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GROUP COHOMOLOGY AND EXTENSIONS

MARKUS NORDVOLL BREIVIK

Abstract. The goal of this thesis is to classify all extensions where the ker-

nel has order ps and the cokernel has order pt, p is a prime, and 1 ≤ s, t ≤ 2.
We determine (up to weak congruence) the different combinations of kernel,

cokernel and operators, and for each case, calculate the second cohomology

group. By comparing resolutions, we get an explicit correspondence between
the second cohomology group and the group of congruence classes of exten-

sions. Using this construction, we determine (up to congruence) the extensions

for the different combinations.
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0. Introduction

An extension of A by G is a short exact sequence

ε = (1→ A→ E → G→ 1) .

Identifying A with its image in E, we see that an extension of A by G is a group
E in which A is a normal subgroup and E/A ∼= G. Given groups A and G, the
extension problem is to determine all extensions of A by G.

When A is abelian, an extension of A by G determines a G-module structure
(Definition 1.5) on A , ξ : G → Aut (A) (Proposition 1.25), so we can split the
extension problem into sub-problems, namely, to determine the extensions of A
by G that realizes the action ξ : G → Aut (A). For a pair A and G with action
ξ : G→ Aut (A), we write Aξ and G.

Congruent extensions (Definition 1.39) determine the same action, and the set
of congruence classes of extensions of Aξ by G is denoted by E

(
G,Aξ

)
. By [ML95,

Theorem IV.4.2] we have

E
(
G,Aξ

) ∼= H2
(
G,Aξ

)
(see also Theorem 1.45), where

Hn
(
G,Aξ

)
:= ExtnZG

(
Ztriv, Aξ

)
,

and Ztriv is the abelian group Z considered as a trivial ZG-module (ga = a for any
a ∈ Z and g ∈ G). This means that we can determine the elements in E

(
G,Aξ

)
by

calculating cohomology groups. Unfortunately, this correspondence can be difficult
to use in practice. The map between E

(
G,Aξ

)
andH2

(
G,Aξ

)
is only made explicit

when H2
(
G,Aξ

)
is calculated using the bar resolution, which has great theoretical

applications, but is unsuitable for computation. The way one goes about it practi-
cally is to calculate H2

(
G,Aξ

)
using a projective resolution specific to

(
G,Aξ

)
, and

then find a chain map between the resolutions which induce isomorphisms between
the cohomology groups.

Remark 0.1. We can summarize the above by noting that when A is abelian, we
can find all extensions of A by G by:

(1) Determining the possible actions ξ : G→ Aut (A).
(2) For all of the actions found in (1), calculate the groups H2

(
G,Aξ

)
using a

resolution suitable for computation.
(3) Find a correspondence E

(
G,Aξ

) ∼= H2
(
G,Aξ

)
, for each H2

(
G,Aξ

)
found

in (2), and determine each congruence class corresponding to s ∈ H2
(
G,Aξ

)
.

Remark 0.2. When A is non-abelian the situation is trickier as one has to consider
abstract kernels and 3-dimensional cohomology groups (See [ML95, Chapter IV.8]).
This machinery is not needed here.

The goal of this thesis is to classify all extensions in which the kernel and cokernel
have orders ps and pt respectively (finite p-groups), where 1 ≤ s, t ≤ 2. If an
extension satisfies these conditions, we say it is of type

ps → ps+t → pt.

Most cases s+ t ≤ 3 were done in [EP18].
From the viewpoint of homological algebra, finite p-groups are interesting since

the cohomology groups are large (i.e. there are many extensions). For |G| = n we
have

n ·H2 (G,A) = 0

by [ML95, Proposition IV.5.3]. For |A| = m we have

m ·H2 (G,A) = 0
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since by Proposition 1.20

H2 (G,A) ∼=
{cocycles}

{coboundaries}
and cocycles are functions with values in A. So when |G| = n and |A| = m, Bézout’s
formula gives

gcd (m,n) ·H2 (G,A) = 0. (1)

Therefore, if we want an interesting H2 (G,A), we need gcd (m,n) to be large.

Example 0.3. Let p, q, and r be different primes. By equation (1), it follows that:

(1) If |G| = ps and |A| = qt, then H2 (G,A) = 0.
(2) If |G| = psr and |A| = qtr, then H2 (G,A) is a direct sum of finitely many

copies of Ir.

Another reason for our interest in p-groups is due to a theorem of Sylow, which
states that any group E of order ps is nilpotent. Moreover, there is a tower

0 = E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ Es−1 ⊆ Es = E

such that |Ek| = pk, Ek C E, and

Ek+1

Ek
⊆ Z

(
E

Ek

)
.

Hence if we had determined all p-groups of order up to pi, i =
⌈
s
2

⌉
, we could find

all groups of order ps by describing all extensions

1→ Ei → E → G→ 1

where |G| = ps−i. Thus if we were successful in the goal of our thesis, we would
survey all groups of order p, p2, p3, and p4 as a bonus.

Remark 0.4. By [DF04, 6.1 Theorem 3] any finite nilpotent group is a product of
p-groups, so in order to classify all extensions of finite nilpotent groups, then we
first need to do so for finite p-groups.

In the thesis we classify up to a weak congruence (Definition 1.35) the different
combination of G and Aξ arising in extensions of type

ps → ps+t → pt,

1 ≤ s, t ≤ 2

(Theorem 2.8). In total, there are 15 combinations to consider (see Table 2.13).
The cokernel G can either be cyclic, or a product of cyclic groups (dicyclic). In
both cases there are textbook ZG-resolutions (Section 1.4), which work for any Aξ,
which we call the special resolutions. We use the special resolutions to calculate
H2

spec

(
G,Aξ

)
for 15 different cases (Theorem 2.14). We construct machinery (The-

orems 2.3 and 2.6) that allow us to go from H2
spec

(
G,Aξ

)
to E

(
G,Aξ

)
. For each

element s ∈ H2
spec

(
G,Aξ

)
, we get generators and relations for Es, the middle group

of a representative of the congruence class corresponding to s. Using the generators
and relations we match Es with a group E from [Bur55] (Appendix B.2), and in so
doing determine [εs] (see Section 5.1 for a description of the procedure).

Once we have determined [εs] for all s ∈ H2
spec

(
G,Aξ

)
, we will have found

every congruence class of extensions of Aξ by G. We have succeeded in solving the
extension problem for all pairs with s+ t ≤ 3 (Theorems 2.16, 2.18, and 2.20). In
the case s + t = 4 (Theorem 2.22), we have solved the majority of cases, where
extensions of Ip × Ip by Ip × Ip are unfinished.

In the future, it could be interesting to:



GROUP COHOMOLOGY AND EXTENSIONS 5

(1) Finish determining the congruence classes of A = Ip × Ip by G = Ip × Ip
(trivial and non-trivial action).
(a) The case A = Atriv is difficult since

H2
(

(Ip × Ip)triv
, Ip × Ip

)
∼= (Ip)6

is very large. The abelian extensions are finished, but the rest remain.
(b) For the case A = Aξ, we have

H2
(

(Ip × Ip)ξ , Ip × Ip
)
∼=
{

I2, p = 2

(Ip)3
p 6= 2.

The case p = 2 is simple and is done, while p 6= 2 is unfinished.
The cohomology group is relatively large, and the rules for Es are
complicated (See Appendix C).

(2) After having found all congruence classes for the cases listed in Theorem
2.8, determine the weak congruence classes. This can be done by
(a) Constructing weak congruences directly. For instance, in the case G =

Ip = 〈x〉, A = Ip = 〈z〉 we have the class of the split extension

Ip� Ip × Ip � Ip
and the non-split ones, for s ∈ (Ip)∗

εs : Ip
ιs
�
(
Ip2 = 〈P 〉

) πs
� Ip

ιs : z 7→ P s
′p

πs : P 7→ x

s′ ≡ s−1 (mod p) .

Clearly the triple Γ =
(
α, 1Ip2 , 1Ip

)
, where

α : Ip → Ip
z 7→ zrs

′

defines a weak congruence εs ∼= εr, for any s, r ∈ (Ip)∗. So there are
two weak congruence classes for extensions p→ p2 → p,namely

Ip� Ip × Ip � Ip
and

Ip
ι1
�
(
Ip2 = 〈P 〉

) π1

� Ip
ι1 : z 7→ P p

π1 : P 7→ x.

In general, it is not the case that if two extensions ε and ε′ of A by
G, have the same middle group that they are weakly congruent. We
conjecture that this the case here, but we have not showed it. A better
method for determining weak congruence classes could be:

(b) Letting a group that we call Aut (G,A) (not included in the present
text!) act on extensions of A by G (and hence on E (G,A)), in such a
way that the orbits under the action are precisely the weak congruence
classes. Then we can, using the isomorphisms

E (G,A) →̃H2
special (G,A)

from Theorems 2.3 and 2.6 induce an action of Aut (G,A) onH2
special (G,A).

Then in order to find the weak congruence classes we:
(i) Find the orbits of H2

special (G,A).
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(ii) Pick a representative of each orbit, and find the extension it
classifies. Then we are done.

This procedure could also significantly simplify the procedure for deter-
mining the congruence classes. In the thesis, we partitioned H2 (G,A)
arbitrarily, and just found the extensions that the partition classified.
Instead we could partition H2

special (G,A) by the orbits of Aut (G,A),

find the extension of a easy cocycle of each orbit, and let Aut (G,A)
act on it to determine the rest in the class.

0.1. Structure of the thesis. We start by introducing group cohomology and the
bar resolution in Section 1.1. In Section 1.2 we treat group extensions, where we
define the notions of (weak) congruence. In Section 1.3 we discuss the connection
of group cohomology with group extensions. We deal with the special resolutions
in Section 1.4. In Section 1.5 we state and prove the Constructive Lifting Theorem
(Theorem 1.53).

In Section 2 we state the main results of the thesis. The abstract machinery
is located in Section 2.1, and in it we give the explicit correspondence between
H2

spec (G,A) and E (G,A). The computational results are in Section 2.2.
Section 3 contains proofs of statements from Section 1.
The next sections are dedicated the proving the main results. In Section 4 we

prove the statements of Section 2.1, and Theorems 2.8 and 2.14 from Section 2.2.
We describe the procedure for determining extensions in Section 5.1, and in Sections
5.2 to 5.5 we find them.

The Appendix contains results from homological algebra, a treatment on group
presentations, lists of p-groups up to order p4, and some rules that we derived for

extensions of (Ip × Ip)ξ by Ip × Ip.

0.2. Acknowledgements. I would like to thank my supervisor Andrei Prasolov
for his guidance and encouragement throughout my master studies. Many thanks
to the staff of the Department of Mathematics and Statistics. Finally, a huge thanks
my family for their support.
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1. Preliminaries

Notation 1.1.

(1) In:=Z/nZ. If p is a prime, then Ip is a field, denoted also by Fp.
(2) For a ∈ (In)

∗
, we let a′ ∈ In be such that

a′ ≡ a−1 (modn)

Notation 1.2. For a,m ∈ Z

[a]m :=a (modm)

Notation 1.3. Let A be an R-module and r an element of R. Then

(1) Afix = {a ∈ A : ra = a,∀r ∈ R} .
(2) [r]A = {a ∈ A : ra = 0} .

Notation 1.4. If a group G is presented by S ⊆ G subject to relations R, we write

G = 〈S : R〉 .
We shorten relations of the type w = 1, just writing w instead, for example〈

P,Q : P 4, Q2, Q−1PQ = P 3
〉

means the group presented by two generators P , Q, and relations

P 4 = 1,

Q2 = 1,

Q−1PQ = P 3.

See Definition B.1 and Remark B.3.

1.1. Cohomology and the bar resolution.

Definition 1.5. Let G be a group (or a monoid), then a left G-module A, is an
abelian group A together with a homomorphism

ξ : G→ Aut (A) .

For x ∈ G and a ∈ A we write

xa := [ξ (x)] (a) .

Remark 1.6. It is sometimes convenient to use the exponential notation for func-
tion values:

fx := f (x) .

The above action would look like this:

xa := ξ(x)a =

(
ξ
x
)
a.

Notation 1.7. Given an abelian group A, and an action

ξ : G→ Aut (A) ,

let Aξ denote the corresponding G-module.

Definition 1.8. Let G be a group, then the integral group ring of G, ZG, has
as its elements finite sums ∑

x∈G
mx 〈x〉 ,mx ∈ Z, x ∈ G

with addition ∑
x∈G

mx 〈x〉+
∑
x∈G

nx 〈x〉 =
∑
x∈G

(mx + nx) 〈x〉 ,
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and multiplication(∑
x∈G

mx 〈x〉

)(∑
x∈G

nx 〈x〉

)
=
∑
x,y∈G

mxny 〈xy〉 =
∑
z∈G

 ∑
x,y∈G
xy=z

mxny

 〈z〉 .
Remark 1.9. As an abelian group, ZG is free, with the set of generators

{〈x〉 : x ∈ G} .

Remark 1.10. Elements 〈x〉 belong to the group ring ZG. We will use, however,
similar notations 〈x〉, 〈x, y〉, 〈x, y, z〉 for the (sub)groups generated by {x}, {x, y},
{x, y, z} etc., hoping that that would not lead to a confusion.

Remark 1.11. We consider only left modules in this thesis.

Notation 1.12. We use notations R-Mod or R Mod for (left) R-modules, and
G-Mod or G Mod for (left) G-modules.

Proposition 1.13. The categories ZG Mod and G Mod are equivalent.

Proof. See [ML95, Proposition IV.1.2]. �

Remark 1.14. We will frequently use this fact, switching between the notations(∑
x∈G

mx 〈x〉

)
a =

∑
x∈G

mx
xa.

Definition 1.15. Let G be a group and let A ∈ ZG Mod, then

Hn (G,A) = ExtnZG
(
Ztriv, A

)
,

where

ξ = triv : G→ Aut (A)

is the trivial action (ξx ≡ 1A) is the nth cohomology group of G with coefficients
in A.

The significance of group cohomology comes from the (normalized) bar resolu-
tion, which we will now discuss.

Let βn be the free G-module with generators [x1, x2, . . . , xn], xi ∈ G, which
we may also think of as the free abelian group generated by elements of the form
x [x1, x2, . . . , xn]. Let Dn be the submodule generated by elements of the form

[x1, . . . , xi−1, 1, xi+1, . . . , xn] , 1 ≤ i ≤ n

(the degenerate elements). Then we define

Bn = βn/Dn.

The notation for [x1, x2, . . . , xn] +Dn ∈ Bn is [x1|x2| . . . |xn] .
Differentials ∂n−1 : βn → βn−1, n > 0 on generators are given by

∂n−1 ([x1, x2, . . . , xn]) = x1 [x2, . . . , xn] +

n−1∑
i=1

(−1)
i
[x1, . . . , xi · xi+1, . . . , xn] +

+ (−1)
n

[x1, . . . , xn−1] ,

which also work for Bn because ∂n−1 (Dn) ⊆ Dn−1.
Define Z-maps Sn : βn → βn+1 by

S−1 (x [ ]) = [x] , Sn (x [x1, . . . , xn]) = [x, x1, . . . , xn]

which work the same for Bn since Sn (Dn) ⊆ Dn+1.
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Remark 1.16. The Z-maps Sn : Bn → Bn+1 above are examples of what are
called contractions. See Appendix A for a definition and properties of contractible
complexes.

Observe that B0 is the free ZG-module with generator [ ], and so is isomorphic
to ZG via the map [ ] 7→ 〈1〉. The map

ε : ZG → Z∑
g∈G
finite

mg 〈g〉 7→
∑
g∈G
finite

mg

is called the augmentation, and is clearly a surjective ZG-map.

Theorem 1.17. The (normalized) bar resolution (Bn, ∂n) with augmentation is a
free ZG-resolution of Ztriv.

Proof. See [ML95, Theorem IV.5.1] �

Let A ∈ ZG Mod, and let

0← Ztriv ε← B0
d0← B1

d1← B2 ← · · ·

be the normalized bar resolution. Apply HomZG (−, A) to the above complex, with
Ztriv deleted to obtain

0→ HomZG (B0, A)
∂∗0→ HomZG (B1, A)

∂∗1→ HomZG (B2, A)
∂∗2→ · · ·

and recall that since Bn is free with generators [x1| . . . |xn], we know that any
homomorphism

Φ : Bn → A

is the unique extension of a map

ϕ : Gn → A,

where

Φ ([x1| . . . |xn]) = ϕ (x1, . . . , xn) .

Identifying ϕ with Φ, and labeling

Bn:= HomZG (Bn, A) , δn:=∂∗n

we get the cochain complex

0→ B0 δ0→ B1 δ1→ B2 → · · ·

where

(δnϕ) (x1, . . . , xn+1) = x1ϕ (x2, . . . , xn+1) +

n∑
i=1

(−1)
i
ϕ (x1, . . . , xi · xi+1, . . . , xn+1) +

+ (−1)
n+1

ϕ (x1, . . . , xn) .

Definition 1.18. Let A ∈ ZG Mod.

(1) A map ϕ : Gn → A is called a cochain.
(2) We say that ϕ is normalized cochain if ϕ (x1, . . . , xn) = 0 whenever any

xi = 1.
(3) A cocycle ϕ is a cochain with the property that δnϕ = 0.
(4) A cochain ϕ is coboundary if ϕ = δn−1ψ, for some cochain ψ ∈ Bn−1.

Example 1.19.
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(1) Let ϕ : G×G→ A be a cochain. Then ϕ is a cocycle if and only if for all
x, y, z ∈ G(

δ2ϕ
)

(x, y, z) = xϕ (y, z)− ϕ (xy, z) + ϕ (x, yz)− ϕ (xy) = 0

i.e.
xϕ (y, z) + ϕ (x, yz) = ϕ (xy, z) + ϕ (xy) .

(2) Let ϕ : G2 → A be a cochain. Then ϕ is a coboundary if for some cochain
ψ ∈ B1,

ϕ (x, y) =
(
δ1ψ

)
(x, y) = xψ (y)− ψ (xy) + ψ (x) .

The equation(
δ2ϕ

)
(x, y, z) =

[
δ2
(
δ1ψ

)]
(x, y, z)

= x
(
δ1ψ

)
(y, z)−

(
δ1ψ

)
(xy, z) +

(
δ1ψ

)
(x, yz)−

(
δ1ψ

)
(x, y)

= x ( yψ (z)− ψ (yz) + ψ (y))− ( xyψ (z)− ψ (xyz) + ψ (xy)) +

+ ( xψ (yz)− ψ (xyz) + ψ (x))− ( xψ (y)− ψ (xy) + ψ (x))

= 0

verifies that coboundaries are cocycles.

Proposition 1.20. Let G be a group and A ∈ G Mod, then

Hn (G,A) =
ker
(
Bn

δn→ Bn+1
)

Im
(
Bn−1 δn−1

→ Bn
)

=
{cocycles}

{coboundaries}
.

Remark 1.21. We will label cohomology groups calculated using the bar resolutions
as Hn

bar.

1.2. Group extensions.

Definition 1.22. Let A and G be groups. An extension ε of A by G is a short
exact sequence

ε : 1→ A
ι→ E

π→ G→ 1.

An extension ε splits is π has a right inverse, i.e. there is a homomorphism
ν : G→ E such that π ◦ ν = 1G.

Definition 1.23. Let

ε : 1→ A
ι→ E

π→ G→ 1

be an extension of A by G, then a section of ε is a map (of sets) σ : G→ E with
π ◦ σ = 1G. We require further that σ (1) = 1.

Proposition 1.24. Let E be an extension of A by G. Then conjugation in E
determines a homomorphism

θ : E → Aut (ιA)

x 7→ θ (x) : ι (a) 7→ xι (a)x−1.

Proposition 1.25. Let A be an abelian group. Then an extension ε of A by G
makes A into a G-module.
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Proof. Since A is abelian we know that θ (ι (A)) = {1ιA} , so that if elements of E
are congruent modulo ιA, their action on A coincides. Thus, let

σ : G→ E

be a section π. Then any other section σ′ will be congruent to σ modulo ιA :

π
(
σ′ (x)σ (x)

−1
)

= π (σ′ (x))π (σ (x))
−1

= xx−1

= 1 ∈ ker (π) = ιA.

Hence the map

ξ : G → Aut (ιA)

x 7→ ξ (x) : ι (a) 7→ σ (x) ι (a)σ (x)
−1

is a well defined homomorphism, which gives us an action of G on ιA, and hence
on A. �

Remark 1.26. Notice that, though the action ξ seems to depend on the section σ,
ξ does not in fact depend on σ.

Remark 1.27. An old-fashioned name for the action ξ is operators (the group G
acts on A by the operators ξ).

Definition 1.28. Let (A, ξ) be a G-module. An extension ε of A by G realizes
the action, if for all x ∈ G

xa = [ξ (x)] (a) .

By an extension of Aξ by G, we mean an extension of A by G that realizes the
action ξ.

Definition 1.29. An extension ε of A by G in which ι (A) ⊆ Z (E), where Z (E)
is the center of E, is called central.

Proposition 1.30. Let ε be an extension of A by G. Then ε is central if and only
if the action of G on A is trivial.

Definition 1.31. Let (A, ξ) be a G-module. The semidirect product of A and
G, Aoξ G is a group with elements are of the form

(a, x) , a ∈ A, x ∈ G,

and with multiplication

(a, x) (b, y) = (a xb, xy) .

Define maps

ι : A → Aoξ G
a 7→ (a, 1)

and

π : Aoξ G → G

(a, x) 7→ x.

Remark 1.32. It is convenient sometimes to write ax instead of (a, x).

Proposition 1.33. The semidirect product with the maps ι and π

1→ A
ι→ Aoξ G

π→ G→ 1

is an extension of A by G realizing the action ξ. Furthermore, the extension splits.
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Proof. The maps ι and π are clearly homomorphisms, injective and surjective re-
spectively. The equality

xax−1 = (1, x)
(
a, x−1

)
=
(
xa, xx−1

)
= ( xa, 1)

shows that Aoξ G realizes the action. A splitting γ : G→ Aoξ G is given by

γ : x 7→ (1, x) .

This is obviously a homomorphism with π ◦ γ = 1G. �

Example 1.34. If the action of G on A is trivial, then Aoξ G = A×G.

Definition 1.35. If ε and ε′ are extensions, then a morphism Γ : ε → ε′ is a
triple (α, β, γ) of morphisms such that

1 - A
i - E

p - G - 1

1 - A′

α

? i′ - E′

β

? p′ - G′

γ

?
- 1

commutes.
The morphism Γ : ε → ε′ is an isomorphism if each of the components are

isomorphisms, and we write ε ∼= ε′.

Remark 1.36. Clearly the relation ∼= on extensions is an equivalence relation.

Remark 1.37. We will also call an isomorphism of extensions a weak congru-
ence (compare with a congruence defined below).

Proposition 1.38. If Γ : ε → ε′ is a weak congruence of extensions, then the
action of ε′ is determined by ε:[

ξ′ (γx)
]

(αc) = α ([ξ (x)] (c)) ,

or equivalently, in the exponential notation:
ξ′ (γx) (αc) = α

(
(ξx)c

)
,

x ∈ G, c ∈ A.

Proof. It is clear that
σ′ = βσγ−1

is a section of π′. It follows from the commutativity of the diagram that

ι′ = βια−1,

(ι′)
−1

= αι−1β−1.

Then

ξ′ (γx) (αc) = (i′)
−1
[
σ′ (γx) · i

′
(αc) ·

(
σ′ (γx)

)−1
]

=

= αι−1β−1

[
βσγ−1

(γx) · βια
−1

(αc) ·
(
βσγ−1

(γx)
)−1

]
=

= αι−1β−1
[
βσx · βια

−1

(αc) ·
(
βσx

)−1
]

=

= αι−1
[
σx · ια

−1

(αc) · (σx)
−1
]

=

= αι−1
[
σx · ιc · (σx)

−1
]

= α
(

(ξx)c
)
.

�
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Definition 1.39. We say that two extensions ε and ε′ of A by G are congru-
ent (equivalent) (ε ∼ ε′) if there is a group homomorphism γ : E → E′ so that
(1A, γ, 1G) is a morphism between ε and ε′, i.e.,

1 - A
i - E

p - G - 1

1 - A′

1A

? i′ - E′

β

? p′ - G′

1G

?
- 1

(2)

commutes.

Clearly congruent extensions are weakly congruent, but the converse needs not
hold.

Remark 1.40. We can and will now assume without loss of generality that the

maps A
ι→ E and E

π→ G are the inclusion and projection, respectively. Fur-
thermore, when we have A ∈ ZG Mod, and say that ε is an extension of A (as a
G-module) by G, we mean that ε realizes the action.

Notation 1.41. The set of classes of congruent extensions is denoted E (G,A) (or
E
(
G,Aξ

)
, when ξ is a given action).

Remark 1.42. In fact, E (G,A) has a natural structure of an abelian group. The
group operation can be defined internally, using extensions. However, we will only
consider the group structure on E (G,A) inherited from the isomorphism

E (G,A) ' H2 (G,A) ,

proved below.

Proposition 1.43. Any extension of A by G that splits is congruent to the semidi-
rect product Aoξ G.

Proof. See [ML95, Section IV.4.3]. �

Definition 1.44. Let
1→ A

ι→ E
π→ G→ 1

be an extension of A by G.

(1) If G = Im = 〈t〉, then a section σ : G→ E of π is called simple if

σ
(
ti
)

= {t}i , 0 ≤ i < m

for {t} ∈ E such that π ({t}) = 1.
(2) If G = Im× In = 〈x〉 × 〈y〉, then a section σ : G→ E of π is called simple

if

σ
(
xiyj

)
= {x}i {y}j , 0 ≤ i ≤ m, 0 ≤ j ≤ n

for some {x} , {y} ∈ E with π ({x}) = x and π ({y}) = y.

1.3. The isomorphism H2
bar
∼= E (G,A). Let

1→ A→ E
π→ G→ 1

be an extension of A by G, with x : G→ E being a section of π, that is,

π (xg) = g for ∀g ∈ G,
x1 = 1.

Then every element e ∈ E can be written uniquely in the form

e = a · xg, some a ∈ A, g ∈ G.
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Hence as a set, we may think of E as

E = A×G = {(a, g) : a ∈ A, g ∈ G} .

The following equality

π (xgh) = gh = π (xg)π (xh) = π (xgxh)

shows that xgxh ≡ xgh (modA), i.e.

xgxh = ϕ (g, h)xgh, ∀g, h ∈ G.

This gives a multiplication compatible with the description of E as a set of tuples:

(a, g) (b, h) 7→ (axg) (bxh) = a
(
xgbx

−1
g

)
xgxh = a· gb·ϕ (g, h)xgh 7→ (a · gb · ϕ (g, h) , gh)

so

(a, g) (b, h) = (a · gb · ϕ (g, h) , gh) .

Theorem 1.45.

(1) The function ϕ : G×G→ A is a normalized cocycle (Definition 1.18).
(2) The element (1, 1) is the identity element of E, and the inverse of (a, g) is(

g−1 (
a−1

)
· ϕ
(
g−1, g

)−1
, g−1

)
.

(3) Consider the commutative diagram is

1 - A - E
π - G - 1

1 - A′

1A

?
- E′

β

? π′ - G′

1G

?
- 1

Let x : G→ E be a section of π (π ◦ x = 1G) and y : G→ E′ be a section
of π′ (π′ ◦ y = 1G). Then for ∀g ∈ G

π′ (β (xg)) = π (xg) = g

shows that yg ≡ β (xg) (modA) ∀g ∈ G, i.e.

yg = ξ (g)β (xg) , ξ : G→ A.

Let ϕ,ψ : G × G → A be the cocycles of x and y respectively. Then the
cocycles ϕ and ψ are congruent modulo coboundaries.

(4) Finally: let G be a group, A be a G-module, and ω be the function which
assigns to each extension of A by G realizing the action, the congruence
class of one of its cocycles. Then ω induces a bijection

ω : E (G,A)↔ H2 (G,A)

where the class of the semidirect product AnG corresponds to 0 ∈ H2 (G,A).

Proof. See Section 3.2. �

Proposition 1.46. Let G = Im = 〈t〉,

1→ A
ι→ E

π→ G→ 1

be an extension of A by G, and let σ be a simple section of π, with σ (t) = {t}.
Then the corresponding cocycle ϕσ : G×G→ A is given by

ϕσ
(
ti, tj

)
= {t}i+j−[i+j]m =

{
{t}m if i+ j ≥ m

1 if i+ j < m
.
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Proof. Let ϕ be the cocycle of σ. Then

σ
(
ti
)
σ
(
tj
)

= ϕ
(
ti, tj

)
σ
(
t[i+j]m

)
for all i, j. Using the fact that σ is simple we get the equation

{t}i+j = ϕ
(
ti, tj

)
{t}[i+j]m ,

which is equivalent to

ϕ
(
ti, tj

)
= {t}i+j−[i+j]m .

�

Proposition 1.47. Let G = Im × In = 〈x〉 × 〈y〉,

1→ A
ι→ E

π→ G→ 1

be an extension of A by G, and let σ be a simple section of π, with σ
(
xiyj

)
=

{x}i {y}j. Then the corresponding cocycle ϕσ : G×G→ A is given by

(
xiyj , xkyl

)
7−→

k−1∏
r=0

j−1∏
d=0

xi+rydV ·


1 , i+ k < m, j + l < n
W , i+ k ≥ m, j + l < n

xi+kU , i+ k < m, j + l ≥ n
W xi+k−mU , i+ k ≥ m, j + l ≥ n

,

where UV
W

 =

 {y}n

{y} {x} {y}−1 {x}−1

{x}m

 ∈ A3.

Proof. See Section 3.1. �

1.4. Special Resolutions. The bar resolution tells us what cohomology of groups
means, but it is not suitable for computation. Fortunately in the case when G = Im
is cyclic, there is a textbook resolution which we will call the special resolution.
In the case when G = Im × In is dicyclic, the total complex of the tensor product
of the special resolutions for Im and In, is a free ZG-resolution of Ztriv, which we
will also call the special resolution.

1.4.1. The case G = Im. Consider the sequence

0← Ztriv d−1← P0
d0← P1

d1← P2
d2← P3 ← . . .

where for all n ≥ 0:

Pn = ZG =

{
m−1∑
i=0

ai
〈
xi
〉

: ai ∈ Z

}
;

d−1 = ε : 〈1〉 7→ 1,

d2n : 〈1〉 7→ D:= 〈x〉 − 〈1〉 ,

d2n+1 : 〈1〉 7→ N :=

m−1∑
i=0

〈
xi
〉
.

Remark 1.48. Since the Pn’s are free ZG-modules, it is enough to define the
homomorphisms on the generator 〈1〉, and extend by ZG-linearity.
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Proposition 1.49. Let G = Im. Then complex 0 ← Ztriv ← P• is a free ZG-
module resolution of Ztriv, which we call the special resolution. A contraction for
the special resolution is given by

S−1 (1) = 〈1〉 ,

S2n

(〈
xi
〉)

=

{ ∑i−1
j=0

〈
xj
〉

, i > 0

0 , i = 0
,

S2n+1

(〈
xi
〉)

=

{
0 , i < m− 1
〈1〉 , i = m− 1.

Proof. For the proof, see Section 3.3. �

Let us calculate the cohomology groups. We have

0← Ztriv d−1← P0
d0← P1

d1← P2
d2← P3 ← . . .

which when we delete Ztriv gives

0← P0
d0← P1

d1← P2
d2← P3 ← . . .

Applying HomZG (−, A):

0→ HomZG (P0, A)
d∗0→ HomZG (P1, A)

d∗1→ HomZG (P2, A)→ · · ·

where for ϕ : ZG→ A we have

d∗n : ϕ 7→ ϕ ◦ dn.

Note that

HomZG (Pn, A) → A

ϕ 7→ ϕ (〈1〉)

is a natural isomorphism, with inverse

A → HomZG (Pn, A)

a 7→ ϕ : 〈1〉 7→ a

Thus the above cochain complex is isomorphic to

0→ A
d0→ A

d1→ A→ · · ·

where

d2k : a 7→ Da = (〈x〉 − 〈1〉) a = xa− a,

d2k+1 : a 7→ Na =

m−1∑
j=0

〈
xj
〉 a =

m−1∑
j=0

xja

Theorem 1.50. [ML95, Theorem 7.1] Let G = Im and A ∈ G Mod, then for any
integer k ≥ 0 :

H0
special (G,A) = Afix,

H2k
special (G,A) =

Afix

NA
,

H2k+1
special (G,A) =

{a ∈ A : N · a = 0}
DA

.

Proof. Going through the different cases:

(1) H0
special (G,A) =

ker

(
A
d0→A

)
Im(0→A) = {a ∈ A : xa− a = 0} = Afix.
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(2) H2k
special (G,A) =

ker

(
A
d2k→A

)
Im

(
A
d2k−1
→ A

) = {a∈A: xa−a=0}
{Na:a∈A} = Afix

NA .

(3) H2k+1
special (G,A) =

ker

(
A
d2k+1
→ A

)
Im

(
A
d2k→A

) = {a∈A:Na=0}
{Da:a∈A} .

�

1.4.2. The case G = Im × In. We also need a resolution of Ztriv in the case when
G = Im × In. We follow the procedure outlined in [HS97, Chapter VI, Section 15].
Let

G1 = Im = 〈x〉 ,
G2 = In = 〈y〉 ,

and

G = G1 ×G2 =
{
xiyj : 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1

}
.

By Proposition 1.49 we have free ZGi-resolutions

0← Ztriv ← P i•.

As described in Appendix A.0.1, the part Tots
(
P 1
• ⊗Z P

2
•
)
, s ≤ 3, of the total

complex looks like this:

ZG1 ⊗ ZG2

ZG1 ⊗ ZG2

1⊗Dy

?
�Dx ⊗ 1

ZG1 ⊗ ZG2

ZG1 ⊗ ZG2

1⊗Ny

?
�Dx ⊗ 1

ZG1 ⊗ ZG2

− (1⊗Ny)

?
�Nx ⊗ 1

ZG1 ⊗ ZG2

ZG1 ⊗ ZG2

1⊗Dy

?
�Dx ⊗ 1

ZG1 ⊗ ZG2

− (1⊗Dy)

?
�Nx ⊗ 1

ZG1 ⊗ ZG2

1⊗Dy

?
�Dx ⊗ 1

ZG1 ⊗ ZG2

We note that Z is a PID and that both P 1
• , P

2
• are projective and hence flat

as complexes over Z, so by the Künneth formula (Theorem A.13), there is a short
exact sequence⊕
p+q=n

Hp

(
P 1
•
)
⊗ZHq

(
P 2
•
)
� Hn

(
Tot

(
P 1
• ⊗Z P

2
•
))
�

⊕
p+q=n−1

TorZ1
(
Hp

(
P 1
•
)
, Hq

(
P 2
•
))
.

Since the P i•’s are exact, it follows that Hp

(
P i•
)

= 0 and thus the SES reduces to

0� Hn

(
Tot

(
P 1
• ⊗Z P

2
•
))
� 0

i.e.

Hn

(
Tot

(
P 1
• ⊗Z P

2
•
)) ∼= 0

which shows that Tot
(
P 1
• ⊗Z P

2
•
)

is exact. Hence we have a Z-resolution

0← Ztriv ← Tot
(
P 1
• ⊗Z P

2
•
)

with the obvious augmentation.
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We will now show that this Z-resolution is in fact a ZG-resolution. We make
ZG1 ⊗ ZG2 into a ZG-module by

xiyj (a⊗ b) :=
(〈
xi
〉
a
)
⊗
(〈
yj
〉
b
)

which is easily seen to be compatible with the differentials. Applying the isomor-
phism

ZG1 ⊗ ZG2 → ZG
〈x〉 ⊗ 〈y〉 7→ 〈xy〉

to our bicomplex, yields a bicomplex (over ZG)

ZG

ZG

Dy

?
�Dx ZG

ZG

Ny

?
�Dx ZG

−Ny

?
�Nx ZG

ZG

Dy

?
�Dx ZG

−Dy

?
�Nx ZG

Dy

?
�Dx ZG

Hence the complex

0← Ztriv d−1← ZG d0← ZG
⊕

ZG d1← ZG
⊕

ZG
⊕

ZG← · · ·
where the first few differentials are given by

d−1 = ε,

d0

[
a
b

]
=

[
Dy Dx

] [ a
b

]
= Dya+Dxb,

d1

 a
b
c

 =

[
Ny Dx 0
0 −Dy Nx

] a
b
c

 =

[
Nya+Dxb
−Dyb+Nxc

]

d2


a
b
c
d

 =

Dy Dx 0 0
0 −Ny Nx 0
0 0 Dy Dx



a
b
c
d

 =

 Dya+Dxb
−Nyb+Nxc
Dyc+Dxd

 .
is a ZG-resolution, which we call the special resolution.

Applying HomZG (−, A) to

0← ZG d0← ZG
⊕

ZG d1← ZG
⊕

ZG
⊕

ZG← · · ·
gives

A
d∗0→ A2 d∗1→ A3 → . . .

via the natural isomorphisms

HomZG

(
m⊕
i=1

ZG,A
)
→

m∏
i=1

HomZG (ZG,A)→ Am

ϕ 7→ (ϕ ◦ ιi) 7→ (ϕ ◦ ιi (〈1〉))
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So

H2 (G,A) ∼=
ker

(
A3 d∗2→ A4

)
Im

(
A2

d∗1→ A3

)

where

d∗2

ab
c

 =


Dy 0 0
Dx −Ny 0
0 Nx Dy

0 0 Dx


ab
c

 =


Dya

Dxa−Nyb
Nxb+Dyc

Dxc



and

d∗1

([
a
b

])
=

Ny 0
Dx −Dy

0 Nx

[a
b

]
=

 Nya
Dxa−Dyb

Nxb



We have in fact proved the following theorem:

Theorem 1.51. Let G = Im × In = 〈x〉 × 〈y〉, and let A be a G-module. Then

H2 (G,A) ∼=
ker

(
A3 d∗2→ A4

)
Im

(
A2

d∗1→ A3

) ,

where

d∗2

ab
c

 =


Dya

Dxa−Nyb
Nxb+Dyc

Dxc

 ,
d∗1

([
a
b

])
=

 Nya
Dxa−Dyb

Nxb

 .
Proposition 1.52. Let G = Im × In = 〈x〉 × 〈y〉, and let A be a G-module. Then
the special resolution

0← Ztriv ε← ZG d0← ZG⊕ ZG d1← ZG⊕ ZG⊕ ZG← · · ·
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is contractible as a complex of Z-modules, and (up to homotopy) the first few maps
are given by

S−1 (1) = 〈1〉 ,

S0

(〈
xiyj

〉)
=

[∑j−1
k=0

〈
xiyk

〉∑i−1
k=0

〈
xk
〉 ] ,

S1

([〈
xiyj

〉
0

])
=



〈xi〉0
0

 j = n− 10
0
0

 j < n− 1

,

S1

([
0〈

xiyj
〉]) =



 0

−
∑j−1
k=0

〈
xiyk

〉
〈1〉

 , i = m− 1

 0

−
∑j−1
k=0

〈
xiyk

〉
0

 , i < m− 1

Proof. For the proof, see Section 3.4. �

1.5. Comparisons of Resolutions. The Comparison Theorem (Theorem A.6)
tells us that Hn

bar and Hn
special are isomorphic, but it does not specify the iso-

morphism. We will need an explicit description of this isomorphism, and so we
introduce the constructive lifting theorem. It is inspired by the field of relative
homological algebra, in particular [ML95, Chapter IX. Theorem 6.2], and it uses
the condition that our resolutions are free (not just projective).

Theorem 1.53. (Constructive Lifting Theorem) Let L be a ring and K ⊆ L a
subring, and suppose that we have:

(1) A complex 0← A← P• in L Mod, where Pn are free, i.e.

Pn =
⊕
Xn

L =


∑
x∈Xn
finite

lx [x] : lx ∈ L


for some index set Xn.

(2) A complex 0← B ← Q• in L Mod is contractible in K Mod with contraction
S (e.g. a projective resolution of B).

Then for any L-map f : A → B, the family of L-maps (fn) defined recursively
on generators by

fn [x] :=Sn−1fn−1dn−1 [x] , f0 [x] :=S−1fd−1 [x] .

is a lifting of f (in L Mod).

Proof. (By induction) When n = 0, we have d−1f0 = d−1f by definition of f0. Let
n ≥ 0 and assume that

fn−1dn−1 = dn−1fn.
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Then

fndn [x] = 1Qnfndn [x] = (Sn−1dn−1 + dnSn) fndn [x]

= Sn−1dn−1fndn [x] + dnSnfndn [x]

= Sn−1 (dn−1fn) dn [x] + (dnSnfn) dn [x]

= Sn−1fn−1dn−1dn︸ ︷︷ ︸
0

[x] + fn+1dn [x]

= fn+1dn [x] .

Since Pn, n ≥ 0 are free modules, we know that f• extends uniquely to ZG-
maps. �

The following diagram illustrates the situation in Theorem 1.53:

A �
d−1

P0
�

d0

P1
�

d1

P2
� · · ·

B

f

? S−1- Q0

f0

? S0 - Q1

f1

? S1 - Q2

f2

?
- · · ·

Now we have the tools to construct liftings (of 1Z)

P special
•

f→ Bbar
• , and

Bbar
•

g→ P special
•

to get isomorphisms

Hn
bar (G,A)

f∗→ Hn
special (G,A) , and

Hn
special (G,A)

g∗→ Hn
bar (G,A) .
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2. Main Results

2.1. Machinery.

2.1.1. Extensions by a cyclic group.

Definition 2.1. Let G = Im = 〈x〉 and let A be a G-module. Then the special
cohomology group is

H2
spec (G,A) =

Afix

NA
,

where N =
∑m−1
i=0

〈
xi
〉
.

Remark 2.2. In fact, it is possible (and natural) to define Hn
spec for all n (see

Theorem 1.50), but at this stage we are interested only in H2
spec.

Theorem 2.3.

(1) Let G = Im and A be a G-module. Then the map

H2
spec (G,A) =

Afix

NA
→ H2

bar (G,A)

a+NA 7→
((
xi, xj

)
7→
{

0 , i+ j < m
a , i+ j ≥ m

)
+ ∂B1,

is an isomorphism.
(2) Let G = Im and A be a G-module. Then the map

H2
bar (G,A) → H2

spec (G,A)

ϕ+ δB1 7→
m−1∑
j=1

ϕ
(
xj , x

)
+NA

is an isomorphism, which is inverse to the previous one.
(3) Let G = Im, A a G-module, and ω the map which sends an extension

ε : 1→ A
ι→ E

π→ G→ 1

of A by G realizing the action, to the element

{x}m +NA ∈ H2
special (G,A) ,

where {x} ∈ Es is a representative of x. Then ω induces a bijection

ω : E (G,A) ↔ H2
special (G,A)

[ε] 7→ {x}m +NA.

Proof. For the proof, see Section 4.1. �

Remark 2.4. To see how we apply the above Theorem, see Section 5.1.

2.1.2. Extensions by a dicyclic group.

Definition 2.5. Let G = Im × In = 〈x, y〉 and let A be a G-module. Then the
special cohomology group is

H2
spec (G,A) =

ker

(
A3 d∗2→ A4

)
Im

(
A2

d∗1→ A3

) ,
where

d∗2

ab
c

 =


Dya

Dxa−Nyb
Nxb+Dyc

Dxc

 ,
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and

d∗1

([
a
b

])
=

 Nya
Dxa−Dyb

Nxb

 .
Theorem 2.6.

(1) Let G = Im × In and A be a G-module. Then the map

H2
spec (G,A) =

ker

(
A3 d∗2→ A4

)
Im

(
A2

d∗1→ A3

) → H2
bar (G,A)

ab
c

+ d∗1A
1 7→ ϕ+ δB1

where

ϕ : G2 → A(
xiyj , xkyl

)
7→ −

∑k−1
d=0

∑j−1
α=0

xi+dyαb

+ x[i+k]ma (if j + l ≥ n)
+ c (if i+ k ≥ m)

is an isomorphism.
(2) Let G = Im × In and A be a G-module. Then the map

H2
bar (G,A) → H2

spec (G,A)

ϕ+ δB1 7→

 ∑n−1
k=0 ϕ

(
yk, y

)
ϕ (x, y)− ϕ (y, x)∑m−1

k=0 ϕ
(
xk, x

)
+ d∗1A

2

is an isomorphism, which is inverse to the previous one.
(3) Let G = Im × In, A a G-module, and ω the map which sends an extension

ε : 1→ A
ι→ E

π→ G→ 1

of A by G realizing the action, to the element U
−V
W

+ d∗1A
2 ∈ H2

special (G,A) ,

where {x} , {y} ∈ E are representatives of x and y, andUV
W

 =

 {y}n

{y} {x} {y}−1 {x}−1

{x}m

 .
Then ω induces a bijection

ω : E (G,A) ↔ H2
special (G,A)

[ε] 7→

 U
−V
W

+ d∗1A
2.

Proof. For the proof, see Section 4.2. �

Remark 2.7. To see how we apply the above Theorem, see Section 5.1.
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2.2. Computations. As mentioned previously, the goal of this thesis is to describe
all extensions (up to a weak congruence)

1→ A→?→ G→ 1

where:

|G| = pt,

|A| = ps,

1 ≤ s, t ≤ 2,

without using extra requirements on A, or on the action of G on A. The following
theorem reduces all cases to an essentially smaller number of those.

Theorem 2.8. Up to weak congruence, List 2.9 to List 2.12 below give all the
combinations of A,G and ξ arising in extensions

ps → ps+t → pt,

1 ≤ s, t ≤ 2.

Proof. See Section 4.3. �

List 2.9. Extensions 1→ p→ p2 → p→ 1

(1) A = Ip
(a) G = Ip = 〈x〉 :

(i) Trivial action

List 2.10. Extensions 1→ p→ p3 → p2 → 1

(1) A = Ip
(a) G = Ip2 = 〈x〉 :

(i) Trivial action.
(b) G = Ip × Ip = 〈x, y〉 :

(i) Trivial action.

List 2.11. Extensions 1→ p2 → p3 → p→ 1

(1) A = Ip2 .
(a) G = Ip = 〈x〉 :

(i) Trivial action.
(ii) Non-trivial action, given by

xa = (1 + p) a.

(2) A = Ip × Ip.
(a) G = Ip = 〈x〉 :

(i) Trivial action.
(ii) Non-trivial action, given by

x

[
a
b

]
=

[
a+ b
b

]
.

List 2.12. Extensions 1→ p2 → p4 → p2 → 1

(1) A = Ip2 .
(a) G = Ip2 = 〈x〉 :

(i) Trivial action.
(ii) Non-trivial action, given by

xia = a (1 + ip) .

(b) G = Ip × Ip = 〈x, y〉 :
(i) Trivial action.
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(ii) Non-trivial action, given by

xiyja = a (1 + ip) .

(2) A = Ip × Ip.
(a) G = Ip2 = 〈x〉 :

(i) Trivial action.
(ii) Non-trivial action, given by

x

[
a
b

]
=

[
1 1
0 1

] [
a
b

]
=

[
a+ b
b

]
.

(b) G = Ip × Ip = 〈x, y〉 :
(i) Trivial action.

(ii) Non-trivial action, given by

xiyj
[
a
b

]
=

[
1 i
0 1

] [
a
b

]
=

[
a+ ib
b

]
.

If we let ξ to denote the non-trivial action, and 1 the trivial, then Theorem 2.8
states that the following table gives (up to weak congruence) all combinations G,Aξ

arising in extensions

ps → ps+t → pt,

1 ≤ s, t ≤ 2

Table 2.13. Table of possible combinations of G,A, and actions.

G A Action
Ip Ip 1
Ip Ip2 1
Ip Ip × Ip 1
Ip2 Ip 1
Ip2 Ip2 1
Ip2 Ip × Ip 1
Ip Ip2 ξ
Ip Ip × Ip ξ
Ip2 Ip2 ξ
Ip2 Ip × Ip ξ
Ip × Ip Ip 1
Ip × Ip Ip2 1
Ip × Ip Ip × Ip 1
Ip × Ip Ip2 ξ
Ip × Ip Ip × Ip ξ

Below is the list of groups H2 (G,A) for various pairs (G,Aη) where η is either
the trivial action, or the only (up to a weak congruence) non-trivial action.

Theorem 2.14. The table below give the complete list of the groups H2 (G,A)
arising in connection with extensions

ps −→ ps+t −→ pt,

1 ≤ s, t ≤ 2.

Proof. For the proof, see Section 4.4. �
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Table 2.15. Table of cohomologies.

H2 (G,A)
G A Action p 6= 2 p = 2
Ip Ip 1 Ip
Ip Ip2 1 Ip
Ip Ip × Ip 1 Ip × Ip
Ip2 Ip 1 Ip
Ip2 Ip2 1 Ip2
Ip2 Ip × Ip 1 Ip × Ip
Ip Ip2 ξ {0} I2
Ip Ip × Ip ξ Ip {0}
Ip2 Ip2 ξ Ip
Ip2 Ip × Ip ξ Ip
Ip × Ip Ip 1 Ip × Ip × Ip
Ip × Ip Ip2 1 Ip × Ip × Ip
Ip × Ip Ip × Ip 1 (Ip × Ip)3

Ip × Ip Ip2 ξ Ip
Ip × Ip Ip × Ip ξ (Ip)3 I2

A blank entry in the column p = 2 means that the cases p = 2 and p 6= 2 do not
differ.

Theorem 2.16. Up to a weak congruence, the extensions in List 2.17 below are
all the congruence classes for p→ p2 → p.

Proof. For the proof, see Section 5.2. �

List 2.17. Extensions p→ p2 → p

(1) G = Ip = 〈x〉, A = (Ip)triv
= 〈z〉

(a) s ∈ H2 (G,A) ∼= Ip :
(i) s = 0:

Ip
ι
� Ip × Ip � Ip

(ii) s 6= 0:

Ip
ιs
�
(
Ip2 = 〈P 〉

) πs
� Ip

ιs : z 7→ P s
′p

πs : P 7→ x

s′ ≡ s−1 (mod p)

Theorem 2.18. Up to a weak congruence, the extensions in List 2.19 below are
all the congruence classes for p2 → p3 → p.

Proof. For the proof, see Section 5.3. �

List 2.19. Extensions p2 → p3 → p

(1) G = Ip = 〈x〉, A =
(
Ip2
)triv

= 〈z〉,
s ∈ H2 (G,A) ∼= Ip
(a) s = 0:

Ip� Ip2 × Ip � Ip
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(b) s 6= 0:

Ip2
ιs
�
(
Ip3 = 〈P 〉

) πs
� Ip

ιs : z 7→ P ps
′

πs : P 7→ x

s′ ≡ s−1 (mod p)

(2) G = Ip = 〈x〉, A =
(
Ip2
)ξ

= 〈z〉,

s ∈ H2 (G,A) ∼=
{

I2 if p = 2
0 if p 6= 0

(a) s = 0:

Ip2
ι
�
〈
P,Q : P p

2

, Qp, Q−1PQ = P 1+p
〉

π
� Ip

ι : z 7→ P

π : P iQj 7→ Q−j

(b) p = 2, s = 1:(
Ip2 = 〈z〉

) ι
�
〈
P,Q : P 4, Q4, Q−1PQ = P−1, Q2 = P 2

〉 π
� (Ip = 〈x〉)

ι : z 7→ P

π : P iQj 7→ xj

(3) G = Ip = 〈x〉 , A = (Ip × Ip)triv
= 〈y〉 × 〈z〉,

s =

[
u
v

]
∈ H2 (G,A) ∼= Ip × Ip

(a) s =

[
0
0

]
:

Ip × Ip� Ip × Ip × Ip � Ip

(b) s =

[
u
v

]
:

(i) u 6= 0:

Ip × Ip
ι
�
(
Ip2 × Ip = 〈P 〉 × 〈Q〉

) π
� Ip

ι : y 7→ Pu
′pQ−u

′v

z 7→ Q

π : P iQj 7→ xi

u′ ≡ u−1 (mod p)

(ii) u = 0, v 6= 0:

Ip × Ip
ι
�
(
Ip2 × Ip = 〈P 〉 × 〈Q〉

) π
� Ip

ι : y 7→ Q

z 7→ P v
′p

π : P iQj 7→ xi

v′ ≡ v−1 (mod p)

(4) G = Ip = 〈x〉 , A = (Ip × Ip)ξ = 〈y〉 × 〈z〉,

s ∈ H2 (G,A) ∼=
{
{0} if p = 2
Ip if p 6= 2

(a) p = 2:
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(i) s = 0:

I2 × I2
ι
�
〈
P,Q : P 4, Q2, Q−1PQ = P 3

〉 π
� I2

ι : y 7→ P 2

z 7→ Q

π : P iQj 7→ xi

(b) p 6= 2:
(i) s = 0:

Ip × Ip
ι
�

〈
P,Q,R : P p, Qp, Rp, R−1QR = QP,

R−1PR = P,Q−1PQ = P

〉
π
� Ip

ι : yizj 7→ P iRj ,

π : P iQjRk 7→ xj

(ii) s 6= 0:

Ip × Ip
ιs
�
〈
P,Q : P p

2

, Qp, Q−1PQ = P 1+p
〉
πs
� Ip

ιs : yizj 7→ P is
′pQjs

′

πs : P iQj 7→ xi

s′ ≡ s−1 (mod p)

Theorem 2.20. Up to a weak congruence, the extensions in List 2.21 below are
all the congruence classes for p→ p3 → p2.

Proof. For the proof, see Section 5.4. �

List 2.21. Extensions p→ p3 → p2

(1) G = Ip2 = 〈x〉 , A = (Ip)triv
= 〈z〉,

s ∈ H2 (G,A) ∼= Ip
(a) s = 0:

Ip� Ip × Ip2 � Ip2
(b) s 6= 0:

Ip
ιs
�
(
Ip3 = 〈P 〉

) πs
� Ip2

ιs : z 7→ P s
′p2

πs : P 7→ x

s′ ≡ s−1 (mod p)

(2) G = Ip × Ip = 〈x, y〉 , A = (Ip)triv
= 〈z〉,

s =

 u
−v
w

 ∈ H2 (G,A) ∼= (Ip)3

(a) s = 0: The extension is split

Ip� Ip × Ip × Ip � Ip × Ip
(b) v = 0, u 6= 0:

Ip
ιs
�
(
Ip2 × Ip = 〈P 〉 × 〈Q〉

) πs
� Ip × Ip

ιs : z 7→ Pu
′p

πs : P iQj 7→ xjyi−wu
′j

u′ ≡ u−1 (mod p)
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(c) v = u = 0, w 6= 0:

Ip
ιs
�
(
Ip2×Ip = 〈P 〉 × 〈Q〉

) πs
� Ip × Ip

ιs : z 7→ Pw
′p

πs : P iQj 7→ xiyj

w′ ≡ w−1 (mod p)

(d) v 6= 0, p = 2
(i) u = w = 0:

Ip
ι
�
〈
P,Q : P 4, Q2, Q−1PQ = P 3

〉 π
� Ip × Ip

ι : z 7→ P 2

π : P iQj 7→ xi+jyj

(ii) u = 1, w = 0:

Ip
ι
�
〈
P,Q : P 4, Q2, Q−1PQ = P 3

〉 π
� Ip × Ip

ι : z 7→ P 2

π : P iQj 7→ xjyi

(iii) u = 0, w = 1:

Ip
ι
�
〈
P,Q : P 4, Q2, Q−1PQ = P 3

〉 π
� Ip × Ip

ι : z 7→ P 2

π : P iQj 7→ xiyj

(iv) u = w = 1:

Ip
ι
�
〈
P,Q : P 4, Q4, Q−1PQ = P−1, Q2 = P 2

〉 π
� Ip × Ip

ι : z 7→ P 2

π : P iQj 7→ xiyj

(e) v 6= 0, p 6= 2
(i) u = w = 0:

Ip
ιs
�

〈
P,Q,R : P p, Qp, Rp, R−1QR = QP,

R−1PR = P,Q−1PQ = P

〉
πs
� Ip × Ip

ιs : z 7→ P v
′

πs : P iQjRk 7→ xjyk

v′ ≡ v−1 (mod p)

(ii) u 6= 0:

Ip
ιs
�
〈
P,Q : P p

2

, Qp, Q−1PQ = P 1+p
〉
πs
� Ip × Ip

ιs : z 7→ Pu
′p

πs : P iQj 7→ x−jv
′uyi+jv

′w

u′ ≡ u−1 (mod p) , v′ ≡ v−1 (mod p)

(iii) u = 0, w 6= 0:

Ip
ιs
�
〈
P,Q : P p

2

, Qp, Q−1PQ = P 1+p
〉
πs
� Ip × Ip

ιs : z 7→ Pw
′p

πs : P iQj 7→ xiyjv
′w

w′ ≡ w−1 (mod p) , v′ ≡ v−1 (mod p)
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Theorem 2.22. Up to a weak congruence, the extensions in List 2.23 to List 2.26
below are all the congruence classes for p2 → p4 → p2.

Proof. See Section 5.5. �

List 2.23. Extensions of A = Ip2 = 〈z〉 by G = Ip2 = 〈x〉
(1) Trivial action,

s ∈ H2 (G,A) ∼= Ip2 :
(a) s = 0: The extension is split

Ip2 � Ip2 × Ip2 � Ip2

(b) s ∈
(
Ip2
)∗

:

Ip2
ιs
�
(
Ip4 = 〈P 〉

) πs
� Ip2

ιs : z 7→ P p
2

πs : P i 7→ xis
′

s′ ≡ s−1
(
mod p2

)
(c) s ∈ [p]Ip2 = pIp2 , i.e. s = rp, 1 ≤ r < p:

Ip2
ιs
�
(
Ip3 × Ip = 〈P 〉 × 〈Q〉

) πs
� Ip2

ιs : z 7→ P r
′pQ

πs : P iQj 7→ xi−jr
′p

r′ ≡ r−1 (mod p)

(2) Non-trivial action,
s ∈ H2 (G,A) ∼= Ip
(a) s = 0:

Ip2
ι
�
〈
P,Q : P p

2

, Qp
2

, Q−1PQ = P 1+p
〉

π
� Ip2

ι : z 7→ P

P iQj 7→ x−j

(b) s 6= 0:

Ip2
ι
�
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉

π
� Ip2

ιs : z 7→ P s
′pQs

′

πs : P iQj 7→ xi

List 2.24. Extensions of A = Ip × Ip = 〈z, Z〉 by G = Ip2 = 〈x〉
(1) Trivial action

s =

[
u
v

]
∈ H2 (G,A) ∼= Ip × Ip

(a) s = 0:

Ip × Ip� Ip × Ip × Ip2 � Ip2 .
(b) u 6= 0:

Ip × Ip
ι
�
(
Ip3 × Ip = 〈P,Q〉

) π
� Ip2

ιs :
z 7→ Pu

′p2Q−u
′v

Z 7→ Q

πs : P iQj 7→ xi
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(c) u = 0, v 6= 0:

Ip × Ip
ι
�
(
Ip3 × Ip = 〈P,Q〉

) π
� Ip2

ιs :
z 7→ Q

Z 7→ P v
′p2

πs : P iQj 7→ xi

(2) Non-trivial action
s ∈ H2 (G,A) ∼= Ip
(a) s = 0:

Ip × Ip�
〈
P,Q,R : P p

2

, Qp, Rp, R−1PR = PQ,
Q−1PQ = P,R−1QR = Q

〉
� Ip2

ι :
z 7→ Q
Z 7→ R

π : P iQjRk 7→ xi

(b) s 6= 0:

Ip × Ip�
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉
� Ip2

ιs :
z 7→ P s

′p2

Z 7→ P−s
′p2Qs

′

πs : P iQj 7→ xi

List 2.25. Extensions of A = Ip2 = 〈z〉 by G = Ip × Ip = 〈x, y〉
(1) Trivial action

s =

uv
w

 ∈ H2 (G,A) ∼= Ip × Ip × Ip

(a) s = 0:

Ip2 � Ip2 × Ip × Ip � Ip × Ip.
(b) v = 0:

(i) u 6= 0:

Ip2
ιs
�
(
Ip3 × Ip = 〈P 〉 × 〈Q〉

) πs
� Ip × Ip

ιs : z 7→ Pu
′p

πs : P iQj 7→ xjyi−ju
′w

(ii) u = 0, w 6= 0:

Ip2
ιs
�
(
Ip3 × Ip = 〈P 〉 × 〈Q〉

) πs
� Ip × Ip

ιs : z 7→ Pw
′p

πs : P iQj 7→ xiyj

(c) v 6= 0:
(i) u = w = 0:

Ip2
ιs
�

〈
P,Q,R : P p

2

, Qp, Rp, R−1QR = QP p,
Q−1PQ = P,R−1PR = P

〉
πs
� Ip × Ip

ιs : z 7→ P v
′

πs : P iQjRk 7→ x−kyj
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(ii) u 6= 0:

Ip2
ιs
�
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉
πs
� Ip × Ip

ιs : z 7→ Pu
′p

πs : P iQj 7→ x−juv
′
yi+jv

′wp

(iii) u = 0, w 6= 0:

Ip2
ιs
�
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉
πs
� Ip × Ip

ιs : z 7→ Pw
′p

πs : P iQj 7→ xiyjv
′w

(2) Non-trivial action

s ∈ H2 (G,A) ∼=

{
(Ip)2

〈(1,1)〉 p ≥ 3

[p]Ip2 p = 2
∼= Ip.

(a) s = 0:

Ip2
ι
�

〈
P,Q,R : P p

2

, Qp, Rp, R−1PR = P 1+p,
P−1QP = Q,R−1QR = Q

〉
π
� Ip × Ip

ι : z 7→ P

π : P iQjRk 7→ x−kyj .

(b) s 6= 0, p = 2:

I4
ιs
�

〈
P,Q,R : P 4, Q4, R2, Q−1PQ = P−1, Q2 = P 2,

R−1QR = Q,R−1PR = P

〉
πs
� I2 × I2

ιs : z 7→ P

πs : P iQjRk 7→ xjyk

(c) s 6= 0, p 6= 2:

Ip2
ιs
�

〈
P,Q,R : P p

2

, Qp, Rp, R−1QR = QP p,
Q−1PQ = P,R−1PR = P

〉
πs
� Ip × Ip

ιs : z 7→ PQ

πs : P iQjRk 7→ x−ky(i−j)s′

The list below is unfinished.

List 2.26. Extensions of A = Ip × Ip = 〈z, Z〉 by G = Ip × Ip = 〈x, y〉
(1) Trivial Action:

s =

uv
w

 =

 (u1, u2)
(v1, v2)
(w1, w2)

 ∈ H2 (G,A)

(a) s = 0:

Ip × Ip� (Ip × Ip)× (Ip × Ip)� Ip × Ip
(b) v = 0, u1 6= 0:

(i) u1w2 6≡ u2w1 (mod p):

Ip × Ip
ιs
�
(
Ip2 × Ip2 = 〈P 〉 × 〈Q〉

) πs
� Ip × Ip

ιs :
z 7→ Pu

′
1pQ−u2(u1w2−u2w1)′p

Z 7→ Qu1(u1w2−u2w1)′p

πs : P iQj 7→ xjyi−ju
′
1w1
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(ii) u2w1 ≡ u1w2 (mod p):

Ip × Ip
ιs
�
(
Ip2 × Ip × Ip = 〈P 〉 × 〈Q〉 × 〈R〉

) πs
� Ip × Ip

ιs :
z 7→ Pu

′
1pR−u

′
1u2

Z 7→ R

πs : P iQj 7→ xjyi−ju
′
1w1

(c) v = 0, u1 = 0, u2 6= 0:
(i) w1 6= 0:

Ip × Ip
ιs
�
(
Ip2 × Ip2 = 〈P,Q〉

) πs
� Ip × Ip

ιs :
z 7→ Qw

′
1p

Z 7→ Pu
′
2p

πs : P iQj 7→ xjyi−ju
′
2w2

(ii) w1 = 0:

Ip × Ip
ιs
�
(
Ip2 × Ip × Ip = 〈P 〉 × 〈Q〉 × 〈R〉

) πs
� Ip × Ip

ιs :
z 7→ R

Z 7→ Pu
′
2p

πs : P iQjRk 7→ xjyi−ju
′
2w2

(d) v = 0, u = 0, w1 6= 0:

Ip × Ip
ιs
�
(
Ip2 × Ip × Ip = 〈P,Q,R〉

) πs
� Ip × Ip

ιs :
z 7→ Pw

′
1pR−w

′
1w2

Z 7→ Q

πs : P iQjRk 7→ xiyj

(e) v = 0, u = 0, w1 = 0, w2 6= 0:

Ip × Ip
ιs
�
(
Ip2 × Ip × Ip = 〈P,Q,R〉

) πs
� Ip × Ip

ιs :
z 7→ R

Z 7→ Pw
′
2p

πs : P iQjRk 7→ xiyj

(f) v 6= 0: Unfinished.
(2) Non-trivial action:

s ∈ H2
spec

(
Ip × Ip, (Ip × Ip)ξ

)
∼=
{

(Ip)3
, p ≥ 3

I2, p = 2
(a) p = 2, s = 0 :

I2 × I2
ι
�

〈
P,Q,R : P 4, Q2, R2, R−1PR = P 3,

P−1QP = Q,R−1QR = Q

〉
π
� I2 × I2

ι :
z 7→ P 2

Z 7→ PR

π : P iQjRk 7→ xi+kyj
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(b) p = 2, s = 1:

I2 × I2
ι
�

〈
P,Q,R : P 4, Q2, R2, R−1QR = QP 2,

Q−1PQ = P,R−1PR = P

〉
π
� I2 × I2

ι :
z 7→ P 2

Z 7→ Q

π : P iQjRk 7→ xkyi

(c) p 6= 2: Unfinished.



36 MARKUS NORDVOLL BREIVIK

This page is intentionally left blank.



GROUP COHOMOLOGY AND EXTENSIONS 37

3. Proofs from Preliminaries

3.1. Proof of Proposition 1.47.

Proof. We do this by finding a general multiplication formula for E. We know that

every element of E is of the form a {x}i {y}j , a ∈ A with multiplication(
a {x}i {y}j

)(
b {x}k {y}l

)
= a

(
{x}i {y}j b {y}−j {x}−i

)
{x}i {y}j {x}k {y}l

= a
(
xiyj b

)
{x}i {y}j {x}k {y}l .

(1) Consider {y}j {x}k {y}l :

{y}j {x}k {y}l =
(
{y}j {x}k {y}−j

)
{y}j {y}l = yj

(
{x}k

)
{y}j+l

=
(
yj {x}

)k
{y}j+l

(2)

yj {x} = yj−1
(
{y} {x}

)
= yj−1

( V {x}) = yj−1

V · y
j−1

{x}

= yj−1

V yj−2

V . . . yV V {x}
v∈A
=
(
V · yV · y

2

V · · · · y
j−1

V
)
{x}

=

(
j−1∏
d=0

ydV

)
{x} .

(3) Set c =
j−1∏
d=1

ydV for convenience, so that

(
yj {x}

)k
= (c {x})k = c {x} c {x} . . . c {x}︸ ︷︷ ︸

k-times

= c xc {x}2 c {x} . . . c {x}

= c xc x
2

c . . . x
k−1

c {x}k

=

(
k−1∏
r=0

xrc

)
{x}k

=

(
k−1∏
r=0

xr
j−1∏
d=0

ydV

)
{x}k

=

(
k−1∏
r=0

j−1∏
d=0

xrydV

)
{x}k .

So {y}j {x}k {y}l =

(
k−1∏
r=0

j−1∏
d=0

xrydV

)
{x}k {y}j+l.

(4) Next

{x}i
(
k−1∏
r=0

j−1∏
d=0

xrydV

)
= xi

(
k−1∏
r=0

j−1∏
d=0

xrydV

)
{x}i

=

(
k−1∏
r=0

j−1∏
d=0

xi+rydV

)
{x}i .
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(5) Finally(
a {x}i {y}j

)(
b {x}k {y}l

)
= a

(
xiyj b

)(k−1∏
r=0

j−1∏
d=0

xi+rydV

)
{x}i+k {y}j+l

= a
(
xiyj b

)(k−1∏
r=0

j−1∏
d=0

xi+rydV

)
W b

i+k
m c {x}(i+k) modm

Ub
j+l
n c {y}(j+l) modn

= a
(
xiyj b

)(k−1∏
r=0

j−1∏
d=0

xi+rydV

)
·


{x}i+k {y}j+l , i+ k < m, j + l < n

W {x}i+k−m {y}j+l , i+ k ≥ m, j + l < n

{x}i+k U {y}j+l−n , i+ k < m, j + l ≥ n
W {x}i+k−m U {y}j+l−n , i+ k < m, j + l < n

= a
(
xiyj b

)(k−1∏
r=0

j−1∏
d=0

xi+rydv

)
·


{x}i+k {y}j+l , i+ k < m, j + l < n

W {x}i+k−m {y}j+l , i+ k ≥ m, j + l < n
xi+kU {x}i+k {y}j+l−n , i+ k < m, j + l ≥ n

W xi+k−mU {x}i+k−m {y}j+l−n , i+ k ≥ m, j + l ≥ n

.

hence the cocycle of σ is given by

ϕσ : G×G→ A

(
xiyj , xkyl

)
7−→

k−1∏
r=0

j−1∏
d=0

xi+rydV ·


1 , i+ k < m, j + l < n
W , i+ k ≥ m, j + l < n

xi+kU , i+ k < m, j + l ≥ n
W xi+k−mU , i+ k ≥ m, j + l ≥ n

.

�

3.2. Proof of Theorem 1.45.

Lemma 3.1. For ∀g ∈ G,

g−1

ϕ
(
g, g−1

)
= ϕ

(
g−1, g

)
.

Proof. By the cocycle identity
(
substituting g = g−1, h = g, k = g−1

)
:

g−1

ϕ
(
g, g−1

)
· ϕ
(
g−1, gg−1

)
= ϕ

(
g−1, g

)
· ϕ
(
g−1g, g−1

)
m

g−1

ϕ
(
g, g−1

)
· ϕ
(
g−1, 1

)︸ ︷︷ ︸
1

= ϕ
(
g−1, g

)
· ϕ
(
1, g−1

)︸ ︷︷ ︸
1

m
g−1

ϕ
(
g, g−1

)
= ϕ

(
g−1, g

)
.

�

Proof. Going through the different points:

(1) We show that ϕ : G×G→ A is a normalized cocycle.
(a) The equalities

xg = xg · 1 = xgx1 = ϕ (g, 1)xg·1 = ϕ (g, 1)xg,

xh = 1 · xh = x1xh = ϕ (1, h)x1·h = ϕ (1, h)xh

along with right cancellation shows that

ϕ (g, 1) = 1 = ϕ (1, h) ,

i.e. ϕ is normalized.
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(b) By associativity of E :

[(a, g) (b, h)] (c, k) = (a, g) [(b, h) (c, k)] .

Now

LHS = (a · gb · ϕ (g, h) , gh) (c, k)

=
(
a · gb · ϕ (g, h) · ghc · ϕ (gh, k) , (gh) k

)
=

(
a · gb · ghc · ϕ (g, h) · ϕ (gh, k) , ghk

)
.

While

RHS = (a, g)
(
b · hc · ϕ (h, k) , hk

)
=

(
a · g

[
b · hc · ϕ (h, k)

]
· ϕ (g, hk) , g (hk)

)
=

(
a · gb · ghc · gϕ (h, k) · ϕ (g, hk) , ghk

)
.

Thus

gϕ (h, k) · ϕ (g, hk) = ϕ (g, h) · ϕ (gh, k)

or since A is Abelian:

gϕ (h, k) · ϕ (gh, k)
−1 · ϕ (g, hk) · ϕ (g, h)

−1
= 1

which is equivalent to ∂ϕ (g, h, k) = 0 in additive notation.
(2) Identity and inverse elements:

(a) By normalization we have

(1, 1) (a, g) =
(
1 · 1a · ϕ (1, g) , 1 · g

)
= (a · 1, g) = (a, g)

and

(a, g) (1, 1) = (a · g1 · ϕ (g, 1) , g · 1)

= (a, g) .

(b) Since A is Abelian:

(a, g)
(
g−1 (

a−1
)
· ϕ
(
g−1, g

)−1
, g−1

)
=

(
a · g

[
g−1 (

a−1
)
· ϕ
(
g−1, g

)−1
]
· ϕ
(
g, g−1

)
, g · g−1

)
=

(
a · a−1 ·

(
gϕ
(
g−1, g

))−1 · ϕ
(
g, g−1

)
, 1
)

=
(

1 · ϕ
(
g, g−1

)−1 · ϕ
(
g, g−1

)
, 1
)

by Lemma 3.1 above

= (1, 1) ,

and conversely(
g−1 (

a−1
)
· ϕ
(
g−1, g

)−1
, g−1

)
(a, g)

=
(
g−1 (

a−1
)
· ϕ
(
g−1, g

)−1 · g
−1

a · ϕ
(
g−1, g

)
, g−1g

)
=

(
g−1 (

a−1a
)
· ϕ
(
g−1, g

)−1 · ϕ
(
g−1, g

)
, 1
)

= (1, 1) .

(3) We have

ygyh = ψ (g, h) ygh = ψ (g, h) ξ (gh)β (xgh)

and

ygyh = [ξ (g)β (xg)] [ξ (h)β (xh)] = ξ (g) · gξ (h) · ϕ (g, h)β (xgh)
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so

ψ (g, h) ξ (gh)β (xgh) = ξ (g) · gξ (h) · ϕ (g, h)β (xgh)

or

ψ (g, h) = ξ (g) · gξ (h) · ϕ (g, h) · ξ (gh)
−1
.

Since A is Abelian

ψ (g, h) · ϕ (g, h)
−1

= gξ (h) · ξ (gh)
−1 · ξ (g)

or written additively

ψ (g, h)− ϕ (g, h) = gξ (h)− ξ (gh) + ξ (g)

= (∂ξ) (g, h) .

(4) The only thing that remains to prove, is that the semidirect product (i.e.
the split extension) corresponds to the zero element of H2 (G,A). If the
extension splits, then the section σ is a homomorphism, giving the zero
cocycle. Conversely, if the cocycle is zero, then σ is a homomorphism, and
the extension splits. See also [ML95, Theorem IV.4.1].

�

3.3. Proof of Proposition 1.49.

Proof. We need to show that 0 ← Ztriv ← P• is a chain complex of ZG-modules,
and that it is contractible (over Z), with the given contraction. Then by Corollary
A.4 it will be exact and hence a ZG-module resolution of Ztriv.

(1) For 0 ← Ztriv ← P• to be a chain complex of ZG-modules, we need for
dd = 0. Again it is enough to check on generators:

d−1d0 〈1〉 = d−1 (〈x〉 − 〈1〉) = 1− 1 = 0,

N (〈x〉 − 〈1〉) =

m−1∑
i=0

〈
xi+1

〉
−
m−1∑
i=0

〈
xi
〉

= 0 = (〈x〉 − 〈1〉)N,

which proves that

d2kd2k+1 = 0, d2k+1d2k+2 = 0 ∀k ≥ 0,

as was to be shown.
(2) Recall that a contraction (Definition A.2)

Sn : Pn → Pn+1

where P−1 = Ztriv is a family of Z-maps (NB: not necessarily ZG-maps!)
which satisfies

dnSn + Sn−1dn−1 = 1Pn ,

which is equivalent to

dnSn = 1Pn − Sn−1dn−1. (3)

We use equation (3) to calculate the contraction recursively. As Z-modules,
Pn is generated by elements

〈
xi
〉
, 0 ≤ i < m, and so it is enough to define

Sn on the generators
〈
xi
〉
.

0 ← Ztriv d−1← P0
d0← P1

d1← P2
d2← P3 ← . . .

→
0

→
S−1

→
S0

→
S1

→
S2

→

S−1 : We need

1Ztriv = d−1S−1,
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or equivalently εS−1 (1) = 1. Using the fact that S−1 must be an Z-map,
it is clear that

S−1 (1) = 〈1〉 .
S0 :

(1ZG − S−1ε)
〈
xi
〉

=
〈
xi
〉
− 〈1〉

= (〈x〉 − 〈1〉)
(〈
xi−1

〉
+
〈
xi−2

〉
+ · · ·+ 〈1〉

)
= d0

i−1∑
j=0

〈
xj
〉
.

Thus

S0

〈
xi
〉

=

{ ∑i−1
j=0

〈
xj
〉

, i > 0

0 , i = 0
.

S1:

(1ZG − S0d0)
〈
xi
〉

=
〈
xi
〉
− S0

〈
xi+1

〉
+ S0

〈
xi
〉

=


〈1〉 − 〈1〉+ 0 , i = 0〈

xi
〉
−
∑i
j=0

〈
xj
〉

+
∑i−1
j=0

〈
xj
〉

, 0 < i < m− 1〈
xm−1

〉
− 0 +

∑m−2
j=0

〈
xj
〉

, i = m− 1

=

{
0 , i < m− 1
N , i = m− 1

= d1

{
0 , i < m− 1
〈1〉 , i = m− 1

.

Hence

S1

〈
xi
〉

=

{
0 , i < m− 1
〈1〉 , i = m− 1

.

This completes the base step. Finally we need to show that

S2n

(〈
xi
〉)

=

{ ∑i−1
j=0

〈
xj
〉

, i > 0

0 , i = 0
,

S2n+1

(〈
xi
〉)

=

{
0 , i < m− 1
〈1〉 , i = m− 1.

using induction. Assume the inductive hypothesis, i.e. that it holds for
n ≥ 0. Then

(1ZG − S2n+1d2n+1)
〈
xi
〉

=
〈
xi
〉
− S2n+1

(
N
〈
xi
〉)

=
〈
xi
〉
− S1

(
N
〈
xi
〉)

=
〈
xi
〉
− 〈1〉 = d2(n+1)

({ ∑i−1
j=0

〈
xj
〉

, i > 0

0 , i = 0

)
showing that

S2(n+1)

〈
ti
〉

=

{ ∑i−1
j=0

〈
xj
〉

, i > 0

0 , i = 0
.

Next: (
1ZG − S2(n+1)d2(n+1)

) 〈
xi
〉

=
〈
xi
〉
− S2(n+1)

〈
xi+1

〉
+ S2(n+1)

〈
xi
〉

=
〈
xi
〉
− S0

〈
xi+1

〉
+ S0

〈
xi
〉

= d2(n+1)+1

({
0 , i < m− 1
〈1〉 , i = m− 1

)
which shows that

S2(n+1)+1

〈
xi
〉

=

{
0 , i < m− 1
〈1〉 , i = m− 1

.
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�

3.4. Proof of Proposition 1.52.

Proof. Let Q• be the positive complex whose entries are given by

Q0 = Ztriv,

Qi = Pi−1,

and whose differentials ∂i : Qi+1 → Qi are given by

∂0 = ε,

∂i = ∂i−1.

Then as a complex in Z Mod, it is exact and projective, and hence by Corollary
A.10 contractible. We calculate the contraction recursively by

dnSn = 1Pn − Sn−1dn−1.

S−1 : We need d−1S−1 = 1Z, clearly S−1 (1) = 〈1〉 does the trick, so

S−1 (1) = 〈1〉 .

S0 : We have

(1ZG − S−1d−1)
(〈
xiyj

〉)
=

〈
xiyj

〉
− 〈1〉 =

(〈
xiyj

〉
−
〈
xi
〉)

+
(〈
xi
〉
− 〈1〉

)
= Dy

(〈
xi
〉

+
〈
xiy
〉

+ · · ·+
〈
xiyj−1

〉)
+Dx

(
〈1〉+ 〈x〉+ . . .

〈
xi−1

〉)
=

[
Dy Dx

] [〈xi〉+
〈
xiy
〉

+ · · ·+
〈
xiyj−1

〉
〈1〉+ 〈x〉+ . . .

〈
xi−1

〉 ]
= d0

([〈
xi
〉

+
〈
xiy
〉

+ · · ·+
〈
xiyj−1

〉
〈1〉+ 〈x〉+ . . .

〈
xi−1

〉 ])

hence

S0

(〈
xiyj

〉)
=

[〈
xi
〉

+
〈
xiy
〉

+ · · ·+
〈
xiyj−1

〉
〈1〉+ 〈x〉+ . . .

〈
xi−1

〉 ]
=

[∑j−1
k=0

〈
xiyk

〉∑i−1
k=0

〈
xk
〉 ] .
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S1 : We proceed componentwise:

(
1ZG

⊕
ZG − S0d0

)([〈
xiyj

〉
0

])
=

[〈
xiyj

〉
0

]
− S0

([
Dy Dx

] [〈xiyj〉
0

])
=

[〈
xiyj

〉
0

]
− S0

(
Dy

〈
xiyj

〉)
=

[〈
xiyj

〉
0

]
− S0

(〈
xiy[j+1]n

〉)
+ S0

(〈
xiyj

〉)

=



[ 〈
xiyj

〉
− 0 +

∑j−1
k=0

〈
xiyk

〉
0−

∑i−1
k=0

〈
xk
〉

+
∑i−1
k=0

〈
xk
〉] , j = n− 1

[〈
xiyj

〉
−
∑j
k=0

〈
xiyk

〉
+
∑j−1
k=0

〈
xiyk

〉
0−

∑i−1
k=0

〈
xk
〉

+
∑i−1
k=0

〈
xk
〉 ]

, j < n− 1

=



[∑j
k=0

〈
xiyk

〉
0

]
, j = n− 1

[
0
0

]
, j < n− 1

=



[
Ny
〈
xi
〉

0

]
, j = n− 1

[
Ny0

0

]
, j < n− 1

=



[
Ny Dx 0
0 −Dy Nx

]〈xi〉0
0

 , j = n− 1

[
Ny Dx 0
0 −Dy Nx

]0
0
0

 , j < n− 1

=



d1

〈xi〉0
0

 , j = n− 1

d1

0
0
0

 , j < n− 1

.

Hence

S1

([〈
xiyj

〉
0

])
=



〈xi〉0
0

 , j = n− 1

0
0
0

 , j < n− 1
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For the other component:

(
1ZG

⊕
ZG − S0d0

)([ 0〈
xiyj

〉])
=

[
0〈

xiyj
〉]− S0

([
Dy Dx

] [ 0〈
xiyj

〉])
=

[
0〈

xiyj
〉]− S0

(〈
x[i+1]myj

〉)
+ S0

(〈
xiyj

〉)

=

[
0〈

xiyj
〉]+


−
[∑j−1

k=0

〈
yk
〉

0

]
+

[∑j−1
k=0

〈
xiyk

〉∑i−1
k=0

〈
xk
〉 ] , i = m− 1

−
[∑j−1

k=0

〈
xi+1yk

〉∑i
k=0

〈
xk
〉 ]

+

[∑j−1
k=0

〈
xiyk

〉∑i−1
k=0

〈
xk
〉 ] , i < m− 1

=



[∑j−1
k=0

〈
xiyk

〉
−
∑j−1
k=0

〈
yk
〉〈

xiyj
〉

+
∑i−1
k=0

〈
xk
〉 ]

, i = m− 1

[
−
∑j−1
k=0

〈
xi+1yk

〉
+
∑j−1
k=0

〈
xiyk

〉〈
xiyj

〉
−
∑i
k=0

〈
xk
〉

+
∑i−1
k=0

〈
xk
〉] , i < m− 1

=



[(〈
xi
〉
− 〈1〉

)∑j−1
k=0

〈
yk
〉〈

xiyj
〉
−
〈
xi
〉

+Nx 〈1〉

]
, i = m− 1

[
(〈1〉 − 〈x〉)

∑j−1
k=0

〈
xiyk

〉〈
xiyj

〉
−
〈
xi
〉 ]

, i < m− 1

=



[
Dx

(
〈1〉+ 〈x〉+ · · ·+

〈
xi−1

〉)∑j−1
k=0

〈
yk
〉

Dy

(〈
xi
〉

+
〈
xiy
〉

+ · · ·+
〈
xiyj−1

〉)
+Nx 〈1〉

]
, i = m− 1

[
−Dx

∑j−1
k=0

〈
xiyk

〉
Dy

(〈
xi
〉

+
〈
xiy
〉

+ · · ·+
〈
xiyj−1

〉)] , i < m− 1

=



[
−Dx

∑j−1
k=0

〈
xiyk

〉
Dy

∑j−1
k=0

〈
xiyk

〉
+Nx 〈1〉

]
, i = m− 1

[
−Dx

∑j−1
k=0

〈
xiyk

〉
Dy

∑j−1
k=0

〈
xiyk

〉 ] , i < m− 1

= d1



 0

−
∑j−1
k=0

〈
xiyk

〉
〈1〉

 i = m− 1

 0

−
∑j−1
k=0

〈
xiyk

〉
0

 i < m− 1

where the second to last equation follows from when i = m− 1, we have

Dx

(
〈1〉+ 〈x〉+ · · ·+

〈
xi−1

〉)
= Dx

(
〈1〉+ 〈x〉+ · · ·+

〈
xi−1

〉
+
〈
xi
〉)
−Dx

〈
xi
〉

= DxNx −Dx

〈
xi
〉

= −Dx

〈
xi
〉
,
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and hence

Dx

(
〈1〉+ 〈x〉+ · · ·+

〈
xi−1

〉) j−1∑
k=0

〈
yk
〉

= −Dx

j−1∑
k=0

〈
xiyk

〉
.

Finally we get

S1

([
0〈

xiyj
〉]) =



 0

−
∑j−1
k=0

〈
xiyk

〉
〈1〉

 , i = m− 1

 0

−
∑j−1
k=0

〈
xiyk

〉
0

 , i < m− 1

�
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4. Proof of Main Results, 1

4.1. Proof of Theorem 2.3.

Proof. We will get (1) and (2) from the constructive lifting theorem (Theorem 1.53),
and (3) will follow from (2) when we restrict our attention to cocycles arising from
special sections.

(1) We shall construct (gi)
2
i=0 in the diagram:

Ztriv �∂−1
B0
� ∂0

B1
� ∂1

B2
� · · ·

Ztriv

1Z

?
S−1- P0

g0

? S0 - P1

g1

? S1 - P2

g2

?
- · · ·

Going as in Theorem 1.53, we have

gn [x] = Sn−1gn−1∂n−1 [x]

on generators [x] .
g0 : Clearly g0 [ ] = 〈1〉 is the only homomorphism that makes the first

square commute. So

g0 [ ] = 〈1〉 .

g1 : Recall S0

(〈
xi
〉)

=
∑k−1
j=0

〈
xj
〉
, with the understanding that S0

(〈
xi
〉)

=
0 if i = 0. We have [

xi
] ∂07→ 〈

xi
〉

[ ]− [ ]
g07→
〈
xi
〉
− 〈1〉

S07→
i−1∑
j=0

〈
xj
〉
,

and hence

g1

[
xi
]

=

i−1∑
j=0

〈
xj
〉
.

g2 : We saw that

S1

(〈
xi
〉)

=

{
0 , i < m− 1
〈1〉 , i = m− 1

,

so [
xi, xj

] ∂17→ 〈
xi
〉 [
xj
]
−
[
x[i+j]m

]
+
[
xi
]

g17→
j−1∑
k=0

〈
xi+k

〉
−

[i+j]m−1∑
k=0

〈
xk
〉

+

i−1∑
k=0

〈
xk
〉

S17→ S1

(
j−1∑
k=0

〈
xi+k

〉)
+ 0 + 0

=

{
0 , i+ j < m
〈1〉 , i+ j ≥ m .

Thus

g2

[
xi, xj

]
=

{
0 , i+ j < m
〈1〉 , i+ j ≥ m .
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The Comparison Theorem (Theorem A.6) guarantees that the induced
maps g∗n : Hn

special (G,A)→ Hn
bar (G,A) are isomorphisms. Applying HomZG (−, A)

to g2 : B2 → P2 gives

g∗2 : HomZG (P2, A) → HomZG (B2, A)

ϕ 7→
(
ϕ ◦ g2 :

(
xi, xj

)
7→
{

0 , i+ j < m
〈1〉 , i+ j ≥ m

)
.

Using the natural isomorphism

A →̃ HomZG (ZG,A) = HomZG (P2, A)

a 7→ (〈1〉 7→ a)

gives us

g∗2 : A → HomZG (B2, A)

a 7→
((
xi, xj

)
7→
{

0 , i+ j < m
a , i+ j ≥ m

)
,

as desired.
(2) We will construct (fi)

2
i=0 in

Ztriv �d−1
P0
� d0

P1
� d1

P2
� · · ·

Ztriv

1Z

?
S−1- B0

f0

? S0 - B1

f1

? S1 - B2

f2

?
- · · ·

From Theorem 1.53, we define

fn [x] = Sn−1fn−1∂n−1 [x]

on generators [x] .
f0: We know that 〈1〉 generates ZG = Pn, so

〈1〉 d−17→ 1
1Z7→ 1

S−17→ [ ]

gives

f0 (〈1〉) = [ ] .

f1: Recall that S0 (x [ ]) = [x], so

〈1〉 d07→ 〈x〉 − 〈1〉 f07→ 〈x〉 [ ]− [ ]
S07→ [x]− [1] ,

and hence

f1 (〈1〉) = [x]− [1]

which becomes

f1 (〈1〉) = [x]

in the normalized case.
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f2: Recall that S1 (x [x1]) = [x, x1] :

〈1〉 d17→
m−1∑
j=0

〈
xj
〉

f17→
m−1∑
j=0

〈
xj
〉

[x]−
m−1∑
j=0

〈
xj
〉

[1]

S17→
m−1∑
j=0

[
xj , x

]
−
m−1∑
j=0

[
xj , 1

]
.

Therefore

f2 (〈1〉) =

m−1∑
j=0

[
xj , x

]
−
m−1∑
j=0

[
xj , 1

]
,

which reduces to

f2 (〈1〉) =

m−1∑
j=1

[
xj |x

]
in the normalized case.

The Comparison Theorem (Theorem A.6) guarantees that the induced
maps f∗n : Hn

bar (G,A) → Hn
special (G,A) are isomorphisms, hence we only

need to verify that the induced map is as claimed. Applying HomZG (−, A)
to f2 : P2 → B2 gives

f∗2 : HomZG (B2, A) = B2 → HomZG (P2, A)

ϕ 7→ ϕ ◦ f2.

But HomZG (P2, A) = HomZG (ZG,A) →̃A via ψ 7→ ψ (〈1〉), so

f∗2 : B2 → A

ϕ 7→ (ϕ ◦ f2) (〈1〉)

and

(ϕ ◦ f2) (〈1〉) =

m−1∑
j=0

ϕ
(
xj , x

)
,

as claimed.
(3) By Theorem 1.45 we know that sending an extension

ε : 1→ A
ι→ E

π→ G→ 1

to the congruence class of a cocycle belonging to a simple section induces
an isomorphism

E (G,A) →̃H2
bar (G,A) .

By Proposition 1.46 we know that the cocycle of a simple section will be of
the form

ϕσ
(
xi, xj

)
=

{
{x}m if i+ j ≥ m

1 if i+ j < m
,

for some representative {x} ∈ E. Hence we have an isomorphism

E (G,A) →̃ H2
bar (G,A)

[ε] 7→ ϕσ + δB1.
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Composing with the isomorphism

H2
bar (G,A) →̃ H2

special (G,A)

ϕ+ δB1 7→
m−1∑
j=1

ϕ
(
xj , x

)
+NA

from (2), we get

E (G,A) →̃ H2
special (G,A)

[ε] 7→
m−1∑
j=1

ϕσ
(
xj , x

)
+NA = {x}m +NA.

�

4.2. Proof of Theorem 2.6.

Proof. We will get (1) and (2) from the Constructive Lifting Theorem (Theorem
1.53). That they are inverses follows directly from The Comparison Theorem (The-
orem A.6). Next, (3) will follow from (2) when we restrict our attention to cocycles
arising from special sections.

(1) Recall the formulas for the contraction (Proposition 1.52):

S−1 (1) = 〈1〉 ,

S0

(〈
xiyj

〉)
=

[∑j−1
k=0

〈
xiyk

〉∑i−1
k=0

〈
xk
〉 ]

S1

([〈
xiyj

〉
0

])
=



〈xi〉0
0

 , j = n− 1

0
0
0

 , j < n− 1

S1

([
0〈

xiyj
〉]) =



 0

−
∑j−1
k=0

〈
xiyk

〉
〈1〉

 , i = m− 1

 0

−
∑j−1
k=0

〈
xiyk

〉
0

 , i < m− 1

Ztriv �∂−1
B0
� ∂0

B1
� ∂1

B2
� · · ·

Ztriv

1Z

?
S−1- P0

g0

? S0 - P1

g1

? S1 - P2

g2

?
- · · ·

g0: Clearly

g0 : ZG [ ] → ZG
[ ] 7→ 〈1〉

does the trick.
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g1 :

[
xiyj

] ∂07→
〈
xiyj

〉
[ ]− [ ]

g07→
〈
xiyj

〉
− 〈1〉

S07→
[〈
xi
〉

+
〈
xiy
〉

+ · · ·+
〈
xiyj−1

〉
〈1〉+ 〈x〉+ · · ·+

〈
xi−1

〉 ]

with the understanding that either component becomes zero if i = 0 or
j = 0 respectively. Hence

g1

[
xiyj

]
=

[〈
xi
〉

+
〈
xiy
〉

+ · · ·+
〈
xiyj−1

〉
〈1〉+ 〈x〉+ · · ·+

〈
xi−1

〉 ]
=

[∑j−1
d=0

〈
xiyd

〉∑i−1
d=0

〈
xd
〉 ] .

g2:

[
xiyj , xkyl

] ∂17→ 〈
xiyj

〉 [
xkyl

]
−
[
x[i+k]my[j+l]n

]
+
[
xiyj

]

Now: 1ZG
⊕

ZG = ι1π1 + ι2π2, and hence g2 = S1 (ι1π1 + ι2π2) g1∂1 =
S1ι1π1g1∂1 + S1ι2π2g1∂1. Let us consider the first term:

〈
xiyj

〉 [
xkyl

]
−
[
x[i+k]my[j+l]n

]
+
[
xiyj

]
↓ π1 ◦ g1〈

xiyj
〉 l−1∑
d=0

〈
xkyd

〉
−

[j+l]n−1∑
d=0

〈
x[i+k]myd

〉
+

j−1∑
d=0

〈
xiyd

〉
=

l−1∑
d=0

〈
x[i+k]myj+d

〉
−

[j+l]n−1∑
d=0

〈
x[i+k]myd

〉
+

j−1∑
d=0

〈
xiyd

〉
↓ S1 ◦ ι1 (since [j + l]n − 1, j − 1 < n− 1)

〈x[i+k]m
〉

0
0

 , j + l ≥ n

0
0
0

 , j + l < n
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Now for the second term:〈
xiyj

〉 [
xkyl

]
−
[
x[i+k]my[j+l]n

]
+
[
xiyj

]
↓ π2 ◦ g1〈

xiyj
〉 k−1∑
d=0

〈
xd
〉
−

[i+k]m−1∑
d=0

〈
xd
〉

+

i−1∑
d=0

〈
xd
〉

=

k−1∑
d=0

〈
xi+dyj

〉
−

[i+k]m−1∑
d=0

〈
xd
〉

+

i−1∑
d=0

〈
xd
〉

︸ ︷︷ ︸
No power of y

↓ S1 ◦ ι2

 0

−
∑k−1
d=0

∑j−1
α=0

〈
xi+dyα

〉
0

+



 0
0
〈1〉

 , i+ k ≥ m

0
0
0

 , i+ k < m

Hence

g2

([
xiyj , xkyl

])
=

 〈
x[i+k]m

〉
, j + l ≥ n

−
∑k−1
d=0

∑j−1
α=0

〈
xi+dyα

〉
〈1〉 , i+ k ≥ m


where the first and third component are zero if the conditions to the right
are not met.

Theorem A.6 guarantees that the induced maps g∗n : Hn
special (G,A) →

Hn
bar (G,A) are isomorphisms. We therefore have only to check that the

induced map is as claimed. Applying HomZG (−, A) to g2 : B2 → P2 gives

g∗2 : HomZG (P2, A) → HomZG (B2, A)

ϕ 7→ ϕ ◦ g2.

Using the natural isomorphism

An →̃ HomR (Rn, A)

a 7→

(
ϕa : r 7→

n∑
i=1

riai

)
we get

A3 → HomZG (B2, A)

a 7→
(
ϕa ◦ g2 : B2 → A

)
where

ϕa ◦ g2 : B2 → A[
xiyj |xkyl

]
7→ −

∑k−1
d=0

∑j−1
α=0

xi+dyαa2

+ x[i+k]ma1 (if j + l ≥ n)
+ a3 (if i+ k ≥ m)

.
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on generators
[
xiyj |xkyl

]
. Recalling that we identified ϕ ∈ HomZG (B2, A)

with
(
ϕ : G2 → A

)
∈ B2

ϕ
(
xiyj , xkyl

)
= ϕ

([
xiyj |xkyl

])
we get

ϕ = ϕa ◦ g2 : G2 → A(
xiyj , xkyl

)
7→ −

∑k−1
d=0

∑j−1
α=0

xi+dyαa2

+ x[i+k]ma1 (if j + l ≥ n)
+ a3 (if i+ k ≥ m)

as desired.
(2) Using Theorem 1.53, we construct the lifting of Ztriv = Ztriv inductively by

the formula

fn [x] = Sn−1fn−1dn−1 [x]

on generators [x] .

Ztriv �d−1
P0
� d0

P1
� d1

P2
� · · ·

Ztriv

1Z

?
S−1- B0

f0

? S0 - B1

f1

? S1 - B2

f2

?
- · · ·

Recall the formulas for the contraction (Remark 1.16):

S−1 (1) = [ ] ,

S0 (x [ ]) = [x] ,

S1 (x [x1]) = [x, x1] .

f0 :

P0 = ZG,
which is generated by 〈1〉 as a ZG-module. So

〈1〉 d−17→ 1
1Z7→ 1

S−17→ [ ] .

Hence

f0 (〈1〉) = [ ]

f1 :

P1 = ZG
⊕

ZG,
which is generated by [

〈1〉
0

]
,

[
0
〈1〉

]
as a ZG-module. Now:[

〈1〉
0

]
d07→ 〈y〉 − 〈1〉 f07→ 〈y〉 [ ]− [ ]

S07→ [y]− [1]

and recall that [1] = 0 in the normalized bar resolution. Next[
0
〈1〉

]
d07→ 〈x〉 − 〈1〉 f07→ 〈x〉 [ ]− [ ]

S07→ [x]− [1] .
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Hence

f1

([
a
b

])
=
[
[y]− [1] [x]− [1]

] [a
b

]
= a [y] + b [x]− (a+ b) [1] .

or in the normalized case

f1

([
a
b

])
=
[
[y] [x]

] [a
b

]
= a [y] + b [x] .

f2 : The module P2 = ZG
⊕

ZG
⊕

ZG, is generated by〈1〉0
0

 ,
 0
〈1〉
0

 , and

 0
0
〈1〉

 .
We have〈1〉0

0

 d17→
[
〈1〉+ 〈y〉+

〈
y2
〉

+ · · ·+
〈
yn−1

〉
0

]
f17→
(
〈1〉+ 〈y〉+

〈
y2
〉

+ · · ·+
〈
yn−1

〉)
([y]− [1])

=

n−1∑
k=0

〈
yk
〉

[y]−
n−1∑
k=0

〈
yk
〉

[1]

S17→
n−1∑
k=0

[
yk, y

]
−
n−1∑
k=0

[
yk, 1

]
.

While  0
〈1〉
0

 d17→
[
〈x〉 − 〈1〉
〈1〉 − 〈y〉

]
f17→ (〈x〉 − 〈1〉) [y] + (〈1〉 − 〈y〉) [x]− (〈x〉 − 〈y〉) [1]

= 〈x〉 [y]− 〈x〉 [1] + 〈y〉 [1]− 〈y〉 [x] + [x]− [y]
S17→ [x, y]− [x, 1] + [y, 1]− [y, x] + [1, x]− [1, y]

= [x, y]− [y, x] .

And  0
0
〈1〉

 d17→
[

0
Nx

]
f17→ Nx ([x]− [1])

=

m−1∑
k=0

〈
xk
〉

([x]− [1])

S17→
m−1∑
k=0

([
xk, x

]
−
[
xk, 1

])
=

m−1∑
k=0

[
xk, x

]
−
m−1∑
k=0

[
xk, 1

]
.

Thus

f2

ab
c

 =
[
a b c

]  ∑n−1
k=0

[
yk, y

]
−
∑n−1
k=0

[
yk, 1

]
[x, y]− [y, x]∑m−1

k=0

[
xk, x

]
−
∑m−1
k=0

[
xk, 1

]
 ,
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or

f2

ab
c

 =
[
a b c

] ∑n−1
k=0

[
yk|y

]
[x|y]− [y|x]∑m−1
k=0

[
xk|x

]


in the normalized case.
Theorem A.6 guarantees that the induced maps f∗n : Hn

bar (G,A) →
Hn

special (G,A) are isomorphisms. We therefore have only to check that the

induced map is as claimed in Theorem 2.6. Applying HomZG (−, A) to
f2 : P2 → B2 gives

f∗2 : B2 → HomZG (P2, A) = HomZG (ZG⊕ ZG⊕ ZG,A)

ϕ 7→ ϕ ◦ f2,

and using the natural isomorphism

HomZG

(
3⊕
i=1

ZG,A

)
→̃ A3

ψ 7→

(ψ ◦ ι1) (〈1〉)
(ψ ◦ ι2) (〈1〉)
(ψ ◦ ι3) (〈1〉)


where ιi are the canonical injections, we get

f∗2 : B2 → A3

ϕ 7→

 ∑n−1
k=0 ϕ

(
yk, y

)
ϕ (x, y)− ϕ (y, x)∑m−1

k=0 ϕ
(
xk, x

)
 .

(3) Let 0 ≤ i, k < m and 0 ≤ j, l < n, then the defining equation for ϕσ is:

σ
(
xiyj

)
σ
(
xkyl

)
= ϕσ

(
xiyj , xkyl

)
σ
(
xiyjxkyl

)
.

Using the definition of σ and the fact that xy = yx we get

{x}i {y}j {x}k {y}l = ϕσ
(
xiyj , xkyl

)
{x}[i+k]m {y}[j+l]n ,

so

ϕσ
(
xiyj , xkyl

)
= {x}i {y}j {x}k {y}l

(
{x}[i+k]m {y}[j+l]n

)−1

Hence (additive notation)

ϕσ
(
yk, y

)
= {y}k+1

(
{y}[k+1]n

)−1

=

{
{y}n = U if k ≥ n− 1

0 if k < n− 1
,

ϕσ (x, y) = {x} {y} ({x} {y})−1
= 0,

ϕσ (y, x) = {y} {x} ({x} {y})−1
= V,

ϕσ
(
xk, x

)
= {x}k+1

(
{x}[k+1]m

)−1

=

{
{x}m = W if k ≥ m− 1

0 if k < m− 1

Applying the isomorphism

H2
bar (G,A) → H2

spec (G,A)

ϕ+ δB1 7→

 ∑n−1
k=0 ϕ

(
yk, y

)
ϕ (x, y)− ϕ (y, x)∑m−1

k=0 ϕ
(
xk, x

)
+ d∗1A

2



56 MARKUS NORDVOLL BREIVIK

from (2) to ϕσ + δB1 gives ∑n−1
k=0 ϕσ

(
yk, y

)
ϕσ (x, y)− ϕσ (y, x)∑m−1

k=0 ϕσ
(
xk, x

)
+ δB1 =

0 + 0 + · · ·+ 0 + U
−V

0 + 0 + · · ·+ 0 +W

+ δB1 =

 U
−V
W

+ δB1

as desired.

�

4.3. Proof of Theorem 2.8.

Lemma 4.1. |GL2 (Ip)| =
(
p2 − 1

) (
p2 − p

)
= p (p− 1)

2
(p+ 1).

Proof. Any invertible matrix

X = [c1, c2] ∈ GL2 (Ip)

consists of two columns. The first column c1, is nonzero so we have p2− 1 possible
entries. In order for the matrix to be invertible we need that c2 not be a multiple
of c1, i.e. c2 6∈ Ipc1. There are p possibilities for c2 ∈ Ipc1, and hence we have
p2 − p choices for c2. �

Proof. (Of the Theorem 2.8.) We know from abstract algebra that (up to isomor-
phism) Ip is the only group of order p, and that Ip2 , Ip × Ip are the only groups of
order p2.

If s = t = 1, then the only combination is A = G = Ip. We have

Aut (A) = Aut (Ip) = (Ip)∗ ∼= Ip−1

so if ϕ is any action

ϕ : G→ Aut (A)

then it must be trivial, since |ξ (G)| must divide |G| = p and |Aut (A)| = p− 1.
If s = 1, t = 2 then the possible combinations of A and G are

(
Ip, Ip2

)
and

(Ip, Ip × Ip). Again, in either case G is a p-group, so for |ϕ (G)| must divide p and
p− 1, hence the only option is ϕ (G) = {1A}.

If s = 2, t = 1 the we need to check the different cases individually.

(1) A = Ip2 , then Aut (A) =
(
Ip2
)∗ ∼= Ip× Ip−1by [DF04, Section 9.5, Corollary

20]. Let

ϕ : G→ Aut (A)

be an action. Since |G| = p, there are two possibilities:
(a) ϕ (G) = {1} , i.e., the action is trivial.
(b) G ∼= ϕ (G) = {1, 1 + p, 1 + 2p, . . . , 1 + (p− 1) p} . Changing the gener-

ator x of G, we can assume that

ϕ (1 + pZ) = 1 + p,

and for a ∈ A,
xa = (1 + p) a.

(2) A = Ip × Ip, then Aut (A) = GL2 (Ip) = GL2 (Fp) .
(a) The action of ϕ is trivial.
(b) The action of ϕ is non-trivial, and it is given by

x

[
a
b

]
=

[
1 1
0 1

] [
a
b

]
=

[
a+ b
b

]
,

which we show in further down.

For s = t = 2, then we have the cases
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(1) A = Ip2 , then Aut (A) =
(
Ip2
)∗ ∼= Ip×Ip−1 by [DF04, Section 9.5, Corollary

20]. Let
ϕ : G −→ Aut (A)

be action. Since |G| = p2, there are two possibilities:
(a) ϕ (G) = {1}, i.e., the action is trivial.
(b) ϕ (G) = {1, 1 + p, 1 + 2p, . . . , 1 + (p− 1) p} .

(i) G = 〈x〉 = Ip2 , kerϕ = pIp2 . Changing the generator x of G, we
can assume that

ϕ
(
1 + p2Z

)
= 1 + p,

and for a ∈ A,

xia = a (1 + ip) .

(ii) G = 〈x〉 × 〈y〉 = Ip × Ip. Changing the generators x and y, we
can assume that x acts trivially, and y acts like this:

ya = a (1 + p) .

Or vice versa: y acts trivially, and
xa = a (1 + p) .

(2) A = Ip × Ip,Aut (A) = GL2 (Ip) = GL2 (Fp) .
(a) The action ϕ is trivial.
(b) The action is non-trivial, and since |G| = p2, the only possible order

for ϕ (G) is p (Lemma 4.1). So ϕ (G) is a cyclic subgroup 〈Y 〉 ⊆
GL2 (Ip) for some matrix Y , with Y p = 1. Let mY (t) be the minimal
polynomial, and χY (t) be the characteristic polynomial. Then by the
Cayley-Hamilton Theorem [DF04, Section 12.2, Proposition 20 (2)] we
know that mY (t) divides χY (t), which is of degree 2. Since Y p = 1,
we see that tp− 1 is an invariant factor of Y , and hence we know that

mY (t) |tp − 1.

We therefore know that mY (t) is either t− 1, or t2 − 1.
(i) mY (t) = t − 1, then Y − 1 = 0 and so Y = 1 and hence the

action is trivial, contradiction.
(ii) mY (t) = t2 − 1, then the modified Frobenius form of Y is[

1 0
1 1

]
In fact, by slightly changing the construction of the Frobenius
form, we can assume that it is[

1 1
0 1

]
.

Therefore,

Y = P−1

[
1 1
0 1

]
P

for some P ∈ GL2 (Fp). Apply this P (or, may be, P−1) to the
generators of A. This allows us to assume that

Y =

[
1 1
0 1

]
.

Therefore,

ϕ (G) =

{[
1 s
0 1

]
: s ∈ Fp

}
.
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If G = 〈x〉 × 〈y〉 = Ip × Ip, then, changing the generators x and
y, we can assume that y acts trivially, and x acts as above (or
vice versa).

�

4.4. Proof of Theorem 2.14.

Proof. By Theorem 2.8, the different cases for the kernel, cokernel, and actions are
(up to weak equivalence) all that arise in connection with extensions

ps → ps+t → pt,

1 ≤ s, t ≤ 2.

We consider the case G cyclic and the case G dicyclic separately.

(1) G = Im, then we recall that

H2
spec (G,A) =

Afix

NA
.

We treat the cases with trivial action together, and the cases with non-
trivial action individually.
(a) Trivial action: Since xa = a for ∀a ∈ A we have Afix = A. The

equation

Na =

m−1∑
i=0

xia =

m−1∑
i=0

a = ma

shows that NA = mA. Thus

H2
spec (G,A) =

A

mA
,

which when combined with Lagrange’s Theorem gives the sub-table

Table 4.2. For any prime p and and G acting trivially on A:

G A H2 (G,A)
Ip Ip Ip
Ip Ip2 Ip
Ip Ip × Ip Ip × Ip
Ip2 Ip Ip
Ip2 Ip2 Ip2
Ip2 Ip × Ip Ip × Ip

(b) G = Ip and A = Ip2 where the action of G on A is given by

xa = (1 + p) a.

The equation

Da = xa− a = (1 + p) a− a = pa

shows that a ∈ Afix if and only if pa = 0, so

Afix = [p]Ip2 ∼= pIp2 .

Next we have

Na =

p−1∑
i=0

xia =

p−1∑
i=0

(1 + ip) a =

p−1∑
i=0

a+ p

p−1∑
i=0

ia

= pa+ pa
p (p− 1)

2
=

{
0 if p = 2
pa if p 6= 2

,
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giving us

NA =

{
0 if p = 2
pIp2 if p 6= 2

.

Hence

H2 (G,A) ∼=
{
pIp2 if p = 2

0 if p 6= 2
∼=
{

I2 if p = 2
0 if p 6= 2

.

(c) G = Ip and A = Ip × Ip with

x

[
a
b

]
=

[
a+ b
b

]
.

We have

D

[
a
b

]
= x

[
a
b

]
−
[
a
b

]
=

[
a+ b
b

]
−
[
a
b

]
=

[
b
0

]
,

so
Afix = Ip × {0} .

Next

N

[
a
b

]
=

p−1∑
i=0

xi
[
a
b

]
=

p−1∑
i=0

[
a+ ib
b

]
= p

[
a
b

]
+

p−1∑
i=0

[
ib
0

]

= 0 + b

p−1∑
i=0

i

[
1
0

]
= b

p (p− 1)

2

[
1
0

]
=


[
b
0

]
if p = 2

0 if p 6= 2
.

Therefore

AN =

{
I2 × {0} if p = 2
{0} if p 6= 2

,

and so

Afix

AN
=

{ Ip×{0}
I2×{0} if p = 2
Ip×{0}
{0} if p 6= 2

∼=
{
{0} if p = 2
Ip if p 6= 2

.

(d) G = Ip2 and A = Ip2 , where
xa = (1 + p) a = a+ pa,

so a ∈ Afix if and only if pa = 0, i.e. a ∈ [p]A. Hence Afix = [p]A.
Next

Na =

p2−1∑
i=0

〈
ci
〉
a =

p2−1∑
i=0

(a+ ipa) = a

p2−1∑
i=0

1 + ap

p2−1∑
i=0

i

= ap2 + ap

(
p2 − 1

)
p2

2
= 0.

Thus NA ∼= {0} and so

H2
spec

(
Ip2 ,

(
Ip2
)ξ) ∼= [p]Ip2 ∼= Ip

(e) G = Ip2 , A = Ip × Ip with the action being given by

xi
[
a
b

]
=

[
1 i
0 1

] [
a
b

]
=

[
a+ ib
b

]
.

Therefore [
a
b

]
∈ Afix ⇔ b = 0,
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showing that Afix = Ip × {0}. Next

N ·
[
a
b

]
=

p2−1∑
m=0

[
a+mb

b

]
= p2

[
a
b

]
+ b

[∑p2−1
m=0 m
p2

]

= 0 + b

[
(p2−1)p2

2
0

]
= 0,

shows that NA = {0} . Thus H2
special

(
Ip2 , (Ip × Ip)ξ

)
∼= Ip × {0}.

Finally we get

Table 4.3. With non-trivial action

H2 (G,A)
G A p 6= 2 p = 2
Ip Ip2 0 I2
Ip Ip × Ip Ip 0
Ip2 Ip2 Ip
Ip2 Ip × Ip Ip

(2) G = Im × In, then by Theorem 1.51

H2 (G,A) ∼=
ker

(
A3 d∗2→ A4

)
Im

(
A2

d∗1→ A3

) ,
where

d∗2

ab
c

 =


Dya

Dxa−Nyb
Nxb+Dyc

Dxc

 ,

d∗1

([
a
b

])
=

 Nya
Dxa−Dyb

Nxb

 .

(a) Trivial action, then for any a ∈ A
Dxa = 〈x〉 a− a = a− a = 0 = Dya

and

Nxa =

m∑
i=1

〈x〉i a = ma,

Nya = na.

Thus

d∗2

ab
c

 =


0
−nb
mb
0


and

d∗1

([
a
b

])
=

na0
mb

 .

So we have

ker

(
A3 d∗2→ A4

)
= A× [lcm(m,n)]A×A
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while

Im

(
A2 d∗1→ A3

)
= nA× 0×mA

showing that

H2 (G,A) ∼=
A× [lcm(m,n)]A×A

nA× 0×mA
(4)

∼=
A

nA
× [lcm(m,n)]A×

A

mA
. (5)

In our case m = n = p, so (4) becomes

H2 (G,A) ∼=
A

pA
× [p]A×

A

pA
(6)

which when combined with Lagrange’s Theorem gives

Table 4.4. For any prime p and and G acting trivially on A:

G A H2 (G,A)
Ip × Ip Ip Ip × Ip × Ip
Ip × Ip Ip2 Ip × Ip × Ip
Ip × Ip Ip × Ip (Ip × Ip)3

(b) G = Ip × Ip, A = Ip2 with action given by

xiyja = (1 + ip) a = a+ ipa.

We have

Dxa = xa− a = pa,

Nxa =

p−1∑
i=0

xia =

p−1∑
i=0

(a+ ipa)

= pa+ pa

p−1∑
i=0

i = pa+
(p− 1) p2

2
a

=

{
pa+ 0 p ≥ 3

2a+ 2a, p = 2
=

{
pa p ≥ 3
0 p = 2

,

Dya = ya− a = a− a = 0,

Nya =

p−1∑
i=0

yia = pa.

Hence

d∗2

ab
c

 =


Dya

Dxa−Nyb
Nxb+Dyc

Dxc

 =


0

pa− pb{
pb p ≥ 3
0 p = 2

+ 0

pc



= p


0

a− b{
b p ≥ 3
0 p = 2

c

 ,
and therefore

ker
(
d∗2 : A3 → A4

)
) =

{ (
[p]Ip2

)3
p ≥ 3

〈(p, p)〉 ×
(

[p]Ip2
)
⊆
(

[p]Ip2
)3

p = 2
.
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Next, we calculate the image:

d∗1

([
a
b

])
=

 Nya
Dxa−Dyb

Nxb

 =


pa

pa− 0{
pb p ≥ 3
0 p = 2



= p


a
a{

b p ≥ 3
0 p = 2

 ,
which means

Im
(
d∗1 : A2 → A3

)
=

{
〈(p, p)〉 ×

(
[p]Ip2

)
⊆
(

[p]Ip2
)3
, p ≥ 3

〈(p, p)〉 × {0} ⊆
(

[p]Ip2
)3
, p = 2

.

Thus

H2
spec

(
Ip × Ip,

(
Ip2
)ξ)

=


([p]Ip2)

3

〈(p,p)〉×([p]Ip2)
p ≥ 3

〈(p,p)〉×([p]Ip2)
〈(p,p)〉×{0} p = 2

∼=

{
([p]Ip2)

2

〈(p,p)〉 × {0} p ≥ 3

({0})2 × [p]Ip2 p = 2

∼=

{
(Ip)2

〈(1,1)〉 p ≥ 3

[p]Ip2 p = 2
∼= Ip.

(c) G = Ip × Ip, A = Ip × Ip with action given by

xiyj
[
a
b

]
=

[
1 i
0 1

] [
a
b

]
=

[
a+ ib
b

]
.

This gives formulas

Dx

([
a
b

])
=

[
a+ b
b

]
−
[
a
b

]
=

[
b
0

]
,

Nx

([
a
b

])
=

p−1∑
i=0

[
a+ ib
b

]
= p

[
a
0

]
+ b

p−1∑
i=0

[
i
1

]
= 0 + b

[
(p−1)p

2
p

]
=

[
(p−1)p

2 b
0

]

=



[
0
0

]
p ≥ 3

[
b
0

]
p = 2

,

Dy

([
a
b

])
=

[
0
0

]
,

Ny

([
a
b

])
= p

[
a
b

]
=

[
0
0

]
.
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Thus, setting a = (a1, a2) , b = (b1, b2) , and c = (c1, c2) we calculate

d∗2

ab
c

 =


Dya

Dxa−Nyb
Nxb+Dyc

Dxc



=


0

(a2, 0)− 0{
0, p ≥ 3

(b2, 0) , p = 2
+ 0

(c2, 0)



=


0

(a2, 0){
0, p ≥ 3

(b2, 0) , p = 2
(c2, 0)

 ,
so

ker
(
d∗2 : (Ip × Ip)3 → (Ip × Ip)4

)
=

{
(Ip × {0})× (Ip × Ip)× (Ip × {0}) , p ≥ 3

(Ip × {0})3
, p = 2

.

Next

d∗1

([
a
b

])
=

 Nya
Dxa−Dyb

Nxb

 =


0

(a2, 0){
0, p ≥ 3

(b2, 0) , p = 2


and hence

Im
(
d∗1 : (Ip × Ip)2 → (Ip × Ip)3

)
=

{
({0})2 × (Ip × {0})× ({0})2

, p ≥ 3

({0})2 × (Ip × {0})2
, p = 2

.

Finally

ker
(
d∗2 : (Ip × Ip)3 → (Ip × Ip)4

)
Im
(
d∗1 : (Ip × Ip)2 → (Ip × Ip)3

)
=

{
(Ip × {0})× ({0} × Ip)× (Ip × {0}) , p ≥ 3

(Ip × {0})× ({0})2 × ({0})2
, p = 2

∼=
{

(Ip)3
, p ≥ 3

I2, p = 2
.

Table 4.5. With non-trivial action

H2 (G,A)
G A p 6= 2 p = 2
Ip × Ip Ip2 Ip
Ip × Ip Ip × Ip (Ip)3 I2

�
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5. Proof of Main Results, 2

5.1. On determining extensions. Here we explain how we use our main tools,
Theorem 2.3 and Theorem 2.6, to determine the extensions whichH2 (G,A) classify.
They give us generators and relations for the middle Es of a representative of the
congruence class [εs].

(1) If G = Im, then given an element

s ·NA ∈ H2
special (G,A) =

Afix

NA

we know that the congruence class [εs] it corresponds to will have a repre-
sentative

1→ A
ι→ Es

π→ G→ 1

where every element of Es is of the form

a {x}i , 0 ≤ i < m, a ∈ A

and maps given by

ι : a 7→ a

π : a {x}i 7→ xi.

Then if S is a generating set of A, i.e. A = 〈S : R〉 for some R ⊆ F (S),
then Es is generated by S ∪ {{x}} subject to the relations

R,

{x}m ∈ s ·NA,
xa = {x} a {x}−1

.

Where the relation xa = {x} a {x}−1
follows from the fact that the exten-

sion is compatible with the action of G on A.
(2) G = Im × In , then given an element

s · Im
(
A2 d∗1→ A3

)
∈ H2

special (G,A) =

ker

(
A3 d∗2→ A4

)
Im

(
A2

d∗1→ A3

) ,
the class [εs] it corresponds to will have a representative

1→ A
ι→ Es

π→ G→ 1

where every element of Es is of the form

a {x}i {x}j

for some a ∈ A, 0 ≤ i, < m, 0 ≤ j < n. If A = 〈S : R〉, then Es will be
generated by S ∪ {{x} , {y}} subject to the relations

R, U
V −1

W

 =

 {y}n

{x} {y} {x}−1 {y}−1

{x}m

 ∈ s · Im(A2 d∗1→ A3

)
,

{x} a {x}−1
= xa,

{y} a {y}−1
= ya,∀a ∈ A,

where of course last two relations follow from the fact that the extension is
compatible with the action of G on A.
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So now, in either case, we have generators and relations for Es. Using these
generators and relations, we want to find out which of the groups in section B.2
our group Es corresponds to. We do this as follows: Suppose we have a candidate

E = 〈S : R〉 , S = {s1, . . . , sk}

from section B.2. If the candidate is any good, we should have

|E| = |Es| = |A| |G| .

We find a subset {e1, . . . ek} ⊆ Es that generates Es and satisfies the relations R
of E. The assignment

ei → si, i = 1, . . . , k

where si ∈ S is the element in E that satisfies the same relations, induces an
epimorphism

ψ : Es → E,

and hence

E ∼= Es/ ker (ψ) .

Since |Es| = |E|, and ker (ψ) ≤ Es, it follows that kerψ = {1}, and so ψ is an
isomorphism.

Remark 5.1. When Es is abelian, finding a candidate is usually easy because of
the Fundamental Theorem of Finitely Abelian Groups [DF04]. Expression Es in
terms of relation matrix one can algorithmically find the candidate E, see [Vin03,
Chapter 9.1].

After we find an isomorphism

ψ : Es → E

with our candidate E, we get a new representative of [εs] ,

1→ A
ιs→ E

πs→ G→ 1

where the maps ιs and πs are constructed so that the diagram

1 - A
ι - Es

π - G - 1

1 - A

1A

? ιs - E

ψ

? πs - G

1G

?
- 1

commutes. That is, we let

ιs:=ψ ◦ ι,
πs:=π ◦ ψ−1

for then ιs = ψ ◦ ι by definition and for any e ∈ Es

π (e) = π
((
ψ−1 ◦ ψ

)
(e)
)

=
(
π ◦ ψ−1

)
(ψ (e))

= πs (ψ (e)) = (πs ◦ ψ) (e)

showing that π = πs ◦ ψ. Obviously the maps are homomorphisms, and exactness
follows by Lemma 5.2 below.
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Lemma 5.2. Assume that the following diagram commutes, and the vertical arrows
are isomorphisms.

1 - A
f - B

g - G - 1

1 - A′

α

? f ′ - B′

β

? g′ - G′

γ

?
- 1

Then the bottom row is exact if and only if the top row is exact.

Proof. Diagram chase. �

That is the general procedure. The following rules for Es will be useful:

Lemma 5.3. Let G = Im = 〈x〉, and a ∈ A.(
a {x}j

)k
=

(
k−1∏
d=0

xdja

)
{x}kj

Proof. (By Induction) Obviously holds in the cases k = 0, 1. Let k > 0 and assume
it holds for k − 1. Then(

a {x}j
)k

=
(
a {x}j

)k−1 (
a {x}j

)
=

((
k−2∏
d=0

xdja

)
{x}(k−1)j

)(
a {x}j

)
=

(
k−2∏
d=0

xdja

)(
{x}(k−1)j

a {x}−(k−1)j
)
{x}j {x}(k−1)j

=

(
k−2∏
d=0

xdja

)
x(k−1)j

a {x}kj =

(
k−1∏
d=0

xdja

)
{x}kj .

�

Lemma 5.4. (Pascal’s identity.) For 1 ≤ k ≤ n(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(
n

k

)
Lemma 5.5. For Let G = Ip × Ip = 〈x〉 × 〈y〉 act trivially on A. Let

s =

 U
V −1

W

 · [Im (A2 −→ A3
)]
∈ H2 (G,A)

and

1 −→ A −→ Es −→ G −→ 1

be the corresponding extension. Then for m,n ∈ N, we have

(1) {x}−1 {y}m {x} = V m {y}m ,
(2) {x}−n {y} {x}n = V n {y} ,
(3) {x}−n {y}m {x}n = V mn {y}m ,
(4) For any k ∈ N0

({x}n {y}m)
k

= V (k2)mn {x}kn {y}km

so long as we define (
a

b

)
= 0, a < b.
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The same formulas hold when the roles of {x} and {y} are interchanged, with V
becoming V −1.

Proof. Recall that

V = {y} {x} {y}−1 {x}−1 ∈ A,
and since the action of G on A is trivial

{x}−1 {y} {x} = V {y}
{y}−1 {x} {y} = V −1 {x} .

Going through the list:

(1) {x}−1 {y}m {x} =
(
{x}−1 {y} {x}

)m
= (V {y})m = V m {y}m .

(2) {x}−n {y} {x}n = {x}−n+1
(
{x}−1 {y} {x}

)
{x}n−1

= {x}−n+1
(V {y}) {x}n−1

= V {x}−n+1 {y} {x}n−1
= · · · = V n {y} .

(3) {x}−n {y}m {x}n =
(
{x}−n {y} {x}n

)m
= (V n {y})m = V mn {y}m .

(4) (By induction) For k = 1

({x}n {y}m)
1

= {x}n {y}m = V 0·mn {x}n {y}m = V (1
2)mn {x}n {y}m .

Inductive step: Let k > 1 and assume that the hypothesis holds for k − 1,
then

({x}n {y}m)
k

= ({x}n {y}m)
k−1

({x}n {y}m)

=
(
V (k−1

2 )mn {x}(k−1)n {y}(k−1)m
)

({x}n {y}m)

= V (k−1
2 )mn {x}kn

(
{x}−n {y}(k−1)m {x}n

)
{y}m

= V (k−1
2 )mn {x}kn V (k−1)mn {y}(k−1)m {y}m

= V ((k−1
2 )+(k−1

1 ))mn {x}kn {y}km

= V (k2)mn {x}kn {y}km ,
where the final equality follows from Lemma 5.4 above.

�

5.2. Proof of Theorem 2.16.

Proof. By Theorem 2.8, the only case is G = Ip = 〈x〉, and A = Ip = 〈z〉 with triv-
ial action. From Theorem 2.14 we have H2 (G,A) ∼= Ip. Let s ∈ H2

special (G,A) =
A
AN

= A
{0}
∼= Ip. We use the construction from Theorem 2.3 and follow the proce-

dure described in Section 5.1 in order to determine the extensions.

(1) s = 0, the extension is split

Ip� Ip × Ip � Ip.
(2) s 6= 0: A representative for [εs] is given by

(Ip = 〈z〉)
ιs
� E

πs
� (Ip = 〈x〉)

where E is an abelian group generated by z and {x} , subject to the relations

zp = 1, {x}p = zs. Since z = {x}s
′p
, we see that E = 〈{x}〉 ∼= Ip2 = 〈P 〉.

Hence our representative is congruent to

Ip
ιs
�
(
Ip2 = 〈P 〉

) πs
� Ip

ιs : z 7→ P s
′p

πs : P 7→ x
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�

5.3. Proof of Theorem 2.18.

Proof. By Theorem 2.8, the different combinations of G and Aξ in List 2.19 are
(up to weak equivalence) all that arise in connection with extensions

1→ p2 → p3 → p→ 1.

For further explanation on how we determine the extensions, see Section 5.1.

(1) G = Ip, A =
(
Ip2
)triv

:

Let s ∈ H2 (G,A) = A/pA = Ip2/pIp2 ∼= Ip, where an isomorphism
Ip2/pIp2 ∼= Ip is given by

a+ pIp2 7→ a (mod p) .

Let G be generated by x, and A generated by z.
(a) s = 0: The extension is split

Ip2 � Ip2 × Ip � Ip.

(b) s 6= 0: Then a representative of [εs] is given by

Ip2
ιs
� Es

πs
� Ip

where

Es =
〈
z, {x} : zp

2

= 1, {x}p = zs, z {x} = {x} z
〉

.

Since s 6= 0, it has an inverse s′ modulo p. Hence

z = {x}ps
′

which shows that E ∼= Ip3 = 〈P 〉 , and so

γ : Es →
(
Ip3 = 〈P 〉

)
z 7→ P ps

′

{x} 7→ P

is an isomorphism. Thus the extension is congruent to

Ip2
ιs
�
(
Ip3 = 〈P 〉

) πs
� Ip

ιs : z 7→ P ps
′

πs : P 7→ x

(2) G = Ip, A =
(
Ip2
)ξ

:
Recall that the action ξ is given by

xz = z1+p,

and that

H2 (G,A) =

{
2I4/ {0} if p = 2
pIp2/pIp2 if p 6= 0

∼=
{

I2 if p = 2
{0} if p 6= 0

.

Let s ∈ H2 (G,A):
(a) s = 0, p is any prime: The extension is split

Ip2 � Ip2 oξ Ip � Ip
where Ip2 oξ Ip is generated by z, {x} subject to the relations

zp
2

= 1, {x}p = 1, {x} z {x}−1
= z1+p.
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If we change generator {x} to {x}−1
we get(

{x}−1
)−1

z {x}−1
= {x} z {x}−1

= z1+p

so Ip2 oξ Ip ∼=
〈
P,Q : P p

2

, Qp, Q−1PQ = P 1+p
〉

via the map

z 7→ P,

{x} 7→ Q−1.

Thus, the extension is congruent to

Ip2
ι
�
〈
P,Q : P p

2

, Qp, Q−1PQ = P 1+p
〉

π
� Ip

ι : z 7→ P

π : P iQj 7→ Q−j

(b) p = 2, s = 1: A representative of [εs] is given by(
Ip2 = 〈z〉

) ι
� Es

π
� (Ip = 〈x〉)

where Es has generators z, {x} with relations

z4 = 1, {x}2 = z2, {x}−1
z {x} = z3,

which clearly is isomorphic to the group
〈
P,Q : P 4, Q4, Q−1PQ = P−1, Q2 = P 2

〉
via the map

z 7→ P,

{x} 7→ Q.

Hence the extension is congruent to

Ip2
ι
�
〈
P,Q : P 4, Q4, Q−1PQ = P−1, Q2 = P 2

〉 π
� Ip

ι : z 7→ P

π : P iQj 7→ xj

(3) G = Ip, A = (Ip × Ip)triv
:

From Table 2.15, an element s ∈ H2 (G,A) is of the form

s =

[
u
v

]
∈ Ip × Ip.

(a) s =

[
u
v

]
=

[
0
0

]
: The extension is split

Ip × Ip� Ip × Ip × Ip � Ip
(b) u 6= 0, then there is u′ ≡ u−1 (mod p) . A representative for [εs] is given

by

Ip × Ip
ι
� Es

π
� Ip

where Es is abelian, generated by y, z, {x} with relations

yp = zp = 1,

{x}p = yuzv.

Taking the relation {x}p = yuzv and rasing it to the power u′ gives

{x}u
′p

= yzu
′v

y = {x}u
′p
z−u

′v
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showing that {x} , z generate E. Hence E ∼= Ip2 × Ip = 〈P 〉 × 〈Q〉 via
the map

{x} 7→ P

z 7→ Q,

and the extension is congruent to

Ip × Ip
ι
�
(
Ip2 × Ip = 〈P 〉 × 〈Q〉

) π
� Ip

ι : y 7→ Pu
′pQ−u

′v

z 7→ Q

π : P iQj 7→ xi

(c) u = 0, v 6= 0, then there is v′ ≡ v−1 (mod p) . A representative for [εs]
is given by

Ip × Ip
ι
� E

π
� Ip

where E is abelian, generated by y, z, {x} with relations

yp = zp = 1,

{x}p = zv,

showing that z = {x}v
′p

. Thus E = 〈{x} , y〉 ∼= Ip2 × Ip = 〈P 〉 × 〈Q〉
via the map

{x} 7→ P,

y 7→ Q,

and the extension is

Ip × Ip
ι
�
(
Ip2 × Ip = 〈P 〉 × 〈Q〉

) π
� Ip

ι : y 7→ Q

z 7→ P v
′p

π : P iQj 7→ xi

(4) G = Ip, A = (Ip × Ip)ξ:
From Theorem 2.8 (in list 2.11) the action of G on A (in additive notation)
is given by

x

[
a
b

]
=

[
a+ b
b

]
which corresponds to

x
(
yizj

)
= yi+jzj

in multiplicative notation. From Table 2.15, we have

H2
special (G,A) =


I2×{0}
I2×{0} if p = 2

Ip×{0}
{0} if p 6= 2

∼=
{
{0} if p = 2
Ip if p 6= 2

.

Let s ∈ H2 (G,A)
(a) p = 2 : The only case is s = 0, so the extension is split

I2 × I2
ι
� (I2 × I2) oξ I2

π
� I2.
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Let us determine (I2 × I2)oξI2. It has generators y, z {x} with relations

y2 = z2 = {x}2 = 1,

{x} y {x}−1
= y, {x} z {x}−1

= yz,

yz = zy.

The equality {x} z {x}−1
= yz is equivalent to

{x}−1
z {x} = yz

since {x}−1
= {x} . Observe that z {x} and z generate (I2 × I2) oξ I2

since

(z {x})2
= (z {x}) (z {x}) = z xz {x}2

= z xz = zyz = y

which also shows that

|z {x}| = 4.

Next, the equality

z−1 (z {x}) z = {x} z = (z {x})−1
= (z {x})3

shows that

P 7→ z {x}
Q 7→ z

induces an isomorphism
〈
P,Q : P 4, Q2, Q−1PQ = P 3

〉 ∼= (I2 × I2) oξ
I2. In terms of our original generators, this means

y 7→ P 2

z 7→ Q

{x} 7→ P 3Q.

since

y = (z {x})2 7→ P 2

and

P 3Q = QP 7→ z (z {x}) = {x} .
Hence the extension is congruent to

I2 × I2
ι
�
〈
P,Q : P 4, Q2, Q−1PQ = P 3

〉 π
� I2

ι : y 7→ P 2

z 7→ Q

π : P iQj 7→ xi

(b) p 6= 0, s = 0 :The extension is split

Ip × Ip
ι
� (Ip × Ip) oξ Ip

π
� Ip → 1,

where (Ip × Ip) oξ Ip is generated by y, z, {x} with relations

yp = zp = {x}p = 1,

yz = zy

{x} y {x}−1
= y,

{x} z {x}−1
= yz.
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Rewriting the relations to

yp = zp = {x}p = 1, z−1 {x} z = {x} y,
z−1yz = y, {x}−1

y {x} = y

we see that

y 7→ P

z 7→ R

{x} 7→ Q

induces an isomorphism

Es ∼=
〈
P,Q,R : P p, Qp, Rp, R−1QR = QP,

R−1PR = P,Q−1PQ = P

〉
.

Hence our extension is congruent to

Ip × Ip
ι
�

〈
P,Q,R : P p, Qp, Rp, R−1QR = QP,

R−1PR = P,Q−1PQ = P

〉
π
� Ip

ι : yizj 7→ P iRj ,

π : P iQjRk 7→ xj

(c) p 6= 0, s 6= 0 : A representative for [εs] is

Ip × Ip
ι
� E

π
� Ip,

where E is generated by y, z, {x} with relations

yp = zp = 1,

{x}p = ys,

yz = zy

{x} y {x}−1
= y,

{x} z {x}−1
= yz.

We claim that this group is isomorphic to〈
P,Q : P p

2

, Qp, Q−1PQ = P 1+p
〉
.

To see this, note that

{x}p = ys,

which means that {x} has order p2. We will let {x} act as P and zs

act as Q. Then

z−s {x} zs = z−s
(
{x} zs {x}−1

)
{x} = z−s

(
{x} z {x}−1

)s
{x}

= z−s (yz)
s {x} = ys {x} = {x}p {x} = {x}1+p

.

Thus assigning {x} to P and zs to Q does indeed yield an isomorphism.
Hence our extension is congruent to

(Ip × Ip = 〈y, z〉)
ιs
�
〈
P,Q : P p

2

, Qp, Q−1PQ = P 1+p
〉
πs
� (Ip = 〈x〉)

ιs : yizj 7→ P is
′pQjs

′

πs : P iQj 7→ xi

�
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5.4. Proof of Theorem 2.20.

Proof. By Theorem 2.8 our combinations of G and Aξ are all (up to weak equiva-
lence) that arise in connection with extensions

1→ p→ p3 → p2 → 1.

Throughout this proof we will use Table 2.15 and the approach to determining
extensions from Section 5.1.

(1) G = Ip2 , A = (Ip)triv
:

Write G = 〈x〉 = Ip2 , and A = 〈z〉 = Ip, and let s ∈ H2 (G,A) ∼= Ip.
(a) s = 0 : The extension is split

Ip� Ip × Ip2 � Ip2

(b) s 6= 0 : Then a representative of [εs] is given by

Ip
ι
� Es

π
� Ip2

where Es consists of elements z, {x} , with relations

zp = 1, {x}p
2

= zs, z {x} = {x} z,

and maps

ι : z 7→ z,

π : zi {x}j 7→ xj .

Since s 6= 0 we know that there exists s′ ≡ s−1 (mod p) , and hence

z = {x}s
′p2

which shows that the assignment

{x} 7→ P

(under which z = {x}s
′p2 7→ P s

′p2) induces an isomorphism

Es ∼=
(
Ip3 = 〈P 〉

)
.

Hence the extension is given by

Ip
ιs
�
(
Ip3 = 〈P 〉

) πs
� Ip2

ιs : z 7→ P s
′p2

πs : P 7→ x

(2) G = Ip × Ip, A = (Ip)triv
:

Write G = 〈x, y〉, A = 〈z〉, and let s =

 u
v
w

 · [Im (A2 −→ A3
)]
∈

H2 (G,A) ∼= (Ip)3
.

(a) s = 0: The extension is split

Ip� Ip × Ip × Ip � Ip × Ip
(b) v = 0: Then {x} {y} = {y} {x}, and so Es is abelian.

(i) u 6= 0, then

z = {y}u
′p

{x}p = {y}wu
′p
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where u′ ≡ u−1 (mod p) .Hence we see that E =
〈
{x} {y}−wu

′
, {y}

〉
,

where(
{x} {y}−wu

′)p
= {x}p {y}−wu

′p

= {y}wu
′p {y}−wu

′p
= 1

{y}p
2

= 1,

and hence

Es ∼=
(
Ip2 × Ip = 〈P 〉 × 〈Q〉

)
via the assignment

{y} 7→ P

{x} {y}−wu
′
7→ Q.

Since

ιs (z) = {y}u
′p
,

πs

(
{y}i

(
{x} {y}−wu

′)j)
= xjyi−wu

′j

the extension is given by

Ip
ιs
�
(
Ip2 × Ip = 〈P 〉 × 〈Q〉

) πs
� Ip × Ip

ιs : z 7→ Pu
′p

πs : P iQj 7→ xjyi−wu
′j

(ii) u = 0, w 6= 0, then we get relations

zp, {x}p = zw, {y}p .
Thus E = 〈{x} , {y}〉 ∼= Ip2×Ip = 〈P 〉 × 〈Q〉 , and the extension
is given by

Ip
ιs
�
(
Ip2×Ip = 〈P 〉 × 〈Q〉

) πs
� Ip × Ip

ιs : z 7→ Pw
′p

πs : P iQj 7→ xiyj

(c) v 6= 0, p = 2:
Then v = 1 is the only possible value.

(i) u = w = 0: We have relations

z2, {x}2 , {y}2 ,
{x} {y} {x}−1 {y}−1

= z

{x} z = z {x} , z {y} = {y} z,
from which we see

({x} {y})2
= ({x} {y}) ({x} {y})
= (z {y} {x}) {x} {y} = z

({x} {y})3
= z {x} {y} = {y} {x}

({x} {y})4
= 1

and

{x}−1
({x} {y}) {x} = {x} ({x} {y}) {x} = {x}2 {y} {x}

= {y} {x} = ({x} {y})3
.



76 MARKUS NORDVOLL BREIVIK

Hence we have an isomorphism

Es →
〈
P,Q : P 4, Q2, Q−1PQ = P 3

〉
{x} {y} 7→ P

{x} 7→ Q,

and the extension is congruent to

Ip
ι
�
〈
P,Q : P 4, Q2, Q−1PQ = P 3

〉 πs
� Ip × Ip

ι : z 7→ P 2

π : P iQj 7→ xi+jyj

(ii) u = 1, w = 0 : We have relations

z2, {x}2 , {y}2 = z,

{x} {y} {x}−1 {y}−1
= z

{x} z = z {x} , z {y} = {y} z.

Since {y}4 = z2 = 1, and

{x}−1 {y} {x} = {x} {y} {x}−1
= {y} z

= {y} {y}2 = {y}3

we have an isomorphism

E →
〈
P,Q : P 4, Q2, Q−1PQ = P 3

〉
{y} 7→ P

{x} 7→ Q.

Hence our extension is congruent to

Ip
ι
�
〈
P,Q : P 4, Q2, Q−1PQ = P 3

〉 π
� Ip × Ip

ι : z 7→ P 2

π : P iQj 7→ xjyi

(iii) u = 0, w = 1 : We have relations

z2, {x}2 = z, {y}2 ,
{x} {y} {x}−1 {y}−1

= z

{x} z = z {x} , z {y} = {y} z.

so {x}4 = 1,and

{y}−1 {x} {y} = {x} z = {x}3 .

Thus

E →
〈
P,Q : P 4, Q2, Q−1PQ = P 3

〉
{x} 7→ P

{y} 7→ Q,

is an isomorphism, and

Ip
ι
�
〈
P,Q : P 4, Q2, Q−1PQ = P 3

〉 π
� Ip × Ip

ι : z 7→ P 2

π : P iQj 7→ xiyj
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(iv) u = v = 1 : We have relations

z2, {x}2 = z, {y}2 = z,

{x} {y} {x}−1 {y}−1
= z

{x} z = z {x} , z {y} = {y} z.

The middle equation is equivalent to

{y}−1 {x} {y} = {y}−1
z {y} {x} = z {x} = {x}3 = {x}−1

and hence the assignment

γ : E →
〈
P,Q : P 4, Q4, Q−1PQ = P−1, Q2 = P 2

〉
{x} 7→ P

{y} 7→ Q

is an isomorphism, and our extension is congruent to

Ip
ι
�
〈
P,Q : P 4, Q4, Q−1PQ = P−1, Q2 = P 2

〉 π
� Ip × Ip

ι : z 7→ P 2

π : P iQj 7→ xiyj

(d) v 6= 0, p 6= 2:
(i) If u = w = 0, then we get relations

zp, {x}p , {y}p ,
{x} {y} {x}−1 {y}−1

= zv

{x} z = z {x} , z {y} = {y} z.

Since E is central (Definition 1.29), the middle equation yields

{x}−1 {y} {x} = z−v {y} ,
{y}−1 {x} {y} = zv {x} .

From this, we see that

γ : E →
〈
P,Q,R : P p, Qp, Rp, R−1QR = QP,

R−1PR = P,Q−1PQ = P

〉
z 7→ P v

′

{x} 7→ Q

{y} 7→ R,

where v′ ≡ v−1 (mod p), is an isomorphism. Hence the extension
is given by

Ip
ιs
�

〈
P,Q,R : P p, Qp, Rp, R−1QR = QP,

R−1PR = P,Q−1PQ = P

〉
πs
� Ip × Ip

ιs : z 7→ P v
′

πs : P iQjRk 7→ xjyk

(ii) u 6= 0 : We get the relations

zp, {x}p = zw, {y}p = zu,

{x} {y} {x}−1 {y}−1
= zv

{x} z = z {x} , z {y} = {y} z.
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From which we see that {y}p = zu generate 〈z〉, since z = {y}u
′p

.
So we have

{y}p
2

= 1, {x}p = zw,

and we claim that

Es ∼=
〈
P,Q : P p

2

, Qp, Q−1PQ = P 1+p
〉
.

Observe that

{x} {y} {x}−1
= zv {y} = {y}vu

′p {y} ,
i.e.(
{x}−1

)−1

{y}
(
{x}−1

)
= {y}vu

′p {y} ,

and

{x}v
′u {y} {x}−v

′u
= (zv)

v′u {y} = {y}1+p
,

so (
{x}−v

′u
)−1

{y}
(
{x}−v

′u
)

= {y}1+p
.

Thus(
{x}−v

′u {y}m
)−1

{y}
(
{x}−v

′u {y}m
)

= {y}1+p
.

We want {x}−v
′u {y}m to have the role of Q, so we need it to

have order p. By Lemma 5.5(
{x}−v

′u {y}m
)p

= z−(p2)m(−v′u)v {x}−v
′up {y}mp = z(

p
2)mu {x}−v

′up {y}mp

= {x}−v
′up {y}mp = z−v

′uwzmu = zu(−v
′w+m)

since
(
p
2

)
≡ 0 (mod p) when p is odd. So if we set m = v′w, then

we get (
{x}v

′u {y}m
)p

= 1

as desired. Hence the assignment

P 7→ {y}

Q 7→ {x}−v
′u {y}v

′w

defines an isomorphism. Finally the extension is congruent to

Ip
ιs
�
〈
P,Q : P p

2

, Qp, Q−1PQ = P 1+p
〉
πs
� Ip × Ip

ιs : z 7→ Pu
′p

πs : P iQj 7→ x−jv
′uyi+jv

′w

(iii) u = 0, w 6= 0, then we get the relations

zp, {x}p = zw, {y}p ,
{x} {y} {x}−1 {y}−1

= zv

{x} z = z {x} , z {y} = {y} z.
We observe that {x} generate 〈z〉 as

{x}pw
′

= z,

where w′ ≡ w−1 (mod p). Again we claim that

Es ∼=
〈
P,Q : P p

2

, Qp, Q−1PQ = P 1+p
〉
,
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and this time we shall let {x} take on the role of P . Observe
that

{y}−1 {x} {y} = zv {x} = {x}vw
′p {x}

and hence

{y}−v
′w {x} {y}v

′w
= (zv)

v′w {x} = zw {x} = {x}1+p
.

Therefore the isomorphism is given by

P 7→ {x}

Q 7→ {y}v
′w
,

and so the extension is congruent to

Ip
ιs
�
〈
P,Q : P p

2

, Qp, Q−1PQ = P 1+p
〉
πs
� Ip × Ip

ιs : z 7→ Pw
′p

πs : P iQj 7→ xiyjv
′w

�

5.5. Proof of Theorem 2.22.

Proof. By Theorem 2.8, the combination of A, G, and action ϕ in the lists are (up
to weak equivalence) all that arise in connection with extensions p2 → p4 → p2.

(1) The contents of List 2.23 are extensions of Ip2 by Ip2 . The case when the
action is trivial follow from Lemma 5.7. The case with non-trivial action
follow from Lemma 5.10.

(2) In List 2.24, extensions of (Ip × Ip)triv
and (Ip × Ip)ξ by Ip2 are those in

Lemma 5.12 and Lemma 5.14, respectively.
(3) Extensions of Ip2 by Ip× Ip in which the action is trivial come from Lemma

5.16, and those in which the action is non-trivial come from Lemma 5.19.
(4) The extensions of Ip× Ip of Ip× Ip are covered in Lemma 5.21 and Lemma

5.22.

�

5.5.1. Extensions of Ip2 by Ip2 .

Remark 5.6. Write G = 〈x〉 and A = 〈z〉 .

Trivial action.

Lemma 5.7. Below are all the congruence classes of extensions A = Ip2 by G = Ip2 ,
where G acts trivially on A. Let s ∈ H2 (G,A) ∼= Ip2

(1) s = 0 :
Ip2 � Ip2 × Ip2 � Ip2

(2) s ∈
(
Ip2
)∗

:

Ip2
ιs
�
(
Ip4 = 〈P 〉

) πs
� Ip2

ιs : z 7→ P p
2

πs : P i 7→ xis
′

(3) s = rp, 1 ≤ r < p :

Ip2
ιs
�
(
Ip3 × Ip = 〈P 〉 × 〈Q〉

) πs
� Ip2

ιs : z 7→ P r
′pQ

πs : P iQj 7→ xi−jr
′p



80 MARKUS NORDVOLL BREIVIK

Proof. From Theorem 2.14 we know that H2 (G,A) ∼= Ip2 . Let s ∈ Ip2 and note
that by Theorem 2.3 a representative Es of the equivalence class [εs] has generators
z and {x} subject to the relations

zp
2

= 1, {x}p
2

= zs,

{x} z {x}−1
= z.

(1) s = 0: The extension is split

Ip2 � Ip2 × Ip2 � Ip2

(2) s ∈
(
Ip2
)∗

: By assumption s has an inverse s′ (mod p), so

z =
(
{x}p

2
)s′

= {x}s
′p2

which means that {x} generates Es. The equation(
{x}s

′)p4
=
(
{x}s

′p2
)p2

= zp
2

= 1

shows that the assignment

{x}s
′
7→ P

induces an isomorphism

Es =
〈
{x}s

′〉 ∼= Ip4 = 〈P 〉 .

Since

z = {x}s
′p2 7→ P p

2

we see that our extension is congruent to

Ip2
ιs
�
(
Ip4 = 〈P 〉

) πs
� Ip2

ιs : z 7→ P p
2

πs : P i 7→ xis
′

(3) s ∈ pIp2 \ {0}: Then s = rp for some 1 ≤ r < p, and we have

{x}p
2

= zrp

which implies that

{x}p
3

=
(
{x}p

2
)p

= (zrp)
p

= 1

and

zp = {x}r
′p2
.

We see that {x} and z {x}−r
′p

generate Es, and that(
z {x}−r

′p
)p

= zp {x}−r
′p2

=
(
{x}r

′p2
)
{x}−r

′p2
= 1.

Hence the assignment

{x} 7→ P

z {x}−r
′p 7→ Q

induces an isomorphism

Es =
〈
{x} , z {x}−r

′p
〉
∼= Ip3 × Ip = 〈P 〉 × 〈Q〉 .

Since

z =
(
{x}r

′p {x}−r
′p
)
z = {x}r

′p
(
z {x}−r

′p
)
7→ P r

′pQ
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and

{x}i
(
z {x}−r

′p
)j

= zj {x}i−jr
′p

we see that our extension is congruent to

Ip2
ιs
�
(
Ip3 × Ip = 〈P 〉 × 〈Q〉

) πs
� Ip2

ιs : z 7→ P r
′pQ

πs : P iQj 7→ xi−jr
′p

�

Non-trivial action.

Remark 5.8. When A is written additively, action on G on A is given by

xia = (1 + ip) a.

In multiplicative notation this corresponds to

xia = a1+ip.

Since both are cyclic, it is enough to specify what the generator x of G does to z of
A:

xz = z1+p.

Lemma 5.9. Let a ∈ A, then(
a {x}j

)k
= ak+

k(k−1)
2 jp {x}kj , k ≥ 0.

Proof. By Lemma 5.3(
a {x}j

)k
=

(
k−1∏
d=0

xdja

)
{x}kj =

(
k−1∏
d=0

a1+djp

)
{x}kj

= a
∑k−1
d=0 (1+djp) {x}kj = ak+jp

∑k−1
d=0 d {x}kj = ak+jp

k(k−1)
2

= ak(1+ k−1
2 jp) {x}kj .

�

Lemma 5.10. Below are all the congruence classes of extensions A = Ip2 by G =
Ip2 , where G acts non-trivially on A.
Let s ∈ H2 (G,A) ∼= Ip

(1) s = 0:

Ip2
ι
�
〈
P,Q : P p

2

, Qp
2

, Q−1PQ = P 1+p
〉

π
� Ip2

ι : z 7→ P

P iQj 7→ x−j

(2) s 6= 0:

Ip2
ι
�
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉

π
� Ip2

ιs : z 7→ P r
′pQr

′

πs : P iQj 7→ xi

Proof. From Theorem 2.14 we know that H2 (G,A) ∼= [p]Ip2 ∼= Ip. Let s ∈ Ip
and note that by Theorem 2.3 a representative Es of the equivalence class [εs] has
generators z and {x} subject to the relations

zp
2

= 1, {x}p
2

= zsp,
xz = {x} z {x}−1

= z1+p.
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(1) s = 0: This is the split extension

Ip2 � Ip2 oξ Ip2 � Ip2

where

Ip2 oξ Ip2 =
〈
z, {x} : zp

2

, {x}p
2

, {x} z {x}−1
= z1+p

〉
.

Clearly

Ip2 oξ Ip2 ∼=
〈
P,Q : P p

2

, Qp
2

, Q−1PQ = P 1+p
〉

via the assignment

z 7→ P

{x}−1 7→ Q.

Since

{x} =
(
{x}−1

)−1

7→ Q−1

we see that the extension is congruent to

Ip2
ι
�
〈
P,Q : P p

2

, Qp
2

, Q−1PQ = P 1+p
〉

π
� Ip2

ι : z 7→ P

P iQj 7→ x−j

(2) s 6= 0: Then

Es =
〈
z, {x} : zp

2

, {x}p
2

= zsp, {x} z {x}−1
= z1+p

〉
.

We claim that the assignment

{x} 7→ P

zs {x}−p 7→ Q

induces an isomorphism

Es ∼=
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉
.

The equation

{x}p
3

=
(
{x}p

2
)p

= (zsp)
p

=
(
zp

2
)s

= 1

shows that |{x}| = p3. By Lemma 5.9(
zs {x}−p

)p
= (zs)

p+
p(p−1)

2 p(−p) {x}p(−p)

= zsp {x}−p
2

= {x}p
2

{x}−p
2

= 1,

so
∣∣∣zs {x}−p∣∣∣ = p, as desired. All that remains is to check Q−1PQ = P 1+p2 ,

and to do that we need the following:

z−1 {x} z = z−1
(
{x} z {x}−1

)
{x} = z−1

(
z1+p

)
{x} = zp {x}

z−2 {x} z2 = z−1 (zp {x}) z = zp
(
z−1 {x} z

)
= z2p {x}

...

z−n {x} zn = znp {x} .
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Hence (
zs {x}−p

)−1

{x}
(
zs {x}−p

)
= {x}p

(
z−s {x} zs

)
{x}−p

= {x}p (zsp {x}) {x}−p = {x}p zsp {x}1−p

= {x}p {x}p
2

{x}1−p = {x}1+p2

as was to be shown. We have

z = (zs)
s′

=
(
zs
(
{x}−p {x}p

))s′
=
((
zr {x}−p

)
{x}p

)r′
7→ (QP p)

r′
.

We want to write the image of z; (QP p)
s′

in the form P iQj . To do that

we need some formulas for
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉

. We have

Q−1PQ = P 1+p2 ⇒ QPQ−1 = P 1−p2

so

QP = P 1−p2Q

which by induction gives

QP p = P p(1−p2)Q = P pQ.

Thus

z 7→ (QP p)
s′

= (QP p)
s′

= P s
′pQs

′

and since

πs

(
{x}i

(
zs {x}−p

)j)
= xi−jp

the extension is congruent to

Ip2
ι
�
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉

π
� Ip2

ιs : z 7→ P s
′pQs

′

πs : P iQj 7→ xi−jp

�

5.5.2. Extensions of Ip × Ip by Ip2 .

Remark 5.11. Write G = Ip2 = 〈x〉 and A = Ip × Ip = 〈z, Z〉 .

Trivial action.

Lemma 5.12. Below are all the congruence classes of extensions A = Ip × Ip by

G = Ip2 , where G acts trivially on A. Let s =

[
u
v

]
∈ H2 (G,A) ∼= Ip × Ip

(1) s = 0:

Ip × Ip� Ip × Ip × Ip2 � Ip2
(2) u 6= 0:

Ip × Ip
ι
�
(
Ip3 × Ip = 〈P,Q〉

) π
� Ip2

ιs :
z 7→ Pu

′p2Q−u
′v

Z 7→ Q

πs : P iQj 7→ xi
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(3) u = 0, v 6= 0:

Ip × Ip
ι
�
(
Ip3 × Ip = 〈P,Q〉

) π
� Ip2

ιs :
z 7→ Q

Z 7→ P v
′p2

πs : P iQj 7→ xi

Proof. From Theorem 2.14 we know that H2 (G,A) ∼= Ip × Ip. Let

s =

[
u
v

]
∈ H2 (G,A) ∼= Ip × Ip

and note that by Theorem 2.3 a representative Es of the equivalence class [εs] has
generators z,Z and {x} subject to the relations

zp, Zp, {x}p
2

= zuZv,
xz = {x} z {x}−1

= z,
xZ = {x}Z {x}−1

= Z,

zZz−1 = Z.

From the relations we see that for any s, Es will be abelian.

(1) s = 0: The extension is split

Ip × Ip� Ip × Ip × Ip2 � Ip2

(2) u 6= 0: Then

{x}p
2

= zuZv

implies that

z =
(
Z−v {x}p

2
)u′

= Z−u
′v {x}u

′p2
,

so Z and {x} generate Es. We claim that

{x} 7→ P

Z 7→ Q

induces an isomorphism

Es = 〈{x} , Z〉 ∼= Ip3 × Ip = 〈P,Q〉 .
The equations

{x}p
3

=
(
{x}p

2
)p

= (zuZv)
p

= 1,

Zp = 1,

{x}Z = Z {x}
shows that this is indeed the case. Since

z = Z−u
′v {x}u

′p2
= {x}u

′p2
Z−u

′v 7→ Pu
′p2Q−u

′v

and

πs

(
{x}i Zj

)
= xi

the extension is congruent to

Ip × Ip
ι
�
(
Ip3 × Ip = 〈P,Q〉

) π
� Ip2

ιs :
z 7→ Pu

′p2Q−u
′v

Z 7→ Q

πs : P iQj 7→ xi
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(3) u = 0, v 6= 0: Then

{x}p
2

= Zv

implies that

Z = {x}v
′p2
,

so {x} and z generate Es. We claim that

{x} 7→ P

z 7→ Q

induces an isomorphism

Es = 〈{x} , z〉 ∼= Ip3 × Ip = 〈P,Q〉 .

Indeed,

{x}p
3

=
(
{x}p

2
)p

= (Zv)
p

= 1,

zp = 1,

{x} z = z {x}

shows this statement to be true. Hence the extension is congruent to

Ip × Ip
ι
�
(
Ip3 × Ip = 〈P,Q〉

) π
� Ip2

ιs :
z 7→ Q

Z 7→ P v
′p2

πs : P iQj 7→ xi

�

Non-trivial action.

Remark 5.13. When A is written additively, action on G on A is given by

x

[
a
b

]
=

[
1 1
0 1

] [
a
b

]
=

[
a+ b
b

]
.

In multiplicative notation this becomes

x
(
ziZj

)
= zi+jZj

which is equivalent to

xz = z,
xZ = zZ.

Lemma 5.14. Below are all the congruence classes of extensions A = Ip × Ip by
G = Ip2 , where G acts non-trivially on A.
Let s ∈ H2 (G,A) ∼= Ip

(1) s = 0:

Ip × Ip�
〈
P,Q,R : P p

2

, Qp, Rp, R−1PR = PQ,
Q−1PQ = P,R−1QR = Q

〉
� Ip2

ι :
z 7→ Q
Z 7→ R

π : P iQjRk 7→ xi
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(2) s 6= 0:

Ip × Ip�
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉
� Ip2

ιs :
z 7→ P s

′p2

Z 7→ P−s
′p2Qs

′

πs : P iQj 7→ xi

Proof. From Theorem 2.14 we know that

H2 (G,A) ∼=
{[
a
0

]
∈ Ip × Ip

}
= Ip × {0} ∼= Ip.

Let s ∈ Ip, and note that by Theorem 2.3 a representative Es of the equivalence
class [εs] has generators z,Z and {x} subject to the relations

zp, Zp, {x}p
2

= zs,
xz = {x} z {x}−1

= z
xZ = {x}Z {x}−1

= zZ,

zZz−1 = Z.

Since {x}Z {x}−1
= zZ, we see that none of the representatives are going to be

abelian.

(1) s = 0: The extension is split

Ip × Ip� (Ip × Ip) oξ Ip2 � Ip2

We claim that

z 7→ Q

Z 7→ R

{x} 7→ P

induces an isomorphism

(Ip × Ip) oξ Ip2 ∼=
〈
P,Q,R : P p

2

, Qp, Rp, R−1PR = PQ,
Q−1PQ = P,R−1QR = Q

〉
.

Since

{x}p
2

= z0 = 1,

zp = 1,

Zp = 1

we see that the orders are correct. Next, the equations

R−1PR = Z−1 {x}Z = Z−1 {x}Z
(
{x}−1 {x}

)
= Z−1

(
{x}Z {x}−1

)
{x} = Z−1 (zZ) {x}

= z {x} = {x} z = PQ,

Q−1PQ = z−1 {x} z = z−1 {x} z
(
{x}−1 {x}

)
= z−1

(
{x} z {x}−1

)
{x} = z−1z {x}

= {x} = P,

R−1QR = Z−1zZ = Z−1zZ
(
z−1z

)
= Z−1

(
zZz−1

)
z

= Z−1Zz = z = Q,
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verifies the remaining relations. Hence the extension is congruent to

Ip × Ip�
〈
P,Q,R : P p

2

, Qp, Rp, R−1PR = PQ,
Q−1PQ = P,R−1QR = Q

〉
� Ip2

ι :
z 7→ Q
Z 7→ R

π : P iQjRk 7→ xi

(2) s 6= 0: Then the equation

{x}p
2

= zs

implies that

z = {x}s
′p2
.

Hence {x} and Z generate Es, with order p3 and p respectively. The
assignment

{x} 7→ P

Zs {x}p
2

7→ Q

induces an isomorphism

Es ∼=
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉
.

Indeed, the order of {x} is p3 as noted above and(
Zs {x}p

2
)p

= (Zszs)
p

= 1

shows that Zs {x}p
2

has order p. Next

Q−1PQ =
(
Zs {x}p

2
)1

{x}
(
Zs {x}p

2
)

=
(
{x}−p

2

Z−s
)
{x}

(
Zs {x}p

2
)

=
(
z−sZ−s

)
{x} (Zszs) = Z−s {x}Zs = zs {x} = {x}p

2

{x}

= {x}1+p2
= P 1+p2

where the equation

Z−s {x}Zs = zs {x}

follows from

Z−1 {x}Z = Z−1 {x}Z
(
{x}−1 {x}

)
= Z−1

(
{x}Z {x}−1

)
{x}

= Z−1 (zZ) {x} = z {x}

and induction. Since

z = {x}s
′p2 7→ P s

′p2 ,

πs

(
{x}i

(
Zs {x}p

2
)j)

= xi−jp
2

= xi,

Zs =
(
Zs {x}p

2
)
{x}−p

2

7→ QP−p
2

,

and because z−s 7→ P−p
2

is in the center

Z 7→
(
QP−p

2
)s′

= P−s
′p2Qs

′
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the extension is congruent to

Ip × Ip�
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉
� Ip2

ιs :
z 7→ P s

′p2

Z 7→ P−s
′p2Qs

′

πs : P iQj 7→ xi

�

5.5.3. Extensions of Ip2 by Ip × Ip.

Remark 5.15. Write G = Ip × Ip = 〈x, y〉 , and A = Ip2 = 〈z〉 .

Trivial action.

Lemma 5.16. Below are all the congruence classes of extensions A = Ip2 by G =

Ip × Ip, where G acts trivially on A. Let s =

uv
w

 ∈ H2 (G,A) ∼= Ip × Ip × Ip

(1) s = 0:

Ip2 � Ip2 × Ip × Ip � Ip × Ip.
(2) v = 0:

(a) u 6= 0:

Ip2
ιs
�
(
Ip3 × Ip = 〈P 〉 × 〈Q〉

) πs
� Ip × Ip

ιs : z 7→ Pu
′p

πs : P iQj 7→ xjyi−ju
′w

(b) u = 0, w 6= 0:

Ip2
ιs
�
(
Ip3 × Ip = 〈P 〉 × 〈Q〉

) πs
� Ip × Ip

ιs : z 7→ Pw
′p

πs : P iQj 7→ xiyj

(3) v 6= 0:
(a) u = w = 0:

Ip2
ιs
�

〈
P,Q,R : P p

2

, Qp, Rp, R−1QR = QP p,
Q−1PQ = P,R−1PR = P

〉
πs
� Ip × Ip

ιs : z 7→ P v
′

πs : P iQjRk 7→ x−kyj

(b) u 6= 0:

Ip2
ιs
�
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉
πs
� Ip × Ip

ιs : z 7→ Pu
′p

πs : P iQj 7→ x−juv
′
yi+jv

′wp

(c) u = 0, w 6= 0:

Ip2
ιs
�
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉
πs
� Ip × Ip

ιs : z 7→ Pw
′p

πs : P iQj 7→ xiyjv
′w
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Proof. From Theorem 2.14 we know that

H2 (G,A) ∼= Ip × [p]Ip2 × Ip ∼= Ip × Ip × Ip.
Let

s =

uv
w

 ∈ H2 (G,A) ∼= Ip × Ip × Ip

and note that by Theorem 2.6 a representative Es of the equivalence class [εs] has
generators z,Z and {x} subject to the relations

zp
2

, {y}p = zu, {x}p = zw,

V −1 = {x} {y} {x}−1 {y}−1
= zvp,

xz = {x} z {x}−1
= z,

yz = {y} z {y}−1
= z.

(1) s = 0: The extension is split

Ip2 � Ip2 × Ip × Ip � Ip × Ip
(2) v = 0: Then Es will be abelian since the generators all commute.

(a) u 6= 0: Then

{y}p = zu

implies that

z = {y}u
′p
,

{x}p = zw = {y}u
′wp

and hence Es = 〈{x} , {y}〉. We claim that

{y} 7→ P

{x} {y}−u
′w 7→ Q

gives an isomorphism

Es ∼= Ip3 × Ip = 〈P 〉 × 〈Q〉 .

It is clear that {y} and {x} {y}−u
′w

generate Es, the order of {y} is

p3, and
∣∣∣{x} {y}−u′w∣∣∣ = p since(

{x} {y}−u
′w
)p

= {x}p {y}−u
′wp

= {x}p {x}−p = 1.

Since

πs

(
{y}i

(
{x} {y}−u

′w
)j)

= xjyi−ju
′w

the extension is congruent to

Ip2
ιs
�
(
Ip3 × Ip = 〈P 〉 × 〈Q〉

) πs
� Ip × Ip

ιs : z 7→ Pu
′p

πs : P iQj 7→ xjyi−ju
′w

(b) u = 0, w 6= 0: Then

{y}p = 1,

{x}p = zw

implies that

z = {x}w
′p
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and hence Es = 〈{x} , {y}〉, where the orders of {x} and {y} are p3

and p, respectively. Hence

{x} 7→ P

{y} 7→ Q

gives an isomorphism Es ∼= Ip3 × Ip = 〈P 〉 × 〈Q〉, and our extension is
congruent to

Ip2
ιs
�
(
Ip3 × Ip = 〈P 〉 × 〈Q〉

) πs
� Ip × Ip

ιs : z 7→ Pw
′p

πs : P iQj 7→ xiyj

(3) v 6= 0: Then the group Es will not be abelian.
(a) u = w = 0: We claim that

zv 7→ P

{y} 7→ Q

{x}−1 7→ R

gives an isomorphism

Es ∼=
〈
P,Q,R : P p

2

, Qp, Rp, R−1QR = QP p,
Q−1PQ = P,R−1PR = P

〉
.

Indeed, the orders are all correct, zv commutes with everything, and

R−1QR =
(
{x}−1

)−1

{y} {x}−1
= {x} {y} {x}−1

= zvp {y} = {y} zvp = QP p.

Since

πs

(
(zv)

i {y}j
(
{x}−1

)k)
= x−kyj

the extension is congruent to

Ip2
ιs
�

〈
P,Q,R : P p

2

, Qp, Rp, R−1QR = QP p,
Q−1PQ = P,R−1PR = P

〉
πs
� Ip × Ip

ιs : z 7→ P v
′

πs : P iQjRk 7→ x−kyj

(b) u 6= 0: By Lemma 4

({x}n {y}m)
k

= V (k2)mn {x}kn {y}km (7)

= z−pv(
k
2)mn {x}kn {y}km

since V −1 = zpv implies that V = z−pv. Then

z = {y}u
′p

and hence

{x}p = {y}u
′wp

.

Also

{x} {y} {x}−1
= zvp {y} =

(
{y}u

′p
)vp
{y} = {y}1+u′vp2

,

or more generally

{x}m {y} {x}−m = {y}1+mu′vp2
. (8)
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We claim that

{y} 7→ P

{x}−uv
′
{y}v

′wp 7→ Q

gives an isomorphism

Es ∼=
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉
.

Indeed, the order of {y} is p3,(
{x}−uv

′
{y}v

′wp
)−1

{y}
(
{x}−uv

′
{y}v

′wp
)

= {y}−v
′wp
(
{x}uv

′
{y} {x}−uv

′)
{y}v

′wp

= {y}−v
′wp
(
{y}1+p2

)
{y}v

′wp
= {y}1+p2

by equation (8), and(
{x}−uv

′
{y}v

′wp
)p

= z−pv(
p
2)(−uv

′)(v′wp) {x}−uv
′p {y}v

′wp2

=
(
z(uv

′w)(p2)
)p2

({x}p)−uv
′

{y}v
′wp2

= 1 ·
(
{y}u

′wp
)−uv′

{y}v
′wp2

= 1

by equation (7). Since

πs

(
{y}i

(
{x}−uv

′
{y}v

′wp
)j)

= x−juv
′
yi+jv

′wp

and

z = {y}u
′p 7→ Pu

′p

we see that our extension is congruent to

Ip2
ιs
�
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉
πs
� Ip × Ip

ιs : z 7→ Pu
′p

πs : P iQj 7→ x−juv
′
yi+jv

′wp.

(c) u = 0, w 6= 0: Then

z = {x}w
′p

and

{x} {y} {x}−1
= zvp {y} =

(
{x}w

′p
)vp
{y} = {x}vw

′p2 {y}

which implies

{y}−1 {x} {y} = {x}1+vw′p2

or that

{y}−v
′w {x} {y}v

′w
= {x}1+(vw′p2)v′w = {x}1+p2

.

Hence assignment

{x} 7→ P

{y}v
′w 7→ Q

is an isomorphism

Es ∼=
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉
,
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and our extension is congruent to

Ip2
ιs
�
〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉
πs
� Ip × Ip

ιs : z 7→ Pw
′p

πs : P iQj 7→ xiyjv
′w.

�

Non-trivial action.

Remark 5.17. When A is written additively, action on G on A is given by

xiyja = (1 + ip) a

In multiplicative notation this becomes

xiyja = a(1+ip)

which is equivalent to

xz = z1+p,
yz = z.

The following map will be useful

Lemma 5.18. The map

ϕ :
(Ip)2

〈(1, 1)〉
→ Ip

(a, b) + 〈(1, 1)〉 7→ a− b

is an isomorphism with inverse

ψ : Ip → (Ip)2

〈(1, 1)〉
a 7→ (a, 0) + 〈(1, 1)〉

Proof. We need to check that the maps are well defined, homomorphisms, and
inverses of each other. Obviously ψ is well defined, and a homomorphism.

(1) Suppose

(a′, b′) ≡ (a, b) (mod 〈(1, 1)〉) .
Then by definition

(a′, b′)− (a, b) = (a′ − a, b′ − b) ∈ 〈(1, 1)〉

i.e.

(a′, b′) = (a, b) + (c, c) = (a+ c, b+ c)

for some c ∈ Ip. Then

ϕ ((a′, b′) + 〈(1, 1)〉) = a′ − b′ = (a+ c)− (b+ c)

= a− b = ϕ ((a, b) + 〈(1, 1)〉)

which shows that ϕ is well defined.
(2) Let (a, b) , (c, d) ∈ (Ip)2

. Then

ϕ (((a, b) + 〈(1, 1)〉) + ((c, d) + 〈(1, 1)〉)) = ϕ ((a+ c, b+ d) + 〈(1, 1)〉)
= (a+ c)− (b+ d) = (a− b) + (c− d)

= ϕ ((a, b) + 〈(1, 1)〉) + ϕ ((c, d) + 〈(1, 1)〉)

which shows that ϕ is a homomorphism.
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(3) Let a ∈ Ip, then the equation

ϕ (ψ (a)) = ϕ ((a, 0) + 〈(1, 1)〉) = a− 0 = a

shows that ϕ ◦ ψ = 1Ip . Conversely, let (a, b) ∈ (Ip)2
, then

ψ (ϕ ((a, b) + 〈(1, 1)〉)) = ψ (a− b)
= (a− b, 0) + 〈(1, 1)〉
= ((a− b, 0) + (b, b)) 〈(1, 1)〉
= (a, b) + 〈(1, 1)〉

which shows that ψ ◦ ϕ = 1 (Ip)2

〈(1,1)〉

.

�

Lemma 5.19. Below are all the congruence classes of extensions A = Ip2 by G =
Ip × Ip, where G acts non-trivially on A. Let

s ∈ H2 (G,A) ∼=

{
(Ip)2

〈(1,1)〉 p ≥ 3

[p]Ip2 p = 2
∼= Ip.

(1) s = 0:

Ip2
ι
�

〈
P,Q,R : P p

2

, Qp, Rp, R−1PR = P 1+p,
P−1QP = Q,R−1QR = Q

〉
π
� Ip × Ip

ι : z 7→ P

π : P iQjRk 7→ x−kyj .

(2) s 6= 0, p = 2:

I4
ιs
�

〈
P,Q,R : P 4, Q4, R2, Q−1PQ = P−1, Q2 = P 2,

R−1QR = Q,R−1PR = P

〉
πs
� I2 × I2

ιs : z 7→ P

πs : P iQjRk 7→ xjyk.

(3) s 6= 0, p 6= 2:

Ip2
ιs
�

〈
P,Q,R : P p

2

, Qp, Rp, R−1QR = QP p,
Q−1PQ = P,R−1PR = P

〉
πs
� Ip × Ip

ιs : z 7→ PQ

πs : P iQjRk 7→ x−ky(i−j)a′ .

Proof. From Theorem 2.14 we know that

H2 (G,A) ∼=


([p]Ip2)

3

〈(p,p)〉×([p]Ip2)
p ≥ 3

〈(p,p)〉×([p]Ip2)
〈(p,p)〉×{0} p = 2

∼=

{
([p]Ip2)

2

〈(p,p)〉 × {0} p ≥ 3

({0})2 × [p]Ip2 p = 2

∼=

{
(Ip)2

〈(1,1)〉 p ≥ 3

[p]Ip2 p = 2
∼= Ip.

Let s ∈ Ip
(1) s = 0: The extension is split

1→ Ip2 → Ip2 o (ξIp × Ip)→ Ip × Ip → 1.
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The group Ip2 oξ (Ip × Ip) has generators z, {x} , {y} with relations

zp
2

= {x}p = {y}p = 1,

{x}−1 {y} {x} = {y} ,
{x}−1

z {x} = z1−p,

{y}−1
z {y} = z.

We see that Ip2 oξ (Ip × Ip) is isomorphic to the group〈
P,Q,R : P p

2

, Qp, Rp, R−1PR = P 1+p,
P−1QP = Q,R−1QR = Q

〉
under the map

z 7→ P

{x} 7→ R−1

{y} 7→ Q

defined on generators. Thus the extension is congruent to

Ip2
ι
�

〈
P,Q,R : P p

2

, Qp, Rp, R−1PR = P 1+p,
P−1QP = Q,R−1QR = Q

〉
π
� Ip × Ip

ι : z 7→ P

π : P iQjRk 7→ x−kyj .

We note that we made no assumption on p being odd, and〈
P,Q,R : P p

2

, Qp, Rp, R−1PR = P 1+p,
P−1QP = Q,R−1QR = Q

〉
also works for p = 2.

(2) s 6= 0, p = 2: Then

H2 (G,A) ∼= ({0})2 × [2]I4

and since [2]I4 = {0, 2} we see that

s =

0
0
2

 .
Thus Es will have relations

z4 = 1, {x}2 = z2, {y}2 = 1,

{x}−1
z {x} = z3,

{y}−1
z {y} = z,

{x}−1 {y} {x} = {y} .

and we see that Es is isomorphic to the group〈
P,Q,R : P 4, Q4, R2, Q−1PQ = P−1, Q2 = P 2,

R−1QR = Q,R−1PR = P

〉
via the assignment

z 7→ P,

{x} 7→ Q,

{y} 7→ R.
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Hence the extension is congruent to

I4
ιs
�

〈
P,Q,R : P 4, Q4, R2, Q−1PQ = P−1, Q2 = P 2,

R−1QR = Q,R−1PR = P

〉
πs
� I2 × I2

ιs : z 7→ P

πs : P iQjRk 7→ xjyk.

(3) s 6= 0, p 6= 2: We have the isomorphism

ϕ :
(Ip)2

〈(1, 1)〉
→ Ip

(a, b) + 〈(1, 1)〉 7→ a− b
from Lemma 5.18. So if s 6= 0, then

s = (a, 0) + 〈(1, 1)〉
for some a ∈ (Ip)∗. Choosing the representative (a, 0) we get relations

zp
2

= {x}p = 1,

{y}p = zpa,

{x}−1 {y} {x} = {y} ,
{x}−1

z {x} = z1−p,

{y}−1
z {y} = z.

We identify s with a, so the second relation becomes

{y}p = zps.

Claim that

Es ∼=
〈
P,Q,R : P p

2

, Qp, Rp, R−1QR = QP p,
Q−1PQ = P,R−1PR = P

〉
via the assignment

{y}s
′
7→ P

{x}−1 7→ R

z {y}−s
′
7→ Q,

where s
′ ≡ s−1 (mod p). Then(

z {y}−s
′)p

= zp {y}−s
′p

= zpz−p = 1

and

R−1QR = {x}
(
z {y}−s

′)
{x}−1

=
(
{x} z {x}−1

)
{y}−s

′

= z1+p {y}−s
′

= z {y}−s
′
{y}ps

′
= QP p,

Q−1PQ = z−1 {y}s
′
z = {y}s

′
= P,

R−1PR = {x} {y}s
′
{x}−1

=
(
{x} {y} {x}−1

)s′
= {y}s

′
= P,

as desired. Since

z = z
(
{y}−s

′
{y}s

′)
=
(
z {y}−s

′)
{y}s

′
7→ QP = PQ

and

πs

((
{y}s

′)i (
z {y}−s

′)j (
{x}−1

)k)
= x−kys

′(i−j)
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we see that our extension is congruent to

Ip2
ιs
�

〈
P,Q,R : P p

2

, Qp, Rp, R−1QR = QP p,
Q−1PQ = P,R−1PR = P

〉
πs
� Ip × Ip

ιs : z 7→ PQ

πs : P iQjRk 7→ x−ky(i−j)s′

�

5.5.4. Extensions of Ip × Ip by Ip × Ip.

Remark 5.20. Write G = Ip × Ip = 〈x〉 × 〈y〉, and A = Ip × Ip = 〈z〉 × 〈Z〉.

Trivial action.

Lemma 5.21. Below are all the congruence classes of abelian extensions of A =
Ip × Ip by G = Ip × Ip. Let

s =

uv
w

 =

 (u1, u2)
(v1, v2)
(w1, w2)

 ∈ H2 (G,A)

(1) s = 0:

Ip × Ip� (Ip × Ip)× (Ip × Ip)� Ip × Ip
(2) v = 0:

(a) u1 6= 0:
(i) u1w2 6≡ u2w1 (mod p):

Ip × Ip
ιs
�
(
Ip2 × Ip2 = 〈P 〉 × 〈Q〉

) πs
� Ip × Ip

ιs :
z 7→ Pu

′
1pQ−u2(u1w2−u2w1)′p

Z 7→ Qu1(u1w2−u2w1)′p

πs : P iQj 7→ xjyi−ju
′
1w1

(ii) u2w1 ≡ u1w2 (mod p):

Ip × Ip
ιs
�
(
Ip2 × Ip × Ip = 〈P 〉 × 〈Q〉 × 〈R〉

) πs
� Ip × Ip

ιs :
z 7→ Pu

′
1pR−u

′
1u2

Z 7→ R

πs : P iQj 7→ xjyi−ju
′
1w1

(b) u1 = 0, u2 6= 0:
(i) w1 6= 0:

Ip × Ip
ιs
�
(
Ip2 × Ip2 =

〈
{y} , {x} {y}−u

′
2w2

〉)
πs
� Ip × Ip

ιs :
z 7→ Qw

′
1p

Z 7→ Pu
′
2p

πs : P iQj 7→ xjyi−ju
′
2w2

(ii) w1 = 0:

Ip × Ip
ιs
�
(
Ip2 × Ip × Ip = 〈P 〉 × 〈Q〉 × 〈R〉

) πs
� Ip × Ip

ιs :
z 7→ R

Z 7→ Pu
′
2p

πs : P iQjRk 7→ xjyi−ju
′
2w2
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(c) u = 0, w1 6= 0:

Ip × Ip
ιs
�
(
Ip2 × Ip × Ip = 〈P,Q,R〉

) πs
� Ip × Ip

ιs :
z 7→ Pw

′
1pR−w

′
1w2

Z 7→ Q

πs : P iQjRk 7→ xiyj

(d) u = 0, w1 = 0, w2 6= 0:

Ip × Ip
ιs
�
(
Ip2 × Ip × Ip = 〈P,Q,R〉

) πs
� Ip × Ip

ιs :
z 7→ R

Z 7→ Pw
′
2p

πs : P iQjRk 7→ xiyj

Proof. By Theorem 2.14

H2 (Ip × Ip, Ip × Ip) ∼= (Ip × Ip)3
.

Write an element s of H2 (Ip × Ip, Ip × Ip) as

s =

uv
w

 =

 (u1, u2)
(v1, v2)
(w1, w2)

 ∈ H2 (G,A) .

Then by Theorem 2.6 Es has generators z, Z, {x} , {y} with relations

{y}p = zu1Zu2 , {x}p = zw1Zw2 , zp = Zp = 1,

{x} {y} {x}−1 {y}−1
= zv1Zv2 , {x} z {x}−1

= z,

{y} z {y}−1
= z, {x}Z {x}−1

= Z, {y}Z {y}−1
= Z,

zZz−1 = Z.

We proceed as described in Section 5.1.

(1) s = 0: Then the extension is split

(Ip × Ip = 〈z〉 × 〈Z〉)� (Ip)4 � (Ip × Ip = 〈x〉 × 〈y〉)

(2) v = 0: Then our group Es is abelian since all of the generators commute
with one another.
(a) u1 6= 0: Then

{y}p = zu1Zu2 ⇒ z = Z−u
′
1u2 {y}u

′
1p

so {y} , {x} , and Z generate Es, and |{y}| = p2. Furthermore, observe
that

{x}p = zw1Zw2 =
(
Z−u

′
1u2 {y}u

′
1p
)w1

Zw2

= {y}u
′
1w1p Zw2−u′1u2w1 ,

and(
{x} {y}−u

′
1w1

)p
= {x}p {y}−u

′
1w1p = Zw2−u′1u2w1

=
(
Zu1w2−u2w1

)u′1
so ∣∣∣{x} {y}−u′1w1

∣∣∣ =

{
p, u1w2 ≡ u2w1 (mod p)
p2, otherwise
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(i) If u1w2 6≡ u2w1 (mod p),then u1w2 − u2w1 is invertible (mod p),
so (

Zu1w2−u2w1
)u′1 = {x}p {y}−u

′
1w1p

implies that

Z =
(
{x}p {y}−u

′
1w1p

)u1(u1w2−u2w1)′

=
(
{x} {y}−u

′
1w1

)u1(u1w2−u2w1)′p

,

and thus E =
〈
{y} , {x} {y}−u

′
1w1

〉
∼= Ip2 × Ip2 = 〈P 〉 × 〈Q〉.

Since

Z =
(
{x} {y}−u

′
1w1

)u1(u1w2−u2w1)′p

7→ Qu1(u1w2−u2w1)′p,

z = Z−u
′
1u2 {y}u

′
1p = {y}u

′
1p Z−u

′
1u2

7→ Pu
′
1p
(
Qu1(u1w2−u2w1)′p

)−u′1u2

= Pu
′
1pQ−u2(u1w2−u2w1)′p

and

π

(
{y}i

(
{x} {y}−u

′
1w1

)j)
= xjyi−u

′
1w1j

we see that the extension is congruent to

Ip × Ip
ιs
�
(
Ip2 × Ip2 = 〈P 〉 × 〈Q〉

) πs
� Ip × Ip

ιs :
z 7→ Pu

′
1pQ−u2(u1w2−u2w1)′p

Z 7→ Qu1(u1w2−u2w1)′p

πs : P iQj 7→ xjyi−ju
′
1w1

(ii) If u2w1 ≡ u1w2 then(
{x} {y}−u

′
1w1

)p
= 1

so the elements {y} and {x} {y}−u
′
1w1 is not enough to generate

Es. So we add Z to our generating set. Then the assignment

{y} 7→ P

{x} {y}−u
′
1w1 7→ Q

Z 7→ R

induces an isomorphism Es ∼= Ip2 × Ip × Ip = 〈P 〉 × 〈Q〉 × 〈R〉.
Since

Z 7→ R

z = Z−u
′
1u2 {y}u

′
1p = {y}u

′
1p Z−u

′
1u2

7→ Pu
′
1pR−u

′
1u2
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we see that the extension is congruent to

Ip × Ip
ιs
�
(
Ip2 × Ip × Ip = 〈P 〉 × 〈Q〉 × 〈R〉

) πs
� Ip × Ip

ιs :
z 7→ Pu

′
1pR−u

′
1u2

Z 7→ R

πs : P iQj 7→ xjyi−ju
′
1w1

(b) u1 = 0, u2 6= 0: Then

{y}p = Zu2 ⇒ Z = {y}u
′
2p ,

and hence

{x}p = zw1Zw2 = zw1

(
{y}u

′
2p
)w2

= zw1 {y}u
′
2w2p .

We also have(
{x} {y}−u

′
2w2

)p
= {x}p {y}−u

′
2w2p = zw1

so {y},{x} {y}−u
′
2w2 , and z form a generating set for Es.

(i) So if w1 = 0 we see that
(
{x} {y}−u

′
2w2

)p
= 1, and we need to

keep z in the generating set. Thus the assignment

{y} 7→ P

{x} {y}−u
′
2w2 7→ Q

z 7→ R

induces an isomorphism

Es ∼= Ip2 × Ip × Ip = 〈P 〉 × 〈Q〉 × 〈R〉 .

Since

Z = {y}u
′
2p 7→ Pu

′
2p

and

π

(
{y}i

(
{x} {y}−u

′
2w2

)j
zk
)

= xjyi−ju
′
2w2 ,

we see that the extension is congruent to

Ip × Ip
ιs
�
(
Ip2 × Ip × Ip = 〈P 〉 × 〈Q〉 × 〈R〉

) πs
� Ip × Ip

ιs :
z 7→ R

Z 7→ Pu
′
2p

πs : P iQjRk 7→ xjyi−ju
′
2w2

(ii) if w1 6= 0 then(
{x} {y}−u

′
2w2

)p
= zw1

implies that

z =
(
{x} {y}−u

′
2w2

)w′1p
and hence {y},{x} {y}−u

′
2w2 generates Es, and both have orders

p2. Thus Es ∼= Ip2 × Ip2 via the assignment

{y} 7→ P

{x} {y}−u
′
2w2 7→ Q,
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and the extension is congruent to

Ip × Ip
ιs
�
(
Ip2 × Ip2 =

〈
{y} , {x} {y}−u

′
2w2

〉)
πs
� Ip × Ip

ιs :
z 7→ Qw

′
1p

Z 7→ Pu
′
2p

πs : P iQj 7→ xjyi−ju
′
2w2

(c) u = 0, w1 6= 0: Then

{x}p = zw1Zw2 ⇒ z = Z−w
′
1w2 {x}w

′
1p ,

and hence Es = 〈{x} , {y} , Z〉 is isomorphic to Ip2 × Ip × Ip via the
assignment

{x} 7→ P

{y} 7→ Q

Z 7→ R.

Thus our extension is congruent to

Ip × Ip
ιs
�
(
Ip2 × Ip × Ip = 〈P,Q,R〉

) πs
� Ip × Ip

ιs :
z 7→ Pw

′
1pR−w

′
1w2

Z 7→ Q

πs : P iQjRk 7→ xiyj .

(d) u = 0, w1 = 0, w2 6= 0: Then

{x}p = Zw2 ⇒ Z = {x}w
′
2p

so
Es = 〈{x} , {y} , z〉 ∼= Ip2 × Ip × Ip,

and the extension is congruent to

Ip × Ip
ιs
�
(
Ip2 × Ip × Ip = 〈P,Q,R〉

) πs
� Ip × Ip

ιs :
z 7→ R

Z 7→ Pw
′
2p

πs : P iQjRk 7→ xiyj .

�

Non-trivial action. In our multiplicative notation, the action is given by

xiyj
(
zaZb

)
= za+ibZb

which we can summarize by saying that everything is trivial except for
xZ = zZ.

Lemma 5.22. The congruence classes for G = I2 × I2 by A = I2 × I2, with non-
trivial is given below. Let

s ∈ H2
spec

(
I2 × I2, (I2 × I2)

ξ
)
∼= I2

(1) s = 0:

I2 × I2
ι
�

〈
P,Q,R : P 4, Q2, R2, R−1PR = P 3,

P−1QP = Q,R−1QR = Q

〉
π
� I2 × I2

ι :
z 7→ P 2

Z 7→ PR

π : P iQjRk 7→ xi+kyj
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(2) s = 1:

I2 × I2
ι
�

〈
P,Q,R : P 4, Q2, R2, R−1QR = QP 2,

Q−1PQ = P,R−1PR = P

〉
π
� I2 × I2

ι :
z 7→ P 2

Z 7→ Q

π : P iQjRk 7→ xkyi

Proof. By Theorem 2.14:

H2
spec

(
I2 × I2, (I2 × I2)

ξ
)
∼= (I2 × {0})× ({0})2 × ({0})2

∼= I2.

�

Proof. Let s ∈ I2
(1) s = 0: The extension is split

I2 × I2 � (I2 × I2) oξ (I2 × I2)� I2 × I2

where (I2 × I2)oξ (I2 × I2) has generators z, Z, {x} , and {y} with relations

z2, Z2, {x}2 , {y}2 ,
z−1Zz = Z, {x}−1 {y} {x} = {y} ,
{x} z {x}−1

= Z, {y} z {y}−1
= z

{x}Z {x}−1
= zZ, {y}Z {y}−1

= Z.

We claim that

(I2)
2 oξ (I2)

2 ∼=
〈
P,Q,R : P 4, Q2, R2, R−1PR = P 3,

P−1QP = Q,R−1QR = Q

〉
under the under the assignment

Z {x} 7→ P

{y} 7→ Q

{x} 7→ R.

Indeed, the equation

(Z {x})2
= (Z {x}) (Z {x}) = Z ({x}Z {x})

= Z
(
{x}Z {x}−1

)
= Z (zZ) = z

show that (Z {x})4
= z2 = 1 and that the elements Z {x} , {y}, and {x}

generate (I2)
2 oξ (I2)

2
. Below we verify the remaining relations

R−1PR = {x}−1
(Z {x}) {x} =

(
{x}−1

Z {x}
)
{x}

=
(
{x}Z {x}−1

)
{x} = (zZ) {x} = z (Z {x})

= (Z {x})3
= P 3,

P−1QP = (Z {x})−1 {y} (Z {x}) = {x}−1
Z−1 {y}Z {x}

= {x}−1 {y} {x} = {y} = Q,

R−1QR = {x}−1 {y} {x} = {y} = Q.
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Thus our extension is congruent to

I2 × I2
ι
�

〈
P,Q,R : P 4, Q2, R2, R−1PR = P 3,

P−1QP = Q,R−1QR = Q

〉
π
� I2 × I2

ι :
z 7→ P 2

Z 7→ PR

π : P iQjRk 7→ xi+kyj

(2) s = 1: Then Es has relations

z2, Z2, {x}2 , {y}2 = z,

z−1Zz = Z, {x}−1 {y} {x} = {y} ,
{x} z {x}−1

= z, {y} z {y}−1
= z

{x}Z {x}−1
= zZ, {y}Z {y}−1

= Z.

The equation that {y}4 = z2 = 1 shows that |{y}| = 4, and that the
elements {y} , {x} , and Z generate Es. We claim that

Es ∼=
〈
P,Q,R : P 4, Q2, R2, R−1QR = QP 2,

Q−1PQ = P,R−1PR = P

〉
and that the following assignment is an isomorphism:

{y} 7→ P

{x} 7→ R

Z 7→ Q.

Obviously the order relations are satisfied, below is the verification of re-
maining other relations

R−1QR = {x}−1
Z {x} = {x}Z {y}−1

= zZ = {y}2 Z = QP 2

Q−1PQ = Z−1 {y}Z = {y} = P

R−1QR = {x}−1
Z {x} = Z = Q.

Thus the extension is congruent to

I2 × I2
ι
�

〈
P,Q,R : P 4, Q2, R2, R−1QR = QP 2,

Q−1PQ = P,R−1PR = P

〉
π
� I2 × I2

ι :
z 7→ P 2

Z 7→ Q

π : P iQjRk 7→ xkyi

�

Remark 5.23. See Appendix C for some of the rules for Es, which will likely be
useful when p 6= 2.
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Appendix A. Elements of Homological Algebra

Definition A.1. [Rot09, 6.1 Homology Functors, p.337] Chain maps f, g : C• →
C ′• are homotopic, denoted by f ' g, if , for all n, there is a map s = (sn) : C• →
C ′• of degree +1 with

fn − gn = d′n+1sn + sn−1dn.

A map f : C• → C ′• is null-homotopic if f ' 0.

Definition A.2. [Rot09, 6.1 Homology Functors, p.337] A complex C• in a category
K is contractible if its identity 1 = 1C• is null-homotopic; that is, there is s :
C• → C• of degree +1 with 1 = sd + ds. Such a map s is called a contracting
homotopy.

Proposition A.3. [Rot09, Proposition 6.15, p.337] A contractible complex C• in
a category K is exact.

A complex in R-Mod can also be considered as a complex in Z-Mod, and any
R-map is also a Z-map. It is well-known that a complex is exact in R-Mod if an
only if it is exact in Z-Mod .

Corollary A.4. A complex C• in R-Mod that is Z-Mod contractible is exact.

Remark A.5. When we want to show that a complex (C•, d•) in R-Mod is exact,
it is enough to find a family of Z-maps (sn : Cn+1 → Cn)n∈Z with the property that
1Cn = sn−1dn + dn+1sn, for all n ∈ Z.

Theorem A.6. (Comparison Theorem.) If ϕ : A→ B is a module homomorphism,
while ε : P• → A is a projective complex over A, and ε : Q• → B is a resolution of
B, then there is a chain transformation f : P• → Q• with

εf = ϕε

and any two such chain transformations are homotopic.

Proof. [ML95, Chapter III, Theorem 6.1] �

Definition A.7. (Lifting.) A chain map f : P• → Q• with the properties in
Theorem A.6 is called a lifting of ϕ.

Lemma A.8. Under the hypotheses of Theorem A.6, let f : P• → Q• be a lifting
of ϕ : A→ B, and suppose there is homomorphism

g : A→ Q0

such that

ε ◦ g = ϕ.

Then, f : P• → Q• is null homotopic.

Corollary A.9. If P• and Q• are two projective resolutions of A, while B is any
module, then

Hn (P•, B) ∼= Hn (Q•, B)

depends only on A and B.

Proof. [ML95, Chapter III, Corollary 6.3] �

Hence, we are guaranteed that

Hn
bar (G,A) ∼= Hn

special (G,A) .

Corollary A.10. A projective complex is exact if and only if it is contractible.
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Proof. Proposition A.4 shows that contractible implies exact. Conversely, suppose
that

0← P0
d0← P1

d1← P2 ← · · ·
is an exact projective complex. Then since 1P• : P• → P• lifts 1Po : Po → Po,
Lemma A.8 guarantees that 1P• is null homotopic, and hence P• is contractible. �

A.0.1. Bicomplexes.

Definition A.11. A bicomplex over R is a family of R-modules (Cs,t)(s,t)∈Z×Z and

two families of R-maps

ds−1,t : Cs,t → Cs−1,t,

δs,t−1 : Cs,t → Cs,t−1

such that

dd = 0, δδ = 0, and dδ + δd = 0.

Given a bicomplex, we form a chain complex Tot• (C••) as follows: Let family
of modules be given by

Totn (C••) :=
⊕
s+t=n

Cs,t,

and the differential

Dn : Totn+1 (C••)→ Totn (C••)

be the unique R-map satisfying

Dnιs,t = ds−1,t + δs,t−1

where ιs,t : Cs,t →
⊕

s+t=n Cs,t = Totn (C••) is the canonical injection.

Totn+1 (C••) =
⊕

s+t=n+1

Cs,t
Dn -

⊕
s+t=n

Cs,t = Totn (C••)

Cs,t

ιCs,t
6

ds−1,t + δs,t−1 - Cs−1,t

⊕
Cs,t−1

ιCs−1,t + ιCs,t−1

6

We need to verify that Tot• (C••) is indeed a complex, namely, that DD = 0.
For any s, t ∈ Z× Z with s+ t = n, we have

Dn−1DnιCs,t = Dn−1

(
ιCs−1,t

+ ιCs,t−1

)
◦ (ds−1,t + δs,t−1)

=
(
Dn−1 ◦ ιCs−1,t

)
◦ ds−1,t +

(
Dn−1 ◦ ιCs,t−1

)
◦ δs,t−1

= (ds−2,t + δs−1,t−1) ◦ ds−1,t + (ds−1,t−1 + δs,t−2) ◦ δs,t−1

= ds−2,t ◦ ds−1,t + δs−1,t−1 ◦ ds−1,t + ds−1,t−1 ◦ δs,t−1 + δs,t−2 ◦ δs,t−1

= 0 + δs−1,t−1 ◦ ds−1,t + ds−1,t−1 ◦ δs,t−1 + 0 = 0,

where the final equality follows from the condition dδ + δd = 0. Hence

Dn−1Dn : Totn+1 (C••)→ Totn−1 (C••)

is the zero map.

Remark A.12. We will restrict ourselves to first quadrant bicomplexes (Cs,t = 0,
if s < 0 or t < 0) and positive complexes (Di = 0, if i < 0).
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Theorem A.13. (Künneth formula) Let C•, D• be chain complexes over the PID
R, and suppose that one of C•, D• is flat. Then there is a natural short exact
sequence⊕
p+q=n

Hp (C•)⊗RHq (D•)� Hn (Tot (C• ⊗R D•))�
⊕

p+q=n−1

TorR1 (Hp (C•) , Hq (D•)) .

Proof. See [HS97, Chapter 5 Theorem 2.1] �

Appendix B. Groups

B.1. Presentations of Groups. Let S be a set and let F (S) be the free group
on S. Elements of F (S) are of words

sα1
1 sα2

2 · · · s
αk
k , si ∈ S, αi ∈ Z,

and the operation in F (S) is concatenation of words. If G = 〈S〉 then we have a
unique surjective group homomorphism

π : F (S)→ G

which restricts to the identity on S.

Definition B.1. [DF04, Sec. 6.3]Let G be a group and S ⊆ G be a subset such
that G = 〈S〉. A presentation of G is a pair (S,R), where R is a set of words in
F (S) such that

F (S) ⊇ 〈R〉 = ker (π : F (S)→ G)

where 〈R〉 is the normal closure of 〈R〉 ≤ F (S). The elements of S are called
generators and those of R are called relations.

Remark B.2. It is clear that every group admits presentations.

Remark B.3. If (S,R) is a presentation of G, it is typical to denote the presen-
tation as

〈S|R〉 ,
however in this thesis we will the notation

〈S : R〉 .

B.2. Groups of order p2, p3 and p4. When we are going to determine the ex-
tensions, we will check them against the following lists, which come from [Bur55,
Chapter V.].

List B.4. Groups of order p2:

(1) Ip2 ;
(2) Ip × Ip.

List B.5. Groups of order p3, p is an odd prime:

(1) Ip3 ;
(2) Ip2 × Ip;
(3) Ip × Ip × Ip;
(4)

〈
P,Q : P p

2

, Qp, Q−1PQ = P 1+p
〉

;

(5)

〈
P,Q,R : P p, Qp, Rp, R−1QR = QP,

R−1PR = P,Q−1PQ = P

〉
.

List B.6. Groups of order p3, p = 2 :

(1) I8;
(2) I4 × I2;
(3) I2 × I2 × I2;
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(4)
〈
P,Q : P 4, Q2, Q−1PQ = P 3

〉
;

(5)
〈
P,Q : P 4, Q4, Q−1PQ = P−1, Q2 = P 2

〉
.

Remark B.7. Note that groups (1) to (4) in List (B.6) are just those of List (B.5)
with p = 2. Moreover, the groups (4) and (5) in List (B.5) become isomorphic when
p = 2.

List B.8. Groups of order p4, p is an odd prime:

(1) Ip4 ;
(2) Ip3 × Ip;
(3) Ip2 × Ip2 ;
(4) Ip2 × Ip × Ip;
(5) Ip × Ip × Ip × Ip;
(6)

〈
P,Q : P p

3

, Qp, Q−1PQ = P 1+p2
〉

;

(7)

〈
P,Q,R : P p

2

, Qp, Rp, R−1QR = QP p,
Q−1PQ = P,R−1PR = P

〉
;

(8)
〈
P,Q : P p

2

, Qp
2

, Q−1PQ = P 1+p
〉

;

(9)

〈
P,Q,R : P p

2

, Qp, Rp, R−1PR = P 1+p,
P−1QP = Q,R−1QR = Q

〉
;

(10)

〈
P,Q,R : P p

2

, Qp, Rp, R−1PR = PQ,
Q−1PQ = P,R−1QR = Q

〉
;

(11)

〈
P,Q,R : P p

2

, Qp, Rp = Pαp, Q−1PQ = P 1+p,
R−1PR = PQ,R−1QR = Q

〉∣∣∣∣
α=0

;

(12) As in (11) where α = 1;
(13) As in (11) where α is any non-quadratic residue (mod p) ;

(14)

〈
P,Q,R, S : P p, Qp, Rp, Sp, S−1RS = RP,

S−1QS = Q,S−1PS = P,R−1QR = Q
R−1PR = P,Q−1PQ = P

〉
;

(15) p > 3 :〈 P,Q,R, S : Qp, Rp, Sp, S−1RS = RQ,S−1QS = QP,
S−1PS = P,R−1QR = Q,
R−1PR = P,Q−1PQ = P

〉
,

p = 3 :〈
P,Q,R : P 9, Q3, R3, Q−1PQ = P,

R−1PR = PQ,R−1QR = P−3Q

〉
.

List B.9. Groups of order p4, p = 2:

(1) I16;
(2) I8 × I2;
(3) I4 × I4;
(4) I4 × I2;
(5) I2 × I2 × I2 × I2;
(6)

〈
P,Q : P 8, Q2, Q−1PQ = P 5

〉
;

(7)

〈
P,Q,R : P 4, Q2, R2, R−1QR = QP 2,

Q−1PQ = P,R−1PR = P

〉
;

(8)
〈
P,Q : P 4, Q4, Q−1PQ = P 3

〉
;

(9)

〈
P,Q,R : P 4, Q2, R2, R−1PR = P 3,

P−1QP = Q,R−1QR = Q

〉
;

(10)

〈
P,Q,R : P 4, Q2, R2, R−1PR = PQ,

Q−1PQ = P,R−1QR = Q

〉
;

(11)

〈
P,Q,R : P 4, Q4, R2, Q−1PQ = P−1, Q2 = P 2,

R−1QR = Q,R−1PR = P

〉
;
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(12)
〈
P,Q : P 8, Q2, Q−1PQ = P−1

〉
;

(13)
〈
P,Q : P 8, Q2, Q−1PQ = P 3

〉
;

(14)
〈
P,Q : P 8, Q4, Q−1PQ = P−1, Q2 = P 4

〉
.

Remark B.10. Note that for groups (1) to (10) in List (B.9) are just the corre-
sponding groups in List (B.8) with p = 2.

Appendix C. Rules for extensions of (Ip × Ip)ξ by Ip × Ip
We have the following rules for Es:

zp, Zp, {y}p = zu, {x}p = zw,

{x} {y} {x}−1
= Zv {y} , z−1Zz = Z,

{x} z {x}−1
= Z, {y} z {y}−1

= z,

{x}Z {x}−1
= zZ, {y}Z {y}−1

= Z

The equation

{x} {y} {x}−1
= Zv {y}

is equivalent to

{x}−1 {y} {x} = Z−v {y} ,
{y}−1 {x} {y} = Zv {x} ,
{y} {x} {y}−1

= Z−v {x} .
The equation

{x}Z {x}−1
= zZ

is equivalent to

{x}−1
Z {x} = z−1Z

Remark C.1. As we have done previously, we define
(
m
n

)
= 0,m < n.

Proposition C.2. We have

{x}−m {y} {x}m = z(
m
2 )vZ−mv {y}

Proof. (By induction) Base step holds since

{x}−1 {y} {x} = Z−v {y} = z(
1
2)vZ−v {y} .

Let m > 1 and assume that the hypothesis holds for m− 1, then

{x}−m {y} {x}m = {x}−1
(
{x}−(m−1) {y} {x}m−1

)
{x} = {x}−1

(
z(
m−1

2 )vZ−(m−1)v {y}
)
{x}

= z(
m−1

2 )v
[(
{x}−1

Z−(m−1)v {x}
)(
{x}−1 {y} {x}

)]
= z(

m−1
2 )v

[(
{x}−1

Z {x}
)−(m−1)v (

Z−v {y}
)]

= z(
m−1

2 )v
[
z(m−1)vZ−(m−1)vZ−v {y}

]
= z(

m−1
2 )vz(m−1)vZ−mv {y} = z(

m−1
2 )vz(

m−1
1 )vZ−mv {y}

= z(
m
2 )vZ−mv {y}

by Pascal’s identity (Lemma 5.4). �

Proposition C.3. We have

(Zα {x}m {y}n)
k

= z(
k
2)αm+nv[(k2)(

m
2 )−2(k+1

3 )m2]Zkα−(k2)mnv {x}km {y}kn
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Proof. (By induction). Base case was shown above. Let k > 1 and assume the
statement is true for k − 1, then

(Zα {x}m {y}n)
k

= (Zα {x}m {y}n)
k−1

(Zα {x}m {y}n)

=
(
z(
k−1
2 )αm+nv[(k−1

2 )(m2 )−2((k−1)+1
3 )m2]Z(k−1)α−(k−1

2 )mnv {x}(k−1)m {y}(k−1)n
)

· (Zα {x}m {y}n)

= z(
k−1
2 )αm+nv[(k−1

2 )(m2 )−2(k3)m
2]Z(k−1)α−(k−1

2 )mnv {x}(k−1)m
Zα {y}(k−1)n {x}m {y}n

= z(
k−1
2 )αm+nv[(k−1

2 )(m2 )−2(k3)m
2]Z(k−1)α−(k−1

2 )mnv
(
{x}(k−1)m

Zα {x}−(k−1)m
)

· {x}(k−1)m {y}(k−1)n {x}m {y}n

= z(
k−1
2 )αm+nv[(k−1

2 )(m2 )−2(k3)m
2]Z(k−1)α−(k−1

2 )mnv
(
z(k−1)αmZα

)
{x}km

·
(
{x}−m {y}(k−1)n {x}m

)
{y}n

= z(
k
2)αm+nv[(k−1

2 )(m2 )−2(k3)m
2]Zkα−(k−1

2 )mnv {x}km
(
z(
m
2 )vZ−mv {y}

)(k−1)n

{y}n

= z(
k
2)αm+nv[(k−1

2 )(m2 )−2(k3)m
2]Zkα−(k−1

2 )mnv {x}km z(k−1)nv(m2 )Z−(k−1)mnv {y}kn

= z(
k
2)αm+nv[(k2)(

m
2 )−2(k3)m

2]Zkα−(k−1
2 )mnv

(
{x}km Z−(k−1)mnv {x}−km

)
{x}km {y}kn

= z(
k
2)αm+nv[(k2)(

m
2 )−2(k3)m

2]Zkα−(k−1
2 )mnv

(
z−(k−1)km2nvZ−(k−1)mnv

)
{x}km {y}kn

= z(
k
2)αm+nv[(k2)(

m
2 )−2(k3)m

2−2(k2)m
2]Zkα−(k−1

2 )mnv−(k−1
1 )mnv {x}km {y}kn

= z(
k
2)αm+nv[(k2)(

m
2 )−2(k+1

3 )m2]Zkα−(k2)mnv {x}km {y}kn

where we used Lemma 5.4 several times. �

Remark C.4. Since 〈z〉 = Z (Es), Proposition C.3 gives the powers for the most
general elements of Es.

For p 6= 2 we have (
p

2

)
≡ 0 (mod p) ,

and when p 6= 3 (
p+ 1

3

)
≡ 0 (mod p) .

So for p 6= 3

(Zα {x}m {y}n)
p

= z(
p
2)αm+nv[(p2)(

m
2 )−2(p+1

3 )m2]Zpα−(p2)mnv {x}pm {y}pn

= ({x}p)m ({y}p)n = (zw)
m

(zu)
n

= zwm+un.

For p = 3 (
3 + 1

3

)
≡ 1 (mod p)

so

(Zα {x}m {y}n)
3

= z(
3
2)αm+nv[(3

2)(
m
2 )−2(4

3)m
2]Z3α−(3

2)mnv {x}3m {y}3n

= z−2nm2v {x}3m {y}3n = znm
2v+wm+un.

For instance, when m = n = 0, Es, p 6= 3 has no elements of order greater than p,
but when p = 3 the element {x} {y} has order p2 = 9 whenever v 6= 0. So the case
p = 3 is different from the case p > 3.
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