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Abstract 

  

A number of psychiatric troubles are distributed along a biased sex ratio. Differences in 

sex steroids levels, notably estradiol, could account for this bias. Differential expression and 

activation of the two known estrogen receptors (ER), α and β could result in different behavioral 

patterns. Indeed, these two receptors play an important, but unequal, role in the regulation of 

socio-sexual and fear-related behaviors. First, I ethologically characterized anxiety-related 

behaviors in adult female rats. Then, I systematically administered ER agonists to observe the 

role of ERs on behavioral responses and structure. Finally, I evaluated the role of the ERs in 

specific brain areas by silencing the expression of either the ERα or the ERβ with local 

administration of shRNA encoded with an adeno-associated virus directed against each of these 

receptors. All studies were conducted in a seminatural environment in order to obtain externally 

valid, transferable results. In this environment, several emotion-inducing stimuli were introduced 

to determinate ERs’ involvement on situation-dependent behavioral responses. ERα activation 

was necessary for the display of lordosis and paracopulatory behaviors in female rats, as well as 

for their sexual attractivity to males. Expression of ERα in the ventral nucleus of the 

hypothalamus (VMN) was necessary for lordosis. The receptor in the VMN also showed 

anxiogenic properties during exposure to white noise. My findings suggest that ERα in the VMN 

had anxiogenic properties in threatening situations, and facilitated copulation in safe 

environments. Treatment with ERβ agonist modified behavioral structure during exposure to 

aversive stimuli, and silencing this receptor in the CeA increased rat anxiety. Therefore, I 

conclude that ERβ has anxiolytic properties, partly acting through the CeA. Better understanding 

of the implications of each ER within different brain structures will help unveiling their 

seemingly opposite roles. 



8 

 

 

List of papers: 

 

 

 Le Moëne, O. and Ågmo, A. (2019). Responses to positive and aversive stimuli in estrous 

female rats housed in a seminatural environment: Effects of yohimbine and 

chlordiazepoxide. Pharmacology, Biochemistry and Behavior, 179, 43-54. 

 Le Moëne, O. and Ågmo, A. (2018). Behavioral responses to emotional challenges in 

female rats living in a seminatural environment: The role of estrogen receptors. Hormones 

and Behavior, 106, 162-177. 

 Le Moëne, O, Stavarache, M, Ogawa, S, Musatov, S., Ågmo, A.  (Accepted, March 2019) 

Estrogen receptors α and β in the central amygdala and the ventromedial nucleus of the 

hypothalamus: sociosexual behaviors, fear and arousal in female rats during emotionally 

challenging events. Behavioural Brain Research.  



9 

 

 

1. General introduction 

1.1 Psychiatric troubles and sex bias 

1.1.1 The global issue of mental illness 

The issue of mental health is slowly emerging from the dark closet of shame it has been 

kept into in the last centuries. Treatment and structures of support are improving fast, as psychiatric 

troubles are globally becoming more socially acceptable. In this frame, neuroscience shows a great 

potential for better understanding and caring for people affected by these troubles (Saxena, 2016). 

Sex is a significant risk factor for neurodevelopmental and neurodegenerative disorders 

(Pinares-Garcia et al., 2018). A number of psychiatric disorder are distributed along a biased sex 

ratio, with two notable examples being autism (3 males for 1 female; Loomes et al., 2017) and 

depression (1.7 females to 1 male, Whiteford et al., 2013) (Fig. 1). The biological mechanisms at 

work in sex-specific characteristics of typical or atypical brain have been the subject of intense 

research. One major difference between sexes is the levels of circulating sex steroids. Their levels 

and their neurobiological role could account for sex differences in psychiatric disorders. Notably, 

unbalanced estrogen metabolism can lead to increases in cardiovascular risk factors (Dai et al., 

2012), or facilitate the initiation of some types of cancer (Zahid et al., 2013). Restoring estrogen 

levels can ameliorate severe conditions such as postpartum depression (Ahokas et al., 2001).  

Nowadays, the role of sex steroid in brain organization and development, as well as in brain 

sexual differentiation is well known (e.g. Gillies and McArthur, 2010; McEwen et al., 2017). It is 

very likely that sex differences in the event of mental illness result from complex interactions 

between sex hormones and genetic and epigenetic factors, and later refined by cultural and social 

ones. 
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Fig. 1. Gradient in sex differences in the prevalence of neurodegenerative and neuropsychiatric 

disorders. Abbreviations: ADHD, Attention-deficit hyperactivity disorder. Reproduced with 

permission from Pinares-Garcia et al., 2018. 

1.1.2 Estrogens production and functions 

Estrogens circulate in higher levels in females than in males, with estradiol (E2) being the 

main female sex hormone. Estradiol is secreted in pulses varying across the time of the day and the 

menstrual cycle (Fig. 2). The levels of estradiol are the lowest in gonadectomized females and peak 

during proestrus in gonadally intact females (Butcher et al., 1974; Walmer et al., 1992). In addition to 

the incidence of puberty and the development of sexual characteristics, estradiol fulfills several 

physiological and behavioral functions. Notably, female socio-sexual behavior depends on 

hormonal levels. Sexual behaviors are elevated during behavioral estrus, and remain remarkably 

stable during its entire duration (Chu and Ågmo, 2014). Therefore, the estrus period is a privileged 

period to study the implications of estrogens in behavioral responses. Besides the regulation of 

sexual behavior, estrogens modulate aggression levels (Albert et al., 1992; Trainor et al., 2006) and 

other social behaviors (Hliňáck, 1993; Walf and Frye, 2008). In addition, estrogens play a role in 

the modulation of stress and anxiety levels (Frye and Walf, 2004; Morgan and Pfaff, 2002, 2001).  
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Fig. 2. Four-day estrous cycle in an intact female rat. Reproduced with permission from Goldman 

et al., 2007. 

Following estradiol administration, several studies report increased activity (locomotion, 

wheel-running) in safe environments such as the home cage, and inhibited locomotion and 

exploration in novel or unsafe environments such as in the open field or the dark-light transition 

tests (Morgan et al., 2004; Morgan and Pfaff, 2002; Morgan et al., 2004). Thus, estrogenic actions 

seem to manifest differently, depending on details of the environmental context. Taken together, 

the actions of estrogens seem to enhance arousal (Pfaff et al., 2002). Arousal is “a non-specific 

tonic state of neural activity which modulates not only the sleep/waking cycle, but also the 

efficiency of performance in the waking state” (Robbins, 1984, pp. 14), and individuals with higher 

generalized arousal were identified as being “more alert to sensory stimuli of all sorts, more 

motorically active, and more reactive emotionally” (Pfaff, 2006, pp. 5). 
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In the cytosol of neurons, circulating ovarian steroids combine with the corresponding 

hormone receptors. Binding steroids modify the conformation in these receptors, activating the 

transcription of genes (Farach-Carson and Davis, 2003; Nilsson et al., 2001). As a result, steroid 

signaling activates the production of specific proteins in neurons. The estrogen receptors have long 

been considered to be of only one kind (Walter et al., 1985). However, in 1996 Kuiper et al. cloned 

a novel estrogen receptor, resulting into the identification of two estrogen nuclear receptors, 

estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). The existence of two different 

receptors presupposes that they play different roles in the regulation of several physiological and 

behavioral mechanisms. With regard to the involvement of estrogens in a large range of adaptive 

behaviors, a fine analysis of the actions of each receptor is crucial to the understanding of some 

psychiatric troubles and the development of treatment possibilities. 

1.2 Rat sexual behavior 

Just like humans, rats are very cosmopolitan. Their habitat range covers all continents, 

under every climate, from urban to rural areas. The rats frequently construct burrow systems as 

places of harborage (Calhoun, 1962), around which they wander in a rather large area described as 

their home range (Davis et al., 1948). It is therefore difficult to describe their specific habitat type. 

On the contrary, the social aspect of rat’s life is much more stereotyped. Wild rats live in multi-

male, multi-female groups, with a smaller proportion of male members than female ones (Calhoun, 

1962; Leslie et al., 1952). Throughout the day, the rat engages in a number of solitary activities, 

for example foraging and scavenging in unfamiliar territory. Nevertheless, social interactions 

represent a substantial amount of its time-budget. 
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1.2.1 Male sexual behavior 

 Male sexual behavior is composed of a highly stereotyped sequence of copulatory 

acts including mount, intromission and ejaculation. Mounting behavior is characterized as a rat 

standing on its hind legs placing its forepaws on another rat’s rump and displaying pelvic thrusts. 

The behavior, even though typical of male-female sexual interaction, is not limited to heterosexual 

encounters, and can be observed in male pairs or female pairs. Intromission is a mount accompanied 

by penile insertion into the vagina, followed by genital grooming. Finally, ejaculation shows longer 

penile insertion than intromission, accompanied with abdominal contractions and followed by an 

open arms posture (Lucio et al., 1994). In addition to copulatory acts, several male behaviors can 

be used to assess male interest into females. The most obvious indicator of male sexual arousal is 

the pursuit of the sexual partner. This is often associated with sniffing the anogenital region of the 

mate, even though this latter behavior is not always associated with sexual interaction itself.  

Male sexual behavior has primarily been observed in standard copulation cages, in which a 

pair of rats is observed for a short period of time. The behavior is usually analyzed based on the 

observation of copulatory series. One series follows what is considered an increasing curve in 

sexual behavior intensity, starting with a first mount and ending with an ejaculation. However, in 

longer tests, a state of sexual exhaustion can be achieved, defined by the absence of copulatory acts 

within 30 min following the last ejaculation (Ågmo, 1999). Therefore, in more naturalistic settings, 

male behavior is expressed slightly differently. For example, in a seminatural environment  a long 

period of male sexual inactivity can be achieved after any copulatory act, not necessarily after 

ejaculation (Chu and Ågmo, 2015a). Between these periods of sexual inactivity, the distribution of 

male sexual behavior is relatively stable (Chu and Ågmo, 2015a). Behavioral structure, even in the 
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case of relatively stereotyped behavior patterns, can be substantially modified depending on the 

observation context.  

1.2.2 Female sexual behavior 

Female most typical sexual behavior is lordosis posture. This posture involves arching the 

back and extending the neck while disposing the tail to the side to expose genital area. Female rats 

are normally considered to be in behavioral estrus, the period of sexual receptivity, whenever they 

demonstrate lordosis. Lordosis is expressed by receptive females in response to tactile stimulation 

of the back by male mount (Kow and Pfaff, 1973; McClintock and Adler, 1978; Pfaff, 1980).  

The ventromedial nucleus of the hypothalamus (VMN) has been identified as the structure 

responsible for lordosis activation (Pfaff and Sakuma, 1979). Proteins produced through steroid 

signaling modulate the nerve signals from VMN down to the spinal cord, which results in the 

contraction of deep back muscles responsible for the lordosis reflex (Fig. 3). Thus, ovariectomy, 

reduction in the number of ERs, or lesion of certain brain areas, notably of the VMN, can alter or 

suppress the lordosis reflex. 
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Fig. 3. A. Lordosis reflex. B. Diagram of hormone and hormone receptor (e.g. estrogen) showing 

receptor-mediated transcriptional activation. C. Neural circuitry mediating lordosis triggered by 

cutaneous stimuli and facilitated by estrogens action. Adapted with permission from Pfaff et al., 

2000. 

Among rats tested in pairs in standard copulation cages, females cannot escape the 

interaction. This results in females engaging in forced copulation, effectively blurring the lines of 

receptivity (Chu and Ågmo, 2016; Madlafousek and Hliňák, 1977). However, in naturalistic 

settings, females only engage in copulatory acts during behavioral estrus (Chu and Ågmo, 2015b). 

When females can experience paced mating, in seminatural environments or pacing chambers, the 

aversive properties of mating are reduced, and mating can induce positive affect (Paredes and 

Vazquez, 1999). Besides, when several male and female sexual partners are available, rats copulate 
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in promiscuous patterns: females copulate with multiple males during the entire period of estrus 

(Chu and Ågmo, 2014). Similar behaviors have been identified in humans, who have been shown 

to copulate in a completely random pattern, when the possibility is given to them (Friedman et al., 

2008; Meunier, 2014; Tewksbury, 2002).  

Receptive females display a number of behaviors reflecting the excitatory state, including 

rapid sequences of approach toward, orientation to, and withdrawal from proximity to a sexually 

active male (McClintock and Adler, 1978). Notably, ear wiggling, running, hopping and darting 

co-occur with lordosis during behavioral estrus. These behaviors, initially and still often labelled 

as “proceptive” (Beach, 1976), are not expressed in the absence of circulating steroids (Pfaff, 

1980). More recently, it has been suggested that these behaviors be re-labeled as “paracopulatory”, 

as they occur during copulation but their specific function remains unproven (Blaustein et al., 2009; 

Blaustein and Erskine, 2002). These behaviors can be activated by tactile stimulation from males 

(Ågmo, 2007; Ågmo et al., 2004) but also occur in the absence of any tactile stimulation. They are 

considered an indicator of female sexual motivation (Bergheim et al., 2015), and might enhance 

male motivation. 

1.2.3 Implication of ERs in female sexual behavior 

All female sexual behaviors are dependent on the ERα. These behaviors range from the 

display of paracopulatory behaviors and lordosis (Ogawa et al., 1998; Rissman et al., 1997), to 

being attractive for males and being attracted to males (Kavaliers et al., 2004; Kavaliers et al., 

2004). Contrarily to the ERα, the ERβ does not contribute to female sexual behavior. Female mice 

lacking ERβ display normal sexual behaviors (Antal et al., 2012; Ogawa et al., 1999; Walf et al., 

2008) and these behaviors are not restored in ovariectomized female rats treated with an ERβ 

agonist (Mazzucco et al., 2008). 
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1.3 Rat social behavior  

1.3.1 Female pro- and anti-social behaviors 

Prosocial behaviors, including approach patterns and interactions promoting social 

cohesion (e.g. olfactory investigation, allogrooming, huddling) (Barnett, 1963) are modulated by 

estrogens, notably due to estradiol effects on the serotonin and oxytocin systems (Bethea et al., 

2002). Treatment with estradiol promoted pro-social, affiliative behaviors in rhesus monkeys 

(Michopoulos et al., 2011) and female rats (Walf and Frye, 2008). Rats exhibit a number of 

agonistic, antisocial behaviors, such as avoidance patterns, attacks and defensive behaviors. These 

behaviors can also be facilitated or inhibited as a result from estrogen actions (Albert et al., 1992). 

However, the role of estradiol on aggression has mainly been studied in the case of maternal 

behavior. Maternal aggression is disrupted in ovariectomized females and restored by estradiol 

treatment (e.g. Mayer and Rosenblatt, 1987). Estrogens also seemed to influence territorial 

aggression in non-pregnant, non-maternal rats, by suppressing aggression in estrus females 

(Barfield, 1984). Nevertheless, little is known about the effects of estradiol on pro-social and anti-

social behaviors in nulliparous or cycling females.  

1.3.2 Implication of ERs in female pro- and anti-social behaviors 

Disruption of ERα gene in female mice enhanced offensive attacks toward same sex 

intruder compared to wild-type (Ogawa et al., 1996). Virgin ERα knock-out female mice showed 

increased aggression towards ovariectomized, hormone-primed same-sex intruders, a behavior 

reduced by estrogen treatment (Ogawa et al., 1998). From these results, ERα seems to down-

modulate aggression. The effects of ERβ on aggression are still difficult to understand. Intact ERβ 

knock-out female mice did not show aggression towards female intruders (Ogawa et al., 1999). 

However, single acute administration of an ERβ agonist to adult ovariectomized female mice 
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reduced dominance score and increased the number of agonistic behaviors received during their 

interactions with a familiar, ovariectomized same-sex cage mate (Clipperton-Allen et al., 2008). 

Few studies have focused on describing estrogen actions on pro- and anti-social behaviors, and an 

extensive, transferable analysis of estrogen effects on social interaction is lacking. 

1.4 Rat exploratory and fear behaviors 

1.4.1 Exploratory behavior 

Rats spend a substantial amount of time exploring their environment, in what seems to be 

a constant search for novelty (Barnett, 1963). Exploratory behaviors include approach behaviors, 

as well as behaviors of olfactory and visual exploration such as sniffing or rearing. Exploration of 

new territories can be measured by frequency and range of locomotion. Novelty-induced behaviors 

such as rearing or increased locomotion are mostly expressed in safe, familiar contexts (Oloruntobi 

et al., 2014). Consequently, a reduction in rat exploratory tendency is usually considered an 

indicator of fear or anxiety.  

1.4.2 Fear- and anxiety-related behaviors 

A number of classical tests are usually implemented to assess fear and anxiety levels. The 

most commonly used are the open-field test, the Vogel test, the light-dark compartment test, and 

the elevated plus-maze (Harro, 2018). Some behavioral indices can be observed and broadly 

compared among all these procedures. Briefly, an increase in latencies to enter the center of the 

open area or the light compartment is interpreted as increased anxiety, while increased total time 

spent and frequency of head dipping into these parts show decreased anxiety levels. Anxiety in 

these procedures also reduces locomotor activity, increases freezing and stimulates the display of 

stretch-attend posture and risk assessment. Fear is expressed through avoidance behaviors (escape 

and hide) and with other behaviors such as freezing or the startle reflex. 
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One of the crucial brain areas for fear response is the amygdala, notably the central nucleus 

of the amygdala (CeA), which has the capacity to modify the HPA axis (Herman and Cullinan, 

1997). Most research on stress and psychiatric diseases has focused on this structure (Lebow and 

Chen, 2016), which regulates rapid-onset, short-duration behaviors occurring in response to 

specific threats (Davis and Shi, 1999; Duvarci et al., 2009; Walker et al., 2003; Walker and Davis, 

1997). Even though most of the literature agrees that the CeA is mainly involved in immediate fear 

responses, a review of the role of amygdala in these responses in rats suggested that immediate 

reactions are mediated by the medial portion of the CeA, while its lateral portion could mediate 

more sustained responses (Davis et al., 2010). 

1.4.3 Implication of ERs in fear and anxiety responses 

Contradictory results were obtained regarding the role of ERα in fear and anxiety responses. 

One study reported that ERα knock-out mice were not different from wildtype in several of the 

anxiety procedures (Krȩżel et al., 2001). However, it has also been reported that a selective ERα 

agonist  had anxiogenic effects in fear-inducing environments (elevated plus-maze and novel open 

field) (Lund et al., 2005). It has also been found that the ERα is anxiogenic in the light/dark box 

and in a brightly lit open field (Spiteri et al., 2012, 2010a).  

In parallel, activation of ERβ has been consistently reported to have anxiolytic effects. 

Treatment with an ERβ agonist reduced indicators of fear in an elevated plus-maze in female rats 

(Kudwa et al., 2014) and female mice (Krȩżel et al., 2001; Oyola et al., 2012; Alicia A. Walf et al., 

2008), whereas ERα had no effect. Therefore, it seems that ERα and ERβ agonists have opposite 

effects in novel/fear-inducing contexts. This makes little sense biologically, since both receptors 

are activated at the same time by estradiol. However, the distribution of ERs in the brain is 

heterogenous. Differential activation of brain structures might shed light on this contradiction. 
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1.5 On the induction and measurement of emotions  

1.5.1 Behavior as a tool for interpreting emotion  

From an evolutionary standpoint, emotions seem to have appeared to equip organisms with 

abilities that allow them to seek valuable resources/ rewards and avoid harm/ punishment (Ikemoto 

and Panksepp, 1994; Rolls, 2000). There is a large amount of evidence in scientific literature that 

points out to the existence and critical importance of emotions in terms of survival, both in humans 

and non-humans animals (Berridge, 1996; Berridge and Robinson, 2003; Davis and Whalen, 2001). 

Nowadays, emotions are regarded as a multicomponent system, comprising psychic, behavioral 

and physiological responses, and, in humans, subjective consciousness (Paul et al., 2005; Shuman 

et al., 2017).  

1.5.2 Assessing animal emotions in scientific research 

Animal emotions research has mostly focused on the measurement of negative affective 

states, as they appear easier to identify (Paul et al., 2005). Even considering the increasing public 

concern for animal welfare, and the social imperative for personal development and happiness, 

positive affects are rarely addressed and research remains biased toward the study of negative 

experiences (Webb et al., 2018). This bias leaves out a large panel of emotional effects, not only 

offering an incomplete view of the issue of mental health, but also distorting the prism of data 

interpretation. 

Interestingly, while behavioral studies extensively describe “anxiety-related behaviors”, 

there is no mention of behaviors typical of a positive emotional state. Reports of “hedonic 

behaviors” refer to active reward-seeking (e.g. Duncko et al., 2003; Grippo et al., 2006) and are 

therefore irrelevant to the expression of positive affects. With animals, the lack of self-reports calls 

for the use of physiological and behavioral indices. Physiological indicators include changes in the 
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autonomic function, activity of the hypothalamic-pituitary-adrenal axis, and measures of 

neuroendocrine activity. According to Webb and collaborators (Webb et al., 2018), behavioral 

indicators can indicate momentary affect (e.g., spontaneous postures and behaviors, facial 

expressions, vocalizations, approach or avoidance responses to novel stimuli) and cognitive biases 

linked to particular affective states (judgment, attention, and memory). Identifying behavioral 

characteristics of different affects requires a comparison in behavior patterns in a range of different 

contexts.  

1.6 Manifest for the use of externally valid procedures 

A recent review of anxiety studies in rodent models highlighted the challenge of anxiety 

measurements, and emphasized the need for clearer definitions of the measured variables and 

conditions used, in order to achieve greater transferability (Harro, 2018). Indeed, transferability of 

results obtained in clinical trials to real-life situations is not always granted. Brunswick defined 

procedures which results are generalizable to other contexts as procedures with an external validity 

(Brunswick, 1955; Brunswik and Kamiya, 1953). Such settings are particularly relevant in studies 

of behavioral responses to experimental manipulations and treatment (Peters et al., 2015). To the 

contrary, observation in simplified contexts are specific to this very context, and can difficultly be 

verified or repeated in different procedures. For this reason, the field of behavioral neuroscience 

would benefit from a greater use of externally valid procedures. 

1.7 Goals of the thesis 

Estrogens are strongly involved in the mobilization and regulation of socio-sexual behaviors. 

Both ERα and ERβ modulate behavioral responses in a different manner, and their activation 

produces different behavioral patterns depending on the brain area activated. Similarly, both 

receptors differently regulate fear responses and several studies so far pointed to their opposite 
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properties. However, in most studies the role of environmental context and emotional stimulations 

has been overlooked. In light of these considerations, the present thesis aims to unveil the 

differential role of ERs in a naturalistic environment with external validity, in adult female rats 

with altered ER expression. 

Three different experiments were carried out in order to assess socio-sexual and fear-related 

behaviors in female rats hosted in a seminatural environment, when submitted to either positive or 

negative emotional stimulations. First, I characterized the behavior of female rats in estrus in the 

seminatural environment. Then, two different approaches were used, either systematically 

administering ER agonists to female rats, or silencing ERs in specific brain regions, specifically 

the VMN or the CeA. This made it possible to assess the effect of each ER on these behaviors, as 

well as the interaction of ERs’ properties with the environmental context. 

Detailed behavioral observation and analysis of rat behavior in a procedure with external 

validity can rarely be implemented. The studies presented in this thesis will hopefully give new 

insight into behavioral actions of ERs, while potentially contributing to an understanding of the 

etiology of some psychiatric disorders. 
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2. General methods 

2.1 Externally valid procedure 

2.1.1 Seminatural environment  

Across the years, several studies have observed rodent behavior in seminatural 

environments (Blanchard et al., 1985; McClintock et al., 1982; McClintock and Adler, 1978; 

McClintock and Anisko, 1982). In accordance with these previous studies, and with key elements 

of the rat’s physical and social environment, it was possible to build a seminatural environment 

incorporating or mimicking most of these elements. The environment described here has been used 

previously in a number of studies (e.g. Chu and Ågmo, 2015a, 2015b, 2014) and has been used in 

all the experiments presented in this thesis. The seminatural environment consisted of two parts, a 

burrow system (120 × 210 cm) and an open area (120 × 210 cm), connected by 4 small opening 

doors (8 × 8 cm) (Fig. 4). Overall size of the seminatural environment was 2.1 × 2.4 m. The open 

area and the burrow were separated by a completely opaque black fabric, preventing any light to 

enter the burrow system. Both the burrow and the open area were divided into zones, making it 

possible to quantify rats’ locomotor activity by assessing how often they transited from one zone 

to another (Fig. 4B). Two infrared lamps (850 nm; model Sal60, New Surway Digital Technology, 

Shenzhen, Guangdong, P.R. China) were installed in the ceiling, providing light for video 

recording. The open area was submitted to a reverse 12L:12D light cycle, light being on from 11 

pm to 11 am. This produced a light intensity of 30 lx during night phases and 180 lx during day 

phases, as measured on the floor. Dawn and dusk were simulated by 30 min light transitions. The 

humidity level in the seminatural environment was 55±10% and the temperature 21±1°C. The 

sound level approximated 40 dB, due to the ventilation system providing 15 air changes per hour.  
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Two nozzles, one in the back tunnel of the burrow, one in the far wall of the open area, 

were connected to an odor distribution system (Olfactory Stimulus Package, Medical associates, 

Georgia, Vt) producing an airflow of 3 l/min. This airflow could be directed through one of two 

jars containing odorants or made to bypass the jars and consist of unscented room air instead. 

Finally, a sound system composed of two A60 stereo speakers from Creative (Clas Ohlson, 

Norway) could be used to produce auditory stimulation. The entire seminatural environment was 

filmed with 2 cameras, one in the burrow part and one in the open area, using The Media Recorder 

2.5 (Noldus, Wageningen, The Netherlands). 

 

Fig. 4. A. Picture of the seminatural environment. B. The division in zones. 

2.1.2 Emotion-inducing stimuli 

Once the rats are established in the seminatural environment, this environment becomes 

stable and familiar, and, to a certain extent, safe. At this point, rat behavior can be considered at 
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baseline. In order to induce changes in rat behavior, I proposed emotional challenges based on the 

stimulation of senses that are well developed in rats: olfaction, gustation and audition. After 

thorough examination of the literature, I decided to implement five different stimuli. Lavender 

essential oil (Lavandula angustifolia) which has anxiolytic properties in rats and humans (Bradley 

et al., 2009; Shaw et al., 2007); and fox odor (2,5‑dihydro‑2,4,5‑trimethylthiazoline, TMT), a 

predator odor aversive to the rats (Endres et al., 2005; Endres and Fendt, 2009; Fendt et al., 2005) 

were chosen as olfactory stimuli. For auditory stimulation, Mozart Sonata for two pianos (K448) 

has been reported to have anxiolytic effects (Chikahisa et al., 2007; Escribano et al., 2014), and 

loud white noise is a common stressor know to produce fear reactions (Weyers et al., 1994). These 

two stimuli were played at 50-60 dB and 90 dB, respectively. Finally, I provided the rats with 

chocolate-flavored food in high quantities to avoid competition-related stress. Chocolate is a highly 

palatable food for rats (and me), and is consumed quickly (Boswell et al., 2006; Lampert et al., 

2013; Reynaert et al., 2016).  

The stimuli were presented in a fixed order: lavender odor, music, chocolate, white noise, 

and fox odor. A 50-minutes interval separated the end of each stimulus from the beginning of the 

following one, allowing for behavioral recovery. 

2.1.3 Studies design 

 Each group of rats ran in the seminatural environment consisted of 7 sexually naïve rats, 3 

males and 4 females. All animals were unknown to each other. The males were always left intact. 

The females underwent pharmacological or surgical treatments to modify ER expression. The 

animals were housed in the seminatural environment for 8 days. They were introduced on day 0 at 

13:00. On day 7, the sequence of emotion-inducing stimuli was initiated, starting at 13:00 and 

finishing at 18:30. 
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2.2 Behavioral observations 

2.2.1 Analysis of behavioral durations and frequencies 

Video recording of the rats’ behavioral activity in the seminatural environment allowed for 

scoring a large range of their behaviors. This was done with The Observer XT 12.5 (Noldus, 

Wageningen, The Netherlands).  

2.2.2 Analysis of the behavioral flow  

The richness of behavioral observation is constituted not only by the quantification of 

isolated behavioral items, but also by the chronological organization of behavioral patterns. I 

proposed to consider the behavioral flow as a speech, and to analyze it as so. The software Iramuteq 

(Interface de R pour les Analyses Multidimensionnelles de Textes et Questionnaires) made it 

possible to understand how behavior patterns were structured depending on a specific emotion-

inducing stimulus and/or on individual treatments received. 
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3. Can emotion-inducing stimuli modify fear and anxiety-related behavior? 

3.1 Introduction 

 Anxiety models rely on a number of behavioral indices that are observable in most standard 

procedures. However, in non-standard procedures such as seminatural environments, these 

responses might be expressed differently or simply not expressed. Notably, a classical indicator of 

fear (freezing occurrence) was found to be almost absent in a procedure where mice were provided 

with a shelter (Vale et al., 2017), a feature unavailable in the elevated plus-maze, for example. This 

observation is symptomatic of a general issue regarding the transferability of behavioral studies’ 

results. I observed rats treated with either anxiogenic yohimbine or anxiolytic chlordiazepoxide 

under different emotional contexts to provide insight onto the variability of fear- and anxiety-

related behavior in a seminatural environment.  

3.2 Results of Paper I  

3.2.1 Different emotion-inducing stimuli elicit different profiles of behavioral response 

 Exposure to lavender showed to stimulate sexual behaviors (lordosis and paracopulatory 

behaviors), behaviors of self-maintenance such as drinking, self-grooming and resting alone, and 

enhanced exploration of the open area. This last response is also observable in standard models of 

anxiety and considered an indicator of decreased anxiety. Taken together, these findings suggest 

an anxiolytic effect of lavender odor, or simply that lavender odor is attractive to the rats. 

Exposure to chocolate increased both pro- and anti-social interactions. This increase can 

result from competition for chocolate access, and from social transmission of food-related 

information such as flavor, location and quantity. Consequently, it is difficult to formulate any 

conclusion other than that the rats ate chocolate with gluttony. 
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Music, white noise, and fox odor all appeared to be aversive to the rats. In particular, 

exposure to white noise inhibited sexual behaviors, behaviors of self-maintenance, and suppressed 

the exploration of the open area. White noise had evident aversive fearful properties that 

materialized through the behavioral modifications induced. Interestingly, exposure to white noise 

also stimulated locomotor activity in the burrow. Increased exploration and locomotion are usually 

considered indicators of low anxiety or novelty (Koss et al., 2004; Oloruntobi et al., 2014). 

However, in classical procedures, rats can rarely experience a spacious safe space such as that 

provided by the complex burrow system, where the rats gathered during exposure to white noise. 

Exposure to fox odor showed aversive properties, as expected with regard to the notoriously 

anxiogenic effect of this predator odor in other procedures (Endres et al., 2005; Endres and Fendt, 

2009; Wallace and Rosen, 2000). Interestingly, exposure to music seemed aversive to the rats while 

it was expected to have anxiolytic properties (Chikahisa et al., 2007; Escribano et al., 2014). 

Positive effects similar to that observed in humans have been found on physiology and behavior of 

laboratory animals (Alworth and Buerkle, 2013). However, several elements can help give meaning 

to my results. First of all, rats have an innate preference for silence over 40-, 20-, then 10-kHz tones 

(Soga et al., 2018) and when given the choice, they will spend more time in a silent room than in a 

room playing Mozart’s K448 (Zhang et al., 2009). Therefore, with the seminatural environment 

being relatively quiet (~40 dB), music may have constituted a disturbance to the rats. Another 

interesting point is that most studies of behavioral effects of Mozart’s music investigated rats’ 

performance after music exposure. To the contrary, in my experiment, I always observed the rats 

during exposure to music. In humans, the positive effects of Mozart’s music have been attributed 

to elevated mood and arousal (Cassity et al., 2007; Thompson et al., 2001) due to music enjoyment. 

Considering that silence is preferred over music by rats, it is possible that music per se is not 
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responsible for the observed effects, but that its termination and the increased arousal thus induced, 

is. This is consistent with findings of Paper III, in which I found increased locomotor, exploratory 

and sexual activity right after the offset of aversive white noise. 

Different emotion-inducing stimuli induced different behavioral profiles. Except for music, 

all emotion-inducing stimuli elicited behaviors pattern consistent with the expected affect. It is 

reasonable to assume that these response profiles may result from different affective states in the 

rats.  

3.2.2 Indicators of fear and anxiety in a seminatural environment 

Anxiogenic yohimbine and anxiolytic chlordiazepoxide given to estrous female gave me 

insight into rat’s behavior under different levels of anxiety. I found few effects of the drugs in Paper 

I. Yohimbine significantly increased lordosis quotient and self-grooming. It also decreased the 

latency to flee the noise, consistently with its anxiogenic properties. Females treated with 

yohimbine were associated with occurrences of rearing and with chocolate exploration.  

Chlordiazepoxide significantly increased the frequency of hiding alone, a behavior specific 

to white noise exposure. In a co-occurrence analysis, chlordiazepoxide was not different from 

control females treated with saline when all emotion-inducing stimuli were collapsed. 

3.2.3 Emotional regulation in an externally valid procedure 

A study of expression and assessment of emotional responses in sheep suggested that 

increase in perceived controllability and increase in social support would decrease markers of 

anxiety (Greiveldinger, 2007). In the seminatural environment, rats pace freely, take shelter into 

the burrow, and actively engage or avoid social interactions. This provides a certain controllability 
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over the stimuli and allows the rats to employ their adaptive capacities and thus their ability to self-

regulate in response to environmental changes (Koolhaas et al., 2011). 

The hypothesis that social support attenuates fear responses has been formulated in the past 

(Davitz and Mason, 1955). This phenomenon, called social buffering, refers to lower expression of 

fear and anxiety in presence of a fearful stimulus when accompany by a conspecific (Kiyokawa 

and Hennessy, 2018). In the seminatural environment, rats interacted with six familiar conspecifics, 

in an established group hierarchy. It is likely that this social configuration consistently reduced fear 

and anxiety responses. This is also relevant to the higher frequency of hiding alone observed in 

females treated with chlordiazepoxide. These female might have exhibited a lower need for social 

buffering, which would be consistent with chlordiazepoxide’s anxiolytic properties. 

3.3 Conclusions 

The five emotion-stimuli implemented in the experiment elicited different patterns of 

behavioral responses. Overall, chlordiazepoxide- and yohimbine-treated females showed profiles 

of response consistent with anxiolytic and anxiogenic effect, respectively. 

In response to uncertainties in transferability of behavioral studies and interpretation 

reliability, and to the call for ethological concepts to enhance the translational value of animal 

models (Peters et al., 2015), the use of the seminatural environment highlighted the effect of social 

buffering and controllability as compensatory mechanisms in response to environmental variations.  
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Paper I 

 

Responses to positive and aversive stimuli in estrous female rats housed in a seminatural 

environment: Effects of yohimbine and chlordiazepoxide 

Olivia Le Moëne, Anders Ågmo 

Pharmacology, Biochemistry and Behavior 179 (2019) 43–54 

  



32 

 



33 

 



34 

 



35 

 



36 

 



37 

 



38 

 



39 

 



40 

 



41 

 



42 

 



43 

 

  



44 

 

4. Systematic administration of ER agonists 

4.1 Introduction 

 In order to characterize the differential roles of ERα and ERβ in a procedure with external 

validity, I used well-established ER agonists to reveal the role of each agonist in socio-sexual and 

fear-related behaviors. I treated female rats with propyl-pyrazole triol (PPT; ERα agonist) or 

diarylpropionitrile (DPN; ERβ agonist). As the implication of ERα in female sexual behavior and 

attractivity had already been known through standard procedures (Mazzucco et al., 2008), it was 

of interest to see how these behaviors were modulated in different emotional contexts. In addition, 

ERβ agonist previously showed anxiolytic properties (Lund et al., 2005; Oyola et al., 2012) in 

procedures such as the elevated plus-maze, the open-field, and the light-dark exploration tests. 

Whether these anxiolytic properties would express differently in safe or aversive contexts remained 

uncertain. Thus, I sequentially treated female rats with PPT + progesterone, DPN + progesterone, 

or estradiol + progesterone, and compared them to a control (oil + progesterone). 

4.2 Results of Paper II  

4.2.1 Confirmation of emotion-inducing stimuli effect 

 Independently from the treatment given, females responded to the emotion-inducing stimuli 

in a similar way as found in Paper I. Exposure to lavender odor stimulated locomotor activity in 

the open area compared to this behavior at baseline. Exposure to music reduced the time spent in 

the open area. Exposure to chocolate increased sniffing of the seminatural environment and male 

sniffing of the females. White noise inhibited female sexual behavior and exploration of the open 

area, while increasing locomotor activity in the burrow. Exposure to fox odor reduced male pursuit 

of the females. 
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4.2.2 Role of ERα and ERβ agonists  

 The main effect of ERα agonist PPT was its significant activation of lordosis and 

paracopulatory behaviors compared to ovariectomized females treated with oil. It maintained 

sexual behaviors at levels somewhat similar to that of estradiol benzoate, whereas DPN failed to 

activate lordosis posture. In addition, females treated with PPT received male mounts and were 

pursued by the males, while females treated with DPN were not more attractive to the males than 

females treated with oil. 

The proportion of females fleeing the noise at its onset was higher in the PPT-treated group. 

In the co-occurrence analysis, PPT-treated females were often associated with exploratory 

behaviors and chocolate-related behaviors. This was consistent with the arousing properties of 

estradiol, heightening fear in threatening contexts and increasing activity in safe environments 

(Morgan et al., 2004). 

Administration of DPN did not modify the frequency of any of the recorded behaviors. 

However, DPN-treated females appeared in a different cluster than females treated with oil only 

during aversive stimuli, music, white noise and fox odor. These females were then associated with 

self-maintenance behaviors (drinking in the open area, self-grooming) as well as with hiding alone 

or with another rat during white noise. This might indicate a different way of DPN-treated females 

to cope with aversive situations. In particular, in Paper I, I found that exposure to aversive white 

noise suppressed occurrences of self-maintenance behaviors. The association of DPN-treated 

females with these behaviors during exposure to aversive stimuli proposes that this agonist was 

anxiolytic. 
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4.3 Conclusions 

 The study confirmed the necessity of ERα for sexual receptivity regardless of the 

environmental context. In addition, ERα showed arousing properties resulting in contrasted 

behavioral responses depending on the emotional stimulus induced. ERβ agonist modified the 

structure of behavior only during aversive stimuli, suggesting anxiolytic properties and confirming 

findings of classical anxiety models. 

  



47 

 

Paper II 

 

Behavioral responses to emotional challenges in female rats living in a seminatural environment: 

The role of estrogen receptors 

Olivia Le Moëne, Anders Ågmo 

Hormones and Behavior 106 (2018) 162–177  
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5. Silencing ERs in specific brain sites 

5.1 Introduction 

The role of ERs and their respective implication in socio-sexual and fear-related behaviors may 

result from regional differences in ER expression in brain regions modulating distinct behavior 

patterns. Indeed, silencing ERs site-specifically offers a much finer approach than agonistic 

treatment or knock-out models. These experimental designs give valuable insight into the ERs’ role 

at the organism level but fail to express that estrogen-dependent behavioral responses result from 

(1) situation-dependent activation of functionally distinct brain areas, (2) ERs’ distribution in these 

areas.  

5.2 Site-specific regulation of estrogen-dependent behavioral responses 

To date, very few studies have used a shRNA encoded with an adeno-associated virus 

(AAV) to site-specifically knock-down ERs in the female brain. So far, these studies confirmed 

that ERα in the VMN supports all aspects of female sexual behavior, from lordosis reflex (Snoeren 

et al., 2015; Spiteri et al., 2010b), paracopulatory behaviors (Spiteri et al., 2010b, 2010a), interest 

in intact males (Spiteri et al., 2010b) and attractivity to males (Snoeren et al., 2015). This receptor 

showed no role in sexual behavior in the bed nucleus of the stria terminalis or the medial amygdala 

(Snoeren et al., 2015). In the pre-optic area, ERα stimulated female attractivity to males, and social 

investigation (Snoeren et al., 2015). Finally, in the medial preoptic area ERα increased locomotor 

activity in familiar environments, and movement velocity in threatening ones (Spiteri et al., 2012). 

So far, only one study has analyzed the effects of ERβ in the medial pre-optic area and the medial 

amygdala, however, this study focused on male behavior (Nakata et al., 2016). Therefore, the 

effects of ERβ in different brain structures in females remains in the land of the unknown.   
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The differential activation of brain structures depending on the situation might be a key 

factor in understanding the actions of ERs. In Paper III, I investigated the differential role of ERs 

in the VMN, a structure essential to the activation of sexual behaviors, and the CeA, a brain area 

involved in immediate fear reactions. These structures show differential distribution of ERs (Fig. 

5), which could correlate the relative importance of each receptor in the functions governed by 

these brain areas. 

 

Fig. 5. Schematic representation of coronal sections depicting the distribution of ERα (left side; 

red dots) and ERβ (right side; black dots) mRNA in the rat brain. Small  dots = 1–5  labeled  cells; 

medium  dots = 56–10  labeled  cells;  large  dots = approximately  50 labeled  cells. A. 

Ventromedial nucleus of the hypothalamus (blue circle), antero-posterior -3.14 mm. B. Central 

amygdala (blue circle), antero-posterior -1.80 mm. Adapted with permission from Shughrue et al., 

1997. 

5.3 Results of Paper III 

5.3.1 Contribution of ERs in the CeA  

 Silencing ERα in the CeA showed no effect. However, silencing ERβ in the CeA 

increased risk assessment duration and decreased the frequency of food eating, both behaviors 
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being consistent with a pattern of increased anxiety. However, females treated with AAV against 

ERα and AAV against ERβ appeared in the same cluster exclusively during exposure to white 

noise, potentially due to the highly aversive nature of white noise. Following exposure to white 

noise, infusion in the CeA did not modify behavioral recovery. 

In parallel, silencing ERβ also increased olfactory exploration of the seminatural 

environment (sniffing the floor), in particular in a positive context (lavender odor exposure). Co-

occurrence analysis showed that females whose ERβ was knocked-down were associated with risk 

assessment and sniffing the nozzles during most stimuli, and exploration of the chocolate during 

this stimulus. Females lacking ERβ in the CeA therefore seemed to express higher arousal in 

adequate contexts.  

Since silencing ERα did not modify indicators of anxiety nor arousal, but silencing ERβ 

elevated them. It is possible that ERβ has anxiolytic properties in the CeA, and might down-

modulate arousal levels. 

5.3.2 Contribution of ERs in the VMN 

As expected, silencing ERα in the VMN reduced sexual behaviors, mainly the probability 

to display lordosis, and females lacking ERα were consistently associated with rejection of the 

males. LQ remained unchanged, as previously found in the seminatural environment (Snoeren et 

al., 2015). This treatment also suppressed the occurrence of huddling during the aversive white 

noise. This behavior, also recognized as “hiding with another rat”, has been associated previously 

with social buffering in fear-inducing conditions. Since silencing ERα suppressed social buffering 

associated with fearful situations, it is possible that ERα is anxiogenic.  
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In the analysis of co-occurrence, during exposure to white noise females infused with AAV 

against ERα in the VMN were associated with rearing an exploratory behavior mostly expressed 

in safe contexts (Oloruntobi et al., 2014). This seems to confirm the anxiogenic properties of ERα 

in the VMN, in accordance with a previous report (Morgan et al., 2004). Silencing of ERβ in the 

VMN showed no direct effect on behavior, independently from the environmental conditions. 

Following exposure to white noise, female infused in the VMN recovered exploration of 

the open area within 350 s following white noise offset. Females infused with AAV against ERα 

did not display huddling behavior in the 50 seconds following white noise offset while control 

females still did. Disruption of ERα expression seemed to advance recovery from white noise, 

compared to control females. 

5.4 Conclusions  

In the VMN, expression of ERα was necessary to lordosis display. This receptor in the 

VMN also convey anxiogenic properties. I found no role for ERβ in this brain area. In the CeA, 

ERα did not modify behavioral responses, but ERβ showed several anxiolytic effects. This possible 

double dissociation further reinforces the need for site-specific knock-down studies in order to 

resolve the issue of opposite ER actions by understanding their differential contribution in distinct 

brain areas. 
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Paper III 

 

Estrogen receptors α and β in the central amygdala and the ventromedial nucleus of the 

hypothalamus: Sociosexual behaviors, fear and arousal in female rats during emotionally 

challenging events 

Olivia Le Moëne, Mihaela Stavarache, Sonoko Ogawa, Sergei Musatov, Anders Ågmo 

Submitted to Brain Behavioral Research 
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6. General discussion 

This thesis aimed at determining the role of ERα and ERβ, at the organism level and specifically 

in the VMN and the CeA, in a procedure with external validity. In a seminatural environment, 

behavioral reactions are buffered by several factors, notably perceived controllability and social 

buffering (Paper I). Despite these phenomena, sustained behavioral changes are observable. 

Therefore, I propose that such observations are especially robust and transferrable. 

6.1 Estrogen receptors and sexual behaviors  

 In accordance with previous reports (Mazzucco et al., 2008; Ogawa et al., 1998; Rissman 

et al., 1997), I found that ERα agonist was necessary for the display of lordosis and paracopulatory 

behaviors, and that this receptor enhanced female attractivity to males (male mount and pursuit of 

the females) (Paper II). ERβ failed to activate female sexual behaviors regardless of the context, 

confirming that ERβ is not involved in these behaviors. 

 Knock-down of ERα in the VMN was sufficient to disrupt lordosis display (Paper III), 

consistently with previous findings (Snoeren et al., 2015; Spiteri et al., 2010b). Knock-down of 

this receptor in the CeA did not affect female sexual behavior, confirming that this brain area in 

not involved in these behaviors. Consistently with my previous findings using an ERβ agonist, 

knock-down of ERβ, whether in the CeA or the VMN had no influence on sexual behavior. 

 In the adult female rat, expression of ERα in the VMN was essential to the display of 

sexual behavior. ERα also enhanced female sexual motivation and attractivity to males. ERβ 

was not involved in sexual behaviors. 
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6.2 Estrogen receptors and social behaviors   

 In my experiments, the only effect of ERα on social behavior was to reduce the frequency 

of resting with males, but not with females, during exposure to chocolate pellets in females treated 

with an ERα agonist (Paper II). Therefore, I propose that my result is merely coincidental to the 

increase in chocolate-related activity observed in females treated with this agonist. Apart from this 

result, treatment with ER agonists did not produced any effect on pro- or antisocial behaviors, 

contrarily to studies showing some involvement of ERs in social behavior, at least in aggression 

(Ogawa et al., 1998, 1996). More specifically, silencing ERs in the VMN or the CeA did not modify 

pro- nor anti-social behaviors (Paper III).  

An earlier experiment proposed that differences in aggression in females lacking ERα 

resulted from the context of exposure, and that the effects of ERα only appeared in a novel, 

unfamiliar test cage, but not when the females were tested in their familiar home cage. Thus, the 

absence of an effect of ERα on antisocial behaviors in the seminatural environment would be 

consistent the rats’ familiarity with their surroundings, considering that they had been living in the 

seminatural environment for several days at the time of the behavioral observations. In addition, 

most studies of aggression used the resident-intruder test (Ogawa et al., 1998; Spiteri et al., 2010a), 

whereas in the seminatural environment, all rats were familiar to each other, which might account 

for the stability of social behaviors observed.   

In established groups of rats living in a familiar environment, ERs seemed to play no 

role in the regulation of social interactions. Specifically, neither ER expression in the VMN 

nor in the CeA showed any involvement in these behaviors.  
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6.3 Estrogen receptors and anxiety- and fear-related behaviors   

At the onset of white noise, yohimbine-treated females had a significantly shorter latency 

to flee the noise at its onset (Paper I). By comparison, females treated with ERα agonist had a 

higher probability to flee the noise (Paper II). These somewhat similar results seemed to indicate 

that ERα is anxiogenic to a certain extent. This is consistent with previous report of anxiogenic 

properties of ERα agonist in fear-inducing procedures (Lund et al., 2005; Spiteri et al., 2010a). 

Reduction in the number of ERα in the VMN suppressed social buffering during exposure to white 

noise (Paper III). This last effect further supports that ERα has anxiogenic properties in this brain 

structure. Nevertheless, this receptor showed no role in fear- and anxiety-related behaviors in the 

CeA, an area involved in the regulation of these responses. This might be due to the low expression 

of ERα in the CeA (Österlund et al., 1998; Shughrue et al., 1997; Shughrue and Merchenthaler, 

2001), or to parallel processing of different kind of threats by different brain structures (Canteras 

et al., 2012).  

Even though systematic administration of ERβ agonist did not modify behavior 

quantitatively, it modified behavioral structure during exposure to aversive stimuli. Then, in 

accordance with other reports, ERβ properties were apparent in response to fearful situations 

(Kudwa et al., 2014; Walf et al., 2008; Walf et al., 2009). During exposure to aversive stimuli, 

females treated with ERβ agonist were associated with behaviors of self-maintenance, suggesting 

lower anxiety levels (Paper II). In addition, following knock-down of ERβ in the CeA, I observed 

increased risk assessment and decreased eating (Paper III). These modifications are consistent with 

increased anxiety. Therefore, the anxiolytic properties of ERβ seem to be, at least partly, modulated 

through in the CeA.  
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Finally, females having a reduced number of ERβ showed increased display of sniffing the 

floor during exposure to lavender odor and were associated with chocolate-related behaviors during 

this stimulus. Both lavender odor and chocolate were attractive to the rats and did not seem to 

present any aversive properties (Paper I, Paper II). Therefore, in the absence of fear, it is difficult 

to formulate that higher interaction with these stimuli derived from ERβ anxiolytic effects. The 

most parsimonious conclusion would be that, in females, a reduction in the number of ERβ in the 

CeA could contribute to increased arousal in response to attractive stimuli. 

The results of Paper III suggests that a finer understanding of ERs’ role within different 

brain structures could resolve the issue of seemingly opposite ERs’ roles that has concerned a large 

part of the literature investigating estrogen actions since the identification of a second receptor.  

Estradiol acting through ERα had anxiogenic properties in response to aversive white 

noise, notably in the VMN. The anxiolytic effects of estradiol appeared to be attributable to 

the ERβ, partly through its actions in the CeA, regardless of the emotional stimulus induced.  
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7. Future directions 

The role for G protein-coupled estrogen receptor 1 (GPER1) has not been addressed here. It is 

very well possible that this compound might have accounted for some of the results reported here. 

Non-genomic estrogen effects would substantially complicate the present results. Thus, I focused 

exclusively on the effects of ERα and ERβ on behavior in different environmental contexts, but it 

should be acknowledged that GPER1, or local estradiol synthesis, may also influence behavioral 

responses. 

The externally valid procedure used in this thesis highlighted important context-dependent 

changes that shed new light to behavioral modifications. For example, modification of locomotor 

activity during a fearful situation depended on the availability of a shelter zone. Moreover, this 

thesis identified areas needing further research. Notably, more comprehensive studies of the ERs’ 

role on rat sociality are lacking. Such studies would benefit from including unknown vs familiar 

conspecifics in a safe home cage or a novel test cage. Overall, externally valid procedures might 

allow to overcome the reductionist bias that has prevailed in modern neuroscience. 

This thesis highlighted the heterogeneous contribution of ERs in brain areas modulating 

different functions. The use of shRNA encoded with adeno-associated viral vectors selectively 

silencing one of the two identified ERs will greatly improve our knowledge of estrogen actions on 

arousal and anxiety levels, as well as on exploratory, social and sexual behaviors. With insight into 

the role of each receptor within different brain areas, production of typical behavior depends on 

the balance between activation of ERα and ERβ. Inadequate expression or activation of one or the 

other isoform could account for several of the sex differences in neurodevelopmental and 

neurodegenerative disorders.  
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