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Abstract 

Zooplankton patchiness has been documented in many shelf areas and is of vital importance 

for understanding predator-prey relationships in pelagic marine systems. By combining 

hydrographic, acoustic and net data collected in spring 2017, we present a detailed 

understanding of the extent of this phenomenon in the Lofoten-Vesterålen region. Such patches 

are of potential interest not only for zooplankton harvesting, but also for commercially 

harvested species such as Atlantic Cod, which are crucial for the region’s economy. We hereby 

report evidences of a large surface patch (>1000 km2) of Calanus finmarchicus extending 

longitudinally over the whole continental shelf. The aggregation was closely tied to the water 

mass distribution in the area together with the timing of the bloom and its associated ascent of 

the overwintering copepod population. Although most organisms concentrated at surface, 

species-specific depth preferences resulted in statistically definite communities at diverse 

depths. Despite the low chlorophyll a values, high nutrient concentrations proved optimum 

conditions for phytoplankton development and significantly matched with the zooplankton 

distribution. We thus hypothesize that top-down control via intensive grazing pressure plays a 

significant role in regulating both the bloom’s size and the related surface aggregation of 

zooplankton. This paper will assess the dimentions, morphology and composition together with 

possible physical and biological drivers of zooplankton patches to provide a highly 

comprehensive view of the distribution of this copepod, its aggregating behaviour and its 

ecological importance. 

 

Keywords: Calanus finmarchicus, zooplankton patchiness, Lofoten-Vesterålen, bioacoustics, 

spring bloom, Norwegian Coastal Current 
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Abbreviations 

AIW  Arctic Intermediate Water 

ANOVA Analysis of Variance 

AW  Atlantic Water 

BEST  Bioenv and Stepwise 

CTD  Conductivity, Temperature, Density 

DSD  Depth Standard Deviation 

GPS  Global Positioning System 

LSD  Least Significant Distance 

LOPC  Laser Optical Plankton Counter 

MAD  Mean Acoustic Density 

MASD  Mean Acoustic Species Density 

MDS  Multidimensional Scaling 

MPD  Mean Patch Depth  

NAC  Norwegian Atlantic Current 

NCC  Nowegian Coastal Current 

PL  Prosome Length 

PP  Primary Production 

R  Roughness 

SA  Surface Area 

SSL  Sound Scattering Layer 

Sv  Backscattering Coefficient 

SW  Shannon Wiener 

TS  Target Strength 

V  Volume 

VPR  Video Plankton Recorder 
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1 Introduction 

1.1 Zooplankton Patchiness 

The way organisms occupy space is the result of physical and biological drivers influencing the 

environment and the interactions between individuals. However, regional differences in 

physiology, life history and ecological characteristics also have an important repercussion in 

distribution patterns. Although poorly characterized and understood (Franks, 2005), the 

distribution of both phytoplankton and zooplankton has been observed to be patchy in many 

shelf areas (Gallager et al., 1996). Patchiness is defined as a discontinuous distribution of 

individual organisms through space and is often a result of the interaction between physical and 

biological processes (Haury et al., 1978). Phytoplankton, bacteria, marine snow and 

zooplankton form thin plankton layers (Benoit-Bird et al., 2010). Concentrations of plankton 

and particles within patches are by definition higher than in the background waters. Thus, they 

are normally defined by a concentration of individuals exceeding the median value. Such 

aggregations can arise as responses to temperature and salinity gradients or discontinuities, 

water motion, variation in light intensity, food and/or predator concentrations as well as from 

complex social and reproductive behaviours (Ambler, 2002). Since these structures can affect 

catchability by predators and fishers, understanding this phenomenon is of high relevance for 

ecological and economical reasons. 

The biological importance of zooplankton patchiness resides in the relevance of these key 

trophic players in the transfer of primary production (PP) to top predators such as fish, marine 

mammals and seabirds, meaning such aggregations have the ability to enhance trophic transfer 

(Wishner et al., 1988). The fine-scale spatial distribution of prey is of high relevance to how 

predators evaluate the suitability of their food supply and the mechanisms they use to exploit it 

(Benoit-Bird et al., 2013). This means the survival and growth of many zooplankton predators, 

from invertebrates to whales, depends on their success in finding rich patches of prey, as the 

ambient abundances of zooplankton outside these patches are often too low to maintain 

previously observed rates of predator growth and reproduction (Genin et al., 2005). Hence, prey 

patch characteristics such as location in the water column and local density within spatial 

aggregations heavily influence habitat use by predators, suggesting patchiness may be of vital 

importance for understanding predator-prey relationships in pelagic marine systems (Benoit-

Bird et al., 2013).  

 9 
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The ecological consequences of any patch formation will depend on the intensity, size and 

persistence of the aggregations. Patches can differ greatly in terms of their size, shape and 

generating processes, their species and size-specific compositions, as well as the concentrations 

of individuals within aggregations. The size of plankton patches and their variability generally 

scale inversely with the organism’s size (Levin, 1992). Large patches are known to spread 

horizontally over many kilometres, that is between 30 and 60 km or even >100 km in case of 

the largest patches (Pinca and Huntley, 2000). Persistence of such patches in off-shore waters 

can be frequently measured in weeks or months (Cushing and Tungate, 1963). 

1.2 Patch Formation 

The relative importance of physical vs. biological processes to zooplankton patch formation 

cannot be determined a priori and may shift in magnitude with time (Stacey et al., 2007). 

Aggregation implies an increase in concentration, which can often have a biological factor at 

its source. Nevertheless, in marine ecosystems, pelagic fish and plankton spatial distributions 

in ocean ecosystems are highly influenced by hydrologic features such as ocean fronts, eddies, 

thermal stratification and upwelling (Mann and Lazier, 1996). As a result of the interaction 

between animal behaviour and these physical processes, large patches of zooplankton develop 

and are maintained. The habitats seem to be confined within hydrographic structures that 

aggregate the animals in restricted areas, resulting in ‘hotspots’ with high abundances of 

zooplankton that are found in the same areas from year to year (Halvorsen et al., 2003).  

Although biological processes such as feeding, reproduction and predator avoidance strategies 

may be of greater interest, Gaardsted et al. (2010) proved the importance of also quantifying 

variability due to advection. They reported an estimated transport of copepods through the study 

area boundaries corresponding to a rate of change of 7% day-1 off the shelf of northern Norway, 

which clearly illustrates the relevant consequences of coupling between mesoscale currents and 

patchiness in the zooplankton distribution. Surface waters involve strong surface circulation 

that may disperse its inhabitants over large distances (Halvorsen et al., 2003), suggesting 

organisms could possibly aggregate to enhance their chances of survival. This means an 

accurate description of plankton distributions and dynamics is often not achievable without 

considering advection effects. Thus, evaluating heterogeneity in zooplankton abundance and 

its relationship with currents is critical, although special attention must be paid to separate 

population variability at a given location due to advection from other zooplankton dynamics 

(Gaardsted et al., 2010). 
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1.3 The North Atlantic Key Species, Calanus finmarchicus 

With an annual biomass production of 150-300 million tons in the Nordic Seas, frequently 

constituting > 50% of mesozooplankton biomass throughout the North Atlantic (Melle et al., 

2014), the planktonic copepod Calanus finmarchicus is the dominating grazer in the Lofoten-

Vesterålen region (Planque and Batten, 2000). It is one of the most important multicellular 

zooplankton species in the northern North Atlantic, based on its abundance and role in food 

webs and biogeochemical cycles. The distribution of this calanoid copepod, described by 

Wishner et al. (1988) as very patchy, is sizeably influenced by circulation systems and their 

associated water mass characteristics. From the basin-wide programs, in combination with local 

time series measurements and Continuous Plankton Recorder (CPR) surveys, a tremendous 

source of information and knowledge of C. finmarchicus distribution and life history traits has 

emerged. This makes it a well-studied species, subject of a book (Marshall and Orr, revised 

edition, 1972) and over 1000 research articles since its publication (Melle et al., 2014). 

However, few studies have addressed patchiness of this species, and considering its dominance 

of the zooplankton assemblage in the study area, we can assume it is highly relevant in the 

composition of zooplankton patches on a large scale. 

This copepod plays an important role in the structure, stability, and function of marine 

ecosystems on the Norwegian continental shelf (Sakshaug et al., 1994). Numerous 

planktivorous fish species, such as the Atlantic mackerel (Scomber scombrus), Atlantic herring 

(Clupea harengus) and Capelin (Mallotus villosus) feed on plankton fields with C. 

finmarchicus. These are commercial fish species commonly harvested by the Norwegian 

fishery industry, meaning C. finmarchicus and its key position in the trophic chain are of high 

economic and commercial relevance, such that the famous Norwegian marine biologist A. 

Boeck wrote “It is hard to imagine that such minute animals could be of such importance in the 

economy of a country”. 

During its annual life cycle from egg to adult, C. finmarchicus pass through six nauplius (NI–

NVI) and five copepodite stages (CI–CV) (Figure 1). Individuals enter dormancy in summer 

and fall (Hirche, 1996a), constituting a major part of the spawning population the following 

spring. They carry with them lipid stores that make up most of their body weight and sustain 

metabolism during overwintering and subsequent molting, and partial development of gonads 

in mid-late winter (Rey-Rassat et al., 2002). Dormant copepodites are characterised by reduced 

metabolism and slowed development (Saumweber and Durbin, 2006). Enhanced probabilities 

of survival because of lower temperatures, and the avoidance of predators and parasites are 
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considered the main advantages of overwintering at depth (Krause and Radach, 1989). 

However, this deep water hibernation strategy also allows C. finmarchicus to reduce its loss 

rates due to advective dispersal during winter. As shown in figure 3, the main overwintering 

stage is the pre-adult CV (Conover, 1988), most abundant between 600 and 1200 m, well below 

the reach of surface-orientated planktivores, and at temperatures below 2°C in the Norwegian 

Sea (Edvardsen et al., 2006). Ascent from the winter diapause generally occurs in mid-late 

winter, when most CVs leave dormancy, molt into adults and mate upon returning to the surface 

(Melle et al., 2004). Overwintering populations of diverse origin concentrate over the 

continental shelf outside the Lofoten Islands to feed and spawn during the phytoplankton spring 

bloom, forming surface layers with high abundances. Such layers could represent an important 

food item probably governing the migration of the herring (Melle et al., 1994; Huse et al., 2012) 

The spring distribution of C. finmarchicus nauplii reflects spawning events occurring 

immediately after the seasonal ascent migration from deep hibernation habitats, where 

copepodite stage CV dwells for overwintering (Broms et al., 2016). Females then lay eggs in 

response to food levels, for which chlorophyll a concentration is a useful proxy (Runge et al., 

2006). During the surface-dwelling period of the life cycle, mortality appears to be greatest. 

Highest rates affect the earliest stages (eggs, nauplii) (Aksnes and Magnesen, 1988), where it 

is especially important in determining overall recruitment success (Ohman and Hirche, 2001; 

Ohman et al., 2002). Following the nauplii stage, the maximum abundance of CIs of the first 

generation is often observed to occur during the peak of the bloom or slightly after (Melle et 

al., 2004). For the first three copepodite stages (CI – CIII) individuals will remain in the upper 

mixed layer or within the pycnocline, if a subsurface chlorophyll maximum develops during 

the post-bloom phase (Melle et al., 2004). Survivorship of these stages is a key factor in the C. 

finmarchicus population dynamics, as it will determine the number of further new generation 

CV individuals migrating to overwintering areas after the bloom. It is conditioned by 

environmental factors such as temperature, food availability and con-specific abundance, 

resulting in marked seasonal and regional variability in stage-specific mortality patterns 

(Ohman and Hirche, 2001; Ohman et al., 2002).  
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1.4 Research area 

Located between 67°21’ and 69°23’ North and 11°44’ and 16°16’ East (Figure 2), the Lofoten-

Vesterålen marine ecosystem is extremely rich in biodiversity and is a key area for fish species 

of high commercial and ecological relevance, such as Atlantic cod (Gadus morhua) and herring 

(Clupea harengus). The Lofoten-Vesterålen shelves, contain the main spawning grounds for 

the Arcto-Norwegian cod stock (Ottersen et al., 2014). Such fishery resources are an important 

part of local tradition and culture since the Viking ages and the fishing industry in the area is 

of high economic importance to the local population. Patches of C. finmarchicus have been 

observed in the area regularly, playing a key role as source of food for commercial fish species 

due to their position in the trophic chain. Moreover, many seabirds breed in the area and high 

numbers of marine mammals are observed, making it an area of high ecological importance. 

These top predators are dependent on C. finmarchicus, which funnels PP to higher trophic 

levels. A recent and promising fishery aimed at developing a variety of products for human 

consumption is also based on this copepod. Thus, increasing knowledge concerning the 

productivity of this key trophic player will help to protect fish stocks and thus guarantee the 

continuity of the fishing industry in the area. One of the main challenges for the area is to ensure 

that existing fishery activities together with increasing maritime transport and the tourism 

industry do not negatively impact such a valuable ecosystem. Therefore, the region has been 

designated as one of the seven ‘especially valuable and vulnerable areas’ by the Norwegian 

government (“Integrated Management Plan for the Marine Environment”, 2011).  

Figure 1: Conceptual life cycle of Calanus (CI-CV: copepodite stages 
I-V; AF: adult female) (Figure: Malin Daase) 

 13 



A patch of Calanus finmarchicus in the Lofoten-Vesterålen region: Characteristics and determining factors  

1.4.1 Climate and Oceanography 

The Lofoten-Vesterålen area presents complex hydrographic features (Figure 2). The current 

system, together with the bathymetry, atmospheric conditions, and freshwater discharge, create 

considerable differences in the physical and biological environment of the continental shelf, the 

shelf-break, and the open ocean (Pedersen et al., 2000). 

The complex bathymetry of the region, characterised by deep troughs separating well-defined 

banks, to a great extent determines the circulation pattern, residence time and water mass 

exchange (Sundby, 1984), meaning there is a strong topographic influence in the flow regime 

of the study area. As we move offshore, it varies from Vestfjorden, an atypical fjord with a very 

wide opening and no well-defined sill, to a relatively shallow continental shelf (ca. 150 m.) and 

a steep shelf break descending to the deep Lofoten basin (Figure 2). Off Lofoten-Vesterålen 

the continental shelf is narrow (ca. 65 km) such that the frontal system is found close to the 

coast. In addition, the narrow sounds and straits between the main Lofoten Islands, where strong 

Figure 2: Map of theresearch area. Red lines mark the acoustic transects conducted across the patch 
from South to North: S2, S1, S3 and S4. The numbers show the location of the different stations, 
including test stations 1 to 3. The light blue arrows represent the Norwegian Coastal Current (NCC) 
and the dark blue arrow represents the Norwegian Atlantic Current (NAC). 
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currents such as the famous Moskenesstraumen can be found, connect Vestfjorden with the 

shelf areas off the western coast of the archipelago, developing an important fjord-shelf water 

exchange driven by strong tidal currents.  

Circulation in the area is dominated by two major northward flowing currents, the Norwegian 

Atlantic Current (NAC) and the Norwegian Coastal Current (NCC) (Sætre, 1999) (Figure 2). 

Strongly steered by topography, the saltier NAC runs northward to the west of the NCC and 

further offshore, along the shelf-break (Gascard et al., 2004). It is responsible for the inflow of 

warm and saline Atlantic Water (AW) into the Arctic, occupying the upper 600–700 m of the 

water column. A salinity minimum associated with a layer of Arctic Intermediate Water (AIW) 

is found below the AW (Blindheim, 1990), separating the AW from the deep water. The NCC 

flows along the coast, over the continental shelf. It divides into two branches south of 

Vestfjorden, one continuing north into the fjord to join the circulation system inside and the 

other steering west around the Lofoten tip before continuing northwards along the northwest 

coast of the Lofoten Islands (Figure 2). The front between both currents is usually sharp and 

located near the shelf break, resulting in a restricted cross-shelf water exchange throughout the 

year, especially during winter, when the NCC is strongest (Gaard and Hansen, 2000). 

Furthermore, the dynamic nature of the northward flowing NCC and the strong topographic 

influence of the flow regime in the area are likely to be the main driving forces in the formation 

of deep-water mesoscale anticyclonic eddies, which are frequently formed along the continental 

slope and in the Lofoten Basin. 

The oceanography of the area is subject to high seasonal and spatial variability. Changing 

hydroclimatic conditions over the seasons result in different circulation patterns over the shelf. 

For example, during winter, the NCC has a narrower and deeper (ca. 50– 150 m) wedge-shape 

and flows faster than in summer due to the prevailing southerly winds. Such winds can pile up 

water masses towards the coast due to the effect of inshore Ekman transport, enhancing the 

barotropic component of the current and thus increasing its strength (Mitchelson-Jacob and 

Sundby, 2001). In these periods where the current is stronger, it flows closer to the coast. This 

results in the advection of colder water masses near the entrance of fjords located upstream of 

Vestfjorden, before the NCC splits, directly to the shelf areas situated off the north-western 

coast of the Lofoten Islands. Spatial variability within the study area includes differences in the 

physical conditions of the water masses, most evident along an east–west axis. Cold, low-

salinity water near the coast contrasts with AW masses dominating at the continental slope and 

in the open ocean (Pedersen et al., 2000). In summer, the seasonal lateral movement mixes both 
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water masses, eroding the clearly defined gradients present in spring. This complex circulation 

system will strongly affect the plankton distribution around the Lofoten Islands by continuous 

advection of planktonic organisms (Espinasse et al, 2016). 

1.4.2 Production Regimes 

The North Atlantic pattern of PP is mainly determined by light conditions and surface 

temperatures, but also nutrient supply, mechanisms of water column vertical stabilisation and 

grazing. The northeast Atlantic represents a typical spring bloom system, although variations 

between deep basins and shelf areas exist within the seasonal cycle of PP. According to 

Sverdrup’s critical depth concept, production occurs when the mixing depth of algal cells is 

less than a critical depth such that net production is positive (Sverdrup, 1953). This usually 

occurs in March–April, allowing the bloom to start shortly after, when the pycnocline 

approaches the upper 30– 40 m (Zhai et al., 2012). Sverdrup’s concept of critical depth has 

been shown to accurately address the pattern of seasonal phytoplankton production in the 

Norwegian Sea, although recent publications point to more complex or at least regionally 

different controlling mechanisms (Behrenfeld, 2010; Mahavedan et al., 2012).  

Large seasonal and spatial variability of chlorophyll a has been observed by Pedersen et al. 

(2000) in the study area, and interannual variations in the timing of the bloom are common 

(Rey, 2004). However, by early April, PP has normally started with chlorophyll a values in the 

range between 2–4 mg/L in the surface layer (0–20 m) and by May/June the accumulation of 

chlorophyll a has increased around 0.8 mg/L, mainly at surface waters along the shelf-edge 

(Pedersen et al., 2000). These chlorophyll concentrations in the upper mixed layer are however 

lower than 3 mg/L in average (Bagoeien et al., 2012). Nonetheless, maximum chlorophyll 

concentrations regularly correspond to maximum phytoplankton production, both occurring 

near the surface. This scenario attracts grazer species such as C. finmarchicus, meaning 

maximum abundances of this copepod could also be related to maximum chlorophyll 

concentrations and phytoplankton production (Longhurst and Harrison, 1989).  

1.5 Rationale and Objectives 

Several studies (e.g., Brentnall et al., 2003) have suggested that patches of plankton are essential 

to the growth and survival of planktonic species such as Atlantic cod (Gadus morhua), Hence, 

understanding the extent of this phenomenon in the distribution of species could be of potential 

interest not only for zooplankton harvesting but also its main predators, as it plays a key role in 

the trophic web to commercially exploited fish species. Thus, due to their important role in the 
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ecosystem, sustainable management based on scientific studies concerning their productivity is 

critical to protect their stocks. 

Unfortunately, sampling difficulties have left knowledge of their structure and mechanisms of 

their formation in free-living populations incomplete, remaining a central issue in marine 

ecology. Zooplankton patches have been previously approached using a wide range of methods 

such as net sampling, continuous water pumping, acoustics, optical counters, video recording, 

automated underwater vehicles, laboratory experiments or modelling (Geoffroy et al., 2016; 

Trudnowska et al., 2016). Despite the high research efforts, difficulties to obtain appropriate 

spatial resolution and distinct differentiation between a patch and the ambient water have 

resulted in a poor understanding of this phenomenon. Similarly, the large spatial scale in 

oceanic systems and the lack of consistent methods for acoustically distinguishing fish shoals 

from plankton patches have allowed only a limited study of the spatial interrelationship of fish 

and zooplankton in the open ocean (Swartzman et al., 1999).  

Most of these studies have focused on the vertical distribution of organisms in the water column 

rather than on their horizontal distribution. One of the main goals when addressing this topic is 

linking aggregative processes and their influence across spatial scales (Folt and Burns, 1999). 

This enhances the need for an interdisciplinary study able to locate patches and delineate 

physical and behavioural mechanisms responsible for zooplankton patch formation in the 

ocean. These knowledge gaps have motivated a study involving a scientific cruise conducted 

in spring 2017 in the Lofoten-Vesterålen region with the aim of determining the physical and 

biological mechanisms responsible for the formation of zooplankton patches, and how these 

influence stock size estimations of a commercially harvested key species. By describing patches 

of C. finmarchicus in detail based on acoustic and net sample data, and further relating patch 

structure to environmental drivers, this thesis contributes to a better understanding of the 

species dynamics and behaviour, but also that of its main predators.  
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2 Materials and Methods 

2.1 Hydrographic Sampling 

A SBE 911+ CTD equipped with sensors for conductivity (salinity), temperature, pressure 

(depth), oxygen, fluorescence and turbidity together with 12 x 5 L Niskin bottles for water 

sampling was deployed 12 times along the transects (Figure 2). CTD profiles were taken along 

the whole water column down to depths ranging from 97 m at the shallowest station to 2183 m 

at the deepest station. In addition, to obtain a high spatial resolution of data on water mass 

properties, an Applied Microsystems Micro CTD was mounted on the Moving Vessel Profiler 

and recorded Temperature-Salinity profiles along the acoustic transects. This allowed us to 

measure the spatial and vertical variability in temperature and salinity in the water column and 

later interpret the effects of these key physical factors on zooplankton patchiness. In addition, 

the CTD data enabled the calculation of the equivalent sound speed and coefficients of 

absorption required for the acoustic data analysis.  

Nutrient (Bottom, 50, 20, 10, 5 and 0 m) and chlorophyll a (50, 20, 10, 5 and 0 m) samples 

were taken at all stations except station 3. Chlorophyll a samples were filtered on board using 

GF/F filters (3 parallels per station with 50 to 150 ml filtered per parallel) and conserved at -

80°C together with the nutrient samples for further analysis on land. An overview of all CTD 

stations and water samples is given in the appendix. 

2.2 Acoustic Sampling 

The EK60 multifrequency echosounder was keel-mounted on R/V Helmer Hanssen, calibrated 

prior to departure with the standard sphere method (Simmonds and MacLennan, 2005) and 

continuously recorded acoustic data at 38 and 120 kHz along the entire cruise track. The results 

described in this report will focus on the transects conducted across the observed patch. In order 

to target the complete zooplankton community in the water column, ideally a higher frequency 

such as 200 kHz should have been used. Unfortunately this transducer was not available for our 

cruise, meaning smaller meso and micro-zooplankton species could have eluded detection by 

the echosounders. 

The resulting acoustic data profiles were later scrutinized with the Echoview 7.1 software. The 

data was cleaned, meaning that bad data, noise and attenuated signals were removed from the 

analysis. This process requires a high level of precision, as zooplankton can be mistakenly 

 19 



A patch of Calanus finmarchicus in the Lofoten-Vesterålen region: Characteristics and determining factors  

removed as noise. Due to the ship's draft and near field region (Simmonds and MacLennan, 

2005), acoustic data from the top 12 m were excluded from the analysis. We understand this is 

a limitation to our study, since copepods are known to form large patches at the surface 

(Basedow et al., 2019). 

Once the data was ready for analysis, we characterized patches with three metrics: 

1)  Mean acoustic density (MAD) and mean acoustic species density (MASD) 

To calculate the volume backscattering strength (Sv in dB re 1 m-1) for every section of the 

water column, the echograms were gridded into 0.25 nmi of distance by 1 m of depth cells. 

The backscatter values in each grid box were integrated by cells for the area located between 

the top line and the line of mean patch depth with the aim of only targeting the organisms 

located in the patch. Echointegration was also performed for the area located between the 

line of mean patch depth and the bottom line in order to establish a comparison of the 

backscatter within and outside the patch. Average Target strength (TS) for each zooplankton 

species captured in the nets was obtained using the following formulas from the literature: 

For gastropods and appendicularians (Stanton et al., 1994):  

𝑇𝑇𝑆𝑆 = 10𝑙𝑙𝑜𝑜𝑔𝑔 {( 25
144

) 𝜋𝜋4𝐷𝐷6𝑓𝑓4𝑅𝑅2𝑐𝑐−4(1 + (25
9

) 𝜋𝜋4𝑓𝑓4𝐷𝐷4𝑐𝑐−4)−1}                                               

Where R = reflection coefficient, 0.05, D = mean body width (m), f = frequency, c = speed 
of sound.  

For fluid-like animals (Copepoda, Amphipoda, Euphausiacea, Decapoda, Chaetognatha) 
(Stanton et al., 1994): 

             𝑇𝑇𝑆𝑆 = 100.08𝑅𝑅2𝐿𝐿2𝛽𝛽𝐷𝐷
−1[1−𝑒𝑒𝑒𝑒𝑒𝑒(−8𝜋𝜋2𝑓𝑓2𝐷𝐷2𝑠𝑠2𝑐𝑐−2)𝑐𝑐𝑐𝑐𝑠𝑠(𝜋𝜋𝑓𝑓𝐷𝐷𝑐𝑐−1(4−0.5𝜋𝜋(𝜋𝜋𝑓𝑓𝐷𝐷𝑐𝑐−1+0.4)−1))]                           

Where R = reflection coefficient, 0.038 (Copepoda, Euphausiacea, Decapoda,), 0.056 
(Amphipoda), 0.03 (Chaetognatha), L = mean body prosome length (m), s = standard 
deviation (SD) of length, βD = ratio of body length to width, D = mean body width (m), f = 
frequency, c = speed of sound.  

For Atlantic cod (Gadus morhua) larvae (Chu et al., 2003): 

𝑇𝑇𝑆𝑆 = 176.1 log10 𝐿𝐿 − 82.4 

Where L = mean length (cm) 

The average TS for all species combined and average Sv for each transect were then 
combined to calculate the MAD (all species combined) and MASD (each species) for all 
transects outside and within the patch.  

MAD = (10𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆 10⁄ ) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (10𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀 𝑇𝑇𝑆𝑆 10⁄ )⁄  
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𝑀𝑀𝑀𝑀𝑆𝑆𝐷𝐷 = 𝑀𝑀𝑀𝑀𝐷𝐷 × 𝑅𝑅𝑀𝑀𝑙𝑙𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀 𝑀𝑀𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝑀𝑀𝑐𝑐𝑀𝑀 𝑜𝑜𝑓𝑓 𝐸𝐸𝑀𝑀𝑐𝑐ℎ 𝑆𝑆𝑆𝑆𝑀𝑀𝑐𝑐𝑅𝑅𝑀𝑀𝑆𝑆 

2) Depth and distance to the vessel 

Sv contours at – 73 dB re m-1 were used to delimitate the border of a patch. Mean patch 

depth of the signal within these contours (MD) and depth standard deviation (DSD) were 

measured. 

3) Surface area (SA) and volume (V) of the patch  

Length and width were obtained using the GPS positions of the patch’s borders throughout 

the different transects. SA was calculated by joining the borders of the patches at the 

different transects before calculating the distance in Km between them. To enable easier 

SA calculation, SA was obtained for triangular sections which were later added together. 

The following formula was applied, where a, b, c are the distances between the coordinate 

points that form each triangle: 

𝑆𝑆𝑀𝑀 (𝐾𝐾𝐾𝐾2) = 𝑀𝑀𝑡𝑡1 + 𝑀𝑀𝑡𝑡2 + 𝑀𝑀𝑡𝑡𝑀𝑀…  

𝑀𝑀𝑡𝑡𝑀𝑀 = �𝑆𝑆𝑡𝑡𝑀𝑀(𝑆𝑆𝑡𝑡𝑀𝑀 − 𝑀𝑀𝑡𝑡𝑀𝑀)(𝑆𝑆𝑡𝑡𝑀𝑀 − 𝐴𝐴𝑡𝑡𝑀𝑀)(𝑆𝑆𝑡𝑡𝑀𝑀 − 𝑐𝑐𝑡𝑡𝑀𝑀) 

                                                                           𝑆𝑆𝑡𝑡𝑀𝑀 = (𝑀𝑀𝑡𝑡𝑀𝑀 + 𝐴𝐴𝑡𝑡𝑀𝑀 + 𝑐𝑐𝑡𝑡𝑀𝑀) 2⁄  

Patch Volume (V) was calculated multiplying the SA by the previously calculated patch 

MD using the following formula: 

𝑉𝑉(𝐾𝐾3)  =  𝑆𝑆𝑀𝑀 𝑥𝑥 𝑀𝑀𝐷𝐷 

2.3 Net Sampling 

2.3.1 Mulitinet Sampling 

A Hydrobios Multinet (0.25 m2) with a mesh size of 180 µm was deployed at 9 stations located 

along the acoustic transects to estimate zooplankton abundance and ground truth the acoustic 

signal. In addition, two electronic flowmeters with automatic angle compensation were 

mounted on the underwater unit to obtain the volume of water filtered by the net, necessary for 

the calculation of the abundance (ind/m3). Samples were taken from 5 depth strata and fixed in 

4% formalin-seawater solution (Zoofix) for further analysis on land. An overview of all 

multinet stations taken is given in the appendix. 

Further laboratory analysis consisted of sorting the different samples by species and their 

developmental stages when possible. At least 450 zooplankton individuals and 100 Calanus 
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were identified from each sample. Abundance (ind/m3) was calculated using the volume of 

water filtered by the net from the two electronic flowmeters mounted on the multinet. Most 

length, length SD, width and weight measurements were obtained from a similar study by this 

author where they were determined experimentally by randomly selecting 30 organisms of each 

species. Measurements for species with no record were obtained from the literature (Appendix 

2). 

2.3.2 Bongo Net Trawling 

A bongo net with a mesh size of 200 and 500 µm was deployed twice at each station except for 

station 12 to sample Atlantic cod (Gadus morhua) larvae, a well-kown predator of copepoda 

nauplii. The net was towed for 20 minutes at depths ranging from 0 to 30 meters at speeds of 

2-3 knots. Stations 10 and 11 were sampled only with the 500 µm net, since the 200 µm net 

tore due to the harsh weather conditions during station 9, meaning no data was collected for 

this station. Cod larvae were roughly sorted before preservation in small glass vials with ~80% 

ethanol solution for later quantification in the laboratory. An overview of all bongo net trawls 

is given in the appendix. 

2.4 Statistical Analysis 

The results that one can obtain by statistical analysis are objective and meaningful conclusions 

that are to be trusted more than descriptive observations. Thus, our data was submitted to a 

series of statistic tests. An ANOVA test from the general linear models was used to evaluate 

the significance of the multinet data. Levene’s test was used to ensure homogeneity between 

the variances. If the resulting p value was below 0.05, the variables were converted into 

logarithmic form. To complete the ANOVA test, the variables were submitted to a Fisher Least 

Significant Distance (LSD) test, allowing us to assess the significance of the variations within 

the categorical factors. 

Multivariate structure of the zooplanktonic assemblage and its relationship with the physical-

biological composition of the water column was studied using the PRIMER software package. 

Abundances of the different species and copepodite stages were square root-transformed and 

used to derive a Bray Curtis similarity distances matrix between the different multinet samples 

and their depth layers. The resultant matrix was used to conduct a Multidimensional Scaling 

analysis (MDS), setting the 2D Stress limit to 0.15. Sample groupings with a similarity higher 

than 40 where then examined using a hierarchical cluster analysis and their characteristic 

species were found using the SIMPER procedure. Temperature, salinity, fluorescence, 
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irradiance and nitrate+nitrite were normalised to create a semi-matrix of Euclidean distances 

and compare them with the zooplanktonic assemblage. Since salinity and density (Rs;ρ=0.9999) 

and nitrate+nitrite, phosphate and silicic acid (RNO3+NO2;PO4=0.7526, RNO3+NO2;Si(OH)4=0.8183, 

RPO4;Si(OH)4=0.7976) were strongly correlated, only salinity and nitrate+nitrite were used in 

order to avoid collinearity. Finally, Bioenv and Stepwise analysis (BEST) was carried out to 

match both matrixes, testing the significance of the match with 999 random permutations of the 

rank correlation coefficient ρ. 

Simple regression analysis was used to estimate both the relationship between the total 

mesozooplankton abundance and the abundance of its five main contributors (C. finmarchicus, 

Microcalanus, Oithona spp., Copepoda nauplii, Oikopleura spp.) and the relationship between 

the abundance of cod larvae and copepoda nauplii sampled in the 5 – 30 m layer. Choice of this 

layer was related to the sampling depth of the bongo net, in order to make the data comparable. 

Abundances in ind/m3 were transformed into logarithmic form and the line equations and R2 

values were calculated for each regression. 

Finally, Shannon Wiener (SW) Index was calculated in order to study the taxonomic diversity 

within and outside the patch. The different layers were divided according to the results from 

the MDS analysis. 
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3 Results 

3.1 Physical and Biological Parameters 

3.1.1 Hydrography 

The two main currents dominating the area were identified by distinct temperature and salinity 

variations detected by the CTD. Lower salinities (< 35 psu.) at ca. 6°C were present at shallow 

depths extending down to ca. 100-150 m over the continental shelf, corresponding to the 

freshwater input advected from the nearby fjords by the NCC. However, the extension of this 

layer decreases in depth with distance from the coast and does not extend to off-shelf areas due 

Transect S1 

Transect S4 

Transect S3 

Transect S2 

Figure 4: Temperature (left) and salinity (right) along the transects across the study area 
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to the strong density gradient caused by the AW, with T > 7°C and S > 35 psu driven into the 

area by the NAC. This is clearly visible in transects S1 and S2 (Figure 4), as they extend further 

above the continental shelf. This warm and saline water input was observed down to ca. 600 m, 

mostly flowing along the shelf-break but also spreading onto the lower depths (> ca. 150 m) of 

the continental shelf. Below, as the influence of AW decreases, water temperatures decrease to 

minus degrees together with a reduction in salinity which is characteristic of the AIW.  

By comparing the off-shelf profiles (St. 5, 8 & 9) we notice both temperature and salinity 

exhibit similar conditions for the first 400 m, with T > 7°C and S > 35 psu marking the border 

of the AW, although slightly lower temperatures were observed at station 9 (Figure 5). 

However, this layer extends down to ca. 500 m in station 5 and ca. 600 m in stations 8 and 9, 

meaning the AW layer covers a greater fraction of the water column in the northern transects 

and thus the border with the AIW will be found deeper. Less variations are found between the 

shelf stations, where both T and S increase slightly with depth, indicating the transition between 

the freshwater influenced coastal water and the underlying AW. Nevertheless, temperature 

remains almost consistently low (< 6°C) at station 7, possibly due to its location further inshore, 

where the influence of the NCC is greater. 

 

 

 

 

 

 

 

 

 

 Figure 5: Temperature and salinity profiles for the different CTD deployments 
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3.1.2 Chlorophyll a 

Water samples revealed generally low concentrations of chlorophyll a (<2 µg/L) in the area, 

with maximums occurring in the upper 15 m and decreasing with depth (Figure 6). The low 

values (ca. 0.25 µg/L) remaining homogeneous throughout the water column at station 7 

however do not respect this trend. Surprisingly, very high concentrations (ca. 5-6 µg/L), which 

triplicate the surface values of the other stations, were measured at station 8. Nevertheless, no 

clear relationship was found between the location of the station and the chlorophyll 

concentrations. Although slightly lower phaeophytin concentrations were found at some 

stations, values remained very similar to chlorophyll, following the same trend. 

 

 

 

Chlorophyll a 
Phaeophytin 

De
pt

h 
(m

) 

Pigment (µg/L) 

St. 4 St. 6 St. 5 

St. 7 

St. 10 

St. 9 St. 8 

St. 12 St. 11 

Figure 6: Chlorophyll a and phaeophytin profiles from the water samples taken along the transects 
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3.2 Acoustic Data 

The acoustic data recorded by the EK 60 echosounder revealed a persistent high energy sound 

scattering layer (SSL) over the continental shelf, which ranged from the surface to a mean depth 

of 55.46 m (Figures 7 to 10). By mapping the extension of the patch in the different transects 

(Figure 18) this trend is obvious. However, the depth range of the SSL decreases as we 

approach the continental slope. This tendency is clearly visible in the echograms corresponding 

to all transects except transect S3, where the SSL appears to maintain a similar depth range 

beyond the shelf-break (Figure 9). Thus, the results show that high amounts of biomass are 

available for top predators over the entire shelf. Strong signals were detected by the 38 kHz 

frequency indicating the presence of larger organisms. The signal from zooplankton was thus 

classified by subtracting the 38 kHz signal from the 120 kHz signal. Deeper in the water 

column, a less dense epipelagic SSL is visible in the 38 kHz frequency at ca. 150 m over the 

shelf in the two southern transects. 
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Figure 7: Volume backscattering strength echograms at 38, 120 and 120-38 kHz along transect S1 
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Figure 8: Volume backscattering strength echograms at 38, 120 and 120-38 kHz along transect S2 
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Figure 9: Volume backscattering strength echograms at 38, 120 and 120-38 kHz along transect S3 
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Acoustic species density calculations gave a mean value of 51229.32 ind/m3 for the whole study 

area, with low SD (0.095) between the different transects, indicating near homogeneous 

distribution of organisms. MASD for species within the acoustic size detection range was 

highest for C. finmarchicus (41389.09 ind/m3) and decreased significantly with increasing 

developmental stage (p = 0.02, r2 = 0.87). However, we must take into account the MAD would 

have been notably higher if the first 12 m of the water column were noise-free and thus could 

have also been echointegrated, giving higher Sv values. Patch dimensions for the whole study 

area based on its extension along the 4 transects gave the following values: SA = 6501.90 Km2, 

MD = 55.460 m, DSD = 16.809 m, V = 360595374 m3. Acoustic calculation parameters can be 

consulted together with the full assemblage in the appendix. 
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Figure 10: Volume backscattering strength echograms at 38, 120 and 120-38 kHz along transect S4 
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3.3 Community Composition 

The assemblage was strongly dominated by C. finmarchicus at almost all stations, which 

accounted for 80.5% of the community composition in the study area. This was especially 

remarkable in the southernmost transect where almost the whole community composition is 

represented by this species (Figures 11 & 12). For instance, 98% of the organisms sampled at 

station 4 were C. finmarchicus. However, the general values are lower than 2150 ind/m3 for off-

shelf stations and higher than 3000 ind/m3 for shelf stations. Within this trend, stations located 

in the northern transects were found to be more densely populated.  

 

Appendiculars, mostly Oikopleura dioica, represent the next most abundant taxonomic group, 

contributing notably to the community as we move towards the north (Figures 11 & 12). Except 

for transect S2, where low densities were found, high abundances ranging between 500 and 

Figure 11: Relative abundance (ind/m3) of C. finmarchicus and the main taxonomic groups within the 
acoustic detection size range expanded to the whole sampled water column at each multinet station 
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1500 ind/m3 were observed at the different stations sampled by the multinet. Over 3000 ind/m3 

were sampled at station 6, making it the only station where the population of C. finmarchicus 

was overweighed by the abundance of O. dioca. Taxonomic diversity increased northwards as 

a result of higher abundances of other calanoids and medusa (Figure 11). 

Total abundance of organisms varies notably between the different stations, with significantly 

higher abundances registered on shelf stations than on off-shelf stations (Figure 12). The ratio 

of organisms located in off-shelf stations versus on-shelf stations was found to be 1:6, meaning 

for each individual located off the shelf, 6 are found on the shelf. A clearly representative 

example of this is visible in transect S2, where station 4, located on the shelf, revealed the 

highest abundance of organisms in the study area (28611.11 ind/m3), contrasting with station 

5, located on the same transect but off-shelf, where the lowest density of individuals in the 

whole study area was observed (1265.88 ind/m3) (Figure 12). Multinet samples taken at 

different depths reveal higher abundances in surface waters which decrease with depth at most 

stations. The ratio of organisms located in the deepest sampled layer versus the shallowest 

sampled layer of all stations was found to be 1:11.3, meaning for each individual located in the 

lowermost layer, 11.3 are found in the uppermost layer. For instance, 20560.75 ind/m3 were 

recorded in the upper 2 meters of the water column in station 4, contrasting with the 19.9 ind/m3 

present in the lowest depth strata (100-150 m) (Figure 12). Nevertheless, how organized 

organisms are in the water column following this trend will vary from station to station. Once 

again, C. finmarchicus dominated the assemblage at most depths up to 100 m, followed by a 

notable contribution of appendicularians. However, below this depth it was mostly other 

calanoids that represented the greatest portion of the assemblage. Full assemblage can be 

consulted together with the acoustic calculation parameters in the appendix. 
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Figure 12: Abundance (ind/m3) of C. finmarchicus and the main taxonomic groups at the sampled depth 
strata for a size range corresponding to the organisms detected with acoustics. 
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The multivariate analysis revealed three distinct sample groups, according to the composition 

of their zooplankton assemblages (Figure 13). Group A comprised the largest amount of 

samples, representing a community composed mainly by copepoda species such as C. 

finmarchicus or O. Similis together with high numbers of nauplii. These remained in the 

trophogeneous upper layer, which extends throughout the top 100 m of shelf waters and the top 

30 m of off shelf waters. Group B gathers samples taken in the lower part of the water column 

over the shelf (>100 m) and from 30 to 100 m off the shelf. It is dominated by Microcalanus 

and an increasing population of Metridia spp. and Oithona atlantica, which differentiates it 

from group A. Finally, group C covers the lower depths of off shelf stations, characterized by 

higher abundances of Metridia longa and ostracods. Thus, we can identify a trend displaying 

similar species found deeper in the water column on the shelf than off the shelf. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The BEST analysis revealed a subset comprising temperature and nitrate-nitrite represented the 

best match between the physical-biological parameters of the water column and the 

zooplanktonic assemblage, explaining 61.9% of the variance in zooplankton composition. Both 

variables correlated well with each other, with positive correlations (r2 = 0.894) over the shelf. 

Although positive correlations can also be found within the upper 30 m at some off-shelf 

stations, lower depths displayed very low temperatures, meaning a negative correlation (r2 = 

A B 

C 

Figure 13:  Results of the multivariate analyses. The MDS is represented with different symbols for 
sampling layer and location, and the different sample groups with a higher similarity than 40 (A,B & C) 
are sorrounded by a continuous line. The main species contributing to the different groups are 
specified 
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Figure 14: Shannon Wiener Index for the different stations divided into Upper layer (<100 m shelf, <30 
m off shelf), Intermediate layer (100-150 m shelf, 30-100 m off shelf) and Lower Layer (>100 m off 
shelf) 

0.809) will result if the whole temperature profile is taken into account. However, both variables 

correlated negatively with the abundances of the main zooplanktonic species, since they 

increase with depth while the highest abundances are found at surface. 

Although generally low, the Shannon Wiener Index varied markedly between stations and depth 

layers, ranging from 0.24 to 1.249 (Figure 14). Higher diversity was found in the upper layer 

above the shelf (e.g. St. 11) than off-shelf stations, where lower layers (e.g. St. 9) were more 

diverse. This means diversity decreased with depth over the shelf and increased with depth off 

the shelf. However, station 12 contradicts this trend, possibly because of the shallower depth 

range sampled (0 - 465 m) compared to other off-shelf stations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Significant correlation between the total zooplankton abundance and its main contributors was 

only found for C. finmarchicus (Figure 15). Linear regression analysis for this species revealed 

strong dependency of total abundance values on C. finmarchicus concentrations (p = 1.08e-05, 

r2 = 0.946). Although not significant, all other species groupings exhibited positive correlations 
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with a more gradual slope except for Chaetognaths, which decrease with increasing total 

abundance. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

Focusing on C. finmarchicus, developmental stage analysis of this species revealed the study 

area’s population was generally in an intermediate stage, being CIII by far the dominating stage 

(Figure 16). Younger organisms, generally CIII and younger, concentrated in shallower waters 

up to 100 m on the shelf, while deeper waters were generally dominated by CIV and older 

organisms, with a remarkable CV population. However, off the shelf older stages start to 

dominate from 30 m instead of 100 m. Thus, it is generally the deeper off-shelf stations that 

present the highest abundances of higher developmental stages compared to the shallower shelf 

stations, dominated by younger organisms. Nonetheless, we must take into account CV and 

CIV individuals were also found in high numbers at shallow depths, but they were outnumbered 

by the high abundances of lower developmental stages, resulting in a lower stage index for the

Figure 15: Simple regression analysis between the total zooplankton abundance, C. finmarchicus and 
the  main taxonomic groups 
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overall population. Furthermore, although lower densities of adult stages were recorded, adult 

females dominated over adult males at most stations. 

 

Bongo net sampling confirmed the presence of Atlantic Cod (Gadus morhua) larvae, a well-

known predator of copepod egg and nauplii, in the study area. Due to the timing of the study, 

the larvae were still in a low developmental stage. Higher numbers of this species were found 

at shelf stations, being the most abundant at St. 7 (0.11 ind/m3), compared to off-shelf stations, 

being less abundant at St. 8 (0.00013 ind/m3) (Figure 19). This gives a ratio of 1:18.1, meaning 

for each individual found off the shelf, 18.1 are found over the continental shelf. This matches 

with the highest concentrations of copepod nauplii, where significantly contrasting abundances 

were found on and off-shelf. A representative example of such disparity is found in transect 3, 

were 2364.9 ind/m3 were sampled at St. 10, located on the shelf, compared to only 14.4 ind/m3 

at St. 8, located off the shelf. Simple linear regression analysis revealed a marginally significant 

positive correlation between their abundances (p = 0.08, r2 = 0.482) (Figure 17).  

 

 

Figure 16: Calanus stage index mean and standard deviation at each sampled layer on and off the shelf. 
The blue box represents those samples taken in the NCC layer and the red box those taken in the AW 
layer 
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Figure 17: Simple regression analysis between cod larvae and copepoda nauplii abundance in the 5 – 
30 m layer. Shaded area encloses 95% interval 
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4 Discussion 

4.1 Advantages and Limitations of Acoustic-Trawl Surveys 

A variety of methods such as Laser Optical Plankton Counters (LOPCs), Video Plankton 

Recorders (VPRs) or water pumping have been used by previous studies to document 

zooplankton patchiness. However, this thesis focused on results obtained through combining 

acoustic data and net sampling. Acoustic data visualized live on-board provided a continuous 

three-dimensional picture of the backscatter throughout the water column, allowing targeted 

deployment of net samples in biologically-defined depth strata. This combination enabled a 

high spatial resolution provided by the acoustics, essential for targeting large patches in the 

horizontal scale, and high taxonomic resolution of the patch composition provided by net 

samples. However, the exclusive use of sound to definitively identify aquatic organisms is 

unfortunately not possible because the amount of energy reflected, echo shapes and maximum 

amplitudes of the signal vary among successive returns from the same animal. The amount of 

sound energy returned from a target is dependent on the choice and configuration of hardware, 

water characteristics and location, composition, and behaviour of detected targets (Horne, 

2000). This means active acoustic systems can be very useful for rapid data acquisition and 

processing particle abundance and size, but unfortunately they lack information on the 

taxonomic composition of the community (Gallager et al., 2016). Therefore, deployment of net 

samplers along the acoustic transects was necessary to ground truth the acoustic signal. This 

allowed the identification of the different species, enabling the estimation of the composition, 

structure and density of potential zooplankton patches together with the total relative biomass 

and abundance of the targeted species in the study area. 

In most studies, zooplankton abundance and distribution are assessed by net sampling, which 

inconveniently provides discrete data in space and time. Additionally, zooplankton, particularly 

macrozooplankton, is known to avoid nets (Fleminger and Clutter, 1965; Brinton, 1967; Debby 

et al., 2004; Lawson et al., 2008) because of both visual and mechanical disturbances 

(Fleminger and Clutter, 1965); this avoidance being higher when using smaller nets. Avoidance 

generally results in a systematic underestimation of macrozooplankton biomass if the sampling 

bias is ignored. However, acoustics allows a simultaneous collection of highly accurate 

qualitative and quantitative data on various communities of an ecosystem, from zooplankton to 

large predators, providing a comprehensive vision of their distribution. Therefore, one of the 

main motivations for the use of acoustics for this project was the possibility of sampling 
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organisms that would otherwise be missed by net samplers, in order to resolve the distribution 

of Calanus patches in greater spatial detail. 

Nonetheless, the quality of our data was constrained by severe spatio-temporal limitations 

arising when mapping zooplankton abundance and distribution from ships. The area covered 

was limited to the vessel’s track and differences in the timing between stations and transects 

could have affected the results. In addition, ships disturb the surrounding environment 

physically, meaning the location of organisms in the water column could have been altered, 

especially near the surface. In this sense, using autonomous platforms equipped with the 

adequate instrumentation such as unmanned ocean gliders could provide higher quality data 

when targeting zooplankton patches. 

4.2 Patch dimensions and morphology 

This study provides a high resolution, three-dimensional view of zooplankton patchiness in the 

Lofoten-Vesterålen region. The results show a persistent SSL over the entire continental shelf. 

However, as we move towards the shelf-break, the density of the SSL slowly decreases and 

stops above off-shelf areas. We conclude that the patch extends across the continental shelf 

until it reaches the shelf-break, where it dissipates. However, the lack of cruise time only 

enabled the completion of 4 transects, meaning the dimensions in the latitudinal axis are only 

roughly mapped. 

When determining patch location, dimensions and morphology from the available transects, 

various possibilities were contemplated (Figure 18). Despite the lack of acoustic data between 

northern and southern transects which would allow a more accurate approach of the patch, an 

idea of the patch parameters can be obtained from the available data. One of the possibilities is 

the presence of two different and independent patches, located one within the area of the 

southern transects and the other one within the area of the northern transects. A different 

interpretation of these results would be that it was the same patch located further north due to 

the influence of the north-flowing currents present in the area.  Nonetheless, similarity between 

the acoustic species density calculations for the different transects indicated near homogeneous 

distribution of organisms, suggesting the whole area could be covered by the same aggregation. 

This possibility involves a large patch extending between the northernmost and southernmost 

transects, consisting of SA = 6501.90 Km2, MD = 55.460 m, DSD = 16.809 m, V = 360595374 

m3 and a MASD of 51229.32 ind/m3 (Figure 18). These results compared well with the ground 

data, proving a realistic representation of the community. Combining these results with other 

data sets and previous literature (e.g., Pinca and Huntley, 2000; Wishner et al., 1988; Basedow 
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Figure 18: Plots of the different possible patch formations in the study area. A and B represent the first 
possibility, C represents the second possibility and D the third and most probable possibility, on which 
we will focus. The shaded area is the area covered by the patch, the red lines represent the extension 
of the patch in the different transects and the blue dots locate the different stations 

et al., 2018) we can conclude a large patch expanding across the continental shelf and 

northwards along the shelf break is the most probable patch morphology.  

 

 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Similar macro-scale zooplankton patches (>100 km) have been previously detected by Pinca 

and Huntley (2000). Wishner et al (1988) detected an extensive, nearly continuous surface layer 

of C. finmarchicus occupying an area over 2500 km2 using a 200 kHz acoustic system. 

Although there is a large unsampled area between transect S1 and transect S3, there is a series 

of determining factors that support this conclusion. Firstly, no clear hydrographic differences 

have been spotted as we moved north along the continental shelf, indicating environmental 

continuity. Patterns in temperature and salinity remained relatively homogeneous between 

northern and southern transects compared to the notable differences spotted between off-shelf 

and shelf stations. This suggests a large continuous patch instead of two separate patches, as no 

hydrographic or topographic features that could potentially interrupt the northward flow of 
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organisms were observed. Likewise, acoustic species density calculations gave very similar 

values for the different transects, meaning patch composition remained highly homogeneous 

throughout the study area and thus suggesting it involves the same aggregation of organisms.  

Satellite images of the study area revealed very strong red pixels extend from the southern end 

of Vestfjord and along the edge of the continental shelf, corresponding to areas where high 

concentrations of C. finmarchicus were found in surface waters (Figure 19). However, these 

pixels are not visible beyond the shelf-break.  Basedow et al (2019) confirmed such pixels could 

be attributed to C. finmarchicus’ astaxanthin pigment, suggesting a large and continuous patch 

morphology restricted to shelf areas extending south from Vestfjorden and covering the whole 

continental shelf as we move northwards.  

Although a long-term study would be necessary to accurately analyse the persistence of such 

patch, the satellite images reflect little variation from the general patch morphology over 5 

consecutive days (Figure 19). Furthermore, despite the difference in time between southern and 

northern transects, no major variations were found in the net samples, acoustic transects or 

species density calculations. This suggests a stable and consistent patch structure, similar to the 

one followed by Cushing and Tungate (1963) in the North Sea. During this study, they tracked 

the southerly drift of a C. finmarchicus aggregation which had already formed by the start of 

the observations and was still recognizable after 66 days, when the study ended. Thus, 

persistence of large patches in off-shore waters can probably be frequently measured in weeks 

or months. 

 

 

 

 

 

 

 

 

Moving on to the vertical extent of the patch, the location of the patch in the water column 

extended from the surface to a mean depth of 55.46 m according to the acoustic data (Figures 

7 to 10). However, stratified net samples found the highest concentrations were in the top 30 

Figure 19: VIIRS RGB images from (left to right) 29th April and 3rd May 2017. Images processed and 
distributed by NEODAAS.  
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m. This could result from the variating depth of the aggregation along the transects, possibly 

influenced by both physical and biological drivers, which will be discussed later. What was 

clearly observed in both data sources were very high abundances at surface which decreased 

with depth. Although acoustic data from a hull-mounted echosounder can only be trusted below 

ca. 12 m, meaning the most abundant layers at surface were excluded, a considerable difference 

was obtained in the MAD within the patch compared to outside the patch. This agrees with the 

multinet samples taken at different depths, which showed much higher abundances within the 

patch layer, and with the Sv values obtained by performing echointegration, which revealed 

higher signals were detected by the EK60 within the same layer.  

This difference is remarkably notable for C. finmarchicus, which has the highest MASD of the 

assemblage and doubled it within the aggregation compared to outside it. Mean vertical acoustic 

profiles taken by Ritcher (1985b) revealed surface horizontal patches of zooplankton 4- to 15-

fold above background population densities in deeper waters. Moreover, dense surface 

aggregations, <15 m deep, of the similar species Calanus pacificus, were observed along a tidal 

front during spring by Gómez-Gutiérrez et al (2007). Thus, surface aggregations of zooplankton 

seem to be attractive for these organisms, and possible drivers shall be further studied. 

Statistical analysis revealed similar abundances in the top 30 m of the water column along the 

whole transects. However, significant reductions in abundance within this top layer were 

detected over the shelf, while off the shelf no major variations were observed. Below 30 m the 

situation is the opposite. A steady decrease in abundance occurs off the shelf, while a significant 

decline from the surface layers is not seen over the shelf until below 100 m. This contributes to 

the higher abundances observed over the shelf in comparison to off-shelf waters. A possible 

reason for this could be the coastal water layer being confined to shallower depths as we move 

off-shelf, meaning AW water is found further up in the water column. Since most organisms 

seem to be restricted to the coastal water layer, this would negatively affect the abundance of 

copepods at shallower depths off the shelf compared to over the shelf, where the warm and 

saline water input is found deeper, allowing organisms to remain in the coastal water layer for 

a greater fraction of the water column. Nonetheless, this pattern must be related to copepod 

behaviour, since no significant variations were found for other organisms. However, since 

copepods dominate the assemblage, this tendency will have a notable influence in the general 

patch shape. 

 47 



A patch of Calanus finmarchicus in the Lofoten-Vesterålen region: Characteristics and determining factors  

4.3 Species Assemblage within the Patch 

Patch composition analysis revealed a highly diverse assemblage consisting of 52 different 

taxa. This accounts for 64% of the number of sampled species throughout the whole water 

column being found within the patch limits. Multispecies aggregations are not uncommon and 

have been previously observed in both oceanic (Haury and Wiebe, 1982) and shallow areas 

(Wishner et al., 1988). This type of grouping is usually considered a special case of the predator-

induced group, where the aggregation of different species provides additional benefits for the 

whole group. For instance, differences in sensory capabilities among the species involved in 

the aggregation could provide a more complete predator detection system for the group as a 

whole. Thus, such mutualisms could improve the defensive mechanisms of the group, reducing 

predation risk for all group members. However, since the species found were mostly 

zooplankters, it seems they accumulate at surface in order to exploit the high primary 

productivity during the spring bloom instead of aggregating as a defensive reaction to predation 

risk. Moreover, multispecies aggregations witnessed by previous studies (e.g., Wishner et al., 

1988) consist mainly of a few species, meaning a high fraction of the organisms found in the 

net samples could be just drifting by and not actually forming part of the patch.  

Species-specific depth preferences derived in statistically definite communities at diverse 

depths. This appeared to be strongly related to the vertical stratification of the water column 

and the occurrence of phytoplankton. MDS analysis spotted different groupings of samples 

according to the composition of their zooplankton assemblages. Copepoda nauplii, C. 

finmarchicus and O. similis were broadly distributed species, but remained primarily in the 

upper layer. However, Microcalanus was found below the thermocline in the intermediate 

layer, which suggests detritus is the main source of food of this species instead of living algal 

cells (Krause and Trahms, 1982). This contrasts with the previously mentioned copepods, 

which directly depended on the highest concentrations of phytoplankton located in the surface 

layer. Thus, the differences in their location in the water column proves physical properties are 

not the only driver of plankton patchiness, but also feeding strategies (Krause and Trahms, 

1982). Finally the deeper layer was characterized by higher abundances of Metridia spp., 

especially M. longa, which is characterized as a bathypelagic species but has been observed 

closer to the surface in Arctic waters (Daase et al., 2008). Our results are in agreement with the 

findings by Bollens et al (1993) and Daase et al (2008). These studies proposed Metridia spp. 

possibly exhibit greater avoidance of the well-lit surface layer than Calanus because the former 

can be more susceptible to predation by planktivorous fish. Similar to the case of Microcalanus, 
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Metridia spp. are considered omnivorous species which might therefore be more flexible when 

selecting their vertical position, since they are less dependent on the phytoplankton bloom. 

However, their distribution in the water column varied from shelf to off shelf waters. MDS 

analysis revealed that similar groupings of organisms were found shallower off the shelf than 

over the shelf. Cross-shelf distribution of the major zooplankton species is conditioned by their 

depth, salinity and temperature preferences, vertical migration behaviour and by cross-shelf 

water-mass distribution, movement and exchange (Coyle and Pinchuk, 2005). The fresh, 

nutrient-rich water layer driven by the NCC to the study area extended deeper over the shelf 

than off the shelf, where the AW was present higher in the water column. Thus, organisms such 

as C. finmarchicus or Copepoda nauplii that are restricted to the top, colder layer will be found 

shallower off the shelf, followed by those with preferred conditions within the underlying AW 

layer such as Metridia spp.. These organisms are probably transported onshore with bottom 

waters by the intrusion of AW over the shelf displayed in the CTD transects, settling in the 

bottom layer above the shelf. 

Species variations with depth displayed by the MDS analysis affected the species diversity 

assessed through the SW Index. This was consistent in showing lower diversity in surface 

waters than deep waters off the shelf and opposite conditions over the shelf, tendency that has 

been reported else-where (e.g., Mann and Lazier, 1996; Kosobokova and Hopcroft, 2010) Off-

shelf, higher diversity at depth was driven mostly by other calanoids such as Metridia spp. and 

Microcalanus, species’ known to have lower depth preferences (e.g., Daase et al., 2008), 

together with the widely distributed cyclopoid Oithona spp.. On the other hand, higher diversity 

at surface over the shelf, which displayed the highest overall SW Indeces, was linked to 

herbivorous copepods such as C. finmarchicus and their nauplii, appendicularians and their 

associated predators such as Centropages spp. or Temora longicornis, and the pelagic larval 

forms of other taxa such as polychaetes, echinoderms and bryozoans. 

Despite the notable biodiversity of the area, C. finmarchicus clearly dominated the assemblage, 

accounting for 80.5 % of the whole community. Very similar results were obtained by Aarflot 

et al. (2017), who showed that Calanus species constituted 80% of the mesozooplankton 

biomass in all regions of the Barents Sea. Furthermore, comparable prevailing abundances of 

C. finmarchicus were found by Wishner et al (1988), who observed a 20 times higher 

concentration factor for this species than for other copepods within a large scale zooplankton 

patch. The strong correlation revealed by the simple regression analysis denoted the heavy 

influence of C. finmarchicus in the total zooplankton abundance, meaning patch formation will 
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be strongly dependant on this zooplankter. Thus, variations in its concentrations together with 

Calanus-specific behaviour will play an important role in the structuring and maintenance of 

the patch (Wishner et al., 1988). 

Stage index analysis disclosed younger C. finmarchicus life stages were in general associated 

to shallower waters (< 30/100 m) compared to older stages, which although present in the upper 

layers in minor numbers, dominated deeper in the water column (> 30/100 m). This shows both 

generations are represented in the ecosystem. The new generation of organisms is already 

developed and is found grazing in surface waters, while individuals of the old generation are 

still migrating upwards from off-shelf overwintering depths. Similar results were obtained by 

Lamb and Peterson (2005), who found naupliar and early copepodite stages remained within 

the warm, phytoplankton-rich upper 20 m of the water column, but copepodite stages C3 and 

older settled at progressively deeper strata in the water column.  

The ANOVA analysis unveiled significant difference between the distribution of development 

stages at shelf and off-shelf stations. Older stages appeared to dominate in shallower waters off 

the shelf than on the shelf, where they were not abundant until >150 m. This suggests the older 

stages are associated to the warmer AW mass, which is found higher in the water column off 

the continental shelf. However, the proximity of overwintering grounds to the study area could 

also play a role in the timing of the new generation development. Heath et al (2000a) defined 

proximity of overwintering habitats as one of the main determining factors of C. finmarchicus 

demography and productivity at a given site. In this sense, G0 individuals overwintering at 

shallower depths in nearby fjords such as Vestfjorden (Espinaase et al., 2016) could have started 

the reproductive season earlier over the shelf, leading to the numerous G1 generation 

encountered by this study in surface waters. On another hand, G0 individuals overwintering in 

deep off-shelf areas such as the Lofoten Basin may take longer to rise to shallow phytoplankton 

rich waters located over the shelf, developing their offspring later in the season. Furthermore, 

these individuals could be confined to the AW layer by the strong density gradient between the 

AW and the colder and less saline water from the NCC, which could act as a barrier and inhibit 

their expansion to shallower waters, thus delaying their offspring development. This population 

could be represented in the higher abundances of older developmental stages detected by this 

study off the shelf.   

Kvile et al. (2014) studied the temperature effects on C. finmarchicus developmental stages in 

the Norwegian and Barents Sea. They found abundances of CIV−CV were strongly correlated 

with temperature in spring, and higher slope values were predicted in areas with generally 
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higher abundances in the Norwegian Sea. If these organisms were members of the G1 

generation, high abundances of older stages could be expected if higher temperatures 

anticipated the start of the bloom, as suggested by Johannesen et al. (2012). This would trigger 

an advanced abundance maximum of young stages which could propagate into an advanced 

peak of older stages due to the higher growth rates driven by the higher temperatures (Kvile et 

al., 2014). Nevertheless, the early timing of this survey suggests that most CV individuals 

encountered belonged to the G0 generation, since individuals of the G1 generation require a 

longer period of time from the start of the spring bloom to develop into CV stage.  

The second most abundant taxonomic group in the community after C. finmarchicus was 

appendicularians, mostly O. dioca. No significant variations were found in their horizontal 

distribution, although surface waters reflected higher abundances. Aggregations of eggs and 

juveniles can be quite common at surface, since appendicularians are known to spawn in the 

first few meters of the water column. This opportunistic species has a quicker response than 

copepods to favourable conditions due to its fast growth rates, allowing them to be the first to 

take advantage of the spring bloom (Troedsson et al., 2002). This means high abundances found 

during this study are not surprising, even early in the season. Nonetheless, at 8 of the 9 stations 

they are outnumbered by slower growing copepods in the community. A possible driver of such 

situation was suggested by López-Urrutia et al (2004), who studied the active consumption of 

juvenile O. dioica by various calanoid copepod species. They confirmed species such as 

Centropages typicus or Temora longicornis predated on ca. 1 mm long O. dioca, meaning 

apendicularians could represent an extra step in the trophic chain. A negative relationship 

between appendicularians and the same species’ was witnessed by Stibor et al (2004), 

suggesting appendicularians are under strong pressure from calanoid copepods.   

Although the most abundant calanoid copepod, C. finmarchicus, is a herbivore species unlikely 

to affect the abundance of appendicularians, these calanoid copepods together with other 

omnivorous species such as Metridia lucens were observed by this study.  However, they tend 

to alternate between herbivory and carnivory diets in relation to the availability of plant and 

animal food in the environment (Landry, 1981). Therefore, during the spring bloom, high 

phytoplankton concentrations are enough to satisfy the feeding requirements of calanoid 

copepods, resulting on a decreased predatory pressure on appendicularians (López-Urrutia et 

al., 2004). Thus, this could be a possible explanation for the high abundances of 

appendicularians found during phytoplankton blooms, like in the present study. Probably, when 
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chlorophyll values decrease further in the season, appendicularians will become an alternative 

food source for the copepod population, resulting in a decrease in the larvacean density. 

4.4 Physical drivers 

Patterns of plankton patchiness in marine systems at mega- to macro-scales, as it appears to be 

our case, seem to be mostly linked to physical processes (Pinca and Huntley, 2000). One of the 

main reasons for this is zooplankton forms patches and not schools, since schools imply the 

ability to swim against any current by constantly moving (Mauchline, 1998). This is because, 

despite C. finmarchicus having one of the highest swimming speeds (1.23 mm/s) among 

calanoid copepods (Hardy and Bainbridge, 1954), they are known to be relatively weak 

horizontal swimmers (Mauchline, 1998). They perform upward and downward movement in 

loops or spirals, which involves hardly any horizontal movement (Mauchline, 1998), meaning 

they are left to drift with the ocean currents. Thus, in order to be distributed extensively over 

the continental shelf, they must be subject to physical drivers. This suggests that water masses 

acting as boundaries to zooplankton assemblages can be expected to a higher extent on less 

active organisms (Gallager et al., 2016). 

The cyclonic gyres of the Irminger Sea and the southern Norwegian Sea, two major 

hydrographic features, have been described as the two centres of distribution of C. finmarchicus 

in the North Atlantic (Sundby, 2000). Replenishment of the local stocks from the gyre results 

in high abundances of this species in the regions bordering the Norwegian Sea gyre, such as the 

continental shelf and the fjords of western and northern Norway (Wiborg, 1954). This agrees 

with the high concentrations of C. finmarchicus detected by this study in the continental shelf 

off the coast of the Lofoten-Vesterålen archipelago. 

The distribution of the aggregation being restricted to the continental shelf matches with the 

hydrography of the area, where the colder and less saline NCC is present over the continental 

shelf down to depths ranging from 100 to 150 m. This water mass becomes less dense as we 

move off-shore, until it meets the NAC, which drives AW into the study area. The highest 

concentration of organisms tends to be subject to the NCC, possibly due to its preferable 

conditions. The BEST analysis revealed a significant match between temperature and the 

zooplankton community, but this variable was negatively correlated with the abundance. This 

suggests that although organisms could benefit from faster growth rates in warmer waters, 

which would enable an earlier descent to overwintering depths in order to avoid predation, they 

prefer colder surface waters. A possible reason for this resides in the cold freshwater input, 

which tends to be nutrient rich and could thus be a source of high PP. However, since most 
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organisms are believed to be advected to the study area either from the south following the 

NCC or from nearby fjords such as Vestfjorden, the high density gradient formed between the 

two currents could possibly act as an important mechanism to restrict cross-shelf water 

exchange throughout the year. This presents a barrier for the advection of organisms to off-

shelf areas, forcing them to remain on the shelf. A similar distribution pattern where major 

taxonomic groups aggregated in patches at coarse scales because of their association with 

specific water masses of different origin and their associated temperature/density 

discontinuities was found over Georges banks by Gallager et al (2016). These results however 

disagree with those reported by Trudnowska et al (2016), who rejected any association between 

the distribution of large scale patches comprising mostly Calanus species and any specific 

hydrographic or hydrodynamic feature. 

Nevertheless, variations regarding the location of organisms in the water column exist between 

stations. These variations could be related to the different weather conditions experimented 

along the cruise track. At stations where conditions were stable, the layering of organisms was 

much more defined and organized, with high concentrations at surface which decrease as we 

gain depth (e.g. St. 4). A comparable study by Pinca and Huntley (2000) proved similar vertical 

structures, where the most superficial layer had the highest concentration of organisms. On the 

other hand, at stations where the weather picked up, organisms were spread throughout the 

whole water column following no clear, stratified pattern (e.g. St. 9). We thereby suggest that 

calm conditions enable more stable layering, since organisms can select their preferred location 

in the water column. Meanwhile, rougher weather conditions result in the mixing of the water 

column, meaning relatively weak swimmers such as C. finmarchicus have difficulties for 

settling within their preferred location. Therefore, such organisms tend to concentrate in areas 

of high vertical stability (Gallager et al., 2016). This is not only visible in the net data, but also 

by looking at the acoustic transect 3 where the off-shelf station 9 is located and where we can 

observe how the SSL continues off-shore along the shelf-break. This means that weather 

induced mixing of the water column could weaken the previously described “barrier” between 

the two different currents.  

Another relation between the distribution of organisms and the weather conditions in the area 

concerns the timing of the bloom. Before the phytoplankton spring bloom can start, there must 

be a stabilization of the water column over deep and well-mixed areas (Sverdrup, 1953). Over 

the shelf, this is achieved by light coastal water lying on top of AW, causing a marked salinity 

stratification. Moreover, Menden-Deuer (2012) observed high nutrient concentrations in areas 
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where phytoplankton aggregations occurred and suggested water masses associated with 

patches remained isolated for several days without mixing with waters at other depths. Thus, 

stable conditions are required for phytoplankton blooms to occur. 

This agrees with our results from the CTD transects, which demonstrated that the less saline 

NCC was present over the whole shelf in the upper 100/150 m, with the AW lying underneath. 

Moreover, models and ocean satellite data suggest that the temperature increase recorded in the 

Barents Sea between 1998 and 2006 has resulted in a progressively earlier start of the spring 

bloom (Johannesen et al., 2012), meaning temperature could be positively associated with the 

observed early bloom start. Hence, stable and warm conditions observed in the study area could 

have anticipated the start of the spring bloom by increasing the vertical stability of the upper 

layer and the subsequent reduction in depth of the upper mixed layer. This could have triggered 

the early migration of grazer species such as C. finmarchicus from overwintering depths to shelf 

areas. An early start of the bloom could explain the high concentrations of CIII and CIV stages 

of C. finmarchicus present in the study area already at the time of the study, revealing a well 

established new generation population.  

Proximity to an overwintering centre has been suggested to be the main prerequisite for high 

abundances of C. finmarchicus (Heath et al., 2000a), meaning overwintering on the northern 

Norwegian shelf can contribute significantly to sustain a C. finmarchicus population in shelf 

waters during the period of first feeding for cod larvae (Espinasse et al, 2016). However, 

abundances of C. finmarchicus CV in shelf areas during winter rarely exceed 2000 ind./m2 

(Halvorsen et al., 2003), suggesting they are too shallow to provide an overwintering habitat. 

This implies that as C. finmarchicus ascends from its overwintering habitat to spawn in spring, 

it is conducted onto shelf areas by surface circulation (Backhaus et al., 1994). Thus, the high 

abundances of C. finmarchicus found by this study are assumed to be advected to the 

continental shelf from other overwintering populations, such as those overwintering in the 

Lofoten Basin at 800–1200 m depth, in local fjord environments located close to the study area, 

or in the southern Norwegian Sea. 

Therefore, although acoustic data and satellite images suggest a consistent patch, we must take 

into account that it is not constantly the same organisms that form the aggregation, as they are 

continually being advected northwards by the prevailing currents. A study by Koszalka et al 

(2011), concluded that the highest current speeds in the Norwegian Sea were found along the 

Norwegian coast both for the NAC and the NCC, with speeds of ca. 30 cm/s. A strong NCC is 

usually located closer to the coast and water masses near the entrance of fjords, advecting more 
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organisms at higher speeds directly to the north-western coast of the Lofoten Islands both from 

southern areas and nearby fjords. This tells us we are not facing a resident population but a 

population in constant northward drift, where organisms within the patch drift northwards at 

high speeds. A model designed by Ådlandsvik and Sundby (1994) showed particles released in 

the Lofoten area were distributed northwards by the north-flowing currents along the coast and 

had reached as far as Nordkappbanken in only 30 days. However, organisms are constantly 

being advected by the NCC from overwintering areas, aggregating over the whole shallow 

continental shelf outside the Lofoten-Vesterålen islands and thus replenishing the population 

of C. finmarchicus in the area.  

Nonetheless, the origin of C.finmarchicus is still unclear. Since growth rates of zooplankton are 

slow compared to the time scale of mixing, patches are likely to represent organisms which 

developed at a different location and have been subject to a physically driven re-distribution. 

Many studies (e.g., Halvorsen et al., 2003) propose the spring invasion of the North Norwegian 

shelf is partly the result of the northward advection of C. finmarchicus from the overwintering 

sites in the southern part of the Norwegian Sea. This could be easily expected, since most of 

the copepods flowing northwards with the NAC and NCC are probably transported up to 

regions located further north. Heath and Jonasdottir (1999) observed abundances in the Faroe-

Shetland Channel were more than adequate to account for the observed abundances in the 

northern North Sea. They thereby suggested that a fraction of the copepods ascending from 

overwintering areas close to the Faroe Islands may reach as far as the Lofoten-Vesterålen shelf 

areas during spring and summer, becoming a source of the increasing Lofoten basin 

overwintering population.  

Hydrographic variations over the shelf, possibly explained by differing levels of freshwater 

discharge and wind conditions, are likely to have an effect on the plankton distribution 

(Skarðhamar et al., 2007). The copepod community overwintering in the Lofoten basin could 

be advected to shelf areas by the eastbound replenishing movement of AW at depth onto the 

shelf occurring when the less saline surface water is spread by the NCC (Pedersen et al., 2001). 

This cross-shelf process can be seen in our salinity profiles, where AW flowing along the slope 

penetrates onto shelf areas below the lighter coastal water, suggesting this process as a primary 

source of intra-annual variability in the Calanus stock of the Lofoten-Vesterålen shelf. 

Moreover, patchiness of both phyto and zooplankton in the study area could originate from 

plumes of plankton-rich fjord water trapped in eddies over the banks. Similarly, cod eggs 

spawned inside Vestfjorden and developing larvae are eventually transported out of the fjord 
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system and drift northwards into the Barents Sea with the prevailing currents. This occurs in 

strong NCC conditions, since when this current is stronger, it flows closer to the coast, 

advecting water masses near the entrance of fjords directly to the northwestern coast of the 

Lofoten Islands (Espinasee et al., 2016). Thus, in addition to the overwintering stocks further 

south and in the Lofoten basin, Calanus overwintering on the shelf and in nearby fjords may 

contribute to the high concentrations found by this study in the Lofoten-Vesterålen shelf areas. 

This highlights the importance of the NCC in the aggregation of copepods over the shelf, either 

by favouring cross-shelf processes, drifting organisms northwards from southern areas or 

advecting them from nearby fjords when at its strongest levels. 

Intensive eddy activity in the Lofoten basin has been detected previously by Gaardsted et al 

(2010), who proved their contribution, along with a patchy horizontal copepod distribution, to 

strong mesoscale variability in abundance. Eddies can extend to depths greater than 500 m 

(Smith, 1988), but the most pronounced contrasts in temperature are mostly found in the upper 

25−50 m, matching with the average depth limit of the observed patches. Swirls and tendrils 

extending out from the shelf-break into the deep ocean were observed in the satellite images 

(Figure 19), possibly reflecting water flows associated with eddies and bathymetric features on 

the continental slope. The location of these possible eddies matches with the outer edge of 

transect S3, meaning they could be responsible for the lower temperatures found in the first 500 

m of the temperature profile of station 9 compared to the other off-shelf stations. This could be 

associated with horizontal mixing of the NAC and NCC, and with the notable vertical mixing 

of the water column reflected by the SSL and the net data from station 9. Such phenomenon, 

frequently found along the continental slope and in the Lofoten Basin, has already been 

suggested to provide favourable retention, and thus aggregation areas for the overwintering 

population of C. finmarchicus (Halvorsen et al., 2003). Increased plankton concentrations 

within eddies compared to the outside region have been detected by Huntley et al (1995) and 

Pinca and Huntley (2000), proving eddies are centres of plankton concentration. However, a 

temperature model of the area would be a more accurate way of confirming the presence of 

these features, and thus their effect on the distribution of organisms in the study area. 

On another hand, not only the great hydrographic features affect the distribution of C. 

finmarchicus, but also local driven forces such as coastal winds and waves can affect transport 

of coastal plankton, redistributing plankton patches. Bloom centres may be typical of the region, 

attracting grazer species in spring, and can be explained by local hydrographic conditions. 

Aggregation can also occur as an effect of small scale and not only large scale currents. Possible 
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up and down motion within a water mass could accumulate organisms by convergence. This 

would leave us with two possible scenarios; one active, where organisms swim actively against 

the vertical motion created by convergence and thus aggregate at surface, and one passive where 

they aggregate at surface as an effect of their buoyancy and drift with the prevailing currents in 

the area. Weidberg et al (2014) suggested upward-swimming or buoyant organisms may 

aggregate due to convergence in surface flow and the associated subduction, provided that their 

upward velocity is faster than the downward movement of water. Although considered a weak 

horizontal swimmer, C. finmarchicus can swim effectively in the vertical axis using the cruise 

and sink behaviour (Mauchline, 1998). With a swimming speed of 1.23 mm/s (Hardy and 

Brainbridge, 1954), this species could easily overcome downward water movement to remain 

in surface waters. Observations of upward swimming against downward frontal flows in mero 

and zooplankton have been reported by Genin et al (2005), who showed that complete depth 

retention by zooplankton could develop dense aggregations. Suggested adaptive benefits of 

depth retention could be remaining within layers of high food concentration and increasing the 

chances of finding a mate within the aggregations generated through depth-keeping in vertical 

flows (Genin et al., 2005). Unfortunately, lack of acoustic data for the upper 12 m of the water 

column disables us from observing possible small scale surface discontinuities as an effect of 

convergence in the hereby described extensive patch. 

4.5 Biological drivers 

Biological drivers of plankton aggregations have often been overlooked, since most studies tend 

to focus on physical processes (Folt and Burns, 1999). As proved by other studies (e.g., Folt 

and Burns, 1999), considering only physical processes would result in an incomplete 

explanation of many spatial patterns. For instance, Basedow et al. (2010) concluded the  depth 

distribution of older development stages (CV and adults) of C. finmarchicus during the 

productive season in the Subarctic was best predicted by biotic factors such as depth of the 

fluorescence maximum and population density, instead of abiotic factors such as depth of the 

pycnocline, which was of secondary importance. 

Brierly and Cox (2016) defined obtaining enough oxygen to satisfy metabolic demands and 

predation avoidance as the two most basic short-term objectives of any organism, meaning they 

could both be pertinent in explaining the aggregating behaviour of zooplankton. The effect of 

dissolved oxygen on the distribution and diversity of zooplankton is considered an indirect 

effect reflected through their oxygen demand as a result of temperature or other environmental 

stress (Roman et al., 1993). Oxygen consumption by various zooplankton species was 
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examined by Clarke and Peck (1991), who confirmed its direct relation to temperature. Thus, 

one could assume that copepods aggregating in warm waters to increase their metabolism and 

growth will require higher oxygen concentrations. However, according to Marshall et al (1935), 

Calanus starts to be affected when oxygen concentrations are below 3 ml O2/l, but has been 

observed at concentrations below 1 ml O2/l. These values are very far from the 9.55 ml O2/l 

mean oxygen concentration found here, implying that despite oxygen consumption usually 

being higher during spring due to the high feeding rates and active reproduction taking place, 

lack of oxygen within the aggregation was not a limiting factor. 

In contrast, reduced predation risk at high densities could be an important driver for 

zooplankton aggregating in response to predator threat. The larger the aggregation size, the 

smaller the probability of being eaten (Brierly and Cox, 2016). Thus, despite predation risk 

being highest in the photic layer due to better visibility, organisms could defy persistence at 

surface to graze the high phytoplankton concentrations by forming large aggregations. High 

abundances of zooplankton set an attractive scenario for predator species. By subtracting the 

38 from the 120 kHz frequency we can observe a stronger backscatter at 38 kHz within the 

zooplankton patch, which suggests predator presence. According to Huse et al (2012), the C. 

finmarchicus stock size is negatively correlated to total pelagic fish stock size in the Norwegian 

Sea, enhancing predator influence on patch formation in the form of top down controls at a 

large scale. This suggests that seasonally migrating fish species strongly influence the timing 

of spawning and descent, and hence the formation of C. finmarchicus aggregations.  

Kaartvedt (2000) stated that Norwegian spring spawning herring (Clupea harengus) was the 

most relevant predator in this context, as they represent the largest fish stock and are the first 

to initiate feeding migrations. This species accounts for the consumption of 20 to 100% of the 

annual C. finmarchicus production (Dommasnes et al., 2004). They spawn on the Norwegian 

shelf in February/March, and are present in the eastern Norwegian Sea by mid-April (Misund 

et al., 1998), before the spring bloom. Østvedt (1965) revealed high abundances of young 

herring in April, when the overwintering Calanus population dominates, and in June, when the 

new generation has developed into late copepodite stages. This means that the distribution of 

herring is confined to areas where late copepodite stages (IV and older), either from the 

overwintering or the new generation, of C. finmarchicus predominate. Feeding on stage IV and 

older stages of C. finmarchicus together with feeding on female rather than male copepods may 

be energetically beneficial for the herring due to their larger body size. Although intermediate 

stages of C. finmarchicus prevailed in our samples, high abundances of CIV and older stages 
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were also present, especially below 30 m, which agrees with the depth at which the high 38 

kHz signal was detected. Since herring do not have a swim bladder, individual fish will have a 

low backscatter at this frequency. This means our observations infer they must be schooling, a 

common behaviour associated to this species (Gallego and Heath, 1994). Thus, the strong 

backscatter could be associated to the presence of herring schools feeding on old C. 

finmarchicus stages within the aggregation.  

Furthermore, the larvae of many fish species such as Atlantic Cod (Gadus morhua) also feed 

on copepod eggs and nauplii, and copepodite stages are an important food source for the 

juvenile fish in shelf and shallow sea nursery areas (Runge and de Lafontaine, 1996; Heath and 

Lough, 2007). Bjørke and Sundby (1984) concluded that the distribution of cod larvae in 

northern Norway is confined to coastal water masses which flow over the continental shelf. 

Sixty-four to eighty-four of cod larvae were found between 0-13 m, together with highest 

abundances found at salinities ranging from 34.3 to 34.6 psu. Similar salinities were found in 

surface waters above the continental shelf during this study, and the population of cod larvae 

seemed to be restricted to this water mass and to the vertical distribution of copepod nauplii, 

which concentrated at the surface. Since the survey was conducted in late April, most larvae 

were still in a low developmental stage, where they mainly prey on copepod nauplii at first-

feeding, switching to older copepodite stages as they grow (Hamre, 2006). A positive 

correlation between the abundances of cod larvae and copepod nauplii was found in the study 

area (Figure 17). Although this was only marginally significant, we must take into account the 

limitations imposed by the small sample size, since marginal effects tend to be statistically 

significant when the sample size is large enough (Figuereido Filho et al., 2019). This suggests 

that cod larvae developing on the Lofoten-Vesterålen shelf grow in a favourable environment 

with high prey abundances for an extended period of time. Since the highest abundances of cod 

larvae were found at shelf stations, agreeing with the distribution of nauplii, we conclude that 

the high copepod concentrations found at the surface above the shelf had already attracted cod 

larvae from their spawning grounds. 

These results are not far from expectations, since cod spawns in March and April in coastal 

water masses close to the coast and mainly in the Lofoten area (Ellertsen et al., 1989). Thus, 

they do not require long periods of time to be advected by the NCC from their nearby spawning 

grounds to the study area, where they were already found by late April/ early May. An example 

of this migration was tracked by Ellertsen et al (1984), where organisms drifted to shelf areas 

off the west coast of Lofoten from their spawning grounds in the Austnesfjord, Henningsvaer-
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Hølla area, inside Vestfjorden. We detected the highest number of cod larvae at station 7, the 

closest to the mouth of Vestfjorden and hence closest to these spawning grounds. Vlymen 

(1977) hypothesized that survival of fish larvae in the open sea depends on the existence of 

forage patchiness. Thus, the fate of the Lofoten cod population, target of one the world’s largest 

seasonal fisheries, could be tightly tied to the occurrence of zooplankton patches in the area. 

This study found a negative correlation between chaetognath and total zooplankton abundance. 

Recognized as one of the most important groups of pelagic predators, this phylum principally 

predates on copepods, with the consequent effect in the copepod population dynamics (Reeve, 

1970). Practically all prey items identified by Saito and Kiørboe (2001) in the guts of S. elegans, 

species present in our net samples, were copepods, 99% being copepodite stages. Moreover, 

gut content of this species performed by Falkenhaug (1991) in the nearby Barents Sea revealed 

C. finmarchicus was one of the main components of this chaethognath’s diet. Thus, decreased 

zooplankton abundance at stations with higher chaethognath concentrations could be related to 

copepod predation by this phylum, suggesting significant impact on the structuring of the 

patch.  

Wishner et al (1988) proposed that whales could aggregate in areas of increased abundances of 

zooplankton. However, whale species feeding on C. finmarchicus, such as right whales 

(Eubalaena glacialis), have not been observed in the study area since 1999 (Jacobsen et al., 

2006), meaning that predation pressure exerted by whales on the aggregations encountered is 

probably null. Other potential predators could be gelatinous zooplankton and other fish species 

such as blue whiting (Micromesistius poutassou) and mackerel (Scomber scombrus) 

(Kaartvedt, 2000), but these species arrive later than herring on the Norwegian Sea feeding 

grounds, mostly around June. The G0 generation of C.finmarchicus would largely have 

disappeared by that time, meaning these predators mainly feed on G1 animals. Still, 

relationships between the increase in the recruitment of blue whiting and the reduction in the 

C. finmarchicus stock have been found by Skjoldal (2004). 

However, if predation was the only force driving the shape of the aggregation, a shape providing 

the smallest surface area and an interior position within such structure would be ideal to ensure 

an individual’s survival (Brierly and Cox, 2016).  In this sense, a sphere would be a practical 

shape. Nonetheless, the patch detected by this study presented a completely different layout, 

consisting of a layer of organisms at surface which decreases in density with depth. Moreover, 

Skjoldal et al (2003) described C. finmarchicus’ body size optimum for life in this area, since 

it is big enough to enable overwintering in a non-feeding mode and at the same time small 
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enough to avoid excessive predation mortality by visual predators feeding in the euphotic zone, 

where herbivores necessarily feed on phytoplankton. This means other relevant driving forces 

shaping the patch must exist, so that trade-off by individuals between such driving forces and 

predator avoidance could determine its shape.                                    

In this sense, judging by the distribution of organisms in the water column, PP at surface seems 

to be the main biological driver of patchiness through trophic interactions leading to a 

zooplankton population increase. Positive correlations between zooplankton and phytoplankton 

abundances have been previously observed at different horizontal and vertical scales (e.g., 

Marshall and Orr, 1955). Mullin and Brooks (1976) classified phytoplankton aggregations as 

necessary for successful feeding by Calanus, since average concentrations in the water column 

are often too low. Moreover, Basedow et al (2010) found vertical position was selected by 

copepods primarily in response to phytoplankton availability during the productive season in 

the Subarctic. This could be attributed to the high dependency of the reproductive and 

developmental efficiency of zooplankton populations on the “match” between primary and 

secondary production.  Thus, remaining in the productive upper layer during the bloom could 

maximize fitness of C. finmarchicus. 

Maximum chlorophyll concentrations regularly correspond to maximum phytoplankton 

production, both occurring near the surface. Our water samples revealed the highest chlorophyll 

values within the top 10-20 m, rapidly decreasing below these depths. This means most of the 

PP is occurring at the top 12 % of the water column, suggesting phytoplankton surface layering 

as production hotspots. A similar surface aggregation of Calanus species was found by 

Marshall and Orr (1955) during summer months, where high levels of chlorophyll are registered 

at surface. Wishner et al (1988) found the highest abundances of zooplankton in surface 

aggregations within the upper 20 m, with relatively high concentrations extending down to 30 

m.  

Skjoldal (2004) found a clear temporal trend in the development of phytoplankton biomass 

from coastal, shelf areas to deeper oceanic areas. Evidence of the bloom start was found in the 

NCC as soon as March, with full bloom development occurring in April, while oceanic areas 

did not present high phytoplankton biomass until May. This could have attracted high 

abundances of C. finmarchicus adult females to spawn in shelf areas as early as chlorophyll a 

concentrations were sufficient to fuel egg maturation and growth. The presence of diverse 

developmental stages in the net samples collected suggests active growth, and together with the 

annual occurrence of this phenomenon emphasizes a relation to productivity. Thus, high 
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numbers of grazers detected by our study over the shelf compared to less densely populated 

off-shelf areas could simply accumulate due to the earlier start of the bloom in the NCC. This 

would provide an early source of food to boost the development of the G1 generation before 

predators are attracted to the area later in the season. 

Compared to typical spring bloom concentrations, we found generally low chlorophyll a values 

at most stations. These results are in line with those described by Skjodal (2004), who seldom 

found chlorophyll a concentrations higher than 3 mg/m3 during the spring bloom. Highest 

zooplankton abundances have been found in the top 30 m of the water column, matching with 

the highest chlorophyll a values and thus confirming their affinity to phytoplankton rich layers 

and the importance of the spring bloom for reproduction and growth of C. finmarchicus. 

However, the close match between the bloom and the development of the zooplankton 

community proposes grazing as a relevant factor in controlling the size of the bloom, especially 

during the developmental period, when grazing pressure is strongest. The BEST analysis 

revealed nitrate+nitrite instead of chlorophyll a as one of the main factors explaining the 

zooplankton distribution. This suggests the nutrient rich waters from the start of the bloom drive 

high levels of PP, which are subject to strong grazing pressure by the high abundances of 

zooplankton, triggering the low chlorophyll a values found in our samples. Therefore, 

phytoplankton biomass during the spring bloom might not reach the potential concentrations 

we could expect in a system without grazers, meaning top-down control via grazing pressure 

by C. finmarchicus plays a significant role in regulating the bloom’s size. This suggests 

nitrate+nitrite as a better predictor of the zooplankton aggregation than chlorophyll a in similar 

scenarios involving top-down control. 

Similar results were found by Bathmann et al (1990), where the strong grazing pressure exerted 

by C. finmarchicus during its developmental period on the mixed phytoplankton stock and its 

selective grazing on diatoms, main component of the phytoplankton spring bloom, prevented 

the blooming of this phytoplankton group. This could explain the stronger sedimentation of the 

spring phytoplankton bloom out of the euphotic zone in the absence of overwintering copepods 

migrating to the upper layers experimented by Slagstad and Wassmann (1996). 

Benoit-Bird et al. (2010), confirmed the importance of phytoplankton layer formation in 

zooplankton distribution by tracking both phyto and zooplankton signals using acoustics. They 

concluded that when minimum 18% of the phytoplankton biomass aggregated in layers, their 

association was highest. This suggests grazing rates within phytoplankton layers could be 

significantly higher than outside such aggregations. Meyer-Harms et al (1999) observed high 
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clearance rates by C. finmarchicus adult females ranging from 22 to 100 ml copepod-1 day-1 in 

the Norwegian Sea at the same time of the year. These results are in agreement with those 

obtained by Møller et al (2012), who detected clearance rates of 90 ml copepod-1 day-1 by C. 

finmarchicus adult females and CIVs in surface waters at 6.3°C, a very similar temperature to 

those registered in our study area. Although clearance rates for C. finmarchicus peaked at 14°C, 

we observed higher filtration rates of this species at low temperatures compared to other 

calanoids. Moreover, by multiplying the abundance of C. finmarchicus sampled in the upper 5 

m by the filtration rates obtained by Meyer-Harms et al (2002), the following filtration rates in 

ml day-1 will result for each developmental stage: CI: 43260, CII: 134285.5, CIII: 569026.2, 

CIV: 288019.3, CV: 267326.2, AF: 136704.1. Such clearance rates suppose a high grazing 

pressure on the available PP, meaning although the nutrient analysis confirmed high amounts 

of PP could be supported, they are rapidly cleared by the high grazing pressure exerted by the 

rich abundance of C. finmarchicus at surface. Thus, we can propose nutrient rich waters which 

act as a source of surface phytoplankton layers, as an important driver for the accumulation of 

zooplankton, leading to further patch formation in the study area. 
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5 Conclusion 

This study presents a comprehensive view of zooplankton patchiness in the Lofoten-Vesterålen 

region. Here we report a large scale aggregation of C. finmarchicus observed over the whole 

continental shelf, closely tied to the distribution of the NCC and its cold, fresh and nutrient-rich 

waters. Stable, stratified conditions provided by this current triggered an early start of the 

bloom, attracting high abundances of this grazer species to benefit from PP occurring at surface. 

Dominance of intermediate copepodite stages suggested rapid development through intensive 

grazing, which could further enable an early descent into overwintering layers, anticipating the 

arrival of its main predators. Thus, through thorough examination of hydrographic, acoustic 

and ground data, we can conclude biological structures can be correlated to the hydrography 

over large spatial scales and ecological interactions may drive habitat selection by planktonic 

organisms even in highly fluctuating oceanic environments. Thus, trade-off between physical 

and biological drivers will determine patch formation, morphology and composition.  

Further research is required to uncover unknown aspects of zooplankton patchiness, such as 

persistence and frequency of occurrence, details of its main components and their origin, and 

its ecological consequences. Although increased resolution achieved through the introduction 

of acoustic and optical methods has improved our understanding of such features, progress in 

addressing this phenomenon in further detail will be hindered when mapping zooplankton 

abundance and distributions from ships, due to the disturbance of the environment through the 

physical invasion of the water column and the severe spatio-temporal limitations. Hence, 

development of autonomous platforms providing continuous data in time and space together 

with remote detection of such aggregations will be crucial for increasing our understanding of 

C. finmarchicus aggregative behaviour and will improve sustainable management of this 

harvested key species. 
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8 Appendix 

1. Station Overview 
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2. Acoustic Data Analysis 
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