataset includes the possible effects of age, sex, and season. Age is a
discrete variable giving the age at MI in years. Sex is an indicator variable that
is 0 for women and 1 for men, while season is an indicator variable that is 0
for winter (months November-January) and 1 for not-winter (months February-
October). We fit the models with the following predictors for patient i to check
whether the proportionality assumption holds, and find the model with the
best fit:

1) ηik = bk + β0 + f (age)(agei ) + βsexsexi + βseasonseasoni
2) ηik = bk + β0 + f (age)(agei ) + βsexsexi
3) ηi jk = b

j
k + β0 + f (age)(agei ) + βsexsexi

4) ηi jk = b
j
k + β0 + f (age)(agei ) + βseasonseasoni

5) ηi jk = b
j
k + β0 + f (age)(agei )

Here, i = 1, ...,n, k = 1, ..., 33 and j = 1, 2. In model 3, season is stratified. Sex
is the stratum variable in models 4 and 5. The baseline hazardh0(t) is modelled
using a RW1 model, as given in equation (3.16), with precision parameter τb .
The precision parameter is assigned a PC prior. The timeline is partitioned in
33 parts, one for each year.

An age effect is included in all model configurations, and modelled using a
RW2 prior, as given in equation (3.16). The prior has precision parameter τ ,
and is assigned the PC prior in equation (3.18). The model has been scaled
according to Sørbye and Rue [2014].
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4.4 Results
The different models were compared using the DIC and the mean LS, given
in equations (3.19) and (3.20). The results are shown in table 4.1. To analyse
effects in a Cox PH model, the proportionality assumption must hold for each
effect. To check that this assumption holds, a model where the variable is
stratified can be compared to a corresponding simple model [Martino et al.,
2011].

Table 4.1: DIC and mean LS values for Cox PH models with different effects included.

Model Sex Season DIC LS

1 Linear Linear 29262.61 0.56158
2 Linear Not included 29260.60 0.56154
3 Linear Stratified 29256.65 0.56147
4 Stratified Linear 29255.65 0.56145
5 Stratified Not included 29253.62 0.56141

The model with the lowest DIC and mean LS is model 5, where men and
women are modelled as two separate sub-populations, and a seasonal effect is
not included. The estimated baseline hazards for men and women are shown
in figure 4.1. The curves are similar, but as the credible intervals do not include
both baseline hazards, it is clear that they are significantly different. In addition,
the largest difference between the two baseline hazards is when the time is low
and the number of active participants is highest, indicating that the difference
between men and women is not caused by an uncertain estimate due to a small
number of participants. We conclude that the proportionality assumption does
not hold for the sex effect, and inference is performed with model 5.

(a) (b)

Figure 4.1: Estimated baseline hazards for men (a) and women (b) in model 5, with
0.025 and 0.975 quantiles.
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Table 4.2 shows the summary statistics for the intercept and the hyperparame-
ters for model 5. There was a small positive effect for age (the hazard is greater
with older age) and the baseline hazard is higher for men. The baseline hazard
for men and women is shown in figure 4.1. For both men and women, the
hazard rate is higher in the time right after a MI, before it drops. Then, it rises
with time, due to the age effect. The age effect is assumed to be joint for both
men and women, and is shown in figure 4.2. It shows a higher mortality hazard
rate with older age, indicating a higher risk of death.

Table 4.2: The mean, standard deviation (SD), 2.5 %, 50 % and 97.5 % quantiles, and
the mode of the effects in model 5.

The best fitted model, with sex as a stratum variable, and without a seasonal effect.

Linear effects Mean SD 0.025 Q 0.5 Q 0.975 Q Mode
Intercept -7.395 0.126 -7.658 -7.39 -7.163 -7.38

Hyperparameters Mean SD 0.025 Q 0.5 Q 0.975 Q Mode
Precision for h0(t) 0.966 0.228 0.587 0.943 1.48 0.901
Precision for age 30.218 22.999 5.359 24.289 90.87 14.274

Figure 4.2: The posterior mean of the age effect, with 0.025 and 0.975 quantiles.
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4.5 Discussion
To test the proportionality assumption, both stratified and simple models were
fitted and compared using the DIC and mean LS, as well as a comparison of
the estimated mortality hazard rates. The estimated mortality hazard rates
for men and women were similar, but the credible intervals did not cover both
hazard rates. As the estimated mortality hazard rates for men and women in
the stratified model differed, and the stratified model had a lower DIC and
mean LS, sex was modelled as a stratum variable.

The models without the seasonal effect had a lower DIC and mean LS than
the models including the seasonal effect. Therefore, the seasonal effect was
excluded from further analysis, as it did not contribute significantly to the
analysis of this dataset. This indicates that the season does not affect the
mortality hazard rate after a MI. A potential trend of weather or season in
specific groups, such as age groups above 65 years or for men, has not been
studied due to the scope of this thesis.

There is an increasing effect with age, where older participants have a higher
mortality hazard rate. The credibility bands are wider at the youngest and
oldest ages due to the small number of participants. The age trend has a higher
slope after approximately 65 years of age, indicating that the risk changes
quicker with age in older age groups.

The mortality hazard rate is high right after a MI, before dropping markedly
shortly after. This drop indicates that the increased risk of death after an MI
does not have a lasting effect. After this drop, the mortality hazard rate rises
gradually with time, as participants age. An eventual change in the mortality
hazard rate after a MI has not been studied due to the scope of this thesis.





5
The Bayesianage-period-cohort model
In chapter 2, an introductory analysis of the incidence rate of MI showed
that the number of MIs increase with time as the mean age and the number
of participants in the study increases. More advanced methods are needed
to study the rate, to adjust for the increasing age of participants. One such
method is the BAPC model. This model describes vital rates using age (the age
at diagnosis), period (the date at diagnosis) and cohort (the date of birth). In
this chapter, the BAPC model is presented, along with its application. It is used
to study the change in the rate of MIs. Both an age-period (AP) model and an
APC model have been fitted. The results are presented and discussed.

5.1 The BAPC model
Riebler and Held [2017] define the univariate APC model by

yi j | ηi j ∼ Poisson(ni j exp(ηi j ))

ηi j = α + f (A)(Ai ) + f (P)(Pj ) + f (C)(Ck ) + f (OD)(ODi j ) (5.1)
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The model includes the age effect A, the period effect P, the cohort effect C, as
well as the effect ODi j that accounts for possible overdispersion (OD). Here,
i = 1, ..., I is the number of age groups, j = 1, ..., J is the number of periods,
and k = M × (I − i) + j is the cohort index. M is the ratio between the length
of the age groups and the length of the periods.

In a LGM framework, the observations are denoted y, and the latent field
is x = [η,α ,A,B,C,OD]. The hyperparameters are the precision parameters
θ = [τA,τB,τC,τOD].

5.1.1 Identifiability problem
As age, period, and cohort are linearly dependent on each other, there is
a known identifiability problem in APC analysis. There are infinitely many
combinations giving the same estimated rate, and additional constraints are
required to ensure identifiability [Riebler and Held, 2017].

Some common constraints are to apply sum-to-zero constraints
∑

i Ai =∑
j Pj =

∑
k Ck = 0, allowing the identification of the intercept [Riebler and

Held, 2017]. However, it is still not possible to identify the effects of age, period,
and cohort. It is possible to identify second differences for the age, period, and
cohort effects. For the age effect, these second differences are given as

(Ai+1 −Ai ) − (Ai −Ai−1) = Ai+1 − 2Ai +Ai−1 (5.2)

The second differences for period and cohort effects are found analogously.
The second differences are identifiable and represent the curvature of the APC
effects, allowing the identification of trend changes [Riebler and Held, 2017].
The second differences can also represent ratios of relative risks. The relative
risk for two age groups describes the change in risk from one age group to
another, and the second differences represent the rate of change for the relative
risk [Riebler and Held, 2017].

Rosenberg and Anderson [2011] argue that this identifiability problem is not
unique to the APC model, and that the analysis of any cohort study will have
a similar identifiability problem or "uncertainty principle". They note that
the APC model can be partitioned into linear and non-linear components in
several useful ways, such as the AP form or the age-cohort (AC) form. This will
allow the identification of several relevant parameters, such as longitudinal or
cross-sectional age trends.
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5.2 Model specification
Due to the number of participants, the MI incidences before 1982 and at age
above 79 years have not been included in this analysis. Due to the gender
differences shown in chapter 2, only men have been included in the model.
This gives a total of 19,627 participants, of which 2,385 have experienced a
MI.

The resulting analysis is performed on a dataset with 8 five-year age groups
(40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, and 75-79 years) over a period
of 33 years from 1982 to 2014. The cohort is calculated by k = 5 · (8 − i) + j, as
the ratio between the length of the age groups and periods is 5.

The data is represented as in table 5.1, which shows the MI and participant
count for the years 1995-1999. The structure of the data is analogous for the
other years in the study.

Table 5.1: The data set is represented in a matrix with the relevant counts in each
year sorted by age group.

MI counts

40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79

1995 1 8 12 9 13 12 9 11
1996 2 9 12 11 10 8 7 13
1997 2 9 15 16 12 16 11 12
1998 2 11 7 20 13 18 11 9
1999 3 8 13 16 12 20 18 12

Participant counts

40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79

1995 2874 2728 2128 1361 1141 1091 576 350
1996 3059 2848 2245 1412 1162 1086 502 391
1997 3237 2921 2343 1497 1177 1105 421 413
1998 3324 3014 2466 1554 1181 1119 352 451
1999 2424 2700 2676 1960 1302 1115 1180 524

5.2.1 AP model
An AP model allows the identification of the net drift, the parameter (PL +CL),
where PL is the linear effect of period and CL is the linear effect of successive
cohorts [Rosenberg and Anderson, 2011]. This is the joint effect of period and
cohort. It also allows the identification of a cross-sectional age trend (AL −CL),
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where AL is the linear age effect and CL is the linear effect of successive
cohorts.

The fitted model has predictor

ηi j = α + f (A)(Ai ) + f (P)(Pj ) + f (OD)(ODi j )

The age effect A and the period effect P are fitted with RW2 models, as given
in equation (3.16). The OD effect is fitted with an independent random noise
model, as given in equation (3.17). All hyperparameters are assigned PC pri-
ors.

5.2.2 APC model
An APC model is fitted with the predictor given in equation (5.1). The age,
period, and cohort parameters are assigned RW2 priors, while the OD param-
eter is assigned an independent random noise prior. All hyperparameters are
assigned PC priors.

5.3 Results
Figure 5.1 shows the effects in the AP model, the cross-sectional age trend and
the net drift. The cross-sectional age trend shows an increasing MI rate with
older age, while the net drift shows a decreasing rate with period.

(a) (b)

Figure 5.1: The effects in the AP model: the cross-sectional age trend (a) and the net
drift (b), with 0.025 and 0.975 quantiles.

The summary statistics of the intercept and the precision parameters for the
AP and APC model are given in Table 5.2.
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Table 5.2: The mean, standard deviation (SD), 2.5 %, 50 % and 97.5 % quantiles, and
the mode of the effects in the AP and APC model.

AP model

Linear effects Mean SD 0.025 Q 0.5 Q 0.975 Q Mode
Intercept -5.128 0.029 -5.186 -5.128 -5.073 -5.127

Hyperparameters Mean SD 0.025 Q 0.5 Q 0.975 Q Mode
Precision for age 34.84 29.30 5.92 26.75 112.10 15.19
Precision for period 14.45 14.41 1.66 10.25 52.64 4.52
Precision for OD 28.83 12.17 13.48 26.03 59.94 21.56

APC model

Linear effects Mean SD 0.025 Q 0.5 Q 0.975 Q Mode
Intercept -5.227 0.055 -5.343 -5.224 -5.126 -5.219

Hyperparameters Mean SD 0.025 Q 0.5 Q 0.975 Q Mode
Precision for age 35.43 29.24 5.92 27.47 112.94 15.48
Precision for period 14.76 15.27 1.55 10.28 55.12 4.27
Precision for cohort 38.32 49.31 3.50 23.53 164.53 9.18
Precision for OD 39.64 21.81 15.70 33.80 96.85 25.71

Figure 5.2 shows the second differences for the age, period, and cohort effects.
The period and cohort effects have second differences close to 1 for all periods
and cohorts, indicating that the relative risk has a constant rate of change. The
second differences do not give info as to whether there is a steadily increasing
or decreasing trend of the rate, or if the rate is constant across all periods and
cohorts.

Figure 5.2: Mean, 2.5 % quantile and 97.5 % quantile of the identifiable second
differences on exponential scale.

There is a change in the curvature of the age trend around 45-49 years and
55-59 years. For the other age groups, the second differences have values close
to 1, and the ratio of the relative risks between these age groups and their
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neighbours have a constant rate of change. As the second differences for age are
below 1 for age groups 40-44 to 60-64, the ratio of the relative risks decreases
between these age groups.

Table 5.3 shows the DIC and mean LS for an AP and an APC model. As the
APC model has a lower DIC and mean LS, this model is selected for analysing
the rate of MI. The identification problem of APC models does not affect rate
estimates.

Figure 5.3 shows the projected age-standardised rates of MI per 1000 partici-
pants, while figure 5.4 shows the projected age-specific rates of MI per 1000
participants for age groups 40-44 to 75-79. The standardisation weights for
the age-standardised rates were the number of MIs in each age group. The
dots are the observations, while the outer edges of the fan shows the 0.025
and 0.975 quantiles. The bands of the fan show quantiles increasing by 10 %
between these extremities.

Table 5.3: DIC and mean LS values for BAPC models with and without cohort.

Model DIC LS

AP 1356.14 2.613
APC 1347.16 2.592

Figure 5.3: Age-standardised MI rates, with a fan showing the 0.025 and 0.975 quan-
tiles, and quantiles in 10 % increments within this interval.
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Figure 5.4: Age-specific MI rates for age groups 40-44 to 75-79, with a fan showing
the 0.025 and 0.975 quantiles, and quantiles in 10 % increments within
this interval.
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5.4 Discussion
Although our dataset covers 39,870 participants, only 4,248 of these have
experienced a MI. When studying the incidence rate of MI in the different age
groups, this required splitting our dataset into several smaller groups, leaving
some of them with few participants. This affects the rate estimation, as the
estimated rate is more sensitive to outliers, and the credible intervals are wider
in age groups with fewer participants. The age groups above 75-79 years have
been excluded from the analysis, as the sample size was too small to give
reliable estimates.

The AP model estimated an increasing cross-sectional age trend and decreasing
net drift, as shown in figure 5.1. The slope of the cross-sectional age trend is
flatter in higher age groups, while the rate of change of the net drift increases
with time. This change in the slope of the rate in the net drift is not visible in
the second differences, as the second differences for both period and cohort
are approximately constant and equal to 1. However, the decrease in rate with
period is consistent with the projected incidence rates of MI.

The second differences for age shown in figure 5.2 show a change in the ratios
between the relative risks for age groups 45-49 and 55-59. This is consistent
with the cross-sectional age trend, where the slope of the trend flattens slightly
both at age group 45-49 and 55-59 in figure 5.1.

The age-standardised and age-specific rates are shown in figures 5.3 and 5.4.
The age-standardised rates show that the overall rate of MI was approximately
constant for much of the time of the study, before decreasing after year 2000.
This is consistent with the trend seen for the net drift. These age-specific rates
can be compared with the rates shown in figure 2.4, which merely divided
the number of MIs by the number of participants. Here, the effects have been
smoothed, and a trend is easier to identify.

The decreasing trend of MI during the time of the study is seen across all age
groups. The estimated incidence rates of MI are higher in older age groups.
This is consistent with the cross-sectional age trend. The four oldest age groups
have a slight increasing trend in the earlier years of the study. This may be due
to the low number of participants in these age groups in the early years of the
study, leading to artificially low MI counts for these years.

Introductory analysis showed that the mean age at first MI in the Tromsø Study
was approximately 65 years. This result is not seen when corrected for the
number of participants, and the MI incidence rate rises strictly with age.
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These results can be compared to the results presented by the Norwegian
Institute of Public Health [2009]. Our dataset also showed that the number of
first-time MIs have increased in the age groups over 65 years, but this trend
is seen in all the age groups of our dataset. The Norwegian Institute of Public
Health [2009] also reported a worrying MI trend in the age group 24-44 that
can not be verified or falsified in our dataset, as we do not have a sufficient
number of MI incidents at these ages to perform analysis.





6
Conclusion
6.1 Summary
The prevalence of cardiovascular diseases in Norway makes a study of the rate
of incidences and mortality an interesting topic. In addition to established
risk factors, there are several myths about MIs, such as snowfall leading to an
increased risk of MI. The analyses were performed on a combined dataset from
the Tromsø Study dataset, which contained information about sex, date of first
MI and date of attendance in the Tromsø Study, and weather data from the
Norwegian Meteorological Institute, which contained information about the
temperature and snowfall at the date of MI.

Introductory analysis did not show significant effects for either temperature or
snowfall. The results for temperature are consistent with previous results for
MIs in northern climates [Hopstock, 2012,Mohammad et al., 2018, Barnett et al.,
2005], while the results for snowfall are not consistent with the findings of
[Auger et al., 2017]. This analysis was based on data of the weather in Tromsø
on the day of MI. As there was not found an effect of temperature or snowfall
on MI, season was determined by month (November-February were counted
as winter months) in further analysis.

The topics chosen for further analysis was the mortality hazard rate after
having an MI and the incidence rate of MI. These topics were studied using a
Cox PH model and a BAPC model, respectively. Inference was performed using
the INLA methodology.
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A stratified Cox PH model without a seasonal effect with sex as the stratum
variable was deemed to be the best fit to analyse the mortality hazard rate
after MI in this dataset. The models were compared using the DIC and the
mean LS. The results showed that the hazard rate was high in the time shortly
after a MI, before it dropped and rose steadily with age.

The incidence rate of MI was analysed by applying an APC model. An AP model
was also applied, to identify the cross-sectional age trend and the net drift.
The projected rates from the APC model showed that the rate of MI is higher
in older age groups, but that the incidence rate is decreasing with time. The
second differences of the APC model showed some changes in the curvature of
the age trend, indicating that the rate of change of the age trend decreases. This
was consistent with the cross-sectional age trend found in the AP model.

The second differences of the cohort and period trends indicated a constant
rate of change in the cohort and period trends. This is not consistent with the
net drift shown by the AP model, which show a change in the curvature of
the trend after approximately year 2005. Until this point, the net drift trend
had been approximately constant, before it started decreasing. This decreasing
trend is consistent with the trend seen in the projected rates.

The trends of the incidence and mortality hazard rates were consistent with
the hypotheses presented in the introduction. The mortality hazard rate was
higher in the days after an MI, before dropping and increasing with time
as the participants age. The mortality hazard rate for women and men had
approximately the same shape, but the rate was slightly lower for women,
especially in the days immediately following the MI.

The incidence rate of MI was expected to decrease during the time of the study,
and the rate was expected to be higher for men than women. The incidence
rate was expected to be influenced by weather. Introductory analysis showed
that the rate of MIs was different for men and women, that a higher proportion
of men had an MI, and that there was no link between temperature or snowfall
and MI. For further analysis, only the incidence rate of men were studied, using
a BAPC model. The incidence rate decreased during the time of the study as
expected.

In conclusion, the analyses in this thesis did not show a connection between
temperature or snowfall and the MI incidence rate or the MI mortality hazard
rate. The mortality hazard rate was higher in the time shortly after a MI before
dropping and increasing with age. The incidence rate of MI was higher for
older age groups, and decreased in the later years of the study.
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6.2 Future research
There are several possible areas for further research into the prevalence of
MI in Tromsø. This thesis did not account for other known risk factors for
cardiovascular disease, and the number of questions analysed were limited
both by the data available and the scope of this thesis.

A further study of the snow shovelling hypothesis should be connected to more
accurate data on which participants have shovelled snow. The analysis should
also include MIs occurring in the days following a snowfall. It could also be
interesting to differ between isolated days with snowfall, and several following
days of snowfall.

Our dataset only included data for first-ever MIs. If patients who have already
had an MI are more at risk due to colder temperatures or higher snowfall, this
would not be visible in this dataset. The dataset also included a limited number
of MI incidences in younger and older age groups, making the analysis for
these age groups unreliable. A study of the incidence rates in these age groups
requires more data.

Several questions were also left unstudied due to the scope of the thesis. A
potential change in the mortality hazard rate with time was not studied. As the
seasonal variation was not found to be statistically significant, it was excluded
from further analysis. Hopstock [2012] found a seasonal variation, but only for
those above 65 years. A potential seasonal variation in the mortality hazard
rate for specific age groups has not been studied.

In the introductory analysis, the mean age at MI for the entire dataset was 65
years, while the mean age at MI increased with decade. This was deemed to
be caused by the ageing population of participants. A potential change in the
mean age at MI has not been studied.

As the introductory analysis showed that temperature and snowfall did not
have an effect on the incidences of MI, it was not included in the APC analysis
of the incidence rate. A further APC analysis could compare the incidence rates
for different seasons to study potential effect of season.





A
Appendix
A.1 Cox PH model

1 library(INLA)
2

3 inla.setOption(scale.model.default = TRUE)
4 inla.setOption("enable.inla.argument.weights", TRUE)
5 hyper.pc = list(prec = list(prior = "pc.prec", param

= c(1 ,0.01)))
6

7 #Model 1
8 formula .1 = inla.surv(time ,cens) ~ f(age.mi,

model="rw2", hyper=hyper.pc) + sex.mi + season.mi
9 result .1 = inla(formula.1, family="coxph", data =

cox.data , control.hazard = list(model="rw1",
hyper=hyper.pc, n.intervals =33), control.compute
= list(dic=TRUE , cpo=TRUE))

10

11 #Model 2
12 formula .2 = inla.surv(time ,cens) ~ f(age.mi,

model="rw2", hyper=hyper.pc) + sex.mi
13 result .2 = inla(formula.2, family="coxph", data =

cox.data , control.hazard = list(model="rw1",
hyper=hyper.pc, n.intervals =33), control.compute
= list(dic=TRUE , cpo=TRUE))
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14 #Model 3
15 formula .3 = inla.surv(time ,cens) ~ f(age.mi,

model="rw2", hyper=hyper.pc) + sex.mi.mean
16 result .3 = inla(formula.3, family = "coxph", data =

cox.data , control.hazard = list(model = "rw1", n.
intervals = 33, strata.name = "season.mi"),
control.compute = list(dic=TRUE , cpo=TRUE))

17

18 #Model 4
19 formula .4 = inla.surv(time ,cens) ~ f(age.mi,

model="rw2", hyper=hyper.pc) + season.mi
20 result .4 = inla(formula.4, family="coxph", data =

cox.data , control.hazard = list(model = "rw1", n.
intervals = 33, strata.name = "sex.mi"),
control.compute = list(dic=TRUE , cpo=TRUE))

21

22 #Model 5
23 formula .5 = inla.surv(time ,cens) ~ f(age.mi,

model="rw2", hyper=hyper.pc)
24 result .5 = inla(formula.5, family="coxph", data =

cox.data , control.hazard = list(model = "rw1", n.
intervals =33, strata.name="sex.mi"), control.
compute = list(dic=TRUE , cpo=TRUE))

25

26 # Recompute CPO values which violate assumptions
27 result.cox1 = inla.cpo(result.cox1)
28 result.cox2 = inla.cpo(result.cox2)
29 result.cox3 = inla.cpo(result.cox3)
30 result.cox4 = inla.cpo(result.cox4)
31 result.cox5 = inla.cpo(result.cox5)
32

33 # Calculate the mean LS
34 -mean(log(result.cox1$cpo$cpo),na.rm=T)
35 -mean(log(result.cox2$cpo$cpo),na.rm=T)
36 -mean(log(result.cox3$cpo$cpo),na.rm=T)
37 -mean(log(result.cox4$cpo$cpo),na.rm=T)
38 -mean(log(result.cox5$cpo$cpo),na.rm=T)
39

40 # Generate figure 4.1
41 eval.point = result.cox5$.arg$data$baseline.hazard.

values
42 baseline.hazard = matrix(c(result.cox5$ summary.

random$baseline.hazard$mean ,result.cox5$ summary.
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random$baseline.hazard$ ‘0.025quant ‘,result.cox5$
summary.random$baseline.hazard$ ‘0.975quant ‘) +
exp(result.cox5$ summary.fixed [1 ,1]), nrow =
length(eval.point))

43

44 matplot(eval.point ,baseline.hazard[,c(1,3,5)],type=
type ,col=1,lty=c(1,2,2),ylim=range(basehaz),xlab=
"Time",ylab="Baseline␣hazard")

45 matplot(eval.point ,baseline.hazard[,c(2,4,6)],type=
type ,col=1,lty=c(1,2,2),ylim=range(basehaz),xlab=
"Time",ylab="Baseline␣hazard")

46

47 # Generate figure 4.2
48 matplot(result.cox5$ summary.random$age.mi$ID,
49 cbind(result.cox5$ summary.random$age.mi$mean ,result.

cox5$ summary.random$age.mi$ ‘0.025quant ‘,result.
cox5$ summary.random$age.mi$ ‘0.975quant ‘),

50 type="l",lwd=c(2,1,1),lty=c(1,2,2),col=1,xlab="Age",
ylab="Age␣effect")

A.2 BAPC model
1 library(INLA)
2 library(BAPC)
3

4 #AP Model
5 result.ap = BAPC(mi.men.bapc , predict=list(npredict

=0), model = list(age=list(model="rw2",prior="pc.
prec",param=c(1 ,0.01),scale.model=T), period=list
(include=T,model="rw2",prior="pc.prec",param=c
(1 ,0.01),scale.model=T), cohort=list(include=F)))

6 inla.ap = inlares(result.ap)
7

8 #APC Model
9 result.apc = BAPC(mi.men.bapc , predict=list(npredict

=0), model = list(age=list(model="rw2",prior="pc.
prec",param=c(1 ,0.01),scale.model=T), period=list
(include=T,model="rw2",prior="pc.prec",param=c
(1 ,0.01),scale.model=T), cohort=list(include=T,
model="rw2",prior="pc.prec",param=c(1 ,0.01),scale
.model=T)),secondDiff = T,stdweight=colSums(epi(
mi.men.bapc)))
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10 inla.apc = inlares(result.apc)
11

12 # Recompute CPO values which violate assumptions
13 result.ap = inla.cpo(result.ap)
14 result.apc = inla.cpo(result.apc)
15

16 # Calculate the mean LS
17 -mean(log(result.ap$cpo$cpo),na.rm=T)
18 -mean(log(result.apc$cpo$cpo),na.rm=T)
19

20 # Generate figure 5.1
21 matplot(seq (40,75,5),cbind(inla.ap$ summary.random$i$

mean ,inla.ap$ summary.random$i$ ‘0.025quant ‘,inla.
ap$ summary.random$i$ ‘0.975quant ‘),type="l",pch
=19,col=1,lty=c(1,2,2),lwd=c(2,1,1),xlab="Age",
ylab="Effect")

22 matplot(rep (1982:2014) ,cbind(inla.ap$ summary.random$
j$mean ,inla.ap$ summary.random$j$ ‘0.025quant ‘,inla
.ap$ summary.random$j$ ‘0.975quant ‘),type="l",pch
=19,col=1,lty=c(1,2,2),lwd=c(2,1,1),xlab="Period"
,ylab="Effect")

23

24 # Extract the second differences
25 sec.diff.age=summarySecDiff(result.apc.all ,variable=

"age")
26 sec.diff.per=summarySecDiff(result.apc.all ,variable=

"period")
27 sec.diff.coh=summarySecDiff(result.apc.all ,variable=

"cohort")
28

29 # Generate figure 5.2
30 matplot(seq (45,70,5),sec.diff.age[,c(1,3,5)],type="l

",col=1,lwd=c(2,1,1),lty=c(1,2,2),xlab="Age",ylab
="Estimate")

31 matplot(rep (1983:2013) ,sec.diff.per[,c(1,3,5)],type=
"l",col=1,lwd=c(2,1,1),lty=c(1,2,2),xlab="Period"
,ylab="Estimate",ylim=range(sec.diff.age[,c
(1,3,5)]))

32 matplot(sec.diff.coh[,c(1,3,5)],type="l",col=1,lwd=c
(2,1,1),lty=c(1,2,2),xlab="Cohort",ylab="Estimate
",ylim=range(sec.diff.age[,c(1,3,5)]))

33

34
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35 # Generate figure 5.3
36 plotBAPC(result.apc ,type="ageStdRate",scale =10^3)
37

38 # Generate figure 5.4
39 plotBAPC(result.apc ,type="ageSpecRate",scale =10^3)
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