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“…I have got the Arctic illness,  
And it means I have no choice,  
As She took my heart and called me 
By Her cool and windy voice. 
 
So no matter where I travel,  
On the threshold of any spring,  
I still rave of the polar trails, 
And I see the snowy dreams…” 

(From the poem of  

Robert Rozhdestvensky “Arctic Illness”/  

Роберт Рождественский “Арктическая болезнь” 

translated from the Russian by Alena Dekhtyareva) 
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Abstract 

Climate change, health of the residents and ecosystems in the Arctic region are impacted by 
local and long-range transported air pollution. Local emissions in the Arctic are important, 
but overlooked issue. Despite there have been extensive modelling and measurement 
studies of long-range transport of short-lived climate forcers (SLCFs) to Svalbard, the effect 
of local emissions from diesel and coal power plants and ship traffic on the concentrations of 
these compounds in major settlements has not been investigated thoroughly. 

The scope of this work is to study temporal and spatial evolution of air pollutant 
concentrations in Svalbard using the historical chemical and meteorological data collected in 
Ny-Ålesund and newly obtained observations from three sites: Ny-Ålesund, Longyearbyen 
and Barentsburg. Remote and local emission sources, concentrations of anthropogenic SLCFs 
and environmental factors that promote long-range transportation and accumulation of 
local air pollution in the Svalbard settlements have been investigated. 

A strong seasonality in the concentrations of sulphur dioxide (SO2), nitrogen oxides (NOx), 
tropospheric ozone (O3) and black carbon (BC) in Svalbard has been observed. 
Measurements in Ny-Ålesund revealed that in autumn, winter and spring the concentrations 
of SO2, sulphate and particles of accumulation mode are dominated by the long-range 
transport of air pollution from remote and regional sources. In summer, the long-range 
transport of air pollution is limited, and local sources become more important. Indeed, ship 
traffic emissions in Longyearbyen and Ny-Ålesund promoted significant increase in SO2 and 
NOx concentrations and slight decrease of the O3 values. Measurements in Barentsburg 
revealed strong temporarily deterioration of local air quality because of adverse weather 
conditions promoting transport of polluted air from the local coal power plant to the town. 
The cases of enhanced accumulation of local ground-level pollution have been revealed in 
Longyearbyen as well. They have often coincided with long-range transport events when the 
advection of warm air from mid-latitudes to Svalbard promoted creation of strong 
temperature inversions and led to increased concentrations of BC detected by the ground-
based instrument and in the vertical profiles below 1000 m. 

Svalbard archipelago is an area with complex topography. This creates a pronounced spatial 
and vertical variation in the concentrations of SLCFs. Thus, the springtime NOx observations 
demonstrated that there is little correspondence between the data from the three stations. 
The concentrations of these compounds are controlled by local sources and mostly 
dependent on prevailing wind direction in each of the settlements. Comparison of the daily 
SO2 and sulphate concentrations accumulated in filter samples collected at the low-altitude 
station in Ny-Ålesund and at the Zeppelin mountain observatory revealed a significant 
difference in the data obtained at different heights. The correspondence between the 
observations varies seasonally. It is the best in winter due to stronger winds, more efficient 
mixing and absence of additional local sources of pollution. In contrast, the correspondence 
between the two datasets is lowest in summer when insufficient ventilation of atmospheric 
boundary layer combined with increased emissions from local ship traffic promote 
accumulation of pollution in the settlement, while the station at the mountain top is often 
located above the cloud base level and is unaffected by the local emissions.  
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1. Introduction and background 

The Arctic region may be defined geographically by the Arctic Circle, climate, vegetation and 
marine boundaries (Figure 1). In the area north of the Arctic Circle, midnight sun and polar 
night last at least 24 hours continuously each year. The mean air temperature in July in the 
region set by the climatic boundaries is below 10 ℃. Vegetation boundaries are stated by 
the treeline, a transition zone between the boreal forest and tundra vegetation. The Arctic 
ecosystems are often interdependent and consist primarily of cold-adapted biota vulnerable 
to climate change that alters physical, biogeochemical, and ecological processes (Vincent et 
al., 2011). On the marine boundaries of the Arctic, warmer and saltier waters from oceans to 
the south interact with surface waters from the Arctic Ocean, which have lower temperature 
and salinity. The area, limited by the red line in the Figure 1, is defined as the Arctic by the 
Arctic Monitoring and Assessment Programme from the perspective of monitoring and 
assessing the status of and threats to the environment and health of residents in the region 
(AMAP, 1998). 

 

Figure 1 Definitions of the Arctic region (Fig. 1.1 in AMAP 2009) 

The population density and urbanization rate varies significantly within the Arctic region 
(Nuttall, 2012). Lack of infrastructure poses limitations on the development of industrial 
activities in the Arctic, such as natural resource extraction, shipping and tourism. However, 
the climate change stimulates the melting of the sea ice, thus creating new opportunities for 
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improvement of physical connection within the Arctic (Christopher and Fast, 2008). Indeed, 
the area covered by the annual summer sea ice declines steadily, and ice-free summers are 
predicted to occur in the perspective of several decades. The oil and gas, shipping and 
fishing activities in the Arctic have increased to a notably large extent over the last years, 
and further development of these industrial sectors in the region is likely to happen 
(Dalsøren et al., 2007). 

As a consequence, emissions of such pollutants as nitrogen monoxide (NO), nitrogen dioxide 
(NO2), nitrogen oxides (NO+NO2=NOx), sulphur dioxide (SO2), carbon monoxide (CO), volatile 
organic compounds (VOCs) and BC (Black Carbon) are expected to rise (Dalsøren et al., 2009; 
Peters et al., 2011). Increased emissions from shipping activities lead to elevated 
concentrations of NOx, SO2, O3 and BC and rise the number of fine particles with diameter 
less than 2.5 µm (PM2.5). These substances also have negative effect on human health and 
are included in the standard air quality observations in urban areas. Long-term exposure to 
elevated concentrations of PM2.5 can cause chronical cardiovascular diseases. Daily 
variations in BC concentrations are associated with short-term health changes. In addition to 
this, BC, as a component of PM, may carry toxic chemicals such as polycyclic aromatic 
hydrocarbons (PAHs) to the lungs and possibly introduce them to the systemic blood 
circulation (Janssen et al., 2012). 

Besides, SO2 and NOx emissions may have negative impact on the ecosystems due to 
acidification of fresh-water, marine and terrestrial environments. The Arctic vegetation is 
especially sensitive to air pollution due to multiple factors of influence such as climate 
change and long exposure to sunlight in summertime (Eriksen et al., 2012; Futsaether et al., 
2015). At the same time, nitrates produced from NOx can act as fertilizers to local 
ecosystems, especially if deposited in nutrients limited Arctic areas (AMAP, 2006). 

Increasing anthropogenic activity in the region is one of the reasons to study the local 
emissions in order to investigate their influence on the near pristine Arctic environment. 

In addition to local atmospheric emissions from the above mentioned activities, there is a 
seasonal long-range transport of air pollution to the region known as Arctic haze (Quinn et 
al., 2007). SO2 and non-sea salt sulphate (XSO4

2-), along with BC, are the most studied 
compounds present in the Arctic haze. The air transport efficiency from mid-latitudes 
towards the North pole depends on the location of the Arctic front and varies seasonally 
(AMAP, 2006). This transport pattern is most pronounced in winter and spring when specific 
conditions affecting environmental fate of the atmospheric pollutants are present. For 
example, lack of sunlight during polar night restricts photochemical reactions, while low air 
temperatures slow down certain chemical reactions such as thermal decomposition of 
peroxy acetyl nitrate (PAN). At the same time, low atmospheric humidity decreases the 
hygroscopic growth of aerosol particles and hampers dry deposition since the efficiency of 
that process depends on the particle mass. The precipitation is rare, and wet deposition is 
scarce. These factors lead to prolonged lifetime of the particles in the air masses (Seinfeld 
and Pandis, 2006). 

As the Arctic is warming faster than the rest of the world, especially in winter (Richter-
Menge and Mathis, 2017), the conditions preventing removal of pollutants from the air 
masses during transportation are changing. Increased air temperature, humidity and 
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precipitation rate may intensify wet deposition of pollutants (Qi et al., 2017). In addition to 
this, the concentrations of tropospheric ozone (O3) have increased over last 100 years. Along 
with several competing climate-dependent factors such as amount of biogenic emissions, 
water vapour abundance and change of convection and lightning, O3 may increase the 
atmospheric abundance of hydroxyl radical (OH), and consequently, the oxidative capacity of 
the atmosphere, causing reduction in the lifetime of air pollutants (Alexander and Mickley, 
2015). Besides, the SO2 emissions in European countries have declined over the last twenty-
five years (Vestreng et al., 2007), while emissions from Asian sources slightly increased (Lu et 
al., 2010). Thus, it may have affected the concentrations of long-range transported 
pollutants measured in the Arctic. 

The current work focuses on Svalbard, since the archipelago has unique characteristics, 
which allow us to study ongoing alteration in atmospheric composition and physical 
processes due to the change in anthropogenic activities and environmental response to the 
climate change. 

Firstly, Svalbard is warming faster than the most of the Arctic territories (Isaksen et al., 
2016). Since the region is located on the marine Arctic boundary (Figure 1), several factors 
contribute to this accelerated warming rate observed there: change in the inflow and 
temperature of North-Atlantic water on the west coast of Spitzbergen island, sea ice decline, 
change in atmospheric circulation patterns and properties of air masses (Piechura and 
Walczowski, 2009; Maturilli, Herber and König-Langlo, 2013; Onarheim et al., 2014; Isaksen 
et al., 2016; Dahlke and Maturilli, 2017; Maturilli and Kayser, 2017). 

Secondly, there are few regional and local sources of air pollution at Spitzbergen, the 
archipelagos biggest island, thus it is easier to estimate the change in amount of long-range 
transported and local air pollution, and study the effects of these factors on atmospheric 
physical and chemical processes. 

Long-term observations of atmospheric compounds performed at the Zeppelin station in Ny-
Ålesund, a research settlement in the north-western part of the island (Figure 2), allow us to 
investigate the change in efficiency of long-range transport of air pollutants from mid-
latitudes to this region. Hirdman et al., 2010 attributed the significant negative long-term 
trend in concentrations of elemental BC and sulphate aerosol observed at the Zeppelin 
station to the reduction in European emissions. However, change in environmental 
conditions may affect the lifetime of aerosols as well. For example, the aerosol scavenging 
efficiency varies for different cloud types: it is lowest for ice-phase clouds and increases for 
warmer mixed-phase clouds (Eckhardt et al., 2015). The sea ice melting facilitates the 
vertical transfer of moisture which contributes to the liquid cloud phase and may result to 
the increase of mixed-phase clouds occurrence over the Arctic (Mioche et al., 2015). Long-
term radiosonde and ground-based observations in Ny-Ålesund revealed a strong increase in 
atmospheric temperature and humidity (Maturilli, Herber and König-Langlo, 2013; Maturilli 
and Kayser, 2017), and the long-term projections for precipitation and temperature in 
Svalbard indicate further increase (Førland et al., 2011). Moreover, the precipitation over 
the Arctic is predicted to monotonically increase towards the end of the century (Kusunoki, 
Mizuta and Hosaka, 2015). Thus, because of changes in the properties of air masses arriving 
to Svalbard and reduction of European emissions, the concentrations of long-range 
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transported SO2 and XSO42- have been decreasing and may further decrease in future. In 
contrast, local sources of emissions may play increasingly important role and deserve special 
attention. 

 

Figure 2 Map of Svalbard 

At the same time, not only long-range transport of air pollutants is affected by the climate 
change. Local meteorological processes are altered as well. For example, the frequency of 
decoupling of atmospheric boundary layer (ABL) from free troposphere has increased and 
the wind speed in the lowest 500m has reduced in all seasons in the period from 1993 to 
2014 (Maturilli and Kayser, 2017). This may negatively affect the ventilation within ABL and 
lead to the accumulation of locally produced primary and secondary atmospheric aerosols of 
natural and anthropogenic origin. They play an important role in the cloud formation 
processes (Possner, Ekman and Lohmann, 2017; Jung et al., 2018; Mahmood et al., 2019) 
which, in turn, are altered by the observed change in air temperature and humidity (Maturilli 
and Kayser, 2017). 

Current study focuses on short-lived climate forcers (SLCFs) which concentrations are 
increasing because of fossil fuel combustion: SO2, NOx, O3 and BC. The change in energy flux 
at the tropopause or at the top of the atmosphere caused by a specific climate driver is 
called the radiative forcing (RF) (IPCC, 2013). When the increased concentration of the forcer 
increases the difference between the energy absorbed by the Earth and radiated back to 
space, the RF is positive and leads to atmospheric warming. In contrast, the driver has 
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negative RF, when its increased concentration leads to cooling of the atmosphere. Thus, SO2 
and NOx have negative RF due to formation of light scattering aerosols containing sulphates 
and nitrates (Figure 3). 

 

Figure 3 Radiative forcing bar chart for the period 1750–2011 based on emitted compounds 
(gases, aerosols or aerosol precursors) or other changes (Fig. 8.17 in IPCC, 2013) 

Although the total aerosol-cloud interaction has negative radiative forcing of climate (IPCC, 
2013), thin Arctic clouds in winter and early spring have positive radiative forcing due to 
increased downward long-wave radiation, and this effect is enhanced when the 
anthropogenic aerosols are present (Garrett and Zhao, 2006). In turn, the light absorbing 
aerosols have significant positive radiative forcing through aerosol-radiation interactions and 
when deposited on snow and ice because of reduction of surface albedo (IPCC, 2013). 
However, NOx also have a positive RF due to formation of tropospheric O3, a potent 
greenhouse gas, in presence of CO and VOCs. BC is a component of light-absorbing aerosols, 
and thus has strongly positive RF. In the real atmosphere the RF of aerosols depends on the 
ambient relative humidity, which varies strongly horizontally and vertically, aerosol size 
distribution and refractive index that depends on aerosol composition (Myhre et al., 2004). 
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A recent modelling study of Sand et al. 2015 stated that the major contribution to the Arctic 
warming comes due to Asian emissions of the SLCFs, which increase the heating rate in the 
source region, and therefore affect the equator-pole temperature gradient. However, the 
regional sensitivity to local emissions within the Arctic is very high due to enhanced warming 
impact from BC deposited on snow and ice covered surfaces. Indeed, the simulations with 
additional ship emissions in the Arctic showed significant local increase in RF due to BC 
deposition over the central Arctic Ocean, but the net cooling effect from the aerosols and 
their precursors is expected (Gilgen et al., 2018). Similarly, Ødemark et al., 2012 have 
estimated positive RF from increased BC and O3 concentrations, but the total negative RF 
due to formation of sulphate and nitrate containing aerosols from emissions of SO2 and NOx 
because of shipping activity. 

1.1 Research motivation and problem statement 

There are two factors that make it challenging to assess the current environmental impact of 
local Arctic emissions and make prognoses for the future. First one is the uncertainty in 
emission inventories, since, in addition to existing stationary emission sources, there is an 
ongoing increase of local emissions from shipping. Second factor is the uncertainty in 
environmental fate of air pollutants due to the lack of meteorological and air pollution 
observations in the region. Previous studies state that air pollution from local emission 
sources is an important, but an underestimated issue, and that pollution levels within the 
region may exceed air quality standards, pose a negative impact on the health of residents 
and environment (Schmale et al., 2018). 

Similarly, the long-range transport of NOx, SO2, O3 and BC to Svalbard has been studied 
extensively, while little attention has been given to the local sources of these compounds 
and meteorological conditions promoting in-situ pollution accumulation. For example, last 
and the only study about influence of shipping emissions on air quality in Svalbard has been 
based on ten years old data from Ny-Ålesund, while no extensive air quality studies have 
been performed previously in other Svalbard communities. 

Ny-Ålesund is located more than 100km away from the biggest Svalbard settlements. The 
remoteness and measures, which are applied to reduce anthropogenic impact on the 
research activity, offer unique opportunities for monitoring of background air composition 
(The Research Council of Norway, 2019). 

However, in contrast to the near pristine Ny-Ålesund environment, there are also places in 
Svalbard where the anthropogenic activity may significantly affect local air quality. The two 
mining towns, Longyearbyen and Barentsburg, are located to the south-east from the 
research settlement. Although the installation of exhaust treatment system on the coal 
power plant in Longyearbyen led to dramatic reduction of emissions there 
(Miljødirektoratet, 2019), the Barentsburg coal power plant is still the biggest point source of 
SO2 in Norway (Miljødirektoratet, 2018). However, no air quality measurements have been 
available to assess the magnitude of pollutant concentrations accumulating under different 
meteorological conditions in these towns. 
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The current work allows us to combine the air quality studies with monitoring of SLCFs in 
Svalbard and assess the current concentrations of anthropogenic SLCFs and environmental 
factors that promote long-range transportation and accumulation of local air pollution in the 
Svalbard settlements. This study attempts to create a network from existing and temporarily 
pilot stations and assess the measurement results obtained using the conventional and 
portable low-cost sensors in Svalbard. 

1.2 Research questions 

Based on the proposed problem statement, five research questions have been produced: 

1. What causes variation in the pollutant concentrations on a different temporal scale 
(seasonally, daily and diurnally)? 

2. How do the pollutant concentrations vary spatially between the three main Svalbard 
settlements? 

3. What is the current influence of ship traffic on air quality in Svalbard settlements? 
4. What meteorological phenomena affect the ground level concentration of measured 

compounds and their vertical distribution in the ABL? 
5. What are the advantages and disadvantages of usage of different measurement 

techniques for air pollution monitoring in the Arctic? 

1.3 Research objectives 

The following objectives have been performed to answer to the research questions stated 
above:  

• Investigate the long-range transport of air pollution to Svalbard and explore the existing 
techniques to study it. 

• Analyse data series to identify factors affecting long-term observations of long-range 
transported pollution. 

• Perform ground-based SO2, NOx, O3 and BC measurements in Longyearbyen and analyse 
the acquired data along with the measurement results from Ny-Ålesund and Barentsburg. 

• Identify major emission sources in all three settlements and their influence on local air 
quality. 

• Test portable sensors to measure air quality and meteorological parameters and assess 
performance of these sensors. 

• Perform vertical meteorological and air quality measurements in Longyearbyen and 
identify what affects the vertical distribution of air pollutants. 
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2. Methodology 

The current study focuses on measurements of four SLCFs in Svalbard: SO2, NOx, O3 and BC. 
Paper I and II discusses SO2 and NOx sources, chemical transformations and factors affecting 
their ambient concentration in Ny-Ålesund. Paper III considers springtime NOx and O3 
concentrations measured in Longyearbyen, Ny-Ålesund and Barentsburg in 2017 and 
atmospheric chemistry of these compounds. Paper IV presents extensive summer 
measurements of all four compounds performed in the three major Svalbard settlements in 
2018 and determines contribution of various local and long-range sources to air quality in 
Spitzbergen. 

2.1 Chemistry of SO2, NOx, O3 and BC 

SO2, NOx and BC are emitted directly in the process of fossil fuel combustion, while O3 may 
be produced in the presence of NOx, VOCs and CO. The atmospheric cycles of nitrogen 
compounds, O3 and sulphur compounds are illustrated in Figure 4, Figure 5 and Figure 6, 
respectively. This work focuses on the small part of the reactions from combustion to NO 
and NO2 formation and reactions which may lead to increasing and decreasing of O3 
concentrations in the troposphere (Figure 4). 

 

Figure 4 Atmospheric nitrogen cycle (Fig. 3.2 in AMAP, 2006) 
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The formation of tropospheric O3 is a non-linear process depending on the ratio between 
NOx and VOCs (hydrocarbons (RH) in Figure 5 (Fan and Jacob, 1992; Jacob, 2000; Monks, 
2005)). The reactions between O3 precursors (NOx, CO and RH), which may lead to O3 
production in the presence of sunlight, are depicted by the two cycles on the right side of 
the Figure 5. In the VOCs-limited regime, O3 concentration may decrease due to titration 
with excess of NO. The production of O3 in the NOx-limited regime is independent on VOCs 
amounts and increases with rising of NOx concentration. Despite the fact that the 
concentrations of non-methane hydrocarbons increases with latitude due to long-range 
transport of pollution (Helmig et al., 2016), the average values in the pristine Arctic 
environment are lower than in industrial areas, and therefore VOCs-limited regime is 
expected close to big sources of NOx such as ships and fossil-fuelled power plants. Further 
downwind from the source, NOx are removed from the plume faster and NOx/VOCs ratio 
sufficient for O3 production may be obtained. Similarly, the O3 production is more efficient in 
the Arctic, downwind from boreal fires, than in the vicinity of the biomass burning areas 
(Monks et al., 2015). In the left side of the Figure 5, the heterogeneous photochemical 
reactions with bromine species on snow or sea-ice surfaces, which may result to springtime 
tropospheric O3 depletion in the Arctic, are illustrated (Fan and Jacob, 1992; Monks, 2005). 

 

Figure 5 Tropospheric O3 chemistry where HOx and RO2 are peroxy radicals, R is alkyl radical, 
H2O2 and ROOH are hydrogen and organic hydroperoxides, respectively. 

The part of the atmospheric sulphur cycle shown in Figure 6, which describes emissions of 
SO2 and its precursors and formation of sulphate aerosols, in the troposphere is studied in 
the current work. 
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Figure 6 Atmospheric sulphur cycle (Fig. 3.1 in AMAP, 2006) 

Another compound, which has been studied in the present work, is BC. It is a main 
component in soot. The soot is formed in a process of incomplete combustion, and the 
formation efficiency depends on the ratio of carbon to oxygen (C/O) in the mixture of 
hydrocarbons and air. For example, if C/O= m/2a, following combustion stoichiometry is 
obtained (Seinfeld and Pandis, 2006): 

𝐶𝐶𝑚𝑚𝐻𝐻𝑛𝑛 + 𝑎𝑎𝑂𝑂2 → 2𝑎𝑎 𝐶𝐶𝑂𝑂 + 0.5 𝑛𝑛 𝐻𝐻2 + (𝑚𝑚− 2𝑎𝑎)𝐶𝐶𝑠𝑠    (1) 

where Cs is the soot formed. 

2.2 Meteorological processes affecting air pollution transport and in-situ 
pollution dispersion 

As Arctic front extends southerly during winter and spring (Figure 7), the long-range 
transport of pollutants intensifies (Stohl, 2006). 
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Figure 7 Mean winter and summer position of the arctic front defining the percentage 
frequency of major south-to-north transport routes into the Arctic in summer (July) and 

winter (January) (Fig. 4.1 in AMAP, 2006) 

In these seasons, the Arctic haze, an anthropogenic aerosol consisting primarily of sulphate 
containing particles in accumulation mode, has been repeatedly observed in Svalbard and 
other Arctic regions (Heintzenberg, Hansson and Lannefors, 1981; AMAP, 2006; Quinn et al., 
2007). Low air temperature and humidity and lack of sunlight during the polar night extend 
the lifetime of SLCFs due to reduction of wet scavenging and limited photochemical 
oxidation (Seinfeld and Pandis, 2006). 

At the same time, there are local year-round air pollution sources in Svalbard, which may 
increase the concentrations of SLCFs in the ABL such as coal power plants in Barentsburg and 
Longyearbyen and diesel generator in Ny-Ålesund, and seasonally important sources, 
namely, the ship traffic and biogenic emissions of SO2 precursors. Calm winds and 
temperature inversions reduce the efficiency of air pollution dispersion (Arya, 1999). 
Although the median wind speed is lowest in summer and increases in winter in Svalbard 
(Maturilli, Herber and König-Langlo, 2013), the frequency of occurrence of temperature 
inversions is higher in winter as well, because the air is more often stably stratified due to 
radiative cooling of snow and ice-covered surfaces (Vihma et al., 2011). However, it has been 
shown that the reduction of the sea ice extent around Svalbard increases the sea-
atmosphere energy transfer and decreases the efficiency of inversion formation under the 
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same high-pressure situations with calm winds, which favour this process over the sea ice 
(Isaksen et al., 2016). 

Using the methodology proposed by Vihma et al., 2011, the temperature inversions have 
been identified in the radiosonde and tethered balloon profiles as layers thicker than 10 m 
where the air temperature increases with height on more than 0.3 ℃. Additional method to 
determine the stability in the ABL, suitable for the sites where the airborne measurements 
have not been performed, but the meteorological observations at two different heights have 
been available, is to calculate the Richardson number as the ratio between the buoyancy and 
wind shear terms. 

The gradient Richardson number (Arya, 1999) has been calculated for the case study in 
Barentsburg described in the Paper IV: 

𝑅𝑅𝑅𝑅𝑚𝑚 = 𝑔𝑔
T0

∆𝜃𝜃𝑧𝑧𝑚𝑚
∆𝑢𝑢

2 ln �𝑧𝑧2
𝑧𝑧1
�     (2) 

where T0 is the mean temperature for two heights (z1=70 m and z2=255 m), 𝑧𝑧𝑚𝑚 = (𝑧𝑧1 ∙ 𝑧𝑧2)1/2 
is the geometric mean height, ∆𝜃𝜃 - potential temperature difference between z1 and z2, ∆𝑢𝑢 is 
wind speed difference between z1 and z2. 

The potential temperature, in turn, has been calculated as (Arya, 1999) 

𝜃𝜃 = 𝑇𝑇 �1000
𝑝𝑝
�
𝑘𝑘

      (3) 

where T is the measured temperature in K, p is atmospheric pressure in millibars, k≈0.286 is 
the ratio between the specific gas constant R=287.04 J K - 1 kg- 1 and the specific heat capacity 
for dry air at constant pressure Cp≈1005 J K -1 kg-1. 

2.3 Observations 

2.3.1 Measurement sites 

Three different measurement sites have been chosen in this work: Ny-Ålesund, Barentsburg 
and Longyearbyen (Figure 2). There is an established research infrastructure within the field 
of the monitoring of atmospheric composition in the first two settlements. High-quality long-
term measurements of background air composition, including O3 and BC concentration, are 
performed by the Norwegian Institute of Air Research at the Zeppelin station located at the 
mountaintop (474 m a.s.l.) two kilometres to the south-east from Ny-Ålesund, while SO2 and 
NOx monitors have been installed in the middle of the village to study the local air quality 
since 2008. In Barentsburg, SO2, O3, NOx and meteorological measurements are performed 
continuously by the Russian Arctic and Antarctic Institute (AARI) since 2017. Aerosol 
observations such as BC and aerosol optical depth data are collected by the AARI specialists 
for the V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy 
of Science. Although there are several automatic meteorological stations around 
Longyearbyen operated by the University Centre in Svalbard (UNIS), there is no continuous 
measurements of atmospheric composition in the town. Short-term observations of NOx and 
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NOx, SO2, O3 and BC were performed by Alena Dekhtyareva in Longyearbyen in spring 2017 
and summer 2018, respectively. 

2.3.2 Stationary and portable measurement equipment 

Hourly data from stationary chemiluminescence NOx, UV fluorescence SO2 and UV 
photometric O3 analysers and aethalometers have been studied in the current work. The 
data from different instrument models with the same measurement principle have been 
available from Ny-Ålesund, Longyearbyen and Barentsburg. This adds some uncertainty to 
the comparison of measurement results from the three settlements in addition to the 
different calibration procedure employed there. Beside the hourly data, daily SO2 and XSO42- 
concentrations accumulated in filter samples collected in Ny-Ålesund have been analysed 
(NILU, 1996). The data from the condensation particle counters and sun photometers have 
been studied in addition to the main measurements stated above. 

Several portable environmental sensors have been used during the fieldwork in 
Longyearbyen in spring 2017 and summer 2018. 

A broad variety of low-cost sensors is available in the market, however, the performance of 
the sensors varies significantly (Jiao et al., 2016; Castell et al., 2017). During the fieldwork in 
Svalbard, three types of sensors for gaseous and particle measurements (Cairpol NO2 
electrochemical sensor, MiniDISC particle counter and microaethalometer AE51 for BC 
measurements) and the portable weather trackers Kestrel 5500 have been used. 

The low-cost mobile gas sensors is a new technological solution for environmental 
monitoring (Jiao et al., 2016). Advantages of these devices is that they are portable and 
relatively inexpensive, while disadvantages are decrease in sensitivity with time and 
measurement interference with other gases. Therefore, the sensors cannot be used alone to 
measure ambient air concentration without a reference monitor. Thus, combined usage of 
stationary reference device and mobile sensors may cover broader spectrum of detectable 
concentrations and may be used for the observations close to the pollution source. 

Cairpol is a portable NO2 sensor for air pollution studies. The sensor may give reliable NO2 
measurement results when higher concentrations than those that are typical for ambient air 
on rural site are sampled. Therefore, this sensor may be suitable for evaluation of emissions 
from snowmobiles in the immediate vicinity of the source of pollution. 

Main disadvantage of portable gas and particle sensors is their high limit of detection (LD). 
According to the instruments manufacturers, LD of Cairpol NO2 sensors is 20ppb, LD of 
AE51=50-100 ng∙m-3 (5 minute resolution), while measurement range of the MiniDISC 
particle counter is 103-106 particles per cm3 (Fierz et al., 2011). Although high reproducibility 
have been obtained for microaethalometers in previous studies (Cai et al., 2014), the 
performance depends on the concentrations (Ferrero et al., 2016), and measurements 
obtained in the environment with lowest concentrations have the highest noise ratio, and 
further data post-processing may be needed (Hagler et al., 2011). 
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The portable meteorological sensors are more suitable for operations in the Arctic 
conditions. For example, according to the manufacturers’ specifications, the range and 
accuracy of wind speed and air temperature measurements by Kestrel 5500 Weather Meter 
and Onset stationary sensors are shown in Table 1. 

Table 1 Accuracy and measurement range for the stationary Onset sensors installed at the 
UNIS roof and Kestrel 5500 sensors 

Parameter Accuracy Measurement range 
Air temperature, Kestrel 5500 ±0.5°C -29.0°C to 70.0 °C 
Air temperature, Onset S-THB-M002 ±0.21°C (0°C to 50°C) -40°C to 75°C 
Wind speed, Kestrel 5500 ±0.1 m∙s-1 0.6 m∙s-1-40 m∙s-1 
Wind speed, Onset S-WCA-M003 ±0.5 m∙s-1 (u<17 m / s) 0 to 44 m∙s-1 

The comparison of the Kestrel measurements with the data from the Onset sensors is 
presented further in the current thesis (part 3.4). 

2.4 Reanalysis and trajectory model data 

ERA-Interim and ERA5 data have been used to assess the synoptic-scale meteorological 
conditions over Svalbard for the periods of interest. ERA-Interim has a six hours temporal 
and coarse spatial resolution. In contrast, in ERA5, a new version of the global reanalysis 
dataset with hourly output frequency, the horizontal and vertical resolutions have increased 
from 79 km to 31 km and from 60 to 137 levels, respectively. (Dee et al., 2011; Hersbach and 
Dee, 2016).  

Despite the main focus of the current work is local pollution in Svalbard, the backward 
trajectory modelling has been used to study long-range transport of SLCFs to the 
measurement sites. FLEXTRA and HYSPLIT are 3-dimentional trajectory models driven with 
the meteorological data with a spatial resolution of 1.25 degree from the European Centre 
for Medium-Range Weather Forecasts and 2.5 degrees from global NCEP/NCAR Reanalysis, 
respectively (Stohl, 1998; Stein et al., 2015). The temporal resolution of the input 
meteorological data in both models is six hours. 

2.5 Statistical approach 

2.5.1 Kolmogorov-Smirnov test for normality 

The Kolmogorov-Smirnov test for normality has been used to check if the data in x 
population are normally distributed (Lilliefors, 1967). The test result is the maximum 
absolute difference between the empirical cumulative distribution function 𝑆𝑆𝑁𝑁(𝑋𝑋) calculated 
from x and the cumulative distribution function 𝐹𝐹∗(𝑋𝑋) for a standard normal distribution: 

𝐷𝐷 = max
𝑥𝑥

|𝐹𝐹∗(𝑋𝑋) − 𝑆𝑆𝑁𝑁(𝑋𝑋)|      (4) 
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The D is calculated and the p-value, the probability of observing a test result as extreme as 
the observed value under the hypothesis that the data in vector x comes from a standard 
normal distribution, is obtained. If the p-value is less than 0.05, the hypothesis is rejected. 

The function kstest in the MATLAB software has been applied to perform the calculations 
(MathWorks, 2019b). 

2.5.2 Wilcoxon rank sum test 

To compare the two samples from the observational dataset grouped according to some 
principle, for example, presence or absence of some environmental factor, the two-sided 
hypotheses that the two populations are equal may be tested using t-test or Wilcoxon rank 
sum test (WRS-test). The WRS-test has been used in Paper II, III and IV instead of t-test 
because the former performs better for the discrete samples and the data, which are not 
normally distributed (Krzywinski and Altman, 2014). 

The ranks in the two independent samples of sizes 𝑛𝑛𝑋𝑋 and 𝑛𝑛𝑌𝑌, which have been taken from 
populations X and Y and ordered in the combined sample with size 𝑁𝑁 = 𝑛𝑛𝑋𝑋 + 𝑛𝑛𝑌𝑌 from 
smallest to largest, may be used to define, which of the populations has the highest median 
value. If the sum of ranks in the sample from X population are higher than from the second 
sample, then the median of the X population is generally higher than the median of the Y 
population (Gibbons and Chakraborti, 2003). 

The WRS-test is equivalent to the Mann-Whitney U-test. We find the Mann-Whitney U-test 
statistic from the sum of the ranks for the observations, which came from the sample X: 

𝑈𝑈𝑋𝑋 = 𝑅𝑅𝑋𝑋 −
𝑛𝑛𝑋𝑋(𝑛𝑛𝑋𝑋+1)

2
      (5) 

where RX is the sum of the ranks in sample X. 

Similarly, we find the U-value for the sample Y: 

𝑈𝑈𝑌𝑌 = 𝑅𝑅𝑌𝑌 −
𝑛𝑛𝑌𝑌(𝑛𝑛𝑌𝑌+1)

2
      (6) 

Since there is a connection between the ranks of the two samples such that RX+RY=N (N + 
1)/2 and 𝑈𝑈𝑋𝑋 + 𝑈𝑈𝑌𝑌 = 𝑛𝑛𝑋𝑋𝑛𝑛𝑌𝑌, the MATLAB function calculates only the rank sum of the first 
sample. 

The WRS-test is related to the U-test as: 

𝑊𝑊 = 𝑈𝑈 + 𝑛𝑛𝑋𝑋(𝑛𝑛𝑋𝑋+1)
2

     (7) 

The smallest value of U is used to define the significance of the result using the significance 
tables for small samples or z-statistic in case of large samples. 
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The full description of the MATLAB function ranksum is given in the MathWorks web-page 
(MathWorks, 2019d). 

2.5.3 Pearson and Spearman correlation 

The MATLAB function corr (MathWorks, 2019a) has been used to calculate the Pearson 
correlation coefficient to check if there is any statistical significant linear relationship 
between the same parameters measured at different stations such as the correlation 
between NOx in Longyearbyen and Ny-Ålesund or by different equipment, for example, 
correlation between BC values obtained by the AE33 and AE51 aethalometers. 

The Pearson correlation coefficient for the two variables x and y is following: 

𝑟𝑟𝑦𝑦𝑥𝑥 = ∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)2 ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

    (8) 

In contrast, the Spearman correlation is used to test for monotonic relationship between the 
two variables (Chalmer, 1986). The partial Spearman (rank) correlation coefficients have 
been calculated to test if the concentrations of atmospheric compounds are related to the 
meteorological parameters in Paper III. 

For example, the Spearman partial correlation for the two variables x and y controlling for 
the variable z is calculated as: 

𝜌𝜌𝑦𝑦𝑥𝑥.𝑧𝑧 = 𝜌𝜌𝑦𝑦𝑦𝑦−𝜌𝜌𝑦𝑦𝑦𝑦∙𝜌𝜌𝑦𝑦𝑦𝑦

�1−𝜌𝜌𝑦𝑦𝑦𝑦2∙�1−𝜌𝜌𝑦𝑦𝑦𝑦2
    (9) 

where 𝜌𝜌𝑦𝑦𝑥𝑥 = 1 − 6∑𝑑𝑑𝑦𝑦𝑦𝑦2

𝑛𝑛(𝑛𝑛2−1)
, 𝜌𝜌𝑦𝑦𝑧𝑧 = 1 − 6∑𝑑𝑑𝑦𝑦𝑦𝑦2

𝑛𝑛(𝑛𝑛2−1)
 and 𝜌𝜌𝑥𝑥𝑧𝑧 = 1 − 6∑𝑑𝑑𝑦𝑦𝑦𝑦2

𝑛𝑛(𝑛𝑛2−1)
 are the Spearman 

correlation coefficients for variables x and y, y and z and x and z, respectively, calculated for 
dyx, dyz, dxz, the difference between the ranks of the two variables x and y, y and z and x and 
z, accordingly, and n is the length of each variable. 

The partial correlation has been calculated using the MATLAB function partialcorr 
(MathWorks, 2019c). 

2.5.4 Monte Carlo method 

Monte Carlo method has been used to test the significance of the relationships between the 
two variables when the correlation coefficient between them has been low (r<0.2) 
(Graversen, 2006). A new artificial variable with the same power spectra as one of the two 
variables of interests, but with the shifted phase has been created, and the correlation 
coefficient has been calculated. The procedure has been repeated 5000 times and the 
percentage of the correlation coefficients, which are higher than or equal to the original one 
calculated for the two variables of interest, has been found. The percentage indicates 
significance of the correlation. 
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3. Discussion of the results 

3.1 Paper I 

Dekhtyareva A., Edvardsen K., Holmén K., Hermansen O., & Hansson H.-C., 2016. Influence 
of local and regional air pollution on atmospheric measurements in Ny-Ålesund. 
International Journal of Sustainable Development and Planning, 11 (4), 578–587. DOI: 
10.2495/SDP-V11-N4-578-587 

The main author has been responsible for the work on the article. The contribution of each 
of the authors listed above is stated in the Table 1Table 2. In the Table 2,Table 3,Table 4 and 
Table 5 the conception is an idea for the research; design is the study planning; supervision 
is taking the responsibility for the work on the article; funding and materials include 
personnel, logistical and technical support needed for the study; critical review is the 
reviewing of the article for its intellectual content. 

Table 2 Authors contributions in Paper I 

The authors contributions D.A. E.K. H.K. H.O. H. H.-C. 
Conception +  +   
Design +  +   
Literature review +     
Supervision +     
Funding / materials    + + 
Data collection    + + 
Data processing +   + + 
Analysis and results interpretation + + +   
Writing + + +   
Critical review  + +   

The paper discussed lifetimes of NOx, SO2 and aerosol particles of different size and seasonal 
variation of their concentration in Ny-Ålesund from 2008 to 2010. The importance of the 
Zeppelin Observatory as an international research station for monitoring of background air 
composition is also stated in the paper. Diesel power plant and ships in Ny-Ålesund and coal 
power plants in Longyearbyen and Barentsburg are defined as local and regional emission 
sources, respectively, which may affect the concentration of compounds measured at the 
Zeppelin station. FLEXTRA air mass trajectory have been used to identify cases when the air 
masses arriving at the Zeppelin station may have been impacted by the long-range, regional 
and local emission sources. 

It has been observed that the summer wind conditions measured in Ny-Ålesund and at the 
Zeppelin station as well as at the Svalbard airport in Longyearbyen differ significantly from 
other seasons: the mean wind speed is lower and onshore wind is observed more often. The 
westerly wind prevails in summer in Longyearbyen, thus the influence of towns pollution on 
the measurements at the Zeppelin station is unlikely. In contrast, south-easterly and south-
westerly wind may bring regional pollution to Ny-Ålesund. The lack of meteorological 
observations in Barentsburg restricted analysis of seasonal wind patterns in this settlement. 
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The seasonality in SO2, NOx, XSO42- concentrations and particle size distribution have been 
explained by the influence of different emission sources and change in environmental 
conditions in Svalbard. Higher concentrations of smaller particles have been observed in 
summer at the Zeppelin station, while accumulation mode particles has prevailed in spring. 
Local NOx sources have been important in summer and winter, while long-range transported 
pollution has dominated in autumn and spring. SO2 concentrations have been the highest in 
winter and spring due to long-range transport of pollution from regional and remote 
sources. 

To clarify the influence of regional pollution sources on air quality in Svalbard and 
measurements at the Zeppelin station, local air quality monitoring campaigns and sampling 
of the plume from the coal power plants in Barentsburg and Longyearbyen have been 
recommended. It has been stated that the results of these measurements may be further 
used for the plume modelling to study the environmental fate of air pollutants emitted from 
the largest sources in Svalbard. 

In addition to this, the uncertainty in future emission scenarios from ships and power plants 
in Svalbard and the need for follow-up measurements in all three settlements have been 
stated in the paper. 

3.2 Paper II 

Dekhtyareva A., Holmén K., Maturilli M., Hermansen O., & Graversen R., 2018. Effect of 
seasonal mesoscale and microscale meteorological conditions in Ny-Ålesund on results of 
monitoring of long-range transported pollution. Polar Research, 37 (1), 1508196. DOI: 
10.1080/17518369.2018.1508196 

The work on the article has been managed by the main author. Table 3 indicates the 
contribution of each of the authors listed aboveTable 1. 

Table 3 Authors contributions in Paper II 

The authors contributions D.A. H.K. M.M. H.O. G.R. 
Conception + +    
Design + +    
Literature review + +    
Supervision +    + 
Funding / materials  + + +  
Data collection   + +  
Data processing +  + +  
Analysis and results interpretation +     
Writing + +   + 
Critical review  + +  + 

The seasonality in concentrations of particles and gases in Ny-Ålesund has been described in 
Paper I. However, the vertical distribution of measurement compounds has not been 
discussed. The settlement is located in the area with complex topography, and local 
meteorological processes differ at the various measurement altitudes. The vertical 
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distribution of local and long-range transported aerosols is dependent on the ABL dynamics 
and is controlled by the mesoscale and microscale meteorological phenomena. 

Paper II investigates correspondence between the daily SO2 and XSO42- concentrations 
detected in the filter samples in Ny-Ålesund (8 m a.s.l.) and at the Zeppelin station (474 m 
a.s.l.) and analyses the seasonality in the influence of the different environmental factors on 
the concentrations measured on the two sites. The microscale and mesoscale 
meteorological conditions have been studied using observations at the two stations and 
ERA-Interim reanalysis dataset, respectively. In addition to this, the daily radiosonde 
soundings have been used to investigate the atmospheric stability and wind conditions in 
the first 500 m of the ABL. 

The correlation between the daily SO2 and XSO42- data sets from the Ny-Ålesund and the 
Zeppelin stations has been calculated for different seasons. There is no significant 
correlation between the SO2 data sets from the two stations in summer, while it is very 
strong in winter. The values of Pearson correlation coefficient in autumn and spring are 
intermediate to moderate. The correlation between the XSO42- data sets is significant for all 
seasons, but it is the lowest for the summer data. 

The seasonal influence of four major factors on the observations on both sites have been 
investigated. Three of them may introduce disturbance in the correlation between the data 
at the two stations, increasing ground-level concentration of pollutants in Ny-Ålesund, while 
having no effect on the measurements at the Zeppelin station: temperature and humidity 
inversions, directional wind shear and local summertime emissions from ship traffic. In 
contrast, the wind speed shear is the factor that may reduce the difference between the two 
datasets due to enhanced mixing and more effective dispersion of local pollutants. The 
significance of impact of different factors has been verified by applying of the WRS-test on 
the two groups of measurements from each of the stations for the days when the specific 
factor of influence has been present and absent, respectively. 

The diagram of the statistically significant factors of influence based on the results of the 
WRS-test is shown in Figure 8. One can see that all the factors except the directional wind 
shear are affecting the concentration in Ny-Ålesund in different seasons. Lowest correlation 
between the datasets at the two stations in summer may be explained by the fact that the 
Ny-Ålesund data is influenced by several different factors: emissions from ship traffic and 
insufficient dispersion of local pollution when there is no vertical wind speed shear and 
strong humidity inversion is present. However, they do not have any significant effect on the 
median concentrations at the Zeppelin station. In contrast, the significant influence on the 
concentrations both at the Zeppelin station and in Ny-Ålesund has been observed only for 
the temperature inversions in spring. The temperature inversions in spring have been 
formed due to radiative cooling when cold air masses have been transported to Svalbard 
from east-north-east, and higher concentrations of SO2 and XSO42- have been observed in 
these days. 

The correlation between the datasets at the two stations varies due to the influence of 
different micrometeorological phenomena and local pollution. Modelling of these 
environmental factors is still challenging, and it needs to be considered when one compares 
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modelling results with measurements taken at different heights in the area with complex 
topography. 

 

Figure 8 Diagram of the statistically significant factors of influence based on the results of 
the WRS-test (p < 0.05) 

3.3 Paper III 

Dekhtyareva A., Hermanson M., Nikulina A., Hermansen O., Svendby T., Graversen R., & 
Holmén K., 2019. Springtime nitrogen oxides and tropospheric ozone in Svalbard: results 
from the measurement station network. Manuscript ready 

The work on Paper III has been managed by the main author. The contribution of each of the 
authors listed above is stated in the Table 4Table 1. 

The importance of long-range transported NOx for springtime O3 chemistry in the Arctic has 
been stated in several papers (Beine, Jaffe, Herring, et al., 1997; Beine, Jaffe, Stordal, et al., 
1997; Custard et al., 2015). However, only few studies investigate the relationship between 
NOx and O3 near the pollution sources within the Arctic (Beine et al., 1996; Custard et al., 
2015). Furthermore, the emissions from snowmobile traffic in Svalbard have not been 
studied until present time. Paper I underlined the necessity of local measurements in 
Longyearbyen and Barentsburg. In Paper II, the role of complex topography and local 
micrometeorological processes in creating the difference in concentrations of measured 
compounds at the two stations located at the distance of two kilometres from each other 
and at different altitudes have been discussed. 
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Table 4 Authors contributions in Paper III 

The authors contributions D.A. H.M. N.A. H.O. S.T. G.R. H.K. 
Conception +      + 
Design +      + 
Literature review +       
Supervision +       
Funding / materials + + + + +  + 
Data collection + + + + +   
Data processing +  + + +   
Analysis and results interpretation +  +  + +  
Writing + +    + + 
Critical review  +    + + 

The measurements in Longyearbyen were financed via the Arctic field grant for which Alena 
Dekhtyareva had applied in October 2016. The project “Monitoring of nitrogen oxides from 
stationary and mobile sources at Svalbard” had been funded in January 2017. The proposal 
incorporated testing of portable NO2 sensors to monitor the emissions from snowmobiles 
and comparison of the results with the standard stationary NOx monitor. 

The mobile NO2 Cairpol sensor and Kestrel 5500 Pocket Weather Tracker were used during 
the fieldwork trip on snowmobiles to Mohnbukta organized by the UNIS course AT-831 “Arctic 
Environmental Pollution: Atmospheric Distribution and Processes” on the 05th of May 2017 
(Figure 9). Kestrel weather station has been temporarily installed in Sassendalen (001), 
Mohnbukta (002) and Koningsbergbreen (003). 

 

Figure 9 Snowmobile route produced using GPS log. The locations of Kestrel stations (001-
003) and UNIS automatic weather station (AWS) are shown by the red circles 

The Kestrel tracker has been installed on a tripod for short-term stationary measurements 
during the stops (Figure 10a). The Cairpol NO2 sensor has been attached to arm of the author 
during the snowmobile trip (Figure 10b). 
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The surface wind speed and direction depended strongly on local topographical features, 
and channelling along the glaciers and valleys has been observed. Most of elevated NO2 
values have been detected when the snowmobiles stopped at the measurement stations (up 
to 24 ppb), while concentrations of the measured compound have been low during the ride 
(0 ppb). 

(a) 

 

(b) 

 

Figure 10 a) Kestrel station installed in Mohnbukta; b) project manager Alena Dekhtyareva 
with Cairpol NO2 sensor attached to the arm to measure NO2 concentration during the field 

trip 

Negligible concentrations of NO2 have been observed during the ride most probably because 
NO is formed first in the process of fuel combustion, and then it is further converted to NO2 

(Seinfeld and Pandis, 2006). The conversion rate depends on the concentration of NO, 
therefore, when several snowmobiles stop simultaneously, NO accumulates and we can see 
the production of NO2. The snowmobile with the sensor has been the second from the end in 
the motorcade of 13 snowmobiles, therefore the air polluted by the emissions from the 11 
snowmobiles, which arrived first, has been sampled. 

The measurement results obtained from the portable sensors have not been included in the 
Paper III, since the in-situ calibration with the stationary NOx monitor showed very low 
correlation between the two instruments (r=0.22, p=0.003). The Cairpol NO2 sensor 

Cairpol 

NO2 

sensor 
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underestimated the concentrations measured at UNIS during the case study when the ships 
have been near the port of Longyearbyen. The 1-minute NO2 concentrations detected by the 
stationary NOx monitor have been up to 26.7 ppb, while Cairpol sensor showed 0 ppb during 
the whole time of calibration with only three 1-minute values of 1 ppb. 

While the portable sensor data are not valid for publication, the measurement results 
obtained from the stationary NOx monitor are included in Paper III where they are combined 
with the data from Ny-Ålesund and Barentsburg. 

The main aim of Paper III is to analyse NOx and O3 observations from the three Svalbard 
settlements, Ny-Ålesund, Longyearbyen and Barentsburg, in order to study the spatial 
variability in the concentrations of measured compounds and the effect of emissions from 
various local sources on the measurement results. Synoptic and micrometeorological 
conditions affecting the values of observed compounds have been studied using the ERA5 
reanalysis dataset, ground-based observations and radiosonde soundings from Ny-Ålesund. 

The NOx concentrations in the three settlements are mostly influenced by the local 
atmospheric circulation controlling the frequency of transport of polluted air masses from 
the local sources to the measurement stations. However, the synoptic-scale situations, 
which promote light winds conditions and formation of temperature inversions, decrease 
the efficiency of dispersion of local pollutants in the ABL and increase the concentration of 
NOx at all stations. In addition to influence from the snowmobile and power plant emissions 
in Longyearbyen, elevated concentrations of NOx have been detected when ships have been 
near the harbour and further investigation of the effect of ship emissions on the air quality in 
town has been recommended. 

In contrast to NOx, the local emission sources in Barentsburg and Ny-Ålesund affect the O3 
values insignificantly, and the concentrations are controlled by the prevailing synoptic-scale 
situation and long-range transport of air masses. Several cases of transport of O3 depleted 
and enriched air masses have been described and studied with the help of HYSPLIT air mass 
trajectories. 

The main weakness of the study has been the absence of measurements of halogenic 
species and VOCs playing important role in both O3 and NOx chemistry in the Arctic. For 
example, Custard et al., 2015 performed comparison of measurements and modelling of O3 
depletion events in low and high NOx environments and revealed decreased O3 net loss rate 
in high NOx environments due to reactions with BrO. However, no such effect has been 
noticed on the O3 concentrations measured during the O3 depletion events in Ny-Ålesund 
and Barentsburg studied in Paper III, where only titration of O3 with NO has been 
pronounced. The modelling of O3/NOx species could have been done in Paper III as well. 

The paper uses outdated emission data from Vestreng, Kallenborn and Økstad, 2009. The 
only newer data available is yearly reported emissions from the coal power plants in 
Longyearbyen and Barentsburg published at the https://www.norskeutslipp.no/. However, 
there is no newer data about local emissions from ships, snowmobiles and generators in all 
three settlements. If these data would have been available, the local flux of NOx in Svalbard 
could have been compared to the horizontal flux of long-range transported NOx coming to 

https://www.norskeutslipp.no/
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Svalbard. Then the performed NOx measurements could have been used to correct the 
emissions estimates. 

In addition to this, the precise estimations of the variability in local emissions in 
Longyearbyen and Barentsburg are needed. For example, it is unclear if the diesel generator 
has been working 16.05.2018 during the case study in Longyearbyen, but there is no publicly 
available information on it. 

There have been particular observational challenges in this study, which add some 
uncertainty to the interpretations of the measurement results: NOx and O3 monitors have 
been located at different places in Ny-Ålesund, NOx monitor in Barentsburg has not been 
calibrated in the same manner as in Ny-Ålesund and Longyearbyen, and there have been no 
O3 measurements in Longyearbyen. These issues have been taken into consideration in the 
process of preparing of the fieldwork to collect summer data in 2018 utilized in Paper IV. 

3.4 Paper IV 

Dekhtyareva A., Drotikova T., Nikulina A., Hermansen O., Chernov D.G., Mateos D., Herreras 
M., Petroselli C., Ferrero L., Gregorič A., 2019. Summer air pollution in Svalbard: emission 
sources, meteorology and air quality. Manuscript ready 

The work on Paper IV has been supervised by the main author. The contribution of each of 
the authors listed above is stated in the Table 1Table 5. 

Table 5 Authors contributions in Paper IV 

The authors 
contributions 

D.A. D.T. N.A. H.O. C.D.G. M.D. H.M. P.C. F.L. G.A. 

Conception +          
Design +          
Literature 
review 

+          

Supervision +          
Funding / 
materials 

+ + + + + + + + + + 

Data collection + + + + + +  +  + 
Data processing + + + + + + + +  + 
Analysis and 
results 
interpretation 

+ + +   + + + + + 

Writing + +    +     
Critical review  +    +  + + + 

The importance of summertime NOx observations in Longyearbyen to quantify the influence 
of ships emissions on the local air quality has been defined in Paper III. Thus, to perform the 
measurement campaign there and compare the data with measurements in Ny-Ålesund and 
Barentsburg, application for the project “Strengthening cooperation on air pollution 
research in Svalbard” had been sent by the author of the current work to the Research 
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Council of Norway in November 2017. The pilot study in Longyearbyen was incorporated in 
the project proposal for the Svalbard Strategic Grant and was funded in January 2018. 

As a result, a ground-based measurements have been performed at UNIS and tethered 
balloon meteorological and BC soundings in Adventdalen valley in the period from June to 
August 2018. The BC, SO2, NOx, O3 and atmospheric optical depth (AOD) observations from 
Longyearbyen have been compared with the data from Barentsburg and Ny-Ålesund. The 
data from airborne measurements from Adventdalen have been compared with the 
radiosonde soundings from Ny-Ålesund. 

Significant increase of SO2 and NOx concentrations and decrease of tropospheric O3 values 
have been observed due to ship traffic emissions in Longyearbyen and Ny-Ålesund. In 
Barentsburg, the coal power plant has the most significant impact on the air quality, and at 
times, the pollution level exceeds Norwegian and Russian air quality standards. Long-range 
transport events have been identified using CO and O3 data from the Zeppelin station and 
AOD values from Ny-Ålesund. It has been observed that warm air advection from mid-
latitudes to Svalbard brings air enriched in O3 and CO in summer, but it also creates strong 
temperature inversions, beneath which air pollution from the local sources may be trapped 
and higher concentrations of BC may accumulate. 

In addition to the hourly SO2, NOx, BC and O3 observations in Longyearbyen, daily filter 
samples for PAH analysis have been collected there. The selection of the samples for analysis 
based on the daily BC concentration has been determined by the fact that PAHs are both 
precursors for soot formation in the fossil fuel burning process and may be further absorbed 
by the combustion particles. Firstly, the fuel is pyrolyzed and/or oxidized into hydrocarbon 
molecules with lower number of carbon atoms such as acetylene and PAHs. Secondly, these 
gas molecules are polymerized to produce larger PAHs molecules, and when the 
concentration of these reaches its peak values, soot nuclei may form as a result of reactive 
collisions between these molecules. Thirdly, the growth of soot nuclei continues until they 
exceed 10 nm in diameter and start to coagulate and form chain-like structures. When the 
combustion products cool down, the PAHs are effectively absorbed by the soot particles and 
may accumulate in high quantities (Seinfeld and Pandis, 2006). 

The dominating PAH compound measured in the filters in Longyearbyen in summer has been 
naphthalene. This result may be partly influenced by the selection of samples collected in 
the days with highest BC concentrations. Fuels with high naphthalene content have higher 
sooting tendency (Seinfeld and Pandis, 2006), and therefore there is a natural prerequisite to 
occurrence of higher naphthalene content in the samples when the concentration of BC, a 
main component of soot, has been higher. At the same time, naphthalene accumulating on 
the soot particles may be both from surviving combustion and formed pyrosynthetically 
(Rhead and Pemberton, 1996). 

The PAHs and BC measurements from Ny-Ålesund have not been available at the time of 
working on Paper IV, therefore concentrations of these compounds have not be compared 
with the data from Longyearbyen. 

Airborne observations performed during the fieldwork in 2018 allowed identifying how 
different weather regimes affected the stratification of the ABL in Adventdalen and Ny-
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Ålesund and BC concentration in the profiles. However, more detailed analysis of the BC 
profiles and classification on different profile types could have been done as in the work of 
Ferrero et al., 2016. 

Several portable sensors have been used during the field campaign in Longyearbyen: 
MiniDISC particle counter, Kestrel 5500 weather tracker and AE51 microaethalometer. 

The performance of the Kestrel 5500 weather tracker has been assessed in-situ using the 
data from the Onset AWS installed at the UNIS roof. 1-minute Kestrel data have been 
averaged to the 12-minute sampling interval of the UNIS AWS. The two meteorological 
parameters, which have been used the most in Paper IV, are wind speed and temperature. 
The comparison of the data from two portable sensors (serial numbers: 17 and 15) with the 
data from the AWS is shown in Figure 11a) and Figure 11b), respectively. 

(a)       (b)

 

Figure 11 Comparison of Kestrel and AWS data and correlation coefficients for the: a) wind 
speed; b) air temperature 

One can see that the correlation between the data from the Kestrel trackers and AWS is very 
strong. While the measurement accuracy varies from -3.1 m∙s-1 to 4.2 m∙s-1 and from -7 m∙s-1 

to 3.8 m∙s-1 for Kestrel 17 and Kestrel 15 trackers, respectively, the median difference in wind 
speed between the data from the portable sensors and AWS has been -0.12 m∙s-1 and on -
0.16 m∙s-1 for Kestrel 17 and Kestrel 15 trackers, respectively. This result is close to the 
instruments accuracy of 0.1 m∙s-1. However, it worth to note that the median 
underestimation of the wind speed by both portable sensors is ~0.2 m∙s-1 under low wind 
speed conditions (<2 m∙s-1), and sensors performance improves when the wind speed is 
above 2 m∙s-1. The precision of the measurements in terms of standard deviation is 1.9 m∙s-1 
for the Kestrel sensors and 1.6 m∙s-1 for the AWS. The measured accuracy of the 
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temperature sensors varied in the range of -1.0 ℃- 5.8 ℃ and -0.79 ℃- 16.2 ℃ for Kestrel 17 
and Kestrel 15, respectively, with median values of 0.18 ℃ for both Kestrel sensors, which is 
within the accuracy range stated in the Table 1. The observed warm bias may be reduced by 
the shielding of the portable sensors from the sun, however, then it may be challenging to 
keep the wind measurements unobstructed in this case. The precision of temperature 
measurements is ±2.0 ℃, ±1.9 ℃ and ±1.9 ℃ for Kestrel 17, Kestrel 15 and AWS, 
respectively. 

Unfortunately, no stationary particle counter has been installed in Longyearbyen to compare 
its data with MiniDISC measurements, since the MiniDISC sensor has been not planned to be 
used in the campaign. The sensor has been offered for the tethered balloon measurements 
in addition to AE51 by the project partners during the fieldwork. 

The performance of the microaethalometer AE51 is discussed in the Discussion part of Paper 
IV. 

Different types of the ship traffic data have been available for Paper I, II and IV. In the first 
two papers, the port calls in Ny-Ålesund have been registered manually by the harbour 
authorities in Ny-Ålesund and the number of passengers has been indicated. In the last 
paper, the ship traffic log has been based on the automatic identification system data 
reported to the marinetraffic.com where the gross tonnage (GT) for most of the ships may 
be found as well. However, the number of passengers has not been available in 2018. The 
difference between the approaches to the ship traffic analysis makes it challenging to 
compare the absolute influence of the ship traffic on the concentrations of SO2 and NOx in 
2009, 2010 and 2018. In addition to this, in Paper I only passenger ships are taken into 
account, while in Paper IV all ships with the GT>100 are considered. Another difference is 
that only ships registered in the Ny-Ålesund port log obtained from marinetraffic.com have 
been considered in 2018, while ships anchored in the fjord have not been taken into 
account. 

Furthermore, in Paper I only values of SO2 and NOx above LD=0.4 ppb are considered. If we 
use all the summer data from 2008, 2009 and 2010 including those below LD as it is done in 
Paper IV, we will see much stronger influence of ships emissions: increase of mean SO2 
values on 59% and increase of mean NOx values on 28%, and the result will be comparable 
with the data presented in Paper IV. 

The comparison of summer concentrations (July and August) in 2009, 2010 studied in Paper I 
and 2018 using the WRS-test reveals significant reduction in concentrations of SO2 and NOx 
in Ny-Ålesund in 2018. However, the median wind speed has been slightly higher in 2018 
(2.1 m∙s-1) than in 2009 (1.7 m∙s-1) and 2010 (1.9 m∙s-1), thus the dispersion of local pollution 
might have been more efficient in 2018. 

The highest median NOx concentrations were observed in 2010, when north-westerly wind 
has been detected more often than in other two years (Figure 12a), while the highest mean 
concentrations were observed in summer 2018. This may indicate, that the emissions from 
sources located to the north from the station increased although they do not affect the 
median summer concentrations strongly due to prevailing south-easterly wind (Figure 12a). 
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Indeed, the mean concentration of NOx coming from northerly direction increased from 32.0 
µg∙m-3 in 2009 to 54.4 µg∙m-3 in 2018 (Figure 12b). 

(a) 

 

(b) 

 

Figure 12 a) Summer wind roses for 2009, 2010 and 2018; b) NOx concentration averaged 
over wind directions for 2009, 2010 and 2018 

Although, in Paper IV we assume that the emissions from the diesel generator in Ny-Ålesund 
have not changed significantly since 2013, one can see that the concentrations of NOx 
observed when the wind was coming from the north were higher in summer 2018 than in 
summer 2010 and 2009 even in absence of ships (Figure 13a). This means that updated 
information about emissions from the power plant is needed, and the reduction of emissions 
may be recommended to decrease the disturbance of atmospheric measurements in the 
settlement as it has been stated in previous reports (Shears et al., 1998; Sander, Holst and 
Shears, 2006; Sander, 2014). The mean concentrations of SO2 for the hours when the ships 
were present in Ny-Ålesund reduced from 0.38 µg∙m-3 and 0.28 µg∙m-3 in 2009 and 2010, 
respectively, to 0.16 µg∙m-3 in 2018 probably due to the restrictions on use of heavy fuel oil 
in Ny-Ålesund since 2015. However, the change in distribution of average SO2 concentrations 
over wind directions may be noticed in 2018 indicating a possible new source of SO2 located 
to the south-west from the measurement station (Figure 13b). This needs to be investigated 
further. 
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(a) 

 

(b) 

 
Figure 13 NOx (a) and SO2 (b) concentrations (µg∙m-3) averaged over wind directions in 

presence and absence of ships in July and August 2009, 2010 and 2018 

3.5 Summary of the appended papers 

Table 6 describes how the appended papers address the research questions stated in the 
current study with weakest relationship denoted by “+”sign and strongest by the “+++” sign, 
respectively. Although the thesis focuses on four different SLCFs measured in the three 
Svalbard settlements, only Paper IV intends to cover the whole range of compounds on all 
measurement sites. This is because the studies in Longyearbyen have been done with an 
external financial support that has been received in the third year of the current PhD project. 

Table 6 Appended papers addressing the research questions  

Paper Measurement sites Compounds Research questions 
1 2 3 4 5 

I Ny-Ålesund SO2, SO42-, NOx +++ 
 

++ + + 
II Ny-Ålesund SO2, SO42- +++ 

 
+ +++ ++ 

III Ny-Ålesund, Longyearbyen, 
Barentsburg 

NOx, O3 ++ +++ + ++ ++ 

IV Ny-Ålesund, Longyearbyen, 
Barentsburg 

SO2, NOx, O3, BC ++ +++ +++ +++ +++ 

Paper I studies the seasonal evolution of SO2, NOx and particle concentrations and indicates 
different remote and local sources, which may affect the concentrations, measured in the 
settlement. Paper II compares the filter data obtained at two different elevations and 
studies the processes which may cause discrepancies between the two datasets in different 
seasons. The long-term measurements have been analysed in both papers, and thus, they 
can answer to the research question 1 about the seasonal and daily variation in the pollutant 
concentrations. 
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However, Paper I and II are based on the data from one measurement site, Ny-Ålesund; 
thus, they cannot answer to the research question 2 and describe how the pollutant 
concentrations vary spatially between the three main Svalbard settlements. Paper III and IV 
are based on short-term measurement campaigns, which capture particular atmospheric 
composition and meteorological events present during the measurement periods in spring 
2017 and summer 2018. The advantage of the field observations has been that higher spatial 
data coverage has been obtained with three stations around Svalbard. Thus, the research 
question 2 could be answered only in Paper III and IV. On the other side, the total duration 
of the measurements has been short, around two months for the data presented in each of 
the papers. Therefore, the last two papers are to a lesser extent related to the research 
question 1 since only daily and diurnal variation in the pollutant concentrations have been 
studied due to the short fieldwork period. 

Research question 3 about the current influence of ship traffic on air quality in Svalbard 
settlements is touched in all papers, however, only Paper IV focuses on the impact on all 
SLCFs concentrations in both Ny-Ålesund and Longyearbyen. 

All papers study the effect of different meteorological phenomena on the ground-level 
concentration of measured compounds, but only Paper II and IV additionally analyse the 
impact of microscale and synoptic scale meteorology on the vertical distribution of air 
pollutants in the ABL and addressed the research question 4 to a higher extent. 

Data obtained using different measurement techniques is analysed in the papers, and all of 
them to some extent describe the advantages and disadvantages of different methods, 
however, broader variety of methods has been assessed in Paper IV, thus the relationship of 
this paper to the research question 5 is stronger. 
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4. Research contributions and suggestions for future work 

4.1 Research contributions 

Svalbard is a unique laboratory for environmental studies. Despite its remote location, the 
consequences of the changes in mid-latitude emissions and global climate are dramatic 
there. In addition to this, its near-pristine environment is affected by increasing amount of 
anthropogenic activities in the Arctic region. Studies of changes in both local and long-range 
transported air pollution performed in Svalbard are of high importance since it is a harbinger 
of the changing Arctic. 

The current work focuses on measurements in Svalbard in all seasons, and hereby provides 
the opportunity to study the seasonality of air pollution varying due to long-range transport 
patterns, atmospheric chemistry and intensity of local emissions in the major settlements. 
The main emission sources in Svalbard are local power plants, however, substantial 
additional deterioration of the air quality by ship emissions has been revealed in Ny-Ålesund 
and Longyearbyen. The data from chemical observations performed in the current study 
under different meteorological conditions can be used to understand the environmental fate 
of air pollutants better and can be applied to model their future concentrations due to 
alterations in long-range transport patterns, local emissions, synoptic-scale conditions and 
micrometeorology. 

As it is illustrated in the Table 6, the four appended papers address the five research 
questions stated in the chapter 1 of the current thesis in a specific way. The main findings 
from the papers giving summarized answers to the research questions are presented in the 
current chapter. The following subchapters are dedicated to each of the research questions. 

4.1.1 Causes of the pollutant concentrations variation on a different temporal scale 

The seasonality of sulphur species and NOx concentrations in Ny-Ålesund is investigated in 
Paper I and Paper II. The findings confirm the results from previous studies (e.g. 
Heintzenberg and Leck, 1994) showing that the highest concentrations of SO2 and XSO4

2- are 
observed in winter and spring when the long-range transport of air pollution to Svalbard 
prevails, however, in Paper I, specific attention is given to possible pollution transport from 
regional sources in Longyearbyen in these seasons. This is due to the prevailing SE-wind 
direction observed there in this time of year. In addition to this, high NOx concentrations 
were observed in Ny-Ålesund in winter even in absence of long-range transported pollution 
indicating importance of local emissions. 

The two papers also show that there is a seasonal variation in local wind speed and 
direction. In summer, in contrast to other seasons, the onshore wind direction in Ny-Ålesund 
and Longyearbyen is more frequently observed. This creates conditions favourable for 
transport of the air masses influenced by the marine traffic and biogenic emissions to the 
measurement stations. At the same time, low wind speed conditions reduce the efficiency of 
mechanical mixing of the ABL and promote accumulation of local pollution in the 
settlements. Indeed, the comparison of NO and NO2 observations from Ny-Ålesund studied 
in Paper III and Paper IV revealed that the summer median levels of these compounds are 
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more than two times higher than the spring ones. However, as it is shown in Paper II, mixing 
height obtained from the radiosonde soundings in Ny-Ålesund has often been lower than the 
altitude of Zeppelin observatory. This indicates that the chemical measurements performed 
there are less influenced by the local summer emissions than the sea-level station in the 
settlement. 

The daily variations in SO2 and XSO42- concentrations at both stations depend on the source 
region of the air masses arriving to Svalbard. The most polluted air masses have been 
brought from the east and south-east in winter and spring. According to the spring and 
summer tethered balloon measurements performed by Ferrero et al., 2016, the aerosols are 
often inhomogeneously distributed in the ABL in Ny-Ålesund. The soundings represent the 
aerosol profile structure at the time of observations; however, diurnal evolution of the ABL 
structure is unknown. In contrast, the high-volume air sampling comprises continuous 
accumulation of particles and gases in the filter. The comparison of the filter data in Ny-
Ålesund performed in Paper II indicates that the layering effect is persistent on a daily scale, 
and there is a difference in the concentration of daily samples collected at different 
elevations in the settlement. For example, in days with strong humidity inversion in spring 
when the moist marine air has arrived to Ny-Ålesund, the concentrations of non-sea salt 
sulphate have been lower at the sea-level station than at the Zeppelin mountain 
observatory. In summer, there is also day-to-day variation in the intensity of local shipping 
emissions in Longyearbyen and Ny-Ålesund and in the efficiency of pollution dispersion. In 
the days with strong temperature inversions such that occurred in summer 2018 due to 
transport of extremely warm air masses from Scandinavia to Svalbard, the highest 
concentrations of BC and NO2 have been observed in Longyearbyen. 

The diurnal variation of concentrations in Ny-Ålesund, Longyearbyen and Barentsburg is 
studied in Paper III and Paper IV. The concentrations of NOx and SO2 have increased in the 
daytime and decreased in the nighttime following the diurnal variations of the 
anthropogenic activities in the three Svalbard settlements, while the concentrations of O3 
have shown significant daytime O3 titration with NOx only in Longyearbyen indicating that 
the emission quantities of nitrogen oxides are higher there. 

In summary: There is a strong seasonality in long-range transport of air pollution to Svalbard 
with peak concentrations of sulphur compounds observed in winter and spring. However, it 
has also been shown that the local emissions have a pronounced seasonal and diurnal 
pattern as well. In summer, the ship traffic emissions have significant influence on the air 
quality in Longyearbyen and Ny-Ålesund. Moreover, median wind speed is lowest in 
summer, which reduces the ABL mixing, promotes accumulation of locally emitted pollution, 
and creates discrepancies in the filter measurements obtained at two heights in Ny-Ålesund, 
at the sea-level station and at the Zeppelin mountain observatory. 

4.1.2 Spatial variation of the pollutant concentrations between the three main Svalbard 
settlements 

The springtime and summertime spatial variation of the pollutant concentrations between 
Ny-Ålesund, Longyearbyen and Barentsburg is studied in Paper III and Paper IV, respectively. 
The concentrations of SLCFs in Svalbard settlements depend on the long-range transport of 
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air pollution, intensity of emissions from local stationary and mobile sources and local 
meteorological conditions. The main challenge for the comparison of the data from the 
three settlements is the usage of different instrumentation and calibration routine. Similar 
equipment has been used in Longyearbyen and Ny-Ålesund. The instruments have been 
calibrated at the same laboratory at the Norwegian Institute for Air Research before 
transportation to Svalbard, and the same sampling and zero and span calibration procedure 
has been followed during the observations at the both sites. In contrast, different monitors 
are deployed in Barentsburg and the in-situ calibration routines and calibration frequency 
are different. The transportation of calibration SO2 and NO gases by boat from Longyearbyen 
to Barentsburg presents a logistical difficulty. Thus, in this settlement, the in-situ span 
calibration with the standard gases used in Longyearbyen has been done by the UiT 
personnel only once in the summer field campaign 2018. During that calibration procedure 
an overestimation of the SO2 and NO concentrations by 22% and 30%, respectively, has been 
revealed. Normally, if the calibration period is one week as it has been in Ny-Ålesund and 
Longyearbyen, the data may be scaled linearly according to the values obtained in the span 
and zero check. This has not been done with the Barentsburg data as only one reference 
point was obtained. This surely affects the measurement results, thus the direct comparison 
of the concentration magnitude at the three sites is challenging. However, one can compare 
the NOx, SO2 and O3 values from Ny-Ålesund and Longyearbyen presented in Paper IV. In Ny-
Ålesund, median summertime NO and NO2 values have been approximately 6 and 9 times 
lower, accordingly, than in Longyearbyen. In this settlement, the pronounced titration of O3 
with NOx resulted in reduction of median O3 concentrations by 12% from the median 
background value observed at the Zeppelin station. Median and mean SO2 values in 
Longyearbyen have been much higher than in Ny-Ålesund, but the air quality standards have 
not been exceeded in any of the two settlements. In contrast, the highest median SO2 values 
were detected in Barentsburg and extremely high concentrations of this compound were 
observed there on the 10th of July 2018. If we take into account possible overestimation of 
the concentration by the monitor, the recalculated average SO2 value for that day would be 
119 µg∙m-3, which is 88 times higher than the maximum daily value detected in Ny-Ålesund. 
Thus, further follow-up air quality studies with standardized calibration routine are urgently 
needed in Barentsburg. 

In summary: There is a broad span of SLCFs concentrations in the three major settlements in 
Svalbard. As expected from the emission inventories presented in Paper IV, the lowest 
median concentrations of SO2 and NO have been detected in Ny-Ålesund, intermediate in 
Longyearbyen and highest in Barentsburg. However, the median BC values in Barentsburg 
are lower because the car traffic is less intensive and the wind flow bringing pollution from 
the local coal power plant is less frequent there than in Longyearbyen. The highest mean 
values of SO2, NO and BC were observed in Barentsburg. However, additional long-term 
studies with well-established measurement and calibration routines are needed to assess 
the frequency of occurrence of extremely high SLFCs concentrations there. 

4.1.3 Influence of ship traffic on air quality in Svalbard settlements 

The analysis of the port call data performed in Paper IV revealed that marine traffic 
emissions significantly increase concentrations of SO2 and NOx in Ny-Ålesund and 
Longyearbyen. The concentrations of PAH and BC have increased due to ship emissions in 
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Longyearbyen as well. Moreover, the magnitude of total PAH concentrations has correlated 
positively with the ship size. A slight O3 titration with NOx in Longyearbyen and Ny-Ålesund 
has been observed in the period of two hours before arrival to two hours after departure of 
the ships with total gross tonnage exceeding 100. In Paper I and Paper II, significant 
influence of ships emissions on the concentrations of SO2 and XSO42- in filter samples 
collected in Ny-Ålesund and XSO42- and particles with diameter from 50 to 100nm observed 
at the Zeppelin station has been revealed. 

In summary: The impact of ship emissions on air quality in Svalbard settlements is 
pronounced in summer. This is revealed for all range of SLCFs studied in the current work as 
well as for the concentrations of particles and PAH. Since the efficiency of the ABL 
ventilation is lowest in summer, the influence on air quality is proportional to the ship size 
and total number of ships. Thus, the ship traffic restrictions limiting the total number of 
ships of a specific size visiting port simultaneously are efficient measures, which could be 
applied in future to reduce the SLCFs concentrations in this season. 

4.1.4 Meteorological phenomena affecting the ground level concentration of measured 
compounds and their vertical distribution in the ABL 

As it is stated in Paper III and Paper IV, the ground-level concentrations of SO2, NOx and BC 
depend strongly on prevailing wind direction at each of the measurement locations. Due to 
topographic channelling of the wind along the fjords and valleys, elevated pollution levels 
may be observed in one of the Svalbard settlements and absent in others under the same 
synoptic weather conditions. At the same time, low wind speed and temperature inversions 
are the conditions promoting accumulation of air pollutants in the ABL at all stations. 

In Paper III, it is observed that the concentrations of NOx have been higher in calm and cold 
days due to radiative temperature inversions and supressed ABL mixing in spring. In 
contrast, higher concentrations of O3 have been observed in Barentsburg and at the Zeppelin 
station when warmer air masses have been transported from mid-latitudes to Svalbard, 
meanwhile colder air arriving from the north has been depleted in O3. 

In Paper II, strong seasonality in correspondence between the SO2 and XSO42- data obtained 
at two heights in Ny-Ålesund is revealed due to influence of local micrometeorological 
conditions. The lowest correlation between the two datasets is observed in summer due to 
insufficient mixing of the ABL and additional local ground-level emissions from the ship 
traffic. 

The tethered balloon measurement results presented in Paper IV, revealed cases of 
insufficient ABL ventilation and pollution accumulation in Longyearbyen in days when the 
temperature inversions occurred due to advection of warmer air masses from mid-latitudes 
to the archipelago. During these events, the background concentration of O3 has increased 
as well due to long-range transport of air pollution. The frequency of occurrence of such 
events in summer needs to be investigated and taken into account along with the 
development of shipping emissions in the Svalbard zone. 
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In summary: The long-range transport events, topographic wind channelling, temperature 
inversions due to radiative surface cooling in winter and spring, and advection of warmer air 
masses from mid-latitudes to Svalbard in summer are the factors affecting the ground level 
concentrations of SLCFs and their distribution within the ABL. 

4.1.5 Advantages and disadvantages of usage of different measurement techniques for air 
pollution monitoring in the Arctic 

Additional practical achievements of this study are testing of portable and conventional 
sensors for meteorological and chemical observations in the Arctic environment and attempt 
to create a measurement network in Svalbard by combination of the data from existing 
research stations, Ny-Ålesund and Barentsburg, and establishing of new temporal station in 
Longyearbyen for spring and summer measurements in 2017 and 2018, respectively. 

Conventional measurement techniques such as high volume filter samplers, gas monitors 
and aethalometers have been widely used for the air quality studies and monitoring of long-
range transported pollution. Thus, the stations where these instruments are deployed may 
be easier included in an observational network, the information about the instruments’ 
performance under different environmental conditions is available, and there is plenty of 
reliable reference measurements to compare with. 

However, the usage of conventional ground-based and airborne instruments has a number 
of disadvantages. A common issue for all ground-based gas monitors and aethalometers are 
restrictions regarding the location of the measurement station. There should be a 
continuous and reliable power supply and the instruments must be installed in a heated 
room with inlets placed outside of the window or secured on the roof. Thus, these 
measurement techniques allow observations of the SLCFs concentration only in one location 
and at one vertical level. Sun photometer data contain information about aerosol content in 
the air column above the station, but the frequency of valid observations is low due to 
cloudy conditions often observed in summer in the Arctic. Tethered balloon observations 
allow receiving valuable data about vertical variation in particle concentration and 
meteorological parameters, but the measurements are time-consuming, and, due to 
weather and aircraft traffic restrictions, there is rarely a possibility to perform more than 
one up and down sounding per day. The radiosonde and ozone sonde measurements are 
less time-consuming, but much more costly, thus the frequency of observations is normally 
daily and weekly, respectively. 

High LD is a common issue for both conventional measurement techniques such as 
stationary SO2 and NOx monitors and filter sampling described in Paper I and Paper II, 
respectively, and portable sensors, NO2 electrochemical sensor and microaethalometer used 
in work on Paper III and Paper IV, accordingly. This problem may be solved using zero- and 
span-calibration for the stationary monitors and setting longer sampling time for filters and 
aethalometers. However, further development of reliable portable sensors with high 
temporal resolution of measurements is needed for applications in airborne observations 
and creating a network of stations equipped with the low-cost instruments. In addition to 
this, the in-situ assessment of the performance of these new monitors is needed in the 
Arctic. 
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In summary: There are advantages and disadvantages of various measurement techniques 
used for air pollution measurements in the Arctic. Thus, to combine different methods and 
study concentrations of different SLCFs simultaneously at different locations and altitudes, 
an international cooperation and joint field campaigns, such as the pilot study performed in 
summer 2018 in Svalbard, are needed. This allows setting the measurement results in a 
broader perspective and permits investigation of the state of environment on a regional 
scale. However, such extensive studies with conventional monitors are costly and need 
external financial support. Therefore, further development of reliable portable low-cost 
sensors would allow for increasing the number of observations at different locations in the 
region. In this case, the measurements could be included in various educational and 
scientific activities routinely performed at UNIS and research stations around Svalbard. 

4.2 Suggestions for future work 

The meteorological data from daily tethered balloon soundings performed in Longyearbyen 
in 2018 may be combined with continuous LIDAR observations performed in Ny-Ålesund to 
study the effect of temporal evolution of the ABL height on the concentration of air 
pollutants in Longyearbyen and Ny-Ålesund. 

There is a great interest in the scientific community in combining the studies of the 
atmosphere by means of airborne instruments and high-resolution models as they give 
insight into lower atmosphere layers that are not monitored by the ground-based stations 
(Kral et al., 2018). The radiosonde measurements are routinely used to supply vertical data 
for the numerical weather prediction models; however, the temporal and spatial resolution 
of these measurements is poor. Recently several campaigns have been performed in the 
polar regions using tethered balloon and Unmanned Aerial Vehicles (UAVs) for 
meteorological and aerosol measurements (Argentini et al., 2003; Vihma et al., 2011; 
Jonassen et al., 2015; Moroni et al., 2015; Kral et al., 2018; Leibniz Institute for Tropospheric 
Research (TROPOS), 2018). The aerosol and turbulence data from the airborne instruments 
are unique, since they allow to observe local phenomena at high temporal resolution and 
assess the capability of the large-scale model to reproduce processes important for the 
environmental fate of air pollutants (Bärfuss et al., 2018; Kral et al., 2018; Leibniz Institute 
for Tropospheric Research (TROPOS), 2018). However, although some tests on the 
performance of the portable environmental sensors in Svalbard have been done in the 
current work, further investigations are needed with more frequent inter-calibration in-situ 
measurements at different concentrations and ambient conditions in order to use the low-
cost sensors for airborne measurements described above. 

In addition to this, unified approach to the analysis of the ship traffic data is needed to 
assess the evolution of impact from ship emissions on the concentrations of measured 
compounds in all three settlements. Besides, the emissions from ship traffic around Svalbard 
may cause diffuse signal in measurements at the stations due to more diluted 
concentrations of air pollutants, which may mimic long-range transport events in summer. 
There have been a number of ship-based campaigns performed at the research vessel 
Oceania (Ferrero et al., 2019). The data from these campaigns may be compared with the 
long-term homogeneous ship traffic dataset for the Svalbard zone that may be obtained for 
research purposes from the Norwegian Coast Guard. Analysis of this dataset together with 
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the data from research cruises would allow estimating the contribution of marine traffic to 
the background concentrations of air pollutants in the Arctic. 

Long-term measurements in the Arctic emission hot spots such as Barentsburg and plume 
modelling for different atmospheric conditions are needed to put these observations into a 
broader perspective. The local emissions of air pollutants in the Arctic are expected to rise 
with increasing industrial activity, however, the pollutants’ lifetime may be decreasing at the 
same time due to ongoing changes in environmental conditions such as increased air 
temperature and humidity. High-resolution plume and deposition modelling may be 
performed to define where the local pollutants from ships and power plants are transported 
and deposited. 

There is an established system for long term monitoring of air quality in Ny-Ålesund, 
however, no modelling of air quality has been applied (Sander, 2014). According to the 
strategy proposed by the Research Council of Norway for further development of Ny-
Ålesund (The Research Council of Norway, 2019), there is an intent to make it “a world 
leading observation and research platform for natural sciences”. Thus, both the Norwegian 
and international research projects would benefit from open access high-resolution 
modelling system for air quality with coupled chemistry and meteorology that would allow 
to correct the atmospheric measurements performed in the settlement and facilitate 
scientific activities. 

  



42 
 

  



43 
 

References 

Alexander, B. and Mickley, L. J. (2015) ‘Paleo-Perspectives on Potential Future Changes in the 
Oxidative Capacity of the Atmosphere Due to Climate Change and Anthropogenic Emissions’, 
Current Pollution Reports, 15(2), pp. 57–69. doi: 10.1007/s40726-015-0006-0. 

AMAP (1998) AMAP Assessment Report: Arctic Pollution Issues. Oslo, Norway. 

AMAP (2006) AMAP Assessment 2006: Acidifying Pollutants, Arctic Haze, and Acidification in 
the Arctic. Oslo, Norway. 

Argentini, S. et al. (2003) ‘Characteristics of the boundary layer at Ny-Alesund in the Arctic 
during the ARTIST field experiment’, Annals of Geophysics, 46(2), pp. 185–196. 

Arya, S. P. (1999) Air pollution meteorology and dispersion. New York: Oxford University 
press. 

Bärfuss, K. et al. (2018) ‘New Setup of the UAS ALADINA for Measuring Boundary Layer 
Properties , Atmospheric Particles and Solar Radiation’, Atmosphere, 9(28). doi: 
10.3390/atmos9010028. 

Beine, H. J. et al. (1996) ‘Measurements of NOx and aerosol particles at the Ny-Ålesund 
Zeppelin mountain station on Svalbard: influence of regional and local pollution sources’, 
Atmospheric Environment, 30(7), pp. 1067–1079. 

Beine, H. J., Jaffe, D. A., Herring, J. A., et al. (1997) ‘High-Latitude Springtime Photochemistry 
. Part I : NOx , PAN and Ozone Relationships’, Journal of Atmospheric Chemistry, 27, pp. 127–
153. 

Beine, H. J., Jaffe, D. A., Stordal, F., et al. (1997) ‘NOx during ozone depletion events in the 
arctic troposphere at Ny-Ålesund, Svalbard’, Tellus, Series B: Chemical and Physical 
Meteorology, 49(5), pp. 556–565. doi: 10.3402/tellusb.v49i5.16008. 

Cai, J. et al. (2014) ‘Validation of MicroAeth ® as a Black Carbon Monitor for Fixed-Site 
Measurement and Optimization for Personal Exposure Characterization’, Aerosol and Air 
Quality Research, 14, pp. 1–9. doi: 10.4209/aaqr.2013.03.0088. 

Castell, N. et al. (2017) ‘Can commercial low-cost sensor platforms contribute to air quality 
monitoring and exposure estimates?’, Environment International. The Authors, 99, pp. 293–
302. doi: 10.1016/j.envint.2016.12.007. 

Chalmer, B. J. (1986) Understanding Statistics. New York, United States of America: Marcel 
Dekker Inc. 

Christopher, J. and Fast, E. (2008) The Arctic: Transportation, Infrastructure and 
Communication, InfoSeries. Parlament of Canada, Ottawa. 

Custard, K. D. et al. (2015) ‘The NOx dependence of bromine chemistry in the Arctic’, 
Atmospheric Chemistry & Physics, 15, pp. 10799–10809. doi: 10.5194/acp-15-10799-2015. 

Dahlke, S. and Maturilli, M. (2017) ‘Contribution of Atmospheric Advection to the Amplified 
Winter Warming in the Arctic North Atlantic Region’, Advances in Meteorology, 2017, p. 
Article ID 4928620. doi: 10.1155/2017/4928620. 

Dalsøren, S. B. et al. (2007) ‘Environmental impacts of the expected increase in sea 
transportation, with a particular focus on oil and gas scenarios for Norway and northwest 
Russia’, Journal of Geophysical Research, 112(D2), p. D02310. doi: 10.1029/2005JD006927. 



44 
 

Dalsøren, S. B. et al. (2009) ‘Update on emissions and environmental impacts from the 
international fleet of ships : the contribution from major ship types and ports’, Atmospheric 
Chemistry and Physics, 9(6), pp. 2171–2194. doi: 10.5194/acp-9-2171-2009. 

Dee, D. P. et al. (2011) ‘The ERA-Interim reanalysis : configuration and performance of the 
data assimilation system’, Quarterly Journal of the Royal Meteorological Society, 137(April), 
pp. 553–597. doi: 10.1002/qj.828. 

Eckhardt, S. et al. (2015) ‘Current model capabilities for simulating black carbon and sulfate 
concentrations in the Arctic atmosphere: A multi-model evaluation using a comprehensive 
measurement data set’, Atmospheric Chemistry and Physics, 15(16), pp. 9413–9433. doi: 
10.5194/acp-15-9413-2015. 

Eriksen, A. B. et al. (2012) ‘Reversible phytochrome regulation influenced the severity of 
ozone-induced visible foliar injuries in Trifolium subterraneum L.’, Plant Growth Regulation, 
68(3), pp. 517–523. doi: 10.1007/s10725-012-9729-8. 

Fan, S.-M. and Jacob, D. J. (1992) ‘Surface ozone depletion in Arctic spring sustained by 
bromine reactions on aerosols’, Nature, 359, pp. 522–524. 

Ferrero, L. et al. (2016) ‘Vertical profiles of aerosol and black carbon in the Arctic : a seasonal 
phenomenology along 2 years (2011 – 2012) of field campaigns’, Atmospheric Chemistry and 
Physics, 16, pp. 12601–12629. doi: 10.5194/acp-16-12601-2016. 

Ferrero, L. et al. (2019) ‘Chemical Composition of Aerosol over the Arctic Ocean from 
Summer ARctic EXpedition ( AREX ) 2011 – 2012 Cruises : Ions , Amines , Elemental Carbon , 
Organic Matter , Polycyclic Aromatic Hydrocarbons , n-Alkanes , Metals , and Rare Earth 
Elements’, Atmosphere, 10(54), pp. 1–32. doi: 10.3390/atmos10020054. 

Fierz, M. et al. (2011) ‘Design , Calibration , and Field Performance of a Miniature Diffusion 
Size Classifier Design , Calibration , and Field Performance of a Miniature Diffusion Size 
Classifier’, Aerosol Science and Technology, 6826(45), pp. 1–10. doi: 
10.1080/02786826.2010.516283. 

Førland, E. J. et al. (2011) ‘Temperature and Precipitation Development at Svalbard 1900 – 
2100’, Advances in Meteorology, 2011, p. Article ID 893790. doi: 10.1155/2011/893790. 

Futsaether, C. M. et al. (2015) ‘Daylength influences the response of three clover species 
(Trifolium spp.) to short-term ozone stress’, Boreal Environment Research, 20(1), pp. 90–104. 

Garrett, T. J. and Zhao, C. (2006) ‘Increased Arctic cloud longwave emissivity associated with 
pollution from mid-latitudes’, Nature, 440(April), pp. 787–789. doi: 10.1038/nature04636. 

Gibbons, J. D. and Chakraborti, S. (2003) Nonparametric Statistical Inference. 4th edn. New 
York, United States of America: MARCEL DEKKER, INC. 

Gilgen, A. et al. (2018) ‘How important are future marine and shipping aerosol emissions in a 
warming Arctic summer and autumn?’, Atmospheric Chemistry and Physics, 18(14), pp. 
10521–10555. doi: 10.5194/acp-18-10521-2018. 

Graversen, R. G. (2006) ‘Do Changes in the Midlatitude Circulation Have Any Impact on the 
Arctic Surface Air Temperature Trend?’, Journal of Climate, 19, pp. 5422–5438. 

Hagler, G. S. W. et al. (2011) ‘Post-processing method to reduce noise while preserving high 
time resolution in aethalometer real-time black carbon data’, Aerosol and Air Quality 
Research, 11(5), pp. 539–546. doi: 10.4209/aaqr.2011.05.0055. 



45 
 

Heintzenberg, J., Hansson, H.-C. and Lannefors, H. (1981) ‘The chemical composition of arctic 
haze at Ny-Ålesund, Spitsbergen’, Tellus, 33(2), pp. 162–171. doi: 
10.3402/tellusa.v33i2.10705. 

Heintzenberg, J. and Leck, C. (1994) ‘Seasonal variation of the atmospheric aerosol near the 
top of the marine boundary layer over Spitsbergen related to the Arctic sulphur cycle’, Tellus 
B, 46, pp. 52–67. doi: 10.1034/j.1600-0889.1994.00005.x. 

Helmig, D. et al. (2016) ‘Reversal of global atmospheric ethane and propane trends largely 
due to US oil and natural gas production’, Nature Geoscience, 9(June), pp. 490–498. doi: 
10.1038/NGEO2721. 

Hersbach, H. and Dee, D. (2016) ‘ERA5 reanalysis is in production’, ECMWF newsletter, 
(number 147), p. 7. 

IPCC (2013) IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of 
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate 
Change. Edited by T. F. Stocker et al. Cambridge, United Kingdom and New York, NY, USA: 
Cambridge University Press. Available at: http://www.ipcc.ch/pdf/assessment-
report/ar5/wg1/WG1AR5_ALL_FINAL.pdf. 

Isaksen, K. et al. (2016) ‘Recent warming on Spitsbergen—Influence of atmospheric 
circulation and sea ice cover’, Journal of Geophysical Research: Atmospheres, 121(11), pp. 
913–931. doi: 10.1002/2016JD025606.Received. 

Jacob, D. J. (2000) ‘Heterogeneous chemistry and tropospheric ozone’, Atmospheric 
Environment, 34(12–14), pp. 2131–2159. doi: 10.1016/S1352-2310(99)00462-8. 

Janssen, N. A. et al. (2012) Health effects of black carbon. Copenhagen, Denmark. 

Jiao, W. et al. (2016) ‘Community Air Sensor Network ( CAIRSENSE ) project : evaluation of 
low-cost sensor performance in a suburban environment in the southeastern United States’, 
Atmospheric Measurement Techniques, 9, pp. 5281–5292. doi: 10.5194/amt-9-5281-2016. 

Jonassen, M. O. et al. (2015) ‘Application of remotely piloted aircraft systems in observing 
the atmospheric boundary layer over Antarctic sea ice in winter’, Polar Research, 34(1), p. 
25651. doi: 10.3402/polar.v34.25651. 

Jung, C. H. et al. (2018) ‘The seasonal characteristics of cloud condensation nuclei (CCN) in 
the arctic lower troposphere’, Tellus B: Chemical and Physical Meteorology. Taylor & Francis, 
70(1), pp. 1–13. doi: 10.1080/16000889.2018.1513291. 

Kral, S. T. et al. (2018) ‘Innovative Strategies for Observations in the Arctic Atmospheric 
Boundary Layer (ISOBAR)-the Hailuoto 2017 campaign’, Atmosphere, 9(7). doi: 
10.3390/atmos9070268. 

Krzywinski, M. and Altman, N. (2014) ‘Points of significance: Nonparametric tests’, Nature 
Methods, 11(5), pp. 467–469. doi: 10.1038/nmeth.2937. 

Kusunoki, S., Mizuta, R. and Hosaka, M. (2015) ‘Future changes in precipitation intensity over 
the Arctic projected by a global atmospheric model with a 60-km grid size’, Polar Science. 
Elsevier B.V. and NIPR, 9(3), pp. 277–292. doi: 10.1016/j.polar.2015.08.001. 

Leibniz Institute for Tropospheric Research (TROPOS) (2018) UAV aircraft provide new 
insights into the formation of the smallest particles in Arctic. Available at: 
https://phys.org/news/2018-06-uav-aircrafts-insights-formation-smallest.html (Accessed: 12 
December 2018). 



46 
 

Lilliefors, H. W. (1967) ‘On the Kolmogorov-Smirnov Test for Normality with Mean and 
Variance Unknown’, Journal of the American Statistical Association, 62(318), pp. 399–402. 

Lu, Z. et al. (2010) ‘Sulfur dioxide emissions in China and sulfur trends in East Asia since 
2000’, Atmospheric Chemistry & Physics, 10, pp. 6311–6331. doi: 10.5194/acp-10-6311-
2010. 

Mahmood, R. et al. (2019) ‘Sensitivity of Arctic sulfate aerosol and clouds to changes in 
future surface seawater dimethylsulfide concentrations’, Atmospheric Chemistry & Physics, 
19, pp. 6419–6435. doi: 10.5194/acp-19-6419-2019. 

MathWorks (2019a) corr, Linear or rank correlation. Available at: 
https://se.mathworks.com/help/stats/corr.html (Accessed: 21 June 2019). 

MathWorks (2019b) kstest, One-sample Kolmogorov-Smirnov test. Available at: 
https://se.mathworks.com/help/stats/kstest.html?searchHighlight=kstest&s_tid=doc_srchtit
le#btn37p4 (Accessed: 21 June 2019). 

MathWorks (2019c) partialcorr, Linear or rank partial correlation coefficients. Available at: 
https://se.mathworks.com/help/stats/partialcorr.html?searchHighlight=partialcorr#btw0d3
1-1 (Accessed: 21 June 2019). 

MathWorks (2019d) ranksum, Wilcoxon rank sum test. Available at: 
https://se.mathworks.com/help/stats/ranksum.html (Accessed: 21 June 2019). 

Maturilli, M., Herber, A. and König-Langlo, G. (2013) ‘Climatology and time series of surface 
meteorology in Ny-Ålesund, Svalbard’, Earth System Science Data, 5(1), pp. 155–163. doi: 
10.5194/essd-5-155-2013. 

Maturilli, M. and Kayser, M. (2017) ‘Arctic warming , moisture increase and circulation 
changes observed in the Ny-Ålesund homogenized radiosonde record’, Theoretical and 
Applied Climatology. Theoretical and Applied Climatology, 130, pp. 1–17. doi: 
10.1007/s00704-016-1864-0. 

Miljødirektoratet (2018) Trust Arcticugol Barentsburg, kraftverk og gruvevirksomhet. 
Available at: https://www.norskeutslipp.no/no/Diverse/Virksomhet/?CompanyID=23694 
(Accessed: 3 April 2019). 

Miljødirektoratet (2019) Longyearbyen lokalstyre, Longyear Energiverk. Available at: 
https://www.norskeutslipp.no/no/Diverse/Virksomhet/?CompanyID=5115# (Accessed: 3 
April 2019). 

Mioche, G. et al. (2015) ‘Variability of the mixed-phase clouds in the Arctic with a focus on 
the Svalbard region: a study based on spaceborne active remote sensing’, Atmospheric 
Chemistry & Physics, 15, pp. 2445–2461. doi: 10.5194/acp-15-2445-2015. 

Monks, P. S. (2005) ‘Gas-phase radical chemistry in the troposphere’, Chemical Society 
reviews, 34, pp. 376–395. doi: 10.1039/b307982c. 

Monks, P. S. et al. (2015) ‘Tropospheric ozone and its precursors from the urban to the 
global scale from air quality to short-lived climate forcer’, Atmospheric Chemistry & Physics, 
15, pp. 8889–8973. doi: 10.5194/acp-15-8889-2015. 

Moroni, B. et al. (2015) ‘Vertical Profiles and Chemical Properties of Aerosol Particles upon 
Ny-Ålesund ( Svalbard Islands )’, Advances in Meteorology, 2015, pp. 1–11. Available at: 
http://dx.doi.org/10.1155/2015/292081. 



47 
 

Myhre, G. et al. (2004) ‘Uncertainties in the Radiative Forcing Due to Sulfate Aerosols’, 
Journal of Atmospheic Sciences, 61(5), pp. 485–498. 

NILU (1996) EMEP manual for sampling and chemical analysis. 

Nuttall, M. (2012) ‘Urbanization’, in Encyclopedia of the Arctic. Hoboken, New Jersey, pp. 
2087–2115. 

Ødemark, K. et al. (2012) ‘Short-lived climate forcers from current shipping and petroleum 
activities in the Arctic’, Atmospheric Chemistry and Physics, 12(4), pp. 1979–1993. doi: 
10.5194/acp-12-1979-2012. 

Onarheim, I. H. et al. (2014) ‘Loss of sea ice during winter north of Svalbard’, Tellus, Series A: 
Dynamic Meteorology and Oceanography, 66, p. 23933. doi: 10.3402/tellusa.v66.23933. 

Peters, G. P. et al. (2011) ‘Future emissions from shipping and petroleum activities in the 
Arctic’, Atmospheric Chemistry and Physics, 11, pp. 5305–5320. doi: 10.5194/acp-11-5305-
2011. 

Piechura, J. and Walczowski, W. (2009) ‘Warming of the West Spitsbergen Current and sea 
ice north of Svalbard’, Oceanologia, 51(2), pp. 147–164. doi: 10.5697/oc.51-2.147. 

Possner, A., Ekman, A. M. L. and Lohmann, U. (2017) ‘Cloud response and feedback 
processes in stratiform mixed-phase clouds perturbed by ship exhaust’, Geophysical 
Research Letters, 44, pp. 1964–1972. doi: 10.1002/2016GL071358. 

Qi, L. et al. (2017) ‘Factors controlling black carbon distribution in the Arctic’, Atmospheric 
Chemistry & Physics, 17, pp. 1037–1059. doi: 10.5194/acp-17-1037-2017. 

Quinn, P. K. et al. (2007) ‘Arctic haze: current trends and knowledge gaps’, Tellus B, 59(1), 
pp. 99–114. doi: 10.1111/j.1600-0889.2006.00238.x. 

Rhead, M. M. and Pemberton, R. D. (1996) ‘Sources of Naphthalene in Diesel Exhaust 
Emissions’, Energy & Fuels, 10, pp. 837–843. doi: 10.1021/ef9502261. 

Richter-Menge, J. and Mathis, J. T. (2017) ‘THE ARCTIC’, in Blunden, J. and Arndt, D. S. (eds) 
STATE OF THE CLIMATE IN 2016. Bulletin of the American Meteorological Society, pp. 129–
130. doi: 10.1175/2017BAMSStateoftheClimate.1. 

Sander, G. (2014) Limits of acceptable change caused by local activities in Ny-Ålesund. Report 
from a pre-project , containing a proposal for a main project. Tromsø. 

Sander, G., Holst, A. and Shears, J. (2006) Environmental impact assessment of the research 
activities in Ny-Ålesund 2006. 

Schmale, J. et al. (2018) ‘Local Arctic Air Pollution : A Neglected but Serious Problem’, Earth ’ 
s Future, 6, pp. 1385–1412. doi: 10.1029/2018EF000952. 

Seinfeld, J. H. and Pandis, S. N. (2006) Atmospheric Chemistry and Physics: From Air Pollution 
to Climate Change. 2nd edn. New York, U.S.: John Wiley & Sons, Inc. 

Shears, J. et al. (1998) Environmental impact assessment. Ny-Ålesund international scientific 
research and monitoring station, Svalbard. Tromsø. 

Stein, A. F. et al. (2015) ‘NOAA’s HYSPLIT atmospheric transport and dispersion modeling 
system’, Bulletin of the American Meteorological Society, (February), pp. 2059–2077. doi: 
10.1175/BAMS-D-14-00110.1. 

Stohl, A. (1998) ‘Computation, accuracy and applications of trajectories—A review and 



48 
 

bibliography’, Atmospheric Environment, 32(6), pp. 947–966. doi: 10.1016/S1352-
2310(97)00457-3. 

Stohl, A. (2006) ‘Characteristics of atmospheric transport into the Arctic troposphere’, 
Journal of Geophysical Research, 111(D11), p. D11306. doi: 10.1029/2005JD006888. 

The Research Council of Norway (2019) Ny-Ålesund Research Station. Research Strategy 
Applicable from 2019. Lysaker, Norwayr. 

Vestreng, V. et al. (2007) ‘Twenty-five years of continuous sulphur dioxide emission 
reduction in Europe’, Atmospheric Chemistry and Physics, 7(13), pp. 3663–3681. doi: 
10.5194/acp-7-3663-2007. 

Vestreng, V., Kallenborn, R. and Økstad, E. (2009) Climate influencing emissions, scenarios 
and mitigation options at Svalbard. Klima- og forurensningsdirektoratet, Oslo, Norway. 

Vihma, T. et al. (2011) ‘Characteristics of Temperature and Humidity Inversions and Low-
Level Jets over Svalbard Fjords in Spring’, Advances in Meteorology, 2011(c), p. 14. doi: 
10.1155/2011/486807. 

Vincent, W. F. et al. (2011) ‘Ecological Implications of Changes in the Arctic Cryosphere’, 
Ambio, 40, pp. 87–99. doi: 10.1007/s13280-011-0218-5. 

 

  



49 
 

 

 

 

 

 

 

 

 

 

 

 

 

Part II Appended papers 
 

  



50 
 

  



51 
 

Paper I 
 

 

  



52 
 

 



A. Dekhtyareva, et al., Int. J. Sus. Dev. Plann. Vol. 11, No. 4 (2016) 578–587

© 2016 WIT Press, www.witpress.com
ISSN: 1743-7601 (paper format), ISSN: 1743-761X (online), http://www.witpress.com/journals
DOI: 10.2495/SDP-V11-N4-578-587

This paper is part of the Proceedings of the 24th International Conference on Modelling, 
Monitoring and Management of Air Pollution (Air Pollution 2016) 
www.witconferences.com

INFLUENCE OF LOCAL AND REGIONAL AIR POLLUTION 
ON ATMOSPHERIC MEASUREMENTS IN NY-ÅLESUND

A. DEKHTYAREVA1, K. EDVARDSEN1,3, K. HOLMÉN2, O. HERMANSEN3 & H.-C. HANSSON4

1UiT The Arctic University of Norway, Norway. 
2Norwegian Polar Institute, Norway. 

3NILU – Norwegian Institute for Air Research, Norway. 
4Stockholm University, Sweden.

ABSTRACT
The Zeppelin observatory is a research station near the village Ny-Ålesund in Svalbard. The facility 
delivers data to international projects devoted to high data quality monitoring of the background air 
pollution in the Arctic. An approach for quantifying the influence of local and regional pollution on 
measurements that may be misinterpreted as long-range transported one, is presented here.

The hourly gas and aerosol data measured in Ny-Ålesund and at the Zeppelin station, respectively, 
have been analysed along with the meteorological data from Ny-Ålesund, Zeppelin station and Long-
yearbyen (south-east of Ny-Ålesund).

Seasonal fluctuation of the average measured values of SO2 and NOx has been observed. Three 
main wind directions coincided with the peak concentration of SO2 and NOx. The NW-N flow may 
bring local pollution from ship traffic and diesel power plant as well as biogenic SO2 from the oxida-
tion of DMS. The monthly average number of particles with diameter characteristic for ship plume 
(50–100 nm), was elevated for the hours when ships have been registered in the local call list. The 
number concentration of particles with diameter 200 nm, typical for Arctic haze events, and concen-
tration of non-sea salt sulphate rise during springtime. The FLEXTRA-trajectory analysis indicated 
that most pollution brought by E-SE and SW flows may be of long-range and/or regional origin. 
Events with these flow directions need to be interpreted with caution.
Keywords: aerosol, Arctic, local pollution, long-range transport, trajectory.

1 INTRODUCTION
Nitrogen oxides NOx, (NO+NO2), and sulphur dioxide SO2 are emitted in large amounts 
from combustion of various fossil fuels worldwide. Monks [1] among others stated that NOx, 
in the presence of volatile organic compounds (VOC) and/or carbon monoxide CO, are 
responsible for the production of tropospheric ozone, O3, through the photochemical reac-
tions in urban smog. In turn, as was reported by the Intergovernmental Panel on Climate 
Change (IPCC) [2], tropospheric O3 is an important greenhouse gas, and being a strong oxi-
dant, it effects the concentration of other greenhouse gases. Moreover, both NOx and SO2 are 
acidifying agents, and, according to the Arctic Monitoring and Assessment Programme 
(AMAP) reports [3, 4], their deposition may have a strong negative effect on many terrestrial 
ecosystems, specifically vulnerable in the Arctic under rapidly changing climatic conditions, 
while the impact of emissions of acidifying agents from increasing shipping traffic in the 
Arctic on marine coastal ecosystems needs to be investigated.

Jacob [5] stated that the lifetime of NOx is on the order of one day in the lower troposphere 
at mid-latitudes, and Lelieveld et al. [6] reported the lifetime of SO2 and non-sea salt sulphate 
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to be approximately 2 days and 5 days, respectively. Therefore, according to the “classic” air 
pollution literature, the sources of NOx and SO2 are mostly regional or local. Furthermore, in 
mid-latitudes, the local air pollution is mainly characterized by higher concentrations, while 
long-range transported pollution is considered to be more dispersed. However, physical con-
ditions, such as low air temperatures and low humidity, limited turbulent mixing and the 
absence of sunlight during the polar night, as well as atmospheric dynamics, namely the posi-
tion of the Arctic front, increase lifetime of  pollutants during winter- and springtime Stohl 
[7]. Due to this, the lifetimes of NOx and SO2 were estimated by Beine et al. [8] and Lee et 
al. [9] as 10 days and 4 days north of the Arctic front, respectively.

During winter the Arctic front barrier, formed by the surfaces of constant potential tem-
perature increasing with height, extends further south (up to 50°N). Consequently, according 
to Quinn et al. [10], in the winter and spring the Arctic haze, polluted air masses transported 
mainly from Europe and Asia, may be observed in polar regions. On the other hand, during 
summer the Arctic front is located further north and air may remain continuously north of 
80°N in the lower troposphere up to 14 days. Results from several studies, [7,11,12], show 
that this prevents the transport of pollutants from  Eurasia during this season, and local aero-
sol sources on Svalbard are considered to be more important during this time of the year.

Svalbard’s archipelago is nearly a pristine Arctic environment with only a few local and 
regional anthropogenic pollution sources. Therefore, much of the atmospheric research activ-
ities there are devoted to the monitoring of long-range transported pollution in the Arctic.

The Zeppelin Observatory is the Norwegian atmospheric monitoring station situated on a 
mountain ridge 2 km away from a small research settlement Ny-Ålesund. The station is of 
high importance for the Global Atmosphere Watch, The European Monitoring and Evaluation 
Programme (EMEP), AMAP and many other research projects due to unique opportunities 
for monitoring of background air composition, meteorological and climatological studies.

The main purpose of this article is to discuss ambiguities related to the process of identifi-
cation of possible sources of air pollution on Svalbard and present an approach for quantifying 
the influence of local and regional pollution on measurements in  Ny-Ålesund.

2 AIR POLLUTION SOURCES ON SVALBARD
Coal-fired power plants are operated in the two settlements of Longyearbyen and Barentsburg 
located to the south-east of Ny-Ålesund. According to Vestreng et al. [13], these are the larg-
est year-round anthropogenic point sources of SO2 in Svalbard. Both have seasonally variable 
emission rates, Fig. 1a.

According to the environmental impact assessment of Ny-Ålesund as an international sci-
entific research and monitoring station (Shears et al. [14]), the power plant fuelled by low 
sulphur diesel, is the largest local year-round point source of NOx in Ny-Ålesund. It too has 
seasonally variable emission rates. The monitoring station is installed south of the power 
plant, Fig. 1b.

In addition to this, combustion engines on tourist ships produce fumes that contain NOx, 
SO2 and particulate matter. Shears et al. [14] and Eckhardt et al. [15] noted that these sum-
mertime local sources of emissions have significant impact on atmospheric measurements in 
Ny-Ålesund. The impact rate depends on emission rates (ship’s size and number of ships 
present in the fjord simultaneously) and atmospheric conditions.

The overview of the emissions from the main sources is given in Table 1. The emission 
rates for the first three sources and for the last two sources in the table are calculated from 
hourly and annual values defined in Shears et al. [14] and Miljødirektoratet [16], respectively.
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3 MATERIALS AND METHODS
The ground-based SO2 and NOx observations have been sorted according to the prevailing 
wind direction and compared with ship traffic statistics. When concentrations of SO2 and 
NOx were above a lower detectable limit (LDL), the FLEXTRA-trajectory model output was 
examined for distinguishing between local and long-range transport of pollutants. By anal-
ogy with Stohl [7], if air resided exclusively north of 70°N during the previous 7 days for 
trajectory arriving at altitude 500 m to the Zeppelin station, it was considered to be no long-
range transport of pollutants (NLRT case). If the trajectory data were missing, or there were 
values of latitude <70°N, it was assigned as a possible long-range transport (LRT) case. 
According to Brock et al. [17], the sub-0.1-μm particles often prevail in the particle number 
population of aged coal power plant plumes several hours after the emission. In addition, 
experimental studies of Petzold et al. [18] show that the combustion particles have modal 
diameters centred at 50 nm and 100 nm for raw emissions and for a plume age of 1 hour, 
respectively. Therefore, the particle mode with d = 50–100 nm has been chosen to check the 

Figure 1: Study area: (a) map of Svalbard showing Barentsburg and Longyearbyen and 
meteorological stations as squares and stars, respectively, and (b) local map of 
Ny-Ålesund showing power plant, monitor, Ny-Ålesund WMO station and 
Zeppelin station as square, circle, star and triangle, respectively.

Table 1: Main sources of emissions in Ny-Ålesund and on Svalbard.

Source SO2,∙10−5 kgs−1 NOx,∙10−5 kgs−1

1 Diesel generators and central heating in 
Ny-Ålesund

32 117

2 Small ships in Ny-Ålesund 14 83
3 Cruise ships in Ny-Ålesund 1444 3889
4 Barentsburg power plant (average 

2010–2013)
7191 447

5 Longyearbyen power plant (average 
2009–2014)

1368 490
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possible year-round influence of coal power plant and summertime ship emissions on 
Zeppelin measurements.

3.1 Measurements description

The SO2 and NOx data were collected by Norwegian Institute for Air Research (NILU) dur-
ing the project Local Air Quality Monitoring 2008–2010 in Ny-Ålesund [19] from 14.07.2008 
to 24.08.2010. Both analysers used in the project, had LDL = 0.4 ppb. Most of the data have 
been below this value, which is too high for the near pristine environment of Ny-Ålesund. 
Therefore, the data equal to or higher than LDL have been considered as peaks in this work. 
The aerosol measurements presented here have been performed by Stockholm University at 
the Zeppelin station. The daily filter samples data collected by NILU at the Zeppelin station 
are part of the “Cooperative programme for monitoring and evaluation of long-range trans-
mission of air pollutants in Europe” (EMEP). The non-sea salt sulphate has been defined 
according to the non-sea salt  sulphate correction algorithm presented in the WMO report 
[20]. An overview of the chemical and aerosol data is shown in Table 2.

Combined analysis of ground-based hourly meteorological data from the monitor with gas 
analysers and Ny-Ålesund WMO station (78.9230 N, 11.9333 E), operated by NILU and 
Norwegian Meteorological Institute, respectively, provides coverage for the whole period of 
air quality measurements. In addition, data from the Zeppelin station and from the Svalbard 
lufthavn (Svalbard airport) (28 m a.s.l., 78.2453 N, 15.5015 E) have been used, Fig. 1a and b.

3.2 Model data description

The FLEXTRA 3D backward trajectories (www.nilu.no/trajectories) used in this study are 
provided by NILU. They run 7 days backward in time and are based on ECMWF (European 
Centre for Medium Range Weather Forecasts) meteorological data with spatial resolution of 
1.25° and temporal resolution of 6 hours. The nearest trajectory to the time of the peak has 
been chosen, and when the peak value falls in between two trajectories both have been assessed. 
If at least one of them passed south of 70°N, then it was considered to be an LRT-case. The 
modelled data are available for the whole period of interest. Four percent of data is missing 
(most of the dates in December 2008 and several other discrete days in 2008). As reported by 
Stohl [26], the position errors in FLEXTRA are in the order of 20% of the travelled distance 

Table 2: Data analysed in the paper.

Equipment and reference Measured component and units Location

Chemiluminescence NOx 
analyser (model 200E) [21]

NO, NO2, NOx, μg/m3 Monitor, 
78.9247N, 
11.9262EUV Fluorescence SO2 analy-

ser (model 100E) [22]
SO2, μg/m3

Condensation particle 
 counters (TSI CPC 3025 and 
TSI CPC 3010) [23, 24]

Integral aerosol number density 
and size distribution, cm−3

Zeppelin station, 
78.9073N, 11.8859 
E

Aerosol filter [25] SO4
2-(p), µg S/m3
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and the performance varies with the meteorological conditions, but the approximate pathway 
of the air mass may be estimated.

4 RESULTS AND DISCUSSION
The seasonal wind roses for the period of measurements are plotted (Fig. 2) for 16 wind 
directions (22.5° for each sector).

One can see that the prevailing wind direction differs significantly for summer at all sta-
tions comparing to other seasons. Most likely, the reason for this is that increasing temperature 
differences between the land and water facilitate the formation of on shore circulation. The 
lowest mean seasonal wind speed is observed in summer also. The seasonal wind speed rises 
gradually and is highest in winter likely due to enhancing influence of mesoscale cyclonic 
activity, as discussed in Maturilli et al. [27]. Additionally, the topographical wind channelling 
plays important role year-round at all three stations.

The change of wind direction and speed may influence the dispersion of pollutants. The 
plume from the power plant located to the south-east of the Svalbard lufthavn station in the 
Longyearbyen town may be trapped in the valleys nearby, Longyeardalen and Adventdalen, 
due to the prevailing westerly wind direction in summer (Fig. 2a). Therefore, this pollution 
source is unlikely to influence the measurement results in Ny-Ålesund during this season.

The Zeppelin station is located at the height of 474 m above sea level. The most frequently 
observed wind direction at the Zeppelin observatory is south and south-south-east due to 
shadowing effect of nearby mountains, Fig. 2b. From the wind roses for Ny-Ålesund and 
Zeppelin stations, one can see that the wind direction varies significantly, even within dis-
tance of 2 km, due to complex topography.

Analogously, although Longyearbyen and Barentsburg are located in the inner part of the 
same fjord, Isfjorden, the data from Svalbard lufthavn station most probably can’t be utilized 
for assessment of spreading of pollution from Barentsburg power plant, and separate dataset 
for Barentsburg is needed (see Fig. 1a).

However, the on shore circulation may bring the pollution from the ships cruising in the 
Kongsfjorden or attached to pier in Ny-Ålesund in summer, Fig. 2b.

Figure 2: Seasonal wind roses: (a) Svalbard lufthavn station north-west of Longyearbyen 
and (b) Ny-Ålesund WMO (upper wind rose) and Zeppelin (lower wind rose) 
stations.
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Indeed, despite only 31% and 8% of all NOx and SO2 hourly data being defined as peak, 
seasonal fluctuation of the average measured values of SO2 and NOx has been observed with 
increasing concentration of gases every summer and winter, Fig. 3. Mean SO2 and NOx con-
centrations and number of particles with d = 50–100 nm values were higher on 21%, 16% and 
55%, respectively, for time interval of 2 hours before arrival to 2 hours after departure regis-
tered in the cruise call list comparing to hours without ships. Elevated values of SO2 in 
presence of ships mainly coincide with NNW-N wind, which is natural, because the harbour 
is located north of the monitor (Fig. 1b). However, one peculiar feature of local pollution 
dispersion pattern has been revealed. Although there are glaciers 3 km south-west from mon-
itor and, according to meteorological studies [27], wind from this direction is of katabatic 
origin, SW-WSW wind brings at times SO2, NOx and particles emitted by big anchored ships 
according to the cruise calls list. These cases are rare but they affect the mean summer con-
centration of SO2 for this wind direction significantly. Mean NOx concentrations were 
approximately five times higher year-round when NW-NNW wind had been observed due to 
emissions from diesel power plant north of the monitor in Ny-Ålesund.

Figure 3: Monthly statistics of integral aerosol number density (box and whiskers plots) and 
gas analysers and filter samples data (lines): a) integral aerosol number density for 
particles with d = 50–100 nm, cm-3, and monthly mean SO2 and NOx from gas 
analysers, μg/m3; b) integral aerosol number density for particles with d = 126–200 
nm, cm-3, and monthly mean non-sea salt sulphate from filter samples, μg S/m3. 
The logarithmic scale has been used for aerosol data (left y-axis on both figures). 
The central mark is the median, the edges of the box are the 25th and 75th 
percentiles, the whiskers extend to the most extreme data points not considered 
outliers, and statistical outliers are plotted individually on each box.
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The integral aerosol number density of particles with size 10–40 nm increases every sum-
mer significantly, which indicates boundary layer nucleation events. High mean number of 
particles were at times observed for northerly wind direction and coincided with SO2 peak 
even in absence of ships. This supports previous studies of fine particle composition per-
formed by Heintzenberg and Leck [28] that revealed the importance of marine biogenic 
sources of sulphur compounds on Svalbard.

The concentrations of particles with size 50–100 nm decrease in wintertime and start 
increasing again in spring with the peak in summer, Fig. 3a. One possible reason for this is 
that there is no influence of coal power plant emissions on measurements in Ny-Ålesund. 
However, one may notice that the growth in particle number of this mode starts in February, 
when the polar night season on Svalbard is over, although there is still no direct sunlight. 
According to Brock et al. [17], the particulate sulphate formation in coal power plant plumes 
takes place mostly through oxidation of SO2 by OH. The oxidation may occur in aqueous 
phase as well. However, both processes are restricted due to Arctic environmental conditions 
in winter, thus the number of particles of this mode is not an applicable parameter for deter-
mination of regional pollution on Svalbard in winter. The number of particles with diameter 
126–200 nm rises during springtime, and similar pattern is observed for non-sea salt sulphate 
from filter samples collected at the Zeppelin station, Fig. 3b. This is in good agreement with 
Seinfeld and Pandis [29] who stated that the Arctic haze phenomena is the long-range trans-
ported polar aerosol consisting to a large extent of non-sea salt sulphate of anthropogenic 
origin.

The trajectory analysis revealed that during summer there is no difference in NOx mean 
value whether it was a LRT or a NLRT case, and the concentration depends solely on the 
wind direction. Concentration decreases during autumn and spring, and mean NOx value was 
higher for LRT cases. During winter, values of NOx for NLRT cases are higher than for LRT 
ones, probably due to increasing of emissions from the diesel power plant because of 
enhanced fuel consumption and limited dispersion because of prevailing stable stratification 
of atmospheric boundary layer. SO2 values for LRT cases were higher for winter and spring 
and lower than NLRT cases for autumn and summer. In general, the trajectory analysis indi-
cated that most of pollution brought by E-SE and SW flows, 66% and 60%, respectively, may 
be of long-range and/or regional origin (possibly from two coal power plants located to SE 
from Ny-Ålesund). There were some cases in wintertime when trajectory analysis did not 
show possible long-range transport of  pollution, however, elevated concentrations of SO2 
have been measured and SE wind direction has been detected both in Ny-Ålesund and at the 
Svalbard lufthavn station several hours earlier. Therefore, either there was influence of 
regional pollution from coal power plants, or modelled trajectory was erroneous. In order to 
check this, simple backward trajectory FLEXTRA-model results may be replaced in future 
work by Lagrangian particle dispersion model results, for example, FLEXPART, as it has 
been suggested by Stohl et al. [30] for more accurate interpretation of measured data. Addi-
tionally, case study modelling using a plume dispersion model may be done for the dates of 
interests for power plants in Longyearbyen and Barentsburg.

The changes in the amount of emissions from ships and power plants are expected. A 
three-stage treatment system of emissions to reduce NOx, particles and SO2 is planned to be 
installed in the Longyearbyen coal power. Barentsburg power plant has been stated as the 
biggest SO2 source in Norway, it is currently operated with a permission for emissions of up 
to 2400 tons SO2/year as reported by Norwegian Environmental Agency (Miljødirektoratet) 
[31]. As there is a high rate of uncertainty in the future emission scenarios for the power 
plants, field campaigns should be performed.
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It is restricted to use heavy fuel in Ny-Ålesund since January 1, 2015, and only marine gas 
oil (MGO) with maximum sulphur content 1.5% is permitted. The emission restrictions will 
give a steep decline in the number of port calls by cruise ships. However, the NOx and particle 
pollution may still be present in summer even if big ships will use MGO instead of heavy 
fuel. The present study should be continued to quantify the magnitude of improvement in air 
quality resulting from the emission restriction.

5 CONCLUSIONS
The air quality and meteorological data from Ny-Ålesund have been analysed concurrently. The 
distinct characteristics for the near pristine coastal Arctic site have been defined, such as seasonal 
patterns in prevailing wind direction and aerosol integral number density specific for different 
particle diameters and importance of long-range transported pollution.

FLEXTRA-trajectory analysis revealed that most of the total number of SO2 peaks from 
SE and SW flow may be of long-range and/or regional origin with prevailing LRT cases dur-
ing winter and spring.

During wintertime, there are no ships or biogenic sources in Ny-Ålesund and due to envi-
ronmental conditions the oxidation of SO2 to SO4

−2 is limited. Because of this, the long-range 
transport of SO2 plays major role. However, the same conditions favour regional transport of 
sulphur dioxide from sources located SE from Ny-Ålesund due to prevailing wind direction. 
In addition, the fuel consumption at the coal power plants may increase during wintertime. 
The separation of LRT and regional emissions is therefore ambiguous. Data from Hornsund 
or Hopen could be very powerful agents to diminish this uncertainty in our ability to quantify 
the regional influence on the quality of the Ny-Ålesund data.

During summer, long-range transported pollution is less important. Despite decreased fuel 
consumption at the diesel and coal power plants, local pollution from ships in  Ny-Ålesund 
has been significant during summer. However, analysis of integral aerosol number density of 
particles with size 10–40 nm and SO2 data revealed that biogenic sulphur and ultrafine parti-
cle sources have to be taken into account also.

The Lagrangian particle dispersion and plume modelling may be done to clarify the pathways 
and environmental fate of regional pollution from coal power plants on Svalbard. The measure-
ment campaign for sampling of the plume from the coal power plants in Barentsburg and 
Longyearbyen may be recommended to determine current rate and composition of emissions.
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ABSTRACT
Ny-Ålesund is an international research settlement where the thermodynamics and chemical
composition of the air are monitored. The present work investigates the effects of micro-
meteorological conditions, mesoscale dynamics and local air pollution on the data collected
at two different locations around the village. Daily filter measurements of sulphur dioxide and
non-sea salt sulphate from the temporary Ny-Ålesund station and permanent Zeppelin
mountain station have been analysed along with meteorological data. The influence of
different factors representing micrometeorological phenomena and local pollution from
ships has been statistically investigated. Seasonal variation of the correlation between the
data from Ny-Ålesund and Zeppelin stations is revealed, and the seasonal dependence of the
relative contribution of different factors has been analysed. The median concentrations of
SO4

2- measured in Ny-Ålesund increased significantly on days with temperature inversions in
winter. In spring, concentrations of SO2 and SO4

2- were higher than normal at both stations
on days with temperature inversions, but lower on days with strong humidity inversions. In
summer, local ship traffic affects the SO2 data set from Ny-Ålesund, while no statistically
significant influence on the Zeppelin data set has been observed. The pollution from ships
has an effect on SO4

2- values at both stations; however, the concentrations in Ny-Ålesund
were higher when local pollution accumulated close to the ground in days with strong
humidity inversions.

KEYWORDS
Micrometeorology; air
pollution; Arctic haze;
atmospheric inversion;
aerosol; sulphate

ABBREVIATIONS
ABL: atmospheric boundary
layer; DMS: dimethyl
sulphide; WRS: Wilcoxon
rank sum

Introduction

A small community on the north-west Coast of
Spitsbergen island, in the Svalbard Archipelago, Ny-
Ålesund is a place for fruitful international coopera-
tion in connection with environmental monitoring.
Data and knowledge exchange between researchers
from 12 different nations leads to joint publications
and improves our scientific understanding of various
processes in a rapidly changing Arctic (Norwegian
Polar Institute 2016). Specific attention is given to
the study of the Arctic haze phenomena, aerosol of
anthropogenic origin enriched in non-sea salt sul-
phate (XSO4

2-) and transported over long distances
from mid-latitudes to the Arctic during winter and
spring (Quinn et al. 2007; Dekhtyareva et al. 2016;
Ferrero et al. 2016). Ny-Ålesund is situated far from
major industrial areas, and is therefore considered
suitable for monitoring of long-range transported
pollution. This study considers whether the data col-
lected at different locations around the village show
differences due to local environmental peculiarities of
this site.

The settlement is in a mountainous coastal area
near the narrow fjord Kongsfjorden, which has two
glaciers at the one end and the Greenland Sea at the
other (Fig. 1a). Thermally driven circulations, such as
katabatic winds and sea–land breeze, channelling of
mesoscale wind along the fjord and the shielding
effect of surrounding mountains, are local topogra-
phically induced features (Esau & Repina 2012;
Maturilli et al. 2013; Maturilli & Kayser 2016).
Wind shear and turbulence, affecting the mixing
and dilution of air pollutants, may be induced or
suppressed by these features (Fisher 2002).
Furthermore, temperature and humidity inversions
often occur in the ABL as a result of surface cooling
during winter and spring and are frequently observed
in Svalbard (Vihma et al. 2011). Mixing processes are
limited in the stable ABL. This leads to variation in
humidity with altitude, and therefore affects the
amount of water, condensation processes and particle
growth (Stull 1988; Seinfeld & Pandis 2006).
Consequently, different aerosol content appearing at
different altitudes have been observed during several
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field campaigns in Svalbard (Moroni et al. 2015;
Ferrero et al. 2016). However, the humidity inver-
sions are not always linked to the temperature inver-
sions and may be associated with the unequal
distribution of moisture with height in the air masses
advected over the measurement site (Nygård et al.
2014).

Long-range transported pollution is dominant
during all seasons of the year except summer, when
instead ship traffic has been shown to be a significant
local source of pollution (Eckhardt et al. 2013;
Dekhtyareva et al. 2016). In summer, the mixing
height of the ABL may increase, especially due to
radiative heating of the surface leading to convection,
and therefore local pollution may be transported aloft
(Stull 1988). However, studies of wind climate in
Kongsfjorden showed that despite this process, the
thickness of local surface winds is lowest in summer,
when it is estimated to be around 500 m (Esau &
Repina 2012). Therefore, it is questionable to what
extent convective mixing promotes the even distribu-
tion of pollutants within the local ABL. Pollution may
also be trapped beneath an inversion layer and accu-
mulate close to the ground, when the air above the
measurement site descends and undergoes adiabatic
compression and warming. Subsidence inversions
may occur in the Arctic troposphere in summer as a
response to diabatic heating and convection over land
masses in the sub-Arctic (50°-55°N) after the
springtime snowmelt (Matsumura et al. 2014).
Another source of local pollution in Ny-Ålesund is
the small power plant running on low-sulphur diesel
year-round (Dekhtyareva et al. 2016). In order to
prevent interference of local pollution in the

monitoring of background air composition, the
Zeppelin Observatory was established 2 km away
from the settlement, on the top of Mount Zeppelin
at 474 m a.s.l. (Fig. 1b; Braathen et al. 1990; Beine
et al. 1996).

There is also a local biogenic source of sulphate
in Ny-Ålesund. Sulphate is produced from oxida-
tion of DMS, which is emitted by marine plankton
(Keller et al. 1989; Seinfeld & Pandis 2006), and
SO2 is an intermediate product of this reaction
(Yin et al. 1990). Previous studies have shown
that the concentration of chlorophyll α increases
in April—May, July and September in
Kongsfjorden, suggesting multiple blooms of algae
in the fjord (Seuthe et al. 2011). The occurrence of
the blooms varies from year to year depending on
sea-ice cover, dominating water masses in the fjord
and the inflow of freshwater from glaciers and land
(Hodal et al. 2012). Although there is a significant
positive correlation between algal chlorophyll α and
DMS concentration in seawater, the actual DMS
concentration depends on the taxonomic composi-
tion of the plankton community and trophic inter-
actions within it (Yoch 2002). Because the
combination of sunlight and ice-free conditions
favours increased DMS emissions, this marine
source of biogenic sulphur may be considered sig-
nificant only in late spring, summer and early
autumn (Shikai et al. 2012; Levasseur 2013).

Taking into account these local micrometeorological
features and sources of sulphur agents, we address the
correlation of the daily concentrations of anthropogenic
sulphur compounds measured on filter samples at the
Zeppelin station (474 m a.s.l.) and in Ny-Ålesund

Figure 1. (a) The location of Ny-Ålesund on western Spitsbergen and the ERA-Interim data grid point (circled); (b) map of
Ny-Ålesund, indicating the locations of the measurement stations.
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(8 m a.s.l.) and their seasonally dependent variations
(Fig. 1b).

Chemical and meteorological data were used to
test the following hypotheses. (1) Low-level tempera-
ture and humidity inversions during winter and
spring prevent even mixing of pollutants with height
and disturb correspondence between the Ny-Ålesund
and Zeppelin station data sets. (2) If the wind direc-
tion is dissimilar at the two stations, we expect differ-
ences in the concentrations of pollutants as the air
sampled at the two sites may have different origins,
affecting the correlation between the measurements
at sea level and on the mountain top. (3) Wind shear
has a significant effect on the dilution of local pollu-
tion in the ABL and reduces differences in the mea-
surements from the two stations. (4) Local
summertime ship traffic has a strong impact on the
Ny-Ålesund data set and induces deviations from the
Zeppelin data set.

Methods

Study area and materials

Measurements of two key long-range transported
sulphur compounds have been analysed in this
work: sulphate, SO4

2- (particulate), and sulphur diox-
ide, SO2 (gaseous). Daily filter samples were collected
in Ny-Ålesund during the Monitoring of Local Air
Quality in Ny-Ålesund project from 1 July 2008 until
31 December 2009 (Hermansen et al. 2011). A tem-
porary measurement cabin, hereafter called the Ny-
Ålesund station, (Fig. 1b), was installed in the middle
of the settlement. Measurement results from the
Zeppelin station (Fig. 1b) for the same period are
available at the website http://ebas.nilu.no/. The sam-
pling procedure was identical to the one used in the
European Monitoring and Evaluation Programme
(NILU 1996). No correction of filter sampling volume
for temperature and pressure has been done, as only
the inlets were placed outside while the measurement
equipment was kept indoors at both sites, so the
equipment was not subject to changes in the envir-
onmental parameters (NILU 1996). Only SO2 and
XSO4

2- data have been utilized in the present work.
The data owner, the Norwegian Institute for Air
Research, has performed a correction for sea salt.
This institute also provided hourly temperature, pres-
sure, relative humidity, wind speed and wind direc-
tion data obtained at the two stations. Previous
studies have shown that the local wind measurements
at the Zeppelin station are subject to a wind-shielding
effect from nearby mountains, so these data cannot
be used for comparison with measurement results
from Ny-Ålesund (Dekhtyareva et al. 2016).
Therefore, atmospheric stratification and local wind
flows in the lowest atmosphere (0–500 m height)

were studied using atmospheric radiosoundings per-
formed by the Alfred Wegener Institute in Ny-
Ålesund. Wind speed and direction, atmospheric
temperature and relative humidity data were
retrieved from measurements taken with the Vaisala
RS92 radiosonde launched from the French–German
AWIPEV station (Fig. 1b; Maturilli & Kayser 2016).
The soundings provided by the Alfred Wegener
Institute cover the whole measurement period except
for one day, 8 December 2008. For days with more
than one sounding available, the profile closest to the
12 UTC standard launch time has been chosen to
maintain consistency.

Vihma et al. 2011 studied meteorological data at
the pressure level of 850 hPa and at the surface to
assess the influence of prevailing mesoscale meteor-
ological situation on local wind flows and vertical
stratification in the ABL. Similarly, we have analysed
air temperature, specific humidity, wind speed and
wind direction at these two vertical levels in Svalbard
and at the point closest to the Zeppelin station
(Fig. 1a). For this purpose, meteorological values for
12 UTC have been chosen from the global ERA-
Interim reanalysis data set with a 0.75 × 0.75 degrees
resolution, and no interpolation has been done (Dee
et al. 2011).

Data analysis

Vertical wind shear is identified as a change in wind
direction and/or speed with altitude (Markowski &
Richardson 2006). Directional and speed shears were
analysed separately in the study reported here. In
order to assess the influence of variation in wind
direction with height on correlation between the data
sets, the daily measurements for each season were
divided into two categories: those with and those with-
out a change in wind direction with height of more
than 90 degrees. In each radiosonde profile, all mea-
surement points with wind speed above 2 ms−1 were
defined to exclude cases with very weak winds, which
may introduce ambiguity in the wind direction data
(EPA 2000). Then the wind direction at each point was
compared with values at points located higher in the
profile, and the lowest height, when wind direction
changes by more than 90 degrees, was defined. If this
change happened in the lowermost 500 m, then the
day was classified as a day with directional wind shear.
The simulation done by Walcek (2002) with a vertical
wind shear of 2.5 ms−1 km−1 shows the significant
influence of higher wind speed above the surface on
reducing the maximum concentrations and horizontal
spreading of polluted air masses. Similarly, in our
study, the effect of vertical speed shear was investi-
gated by identifying two separate groups: one in which
the wind speed increased by 1.25 ms−1 or more per
500 m height and one where it was not observed.
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To assess whether air in the ABL is well mixed,
moisture variation with altitude was estimated
using relative humidity, air temperature and pres-
sure retrieved from radiosoundings (Stull 1988).
Formulas presented by Bolton (1980) and Wallace
& Hobbs (2006) have been applied to calculate
saturated vapour pressure and specific humidity,
respectively.

In order to investigate the influence of tempera-
ture and humidity inversions on the correlation
between the two data sets, a methodology for inver-
sion detection identical to the one described by
Vihma et al. (2011) was used. The height and tem-
perature of the inversion base zTb and Tb, respec-
tively, were defined at the point in the radiosonde
vertical temperature profile where temperature begins
to increase with height. The height and temperature
of the level where temperature starts decreasing with
height are defined as zTt and Tt, respectively.
Similarly, using specific humidity profiles, height
and humidity values at the humidity inversions’ top,
zQt and Qt, and bottom, zQb and Qb, were found.
The temperature and humidity inversion strengths
were calculated as the difference of these parameters
at the top and bottom levels: TIS and QIS. Following
Vihma et al. (2011), temperature and specific humid-
ity changes of more than 0.3°C and 0.02 g∙kg−1,
respectively, through the levels with depth more
than 10 m were defined as inversions.

The seasonal SO2 and XSO4
2- data sets from the

Ny-Ålesund and the Zeppelin stations were
divided into groups according to the absence or
presence of the factor of interest: directional and
wind speed shear, temperature inversion and/or
humidity inversion, and local summertime pollu-
tion from ships. To assess the influence of these
factors on the seasonal concentrations on filter
samples from both stations, the WRS test was
chosen, because it is more powerful for discrete
samples and data from skewed distributions than
the t-test (Krzywinski & Altman 2014). The WRS
test checks whether two independent samples,
grouped according to a specific factor, come
from distributions with equal medians. In other
words, if the hypothesis in this test is rejected at
the 5% confidence level (p < 0.05), there is a
statistically significant difference between the two

samples, and the factor on the basis of which the
data were grouped is recognized as being
important.

Another relevant characteristic affecting the possi-
bility of local pollution reaching the Zeppelin station
in summer is the height of the mixed layer in the
lowest atmosphere. The mixed layer has low variation
in specific humidity, wind speed and wind direction
(Stull 1988). According to Chernokulsky et al. (2017),
mean total cloud cover for Svalbard is highest in
summer and constitutes around 80%. To calculate
the mixing height, a method combining information
about the lapse rate, vertical variation of water con-
tent and mixing within clouds, was applied based on
a three-step procedure (Wang & Wang 2014). First,
mixing height h0 was defined based on vertical gra-
dients of potential temperature, relative and specific
humidity and refractivity. Second, the location of a
cloud was identified using relative humidity thresh-
olds specific for altitude range from 0 to 2 km (table 1
in Wang & Wang 2014). Third, if a cloud base was
lower than h0 and there was a stable layer within the
cloud, the consistent mixing layer height hcon was set
to the height of the sharpest inversion within this
layer. The detailed procedure of determining hcon is
described by Wang & Wang (2014).

Results and discussion

The seasonal variation of different meteorological
phenomena in the lowermost 500 m is presented in
Table 1. Temperature inversions were detected most
often in winter, but the highest average temperature
inversion strength was observed in spring. The rate of
days when both temperature and humidity inversions
were present is highest for winter. The strongest
specific humidity inversions were detected in sum-
mer. In general, similarly to results reported by
Nygård et al. (2014), humidity inversions were
observed most of days, irrespective of the season.
Hence, all days were divided into two groups of
similar size within each season: (1) with no humidity
inversion and humidity inversion with QIS below or
equal to the seasonal median; and (2) with inversions
with QIS above the seasonal median. This was done
to statistically assess the influence of strong humidity
inversions on filter measurements by using these

Table 1. Meteorological phenomena observed in the radiosonde profiles in different seasons.
Season

Phenomena observed in the lowermost 500 m Parameter
summer
(n = 154)

autumn
(n = 182)

winter
(n = 121)

spring
(n = 92)

Temperature inversion Frequency of occurrence (%) 36 51 66 60
Median inversion strength TIS (°C) 0.80 0.95 0.90 1.10

Humidity inversion Frequency of occurrence (%) 93 85 77 76
Median inversion strength QIS (g/kg) 0.22 0.10 0.07 0.09

Both temperature and humidity inversion Frequency of occurrence (%) 35 44 56 48
Low wind speed conditions Frequency of occurrence (%) 50 16 13 23
Low-level cloud Frequency of occurrence (%) 45 24 19 17
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groups in the WRS test for SO2 and XSO4
2- data from

the Ny-Ålesund and Zeppelin stations. In low wind
speed conditions, the dispersion of pollutants is con-
trolled by a meandering horizontal flow and weak
sporadic turbulence, and air stagnation may occur
(Anfossi et al. 2004). Low wind speed conditions are
defined here as when the median wind speed is below
2 ms−1 in the lowest 500 m. The seasonal percentage
of profiles with low wind speed conditions was high-
est in summer and reached its minimum in winter.
This may indicate that in summer the measurements
are potentially more affected by local processes, while
the influence of cyclonic activity and advection is
stronger in other seasons (Maturilli et al. 2013).
Using the procedure described by Wang and Wang
(2014), the cloud location in each radiosonde profile
was identified. Low-level clouds were observed in
nearly half of all summer days, while they were rarely
detected in winter and spring. The frequency of
occurrence of the phenomena described above indi-
cate that there is a distinct difference between local
micrometeorological conditions in summer and other
seasons in Ny-Ålesund.

Figure 2 shows the seasonal data sets of SO2 and
XSO4

2- collected at the Ny-Ålesund and Zeppelin
stations. Statistically significant positive correlations
(p < 0.05) of SO2 and XSO4

2- data sets between the
stations are observed for all seasons except for sum-
mer SO2 data, and values of Pearson correlation
coefficient r are shown in each plot of the seasonal
data. In order to explain dramatic seasonal variation
in correspondence between the data sets from the
Ny-Ålesund and Zeppelin stations, the WRS test
was applied to SO2 and XSO4

2- data from both
stations.

Both SO2 and XSO4
2- data sets show the weakest

correlation in summer. According to the WRS test,
several factors led to this: strong humidity inversions,
insufficient vertical wind speed shear and local pollu-
tion from ships (Table 2).

The test results show that only XSO4
2- data from

the Ny-Ålesund station had significantly higher med-
ian concentration for the days with strong humidity
inversions than for the days with normal and no
humidity inversion. The mesoscale meteorological
situation for the days from both humidity inversion
groups is shown in Fig. 3. The location of the isobars
shows the area of local high pressure that may be
linked to subsidence inversion (Fig. 3a). The mean
sea-level pressure for the point closest to the
Zeppelin station (Fig. 1a) was higher for the days
with strong humidity inversion (1017 hPa) than for
the days when strong humidity inversion was absent
(1014 hPa). Indeed, there is a weak (r = 0.19), but
statistically significant (p = 0.02), positive correlation
between summer QIS and mean sea-level pressure.
The mean wind speed was also lower for the first

group (Fig. 3a) than for the second one (Fig. 3b).
Meteorological observations at the Ny-Ålesund station
show a similar picture as the reanalysis results: easterly
winds with very low wind speed (1 ms−1) prevailed
during the days with strong humidity inversion.
Taking into account the location of the station
(Fig. 1b), these winds may bring local pollution from
the ships anchored in the fjord and/or biogenic sul-
phur from Kongsfjorden. The presence of strong spe-
cific humidity inversion illustrates that pollutants were
unevenly distributed with altitude. At the same time,
light winds inhibited their removal from the ABL. This
indicates that the air was more localized, and if any
pollutants had been emitted close to the ground level,
they might have persisted for a while.

The presence of gases that may become particle
precursors, and enhanced photochemical oxidation,
may lead to new particle formation (Seinfeld &
Pandis 2006). The factor controlling dry deposition
of particles is the particle size. Hygroscopic aerosol
particles containing XSO4

2- absorb water vapour
from the air, dissolve as humidity increases, and
saturated droplets form. The diameter of the particles
increases abruptly. If humidity increases further, the
particle diameter and mass grows, and the particles
may eventually be deposited (Orr et al. 1958).
Therefore, the strong humidity inversions in summer
may have a cleansing effect, decreasing aerosol con-
centration to the ambient level above the inversion.
Indeed, when the strong humidity inversion was
located below the level of the Zeppelin station, no
effect of the pollution accumulation in the ABL was
seen on the Zeppelin sulphate measurements,
whereas a statistically significant influence was
observed at the Ny-Ålesund station.

According to the test, the directional wind shear is
not a statistically significant factor. However, wind
speed shear was an important factor decreasing the
median concentration of SO2 and XSO4

2- at the Ny-
Ålesund station in summer, while no shift of median
in the Zeppelin XSO4

2- data was observed (Table 2).
SO2 is a moderately soluble gas, therefore oxidation
to sulphate and dry deposition are the major path-
ways for SO2 removal from the troposphere on non-
cloudy days (Liang & Jacobson 1999; Seinfeld &
Pandis 2006). The dry deposition velocity depends
strongly on wind speed and turbulence strength.
Indeed, the concentrations of SO2 and XSO4

2- in
Ny-Ålesund were almost two times lower when a
vertical wind speed shear was observed. In the
absence of wind speed shear, concentrations of both
compounds increased dramatically in Ny-Ålesund,
while no such effect was observed in the data from
the Zeppelin station. Long-term studies based on the
Ny-Ålesund radiosonde data record have shown that
the ventilation within the ABL above Ny-Ålesund has
decreased over the last two decades, as smaller wind
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velocities are being observed more frequently in all
seasons (Maturilli & Kayser 2016). This implies that

the conditions favourable for the accumulation of
pollution in the ABL may occur more often.

Figure 2. Seasonal SO2 and XSO4
2- data from Ny-Ålesund (x axes) and Zeppelin station (y axes): (a) summer; (b) autumn; (c)

winter; (d) spring.

Table 2. Significant results of WRS-test (p < 0.05).

Season Compound and station Factor of influence p value

Median of the group where
the factor of influence is

absent (μgS∙m−3)

Median of the group where
the factor of influence is

present (μgS∙m−3)

Summer XSO4
2-, Ny-Ålesund Vertical wind speed shear < 0.01 0.0510 0.0235

Strong humidity inversion < 0.01 0.0296 0.0635
SO2, Ny-Ålesund Daily number of ship

passengers above or
equal to 100

0.02 0.0125 0.0220

Vertical wind speed shear < 0.01 0.0230 0.0133
Autumn SO2, Ny-Ålesund Temperature inversion 0.01 0.0115 0.0120
Winter XSO4

2-, Ny-Ålesund Temperature inversion 0.01 0.0292 0.0723
Spring SO2, Ny-Ålesund Temperature inversion 0.03 0.0118 0.0350

XSO4
2-, Ny-Ålesund 0.01 0.1618 0.2675

SO2, Zeppelin < 0.01 0.0300 0.0400
XSO4

2-, Zeppelin < 0.01 0.1390 0.3210
XSO4

2-, Ny-Ålesund Strong humidity inversion < 0.01 0.2865 0.1218
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In order to assess influence of the ship traffic emis-
sions on the measurements at both stations, all sum-
mer days were divided into two groups: one group
with the daily number of people visiting Ny-Ålesund
by ship above or equal to 100; and one group with the
number of passengers below 100. The number of peo-
ple is an indicator of ship size and, hence, the amount
of emissions. In total, 66% of the summer data may
have been impacted by pollution from the ships, since
101 out of 154 days of summer measurements belong
to the first group. However, as Fig. 2 shows, summer
SO2 concentrations measured at both the Zeppelin and
Ny-Ålesund stations were usually much lower than in
winter and spring. There may be a few reasons for this.
Firstly, long-range transported pollution prevailing in
the Arctic in winter and spring decreases in summer
because of the change in the position of the Arctic

Front, which prevents effective south-to-north long-
range air transport (AMAP 2006). Secondly, there are
few local anthropogenic sources of air pollution in the
Artic and some of them have intermittent emission
rates, e.g., ship traffic (Dekhtyareva et al. 2016).
Thirdly, the conversion rate of SO2 to SO4

2- increases
in summer, a process governed by two major mechan-
isms. The first mechanism is the oxidation of gaseous
SO2 by hydroxyl radical in clear-sky conditions.
Studies have shown that the conversion rate increases
with increasing temperature and relative humidity and
is a function of Julian day (Meagher & Bailey 1983;
Eatough et al. 1994). The second mechanism is the
conversion of SO2 to SO4

2- through various chemical
reactions in the aqueous solutions in clouds and fog
(Eatough et al. 1994; Seinfeld & Pandis 2006). Despite
very low average summer concentrations of SO2 mea-
sured at the
Ny-Ålesund station, there was a noticeable impact of
local pollution from ships on the Ny-Ålesund data set.

Mean SO2 values measured at the Ny-Ålesund
station for the days in the first group were almost
three times higher (0.05 μgS∙m−3) than for days from
the second group (0.02 μgS∙m−3), while the Zeppelin
data showed almost no difference for these two
groups (0.05 μgS∙m−3 vs 0.06 μgS∙m−3). This finding
is supported by the WRS test that showed that med-
ian SO2 value for the first group of days in Ny-
Ålesund measurements was significantly higher than
for the second one, while no difference was found for
SO2 measurements at the Zeppelin station (Table 2).

Mean XSO4
2- values at the Ny-Ålesund and Zeppelin

stations for the first group of days (≥ 100 passengers)
were 50% higher (0.09 μgS∙m−3) than for the second one
(< 100 passengers; 0.06 μgS∙m−3). This finding corre-
sponds well with a previous study showing that at the
Zeppelin station there was an 55% increase in the num-
ber of particles with diameters characteristic of aged ship
plumes, due to local pollution from ships (Dekhtyareva
et al. 2016). However, the WRS test did not show a
significant difference in medians for the two groups,
which indicates that the sulphate measurements were
infrequently affected by local pollution, but sufficiently
to influence the mean value, which was increased on
account of a few high concentration values.

Total daily number of passengers, indicating the
size of ships, shows moderate (r = 0.38), but signifi-
cant (p < 0.001), positive correlation with SO2 con-
centration on filters in Ny-Ålesund, while no
significant correlation between these parameters has
been found for the Zeppelin data set. In contrast,
both the Zeppelin and Ny-Ålesund XSO4

2- data sets
show significant (p = 0.03), but weak positive correla-
tions (r = 0.20) with number of passengers. A possi-
ble explanation to this is proximity to the emission
source. Whether the ships were docked at the pier or
anchored in the fjord, they were closer to the

Figure 3. Summermeanwind speed inm∙s−1 (colour scale), wind
direction (black arrowswith the length relative to thewind speed)
and mean sea-level pressure in mbar (white lines) in the Svalbard
area (black outline) and Ny-Ålesund (red dot), obtained from
surface ERA-Interim data: (a) for days with strong humidity inver-
sion; (b) for days with normal or no humidity inversion.
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measurement station in Ny-Ålesund than to the
Zeppelin station. The proximity to the source of
emission is important because the oxidation from
SO2 to XSO4

2- in aqueous and gas phases are major
pathways for SO2 removal during the summertime
(AMAP 2006), and therefore pollution emitted by
ships may contribute to the total sulphate concentra-
tion but not to the sulphur dioxide measured at the
Zeppelin station.

One may conclude that emissions from ships have
an impact on both data sets in a different manner.
Sulphur agents emitted by ships reach Zeppelin
mostly in the oxidized form of XSO4

2-, while the
influence on measurements in the village is directly
seen on the SO2 data set.

Median and mean consistent mixing layer heights
were 546 m and 657 m, respectively. However, only
47% of all profiles showed a mixing height higher than
474 m. This finding supports the original argument for
positioning of the Zeppelin station at the mountain top
in order to prevent the influence of local pollution on
measurements (Braathen et al. 1990). Furthermore, dur-
ing days with little vertical mixing and strong humidity
inversions below the Zeppelin station the local pollution
does not reach the station, while higher concentrations
were observed in the filter samples in Ny-Ålesund.

An examination of two small sub-groups of sum-
mer days serves as an example. In both groups, the
mixing height was lower than 474 m and the daily
number of ship passengers exceeded 100. The only
parameter that was different is the presence of strong
humidity inversions in the first group (28 days) and
the absence of them in the second one (21 days). On
the days in the first group, a slightly lower average
wind speed was observed in Ny-Ålesund than on the
days in the second group (1.6 ms−1 vs 2.1 ms−1). The
percentage of days when no cloud base was detected
and when the cloud base was identified above the
Zeppelin station was 39% and 18%, respectively, in
the first group of days, and 20% and 12% in the
second one. Mean XSO4

2- concentrations in the first
group were 0.13 μgS∙m−3 and 0.09 μgS∙m−3 at the
Ny-Ålesund and Zeppelin stations, respectively.
Mean XSO4

2- concentrations in the second group
were 0.07 μgS∙m−3 and 0.09 μgS∙m−3 at the Ny-
Ålesund and Zeppelin stations, respectively. In pre-
sence of a strong humidity inversion in the lowest
500 m of the ABL, concentrations in Ny-Ålesund
increased, while at the Zeppelin station the average
concentrations for both groups, with and without
strong humidity inversion, were identical.

The processes affecting concentration distribution
of aerosols are complex and depend on the particle
size and parameters of the atmospheric turbulent
boundary layer and the temperature inversion layer
if the inversion is present (Elperin et al. 2007). For
example, thermal diffusion increases near-surface

concentration of coarse particles (PM10) in inversely
stratified flows over elevated terrain, while for gases
and fine particles (PM2.5) the effect is small (Sofiev
et al. 2009). The shipping emissions increase concen-
trations of SO2, PM2.5 and PM10 (Viana et al. 2014).
PM2.5 and gases remain in the air for a longer time
after emission and may be transported over long
distances from the source, while PM10 have limited
spatial distribution and are often deposited down-
wind of the pollution sources. At the same time,
sulphate may be present in both PM2.5 and PM10

(Chan et al. 1997), while SO2 oxidizes and contributes
to the XSO4

2- concentration as well. Moreover, the
processes affecting aerosol population cannot be
thoroughly investigated without studying the evolu-
tion of vertical aerosol profiles (Kupiszewski et al.
2013). However, no particulate matter or vertical
aerosol profiles data are available for the current
study period, and the time resolution of the filter
samples used in this study is too coarse to discuss
the aerosol and gas processes in detail.

The WRS test showed that only SO2 measurements
in Ny-Ålesund were influenced by temperature inver-
sions in autumn (Table 2). However, the medians for
both groups were very low and quite similar. This is
due to the generally very low concentration during
autumn. No other statistically significant impact was
revealed in autumn.

In winter, according to the WRS test, tempera-
ture inversions become an important factor
increasing the median concentration in the Ny-
Ålesund XSO4

2- data set, but not affecting the
Zeppelin station (Table 2). Change of wind direc-
tion with height and humidity inversions did not
affect either of the data sets. This can be explained
by low specific humidity variation with height
(average standard deviation of specific humidity is
0.07 g∙kg−1 in the lowest 500 m in winter versus
0.18 g∙kg−1 in summer), low median QIS, low num-
ber of days with directional wind shear and high
seasonal average median profile wind speed within
the lowest 500 m (5.7 ms−1).

In spring, in accordance with the test, tempera-
ture inversions affect SO2 and XSO4

2- data sets
from both stations. The samples from the group
of days with temperature inversions had signifi-
cantly higher median values of both compounds
than from the group without temperature inver-
sions (Table 2). Average air temperature at 850
hPa was −15°C and −12°C in the first and second
groups of days, respectively. The orientation of the
wind velocity vectors and the location of the iso-
bars in Fig. 4a show that there was a horizontal
advection of colder air masses from the east–
north-east in the first group of days, with higher
concentrations. The air flow from the Arctic
Ocean to the north-west of Svalbard prevailed for
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the second group of days, with lower concentra-
tions (Fig. 4b).

The mean spring concentrations on daily filter
samples from the Ny-Ålesund and Zeppelin stations
are shown in Table 3. The values for the groups for
which the WRS test detected significant difference in
medians are indicated. The mean spring SO2 and
XSO4

2- values changed dramatically at both the Ny-
Ålesund and Zeppelin stations, depending on the
presence or absence of strong humidity inversions.
Mean spring SO2 values for days with strong humid-
ity inversions were four times and two times lower at
the Ny-Ålesund station and at the Zeppelin station,
respectively, than mean SO2 values for the days when
no strong humidity inversions were observed. Mean
spring XSO4

2- values for the first group of days were
65% and 17% lower at the Ny-Ålesund and Zeppelin
stations, respectively, than the mean value for the
days without strong humidity inversions. However,
the magnitude of the reduction of the SO2 and
XSO4

2- concentrations suggests that these conditions

affect measurements at the Ny-Ålesund station more
than at the Zeppelin station. Indeed, according to the
test, the median XSO4

2- values in the Ny-Ålesund
station data are significantly lower for the group of
days with strong humidity inversions, while no dif-
ference was found in the data from the Zeppelin
station. Strong humidity inversions have the opposite
effect on filter measurement results to the one from
temperature inversions. This may be explained by the
different origin of air masses. Strong humidity inver-
sions were observed when the wind direction at 850
hPa was from the south and west and the average air
temperature at that pressure level was −11.3°C, while
for the days with no strong humidity inversions it
was −15°C. Figure 5a shows that there was a trans-
port of warmer and more humid air from the Atlantic
Ocean south of Svalbard during the days with strong
humidity inversions. Prevailing weather conditions at
850 hPa for the days with strong humidity inversions
correspond very well with the ones described by
Vihma et al. (2011), who characterized the effect of

Figure 4. Spring mean wind speed in m∙s−1 (colour scale), wind direction (black arrows with the length relative to the wind
speed) and mean sea-level pressure in mbar (white lines) in the Greenland and Barents seas, obtained from surface ERA-Interim
data: (a) for days with temperature inversion; (b) for days without temperature inversion.

Table 3. Mean spring concentrations in daily filter samples at the Ny-Ålesund and Zeppelin stations, μgS∙m−3. The values in
boldface correspond to significant results of the WRS test shown in Table 2.
Measured compound
and station Seasonal

Change in wind
direction

No change in wind
direction

Temperature
inversion

No Temperature
inversion

Strong humidity
inversion

Normal or no
humidity inversion

SO2, Ny-Ålesund 0.124 0.087 0.141 0.175 0.031 0.042 0.177
XSO4

2-, Ny-Ålesund 0.270 0.334 0.239 0.326 0.169 0.194 0.320
SO2, Zeppelin 0.146 0.133 0.152 0.200 0.058 0.082 0.185
XSO4

2-, Zeppelin 0.297 0.356 0.269 0.363 0.195 0.264 0.318
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warm and humid air masses from the marine sector
(200–290°) on the formation of humidity inversions.
In contrast, the location of isobars in Fig. 5b for the
group without strong humidity inversions was similar
to the one for the group of days with temperature
inversions (Fig. 4a), indicating the transport of colder
air masses with higher concentrations of sulphur
compounds from the east. Moreover, the temperature
at the level of 850 hPa correlates differently with
temperature and humidity inversion strengths in
spring. There is a statistically significant negative
correlation between TIS (r = −0.30, p = 0.004) and
the air temperature at 850 hPa, while the correlation
with QIS is positive (r = 0.26, p = 0.01). This indicates
that strong humidity inversions are caused by the
horizontal transport of warmer air masses and not
by the radiative cooling of the surface layer. Lower
concentration of XSO4

2- in Ny-Ålesund than at the
Zeppelin station may be explained by the fact that the
air masses are of marine nature, and the deposition
velocities above the air–water interface may be
slightly higher compared with deposition to dry sur-
faces because of growth of hygroscopic particles in
the humid boundary layer (Seinfeld & Pandis 2006).

A main weakness in this study is the filter-sampling
method, which affects the number of values below the
detection limit, and consequently the correlation
between the data sets. As Aas et al. (2007) stated, the
reference European Monitoring and Evaluation

Programme method, based on the use of potassium
hydroxide-impregnated filters for SO2 detection, is not
well suited to monitoring low background concentra-
tions because of its high detection limit. The seasonal
percentage of SO2 values below the detection limit (Ld)
in the data sets at both stations is very high irrespective
of the season, while the percentage is lower in the
XSO4

2- data set (Table 4). The rate of missing data in
the Ny-Ålesund station data set is higher than in the
Zeppelin data set in all seasons.

Another uncertainty is related to the fact that only
one radiosounding per filter measurement was uti-
lized in the data analysis. This gives the information
about the atmospheric stratification and vertical wind
profile at the time of launching (generally at 12
UTC), but does not describe the profile evolution
during the day. However, as one can see in Fig. 6
the lowest correlation between daily averaged tem-
perature measurements at the Ny-Ålesund and
Zeppelin stations were observed during summer.
This points to a higher rate of non-linearity in inter-
relation between temperatures at the Ny-Ålesund and
Zeppelin stations and, consequently, reflects com-
plexity of the processes in the ABL. In general, the
atmospheric lapse rate is formed under the combina-
tion of convection and radiation processes (Wallace
& Hobbs 2006); however, we have seen from the high
variation of specific humidity and frequently
observed directional wind shear and clouds in

Figure 5. Spring mean wind speed in m∙s−1 (colour scale), wind direction (black arrows with the length relative to the wind
speed) and mean sea level pressure in mbar (white lines) in the Greenland and Barents seas, obtained from surface ERA-Interim
data: (a) for days with strong humidity inversion; (b) for days without strong humidity inversion.
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summer profiles that there have been air flows with
quite different characteristics in the lowest 500 m.
Interaction of these flows and radiation processes
within the clouds may influence the correlation of
daily temperature measured at the two stations, so
the characteristics of the profiles are not only

instantaneous features of the ABL, but are important
for the lapse rate formation throughout the day in
summer.

The findings presented in this paper may be rele-
vant for planning future fieldwork campaigns and
comparing modelling results with measurements

Table 4. Characteristics of the filter data sets.
Season

Station Characteristic Compound
summer
(n = 154)

autumn
(n = 182)

winter
(n = 121)

spring
(n = 92)

Ny-Ålesund Rate of values below Ld (%) SO2 45 42 45 43
XSO4

2- 31 41 35 10
Zeppelin Rate of values below Ld (%) SO2 45 54 40 49

XSO4
2- 21 32 17 14

Ny-Ålesund Rate of missing data (%) SO2 and XSO4
2- 21 32 17 14

Zeppelin Rate of missing data (%) SO2 and XSO4
2- 1 14 6 3

Figure 6. Seasonal plots of daily averaged air temperature measured at the Ny-Ålesund and Zeppelin stations: (a) summer; (b)
autumn; (c) winter; (d) spring.
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done in a region with complex topography, such as
the Ny-Ålesund area. Knowledge of the micrometeor-
ological conditions of the study area is crucial if one
wants to eliminate local effects by choosing the right
location for the station or to contrast results from
already existing stations situated close to each other.
For comparison of historical data with modelling
results, one needs to investigate local meteorological
factors that may affect measurement results and
choose the model resolution that correctly represents
these factors. A study by Mölders et al. (2011) has
shown that the combined chemical and meteorologi-
cal model WRF-Chem with a resolution of 4 km
tends to underestimate the inversion strengths, pre-
sents biases of temperature and wind speed and
determines incorrect wind direction at low wind
speeds. Furthermore, it has been stated that errors
in modelled temperatures may lead to erroneous
modelled concentrations of aerosols (Mölders et al.
2011). As there is a trade-off between the resolution
and the computational time in the model, it is useful
to know if the measurement results from the station
are subject to a significant impact of local pollution
and/or micrometeorological factors. This can be
checked using the statistical methods applied in this
article.

Conclusion

The correlation of daily sulphur dioxide (SO2) and
non-sea salt sulphate (XSO4

2-) data sets from the
Ny-Ålesund station and the Zeppelin mountain sta-
tion has a large seasonal variation. No significant
correlation between the SO2 data sets has been
observed in the summer data, while a very strong
correlation is present in the winter data, with
autumn and spring showing intermediate to moder-
ate values of Pearson correlation coefficient.
Although the correlation between the XSO4

2- data
sets is significant for all times of year, it is much
lower for the summer data compared to other
seasons.

The first hypothesis, stating the significance of the
effect of temperature and humidity inversions on the
correspondence between the data sets from the Ny-
Ålesund and Zeppelin stations, is supported. In win-
ter, concentration of XSO4

2- at the Ny-Ålesund sta-
tion is significantly higher in the days with
temperature inversions, while in spring this effect is
seen in data sets from both stations. Local meteoro-
logical conditions on the days with strong humidity
inversions reduce and increase the sulphate concen-
tration at the Ny-Ålesund station in spring and sum-
mer, respectively.

The second hypothesis has been rejected, since the
directional shear appeared to be an insignificant fac-
tor, while the third hypotheses about the influence of

wind speed shear on the correspondence of measure-
ments is relevant only for the summer season. In the
absence of the wind speed shear, local pollution
affects Ny-Ålesund sulphur dioxide and sulphate
data set more strongly.

The fourth hypothesis, stating the effect of local
summertime emissions from ship traffic on the cor-
respondence between the data sets from the two sta-
tions, is partially supported. Local summertime ship
traffic has a strong impact on the SO2 Ny-Ålesund
data set, while there is no statistically significant effect
on the Zeppelin data set. The XSO4

2- data sets at both
stations are impacted by pollution from ships, but the
influence on the Ny-Ålesund data set is more pro-
nounced on days with strong humidity inversions.

The findings presented here are highly important
for planning joint monitoring campaigns and the
exchange and comparison of measurement results in
Ny-Ålesund. Both anthropogenic factors, such as
local pollution in summer, and natural ones, namely
local circulation patterns and variation of tempera-
ture and humidity in the ABL, affect the correspon-
dence between the data sets collected at the locations
within the range of 2 km. Furthermore, the nature of
the sulphur species studied here determines which
factors affected the concentration of the measured
compounds at the two stations.

The environmental phenomena described here still
represent a challenge for modellers and need to be
taken into account when comparing modelling results
with in situ measurements taken at different heights
in an area with complex topography.
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Springtime nitrogen oxides and tropospheric ozone in Svalbard: 

results from the measurement station network 

Measurement results from three independent research projects have been 

combined to identify the effect of emissions from various local sources on the 

background concentration of nitrogen oxides and tropospheric ozone in Svalbard. 

The hourly meteorological, NOx and O3 data from the ground-based stations in 

Adventdalen, Ny-Ålesund and Barentsburg were analysed along with daily 

radiosonde soundings and weekly data from O3 sondes. The data from the ERA5 

reanalysis have been used to evaluate the prevailing synoptic conditions during 

the fieldwork. Although the correlation between the NOx concentrations in the 

three settlements was low due to dominant influence of the local atmospheric 

circulation, cases with common large-scale meteorological conditions increasing 

the local pollutant concentration at all sites were identified. In colder and calmer 

days and days with temperature inversions, the concentrations of NOx were 

higher. In contrast to NOx values, O3 concentrations in Barentsburg and at the 

Zeppelin station in Ny-Ålesund correlated strongly, and hence were controlled by 

the prevailing synoptic situation and long-range transport of air masses. A special 

study with one of the NOx sensors in Longyearbyen revealed elevated 

concentrations when ships were near the harbour. Further investigation of the 

effect of ship emissions on the air quality in Longyearbyen is recommended. 

Keywords: atmospheric chemistry; air pollution; Arctic; meteorology, reactive 

nitrogen 

Introduction 

Fossil fuel combustion and biomass burning create high-temperature conditions leading 

to the reaction between atmospheric oxygen and nitrogen present in the fuel and in the 

air and formation of nitrogen oxides (NOx=NO+NO2) (Seinfeld and Pandis 2006). NOx 

emitted locally in the Arctic or transported from mid-latitudes may increase the 

deposition of nitrates (NO3-), which act as nutrients, and combined with climate change 

may cause changes in the relative abundances of species in nutrient-deficient 
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environments such as lakes in Svalbard (AMAP 2006). Aerosols, containing particulate 

nitrate, are formed from the gaseous nitric acid (HNO3) produced through the oxidation 

of nitrogen dioxide (NO2) by OH-radicals in the presence of sunlight or by the 

nighttime reaction with tropospheric ozone (O3) (AMAP 2006). 

However, high concentrations of NOx may lead to regional soil and water 

acidification and have negative effects on human health (AMAP 2006). In addition to 

this, NOx are vital for the formation of tropospheric ozone O3, which is a harmful air 

pollutant and greenhouse gas (IPCC 2013). The O3 production and loss depends on 

RH/NOx (hydrocarbons and nitrogen oxides) and CO/NOx (carbon monoxide and 

nitrogen oxides) ratios and the presence or absence of sunlight. In the absence of 

sunlight during polar night, O3 that have been produced within the long-range 

transported polluted air masses may accumulate in the Arctic. Hereby, the atmospheric 

lifetime of O3 may be increased from days in summer to months in winter 

(AMAP/Quinn et al. 2008). 

In spring, heterogeneous photochemical reactions with bromine compounds may occur 

over the sea-ice and snow-covered surfaces and result in tropospheric O3 depletion in 

the region (Fan and Jacob 1992, Monks 2005, Simpson et al. 2015). According to the 

study performed by Beine et al. (1997b), the background NOx values were lower than 

normal during the O3 depletion events observed at the Zeppelin station in Svalbard. The 

reactions with Br-species, which result in oxidation of NO to NO2 and removal of NO2 

by the reaction with BrO or OH-radical and formation of HNO3, were proposed as 

possible explanation to this phenomenon. However, it may also be explained by the fact 

that lower NOx values are characteristic of the pristine air masses from the remote 

regions in the high Arctic. In contrast, elevated NOx values are observed during the 

pollution episodes near the local emission sources or when NOx are long-range 
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transported to the Arctic from mid-latitudes directly or in the form of 

peroxyacetylnitrate (PAN), which is further thermally decomposed in-situ in the Arctic 

when the air temperature increases in spring (Beine et al. 1997a). 

A diurnal variation in the background NO/NO2 ratio has been observed in 

Svalbard in spring, and the increase in the ratio around noon becomes more pronounced 

from March to May (Beine et al. 1997a). The efficiency of NO2 photolysis and 

formation of NO and O3 enhances as insolation increases, despite concurrent rapid 

oxidation of NO by O3 leading to formation of NO2, a second part of the so-called 

daytime NOx null-cycle (Wallace and Hobbs 2006). The latter reaction also explains the 

titration of O3, which may be observed in the vicinity of large sources of NO such as 

cruise ships (Eckhardt et al. 2013). However, if the NO concentration is higher than 

10pptv and CO or hydrocarbons are present in sufficient quantities, excess of O3 may 

be produced in the presence of sunlight (Wallace and Hobbs 2006). 

Although Svalbard is a near pristine Arctic environment, where long-range 

transport is the dominant air pollution source, there are also local anthropogenic 

emissions on the archipelago. Coal power plants in Barentsburg and Longyearbyen and 

diesel-fuelled generator in Ny-Ålesund supply energy for heating and electricity 

(Vestreng et al. 2009, Dekhtyareva et al. 2016) (Fig. 1). The energy demand for heating 

in Longyearbyen is two times higher in winter than in summer due to lower 

temperatures in wintertime. In winter days, the production of energy for heating 

increases from 06:00 to 09:00 in the morning and then decreases steadily until it reaches 

its minimum at 03:00 in the night, while in summer the production varies little 

throughout the day (Tennbakk et al. 2018). In contrast to the energy needed for heating, 

the energy demand for electricity production is stable and mostly independent on the air 

temperature. The three biggest consumers of electricity are the coal power plant itself, 
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the mine Gruve 7 and the Svalbard Satellite Station SvalSat. There is a diurnal variation 

in the power demand with higher daytime values in winter. In summer, the power 

demand and its diurnal variations are lower, since the mine has reduced operation in 

July (Tennbakk et al. 2018). The power demand for heating in Ny-Ålesund and 

Barentsburg varies similarly to Longyearbyen, but the absolute values are different for 

all three settlements. 

Svalbard residents use cars for transportation within the settlements and 

snowmobiles for springtime off-road traffic (Vestreng et al. 2009). There were around 

2500 snowmobiles registered at Svalbard in 2007 (MOSJ 2018), and, according to the 

report issued by the Norwegian Climate and Pollution Agency (Vestreng et al. 2009), 

local NOx emissions from these were three times higher than emissions from the 

gasoline cars. Current number of snowmobiles is around 2100, and it has been stable 

since 2011 (MOSJ 2018). 

In order to minimize environmental impact from the usage of motorized vehicles 

in the terrain on snow covered and frozen ground, specific zones, where the snowmobile 

traffic is allowed, are established (Klima- og miljødepartementet 2001). Furthermore, 

because of complex terrain, most of the snowmobile routes are in valleys. Tourists and 

residents usually travel in groups consisting of up to 20 snowmobiles due to safety 

reasons. Consequently, the amount of pollutants emitted instantaneously by one 

motorcade may be significant. Previous studies have shown highly elevated levels of 

volatile organic compounds along snowmobile tracks (Reimann et al. 2009), however, 

no measurements of nitrogen oxides have previously been done. 

NOx concentrations in all three settlements may also be influenced by emissions 

from the ship traffic (Shears et al. 1998, Vestreng et al. 2009). However, it is the most 
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intensive in summer (Eckhardt et al. 2013, Dekhtyareva et al. 2016), while snowmobiles 

and power plants are dominant sources of NOx in winter and spring seasons. 

A two-month-long measurement campaign was organized in spring 2017 to 

assess the effect of emissions from various sources on the NOx concentration in 

Longyearbyen. The data from Barentsburg and Ny-Ålesund have been analysed 

simultaneously to assess effect of local and mesoscale meteorological conditions on 

concentrations of pollutants. 

Synoptic-scale north-easterly wind is prevailing in the Svalbard region 

(Hanssen-Bauer et al. 2019), but the large-scale flow is affected locally by 

topographical channelling and air density gradient from the inland glaciers to the 

warmer sea. The expected wind direction is along the axis of valleys or fjords towards 

the coast (Førland et al. 1997): from south-east in Longyearbyen and Ny-Ålesund and 

from south-south-east in Barentsburg. Nevertheless, despite the difference in local wind 

direction at the stations, there may be common mesoscale meteorological conditions 

promoting accumulation of pollutants in the atmospheric boundary layer (ABL) at all 

three sites such as absence of vertical wind speed shear and atmospheric temperature 

inversion (Dekhtyareva et al. 2018). 

Meteorological conditions, namely wind speed, air temperature and humidity, 

affect the formation of aerosols and efficiency of pollution dispersion and deposition, 

while ultraviolet (UV) solar irradiance has an influence on photochemical reactions in 

the troposphere (Seinfeld and Pandis 2006). The photolysis of O3 at the wavelengths 

below 320 nm may lead to production of OH-radical in presence of water vapour, which 

may further yield net O3 production if CO, NOx and hydrocarbons are present in 

sufficient quantities. NO2 dissociates to NO and O in the range of wavelengths from 

300 nm to 370nm. The photodissociation efficiency reduces gradually at higher 
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wavelengths and stops at 420nm (Seinfeld and Pandis 2006). The photolysis of 

dihalogens, an initial step needed for the reactions promoting springtime tropospheric 

O3 depletion in the Arctic, is efficient even under low solar elevation and higher column 

ozone concentration (Simpson et al. 2015). Thus both UV-B and UV-A solar irradiance 

fractions with wavelengths from about 300 to 315 nm and from 315 to 400 nm (Seinfeld 

and Pandis 2006), respectively, may have influence on the springtime concentrations of 

NOx and O3 in Svalbard. 

The main aim of the current article is to combine NOx and O3 data from three 

different research projects in Svalbard in order to identify specific factors affecting the 

concentration of measured compounds in Barentsburg, Longyearbyen and Ny-Ålesund 

and define conditions that promote accumulation of local and long-range transported 

pollution in all three settlements. 

The meteorological in-situ and reanalysis data, UV, O3 and NOx observations 

have been used to test the following hypotheses: 

• There is a diurnal pattern in concentration of NOx at all three stations due to 

variable emission rate from the local sources of NOx. 

• Complex topography determines local circulation, and therefore variation of 

NOx concentration measured at the stations will be dominated by micro- and 

mesoscale phenomena. 

• Local emissions of NOx in Ny-Ålesund and Barentsburg affect O3 

concentrations in the settlements. 

• Despite the topographically induced features, there are common synoptic 

meteorological conditions, which have an influence on concentrations of NOx 

and O3 in the settlements. 
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Materials and methods 

Measurements in Adventdalen (Longyearbyen) 

In spring season, the main snowmobile route from Longyearbyen to the east coast of 

Spitzbergen goes along the road through the Adventdalen valley, and therefore there is 

daily snowmobile traffic nearby the CO2 laboratory belonging to the University centre 

in Svalbard (UNIS CO2 lab). The chemiluminescence NO/NO2/NOx analyser (model 

T200) was installed at the laboratory for the period from 23.03.2017 to 15.05.2017. The 

inlet of the sampling hose was secured outside from the window, while the temperature 

inside the laboratory was kept constant with the help of thermostat to maintain stable 

conditions needed for correct functioning of the analyser. The sensor was calibrated 

weekly using zero-air generator and certified NO gas with known concentration (800 

ppb), and the NOx data were scaled linearly to eliminate zero drift. The automatic 

weather station (UNIS AWS) is located nearby the UNIS CO2 lab, and the data from 

the station have been used to assess local meteorological conditions. 

In addition to the meteorological parameters from the Adventdalen station, data 

from UV monitors installed at the UNIS roof in Longyearbyen have been used. The 

sensors SKU 420 UV-A (315-380 nm) and SKU 430 UV-B (280-315 nm), produced by 

the SKYE Instruments, were calibrated 24th of August 2016. 

Measurements in Barentsburg 

The Russian Arctic and Antarctic Research Institute (AARI) performed the 

measurements in Barentsburg independently in frames of the air quality monitoring 

programme. The equipment installed in the settlement includes Chemiluminescence 

NOx and UV Photometric Ozone Analysers produced by Environment S.A. and 

portable Vaisala weather station. The analysers continuously gather the data and 
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transmit them to the desktops in the laboratory facility of the Russian Scientific Centre 

in Barentsburg. The data with 20-minutes time resolution have been averaged to obtain 

hourly data. In contrast to equipment in Ny-Ålesund and Longyearbyen, the NOx and 

O3 analysers have not been calibrated during the field campaign. Therefore, the data 

from this station may be prone to drift. It is especially important to consider when one 

studies NOx concentrations, since the NOx values are usually very low in the remote 

Artic environment (Dekhtyareva et al. 2016). On the other hand, the UV O3 monitor is 

more stable and does not demand as frequent calibration as chemiluminescence 

instruments (Williams et al. 2006), and thus data from this instrument are more reliable. 

Measurements in Ny-Ålesund 

Continuous NOx measurements are performed by the Norwegian institute for Air 

Research (NILU) in framework of the air quality monitoring programme in Ny-Ålesund 

(Johnsrud et al. 2018) . The analyser is installed in the middle of the settlement, 100m to 

the north-west from the meteorological station operated by the Norwegian 

meteorological institute. The hourly O3 gas monitor data from the Zeppelin observatory 

located nearby the mountaintop (474m a.s.l.) two km to the southwest from Ny-Ålesund 

(for the exact location of the Zeppelin station see, for example, Figure 1b) in 

Dekhtyareva et al., 2018) have been used for comparison with the O3 measurements in 

Barentsburg. The UV data obtained using multifilter radiometer GUV 541 at the 

Sverdrup station in Ny-Ålesund (Gröbner et al. 2010, Schmalwieser et al. 2017) and 

local meteorological observations from the Zeppelin station have been provided by 

NILU as well. The GUV radiometer is checked and corrected against a travelling 

reference instrument every year. 
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In addition to this, daily radiosonde and weekly ozone sonde data from the 

French–German AWIPEV research station in Ny-Ålesund have been used. Since 

temperature inversion and vertical wind shear may be important factors promoting 

accumulation of local pollution in the atmospheric boundary layer, the method for their 

detection in the radiosonde vertical profiles described by Dekhtyareva et al., 2018, has 

been applied. The days, when the temperature and wind speed were increasing with 

height on more than 0.3℃ and 1.25ms-1, respectively, in the lowest 500m, were defined 

as days with temperature inversions and vertical wind speed shear. In order to compare 

the O3 sonde measurements with ground-level observations, the O3 mixing ratio and 

ozone concentration have been calculated from the O3 partial pressure using ideal gas 

law and molar volume of ozone at the temperature and pressure measured by the 

radiosonde (Seinfeld and Pandis 2006). 

Daily radiosonde launches are operated at the AWIPEV station, using Vaisala 

RS92 radiosondes until April 2017 (Maturilli and Kayser 2016) and Vaisala RS41 

radiosondes afterwards. In this study, we apply radiosonde data for March 2017, post-

processed according to the principles of Reference Upper-Air Network GRUAN 

(Immler et al. 2010) and available via the GRUAN homepage www.gruan.org. As the 

RS41 is currently not processed by GRUAN, we applied the manufacturer’s processed 

radiosonde data for April-May 2017 that are available in the database www.pangaea.de 

(Maturilli 2017a, 2017b). The analysed O3 sonde data are stored in the Network for the 

Detection of Atmospheric Composition Change (NDACC) archive 

ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/nyalsund/ames/o3sonde/. 

Methods to study the effect of meteorological conditions on the concentration of 

measured compounds 

The partial correlations are used in air pollution research to investigate the strength and 

http://www.gruan.org/
http://www.pangaea.de/
ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/nyalsund/ames/o3sonde/
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direction of relationship between concentration of atmospheric compounds and each of 

meteorological parameters whilst controlling for the effect of others (Liu et al. 2016, Su 

et al. 2016). The histograms of the chemical and meteorological data from all three 

stations have been plotted and Kolmogorov-Smirnov test for normality with 5% 

significance level (Lilliefors 1967) has been applied to observations in order to check if 

they are normally distributed. If the hypothesis about normality has been accepted, the 

Pearson’s partial correlation has been applied to measure the strength of a linear 

association between the concentrations of measured compounds and one of 

meteorological variables controlling for the effect of others. In case of lack of normal 

distribution, the Spearman’s rank partial correlation has been calculated to test if the 

there is a statistically significant monotonic relationship between the chemical 

observations and meteorological parameters (Chalmer 1986). As stations in Ny-Ålesund 

and at the Zeppelin mountain are located at different altitudes in an area with complex 

topography and previous studies have shown significant difference in meteorological 

values at these sites (Dekhtyareva et al. 2016, 2018), separate meteorological data have 

been used for the correlation calculation. The UV data from the Sverdrup station in Ny-

Ålesund have been used for the calculation of partial correlation with NOx in Ny-

Ålesund and O3 at the Zeppelin station, while the UV data from UNIS in Longyearbyen 

have been used for the calculation of correlation with NOx from Adventdalen. Since 

there was no UV data from Barentsburg available for the period of fieldwork, the partial 

correlations for this station have been calculated using meteorological data only. 

The effect of the prevailing synoptic meteorological situation on the NOx and 

O3 concentration has been studied using hourly meteorological data from the global 

ERA5 reanalysis dataset with 31 km spatial resolution (Hersbach and Dee 2016). 
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To study long-range transport of O3-depleted or enriched air masses, the 

following procedure has been implemented to detect joint O3 decrease and increase 

events in the data from Barentsburg and the Zeppelin station: 

(1) Since the distance between the Zeppelin observatory and Barentsburg is more 

than 100 km, some time lag in correlation between the data from the two stations 

is expected. The allowable time lag has been defined based on the lagged linear 

correlation between the datasets. Maximum time lag, for which the correlation 

coefficient is higher or equal to the coefficient calculated for zero-hour lag, is 

defined as maximum allowable time lag. 

(2) Applying the air-quality extreme definition stated in Porter et al. (2015), O3 

levels below the 5th quantile and above the 95th quantile have been found 

separately for the Barentsburg and Zeppelin to define severe depletion and 

increase events, respectively. 

(3) Continuous episodes have been defined for the periods where the time difference 

between consecutive event points is less than 3 hours. 

(4) Minimum (maximum) O3 concentrations within each event have been defined. 

(5) The time of minimum (maximum) within the events in Barentsburg and at the 

Zeppelin station have been compared and if the difference between them is less 

than maximum allowable time lag, the events at both stations have been 

classified as joint. 

Then backward air mass trajectories have been simulated using the Hybrid 

Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for these joint 

events for 240 hours back in time to identify the source regions for the air masses (Stein 

et al. 2015). The 10-days simulation time has been chosen as a compromise between the 
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average lifetime of tropospheric O3, which may be three to four weeks (Christiansen et 

al. 2017), and the uncertainty of modelled air mass trajectories that increases with 

travelled distance (Freud et al. 2017). 

Methods to study the effect of local pollution in Ny-Ålesund and in Barentsburg 

on measured O3 concentrations 

As there were no O3 data from Ny-Ålesund available, the O3 and CO data from the 

Zeppelin station were used to study the influence of local NOx emissions Ny-Ålesund 

on the O3 concentration. CO indicates presence of other pollutants emitted 

simultaneously in the process of fossil fuel burning, and although the correlation 

between NOx and CO concentration in the plumes depends on the engine and fuel type, 

age of the plume and environmental conditions (Li et al. 2015), we expect higher CO 

concentrations in the fresh plumes arriving to the Zeppelin station. Therefore, local 

pollution effect has been defined for O3 measurements at the Zeppelin station when all 

three conditions were fulfilled: 

(1) wind direction measured both in Ny-Ålesund and at the Zeppelin station was 

northerly (above 270˚ or below 90˚) since the diesel power plant is located in 

300 m to the north-north-west from the NOx monitor in Ny-Ålesund and 2 km to 

the north-north-east from the Zeppelin station; 

(2) NOx concentrations were above mean value in Ny-Ålesund; 

(3)  CO concentrations observed at the Zeppelin station were above mean value 

indicating the possible impact of local pollution. 

To assess how the NOx emissions in Barentsburg affect the local O3 

concentration there, the NOx and O3 data from the Barentsburg station have been 

compared. Positive anomalies in O3 concentration were found for the same wind 



14 
 

directions where increased NOx concentrations were observed, but this may be due to 

higher concentrations of O3 in air masses, which were transported to Svalbard from the 

south and south-west. Since there are multiple sources of local pollution in Barentsburg, 

another method has been implemented: 

(1) the hours when NOx concentrations were above average in Barentsburg have 

been defined; 

(2) O3 values for these hours in the original and in the smoothed data series from 

Barentsburg have been compared. 

Results and discussion 

Comparison of NOx and O3 observations from Adventdalen, Barentsburg and 

Ny-Ålesund 

There is a weak statistically significant positive correlation between NO, NO2 and NOx 

values measured in Adventdalen and in Ny-Ålesund (the Pearson correlation 

coefficients are rNO=0.13, rNO2=0.15 and rNOx=0.13, p<0.0001 for all compounds). 

However, the data from all stations have shown significant autocorrelation, which may 

influence the inter-correlation of the three datasets. Therefore, in order to test the 

significance of the Pearson correlation coefficients stated above, a Monte Carlo 

approach has been applied (Graversen 2006). The artificial data series have been 

constructed keeping the power spectrums obtained from NO, NO2 and NOx data from 

Ny-Ålesund, but randomly changing the phase in the frequency domain. Then the 

artificial data sets were compared with the original NO, NO2 and NOx time series from 

Adventdalen, and the Pearson correlation coefficients have been calculated. The 

procedure have been repeated 5000 times for each variable to obtain reliable number of 

correlation coefficients. Statistical significance was obtained when the correlation 
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coefficients calculated for the artificial data time series were equal or higher to the one, 

calculated based on original data from Ny-Ålesund and Adventdalen in less than 5% of 

cases. In that case the correlation between the original NO, NO2 and NOx data from the 

Ny-Ålesund and Adventdalen is significant at a 95% level. On the contrary, no 

correlation is present with NOx data from Barentsburg, where the measurement and 

calibration routine was different from the two stations stated above. Low correlation 

between the NOx values at the three stations may indicate the importance of local 

emission sources and micrometeorology rather than the long-range sources of NOx and 

synoptic conditions. 

The comparison of the O3 data series from the Zeppelin station (purple line in 

the Fig. 2) and Barentsburg (light green line in the Fig. 2) shows that the Barentsburg 

data contains much more high frequency variations. Indeed, the Barentsburg station is 

located inside the settlement, and the O3 data from there is more prone to be influenced 

by the local NOx pollution, while the Zeppelin station is situated far from the local 

emission sources. A 6-hours moving average filter has been applied to the O3 

Barentsburg data, and the results are shown as a dark green line in Fig. 2. The smoothed 

and original O3 data from Barentsburg have been compared statistically: both two-sided 

Wilcoxon rank sum (WRS) test and the t-test show that the application of the low-pass 

filter on the O3 from Barentsburg does not result in significant change in the 

concentration distribution. The correlation between O3 concentrations at the Zeppelin 

station and in Barentsburg is strong (Pearson correlation coefficient r=0.69 both for 

smoothed and unsmoothed data, p<0.001). This indicates that O3 concentrations at both 

stations are highly influenced by the meteorological conditions on the synoptic scale 

and local impacts are of minor importance. 
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We have applied methods described earlier, to define the effect of local NOx 

emissions in Ny-Ålesund and Barentsburg on the O3 concentrations in the settlements. 

As a result, 5% of O3 data from the Zeppelin station may be influenced by the local 

pollution from Ny-Ålesund, and the statistically significant (p<0.0001) decrease in O3 

mean (63.1 vs 72.0 µg/m3) and median (68.6 vs 75.8 µg/m3) concentrations has been 

revealed for this group. However, northerly wind that may transport local pollution 

from Ny-Ålesund also brings air masses, which have lower O3 background value (Fig. 7 

and 9a). Therefore, when one compares locally polluted air masses with the background 

air masses coming from the north, the difference in mean and median O3 concentrations 

becomes statistically insignificant, 63.1 vs 66.5 µg/m3 and 71.0 vs 68.6 µg/m3, 

respectively. Consequently, the titration of O3 by locally emitted NOx occurs very 

rarely and may reduce the mean O3 concentration from the background value by a few 

percent only. 

Difference between the original and smoothed O3 data from Barentsburg varies 

from -19% to 11% of the smoothed value, and there is a strong negative correlation 

between the magnitude of NOx peak and the O3 titration efficiency (r=-0.65, p<0.0001). 

However, elevated NOx concentrations in Barentsburg contribute to local O3 titration 

and lead to average reduction of its concentration by 1% in comparison to the smoothed 

values. This effect is not statistically significant, and therefore other factors, such as 

variation in concentrations within long-range transported air masses, may be more 

important for explanation of difference between the O3 Zeppelin and Barentsburg 

datasets. 

Mean and median daytime (from 6:00 UTC to 17:00 UTC) and nighttime (from 

18:00 UTC to 5:00 UTC) concentrations are shown in Table 1 (here the daytime and 

nighttime are defined based on snowmobile traffic pattern in the Adventdalen valley). 
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NO2/(NO+NO2)-ratio is quite high in Adventdalen and in Barentsburg and exhibits 

diurnal variation, while it is much lower in Ny-Ålesund and there is no statistically 

significant difference between its day and night values. This may be explained by the 

fact that the measurement station in Ny-Ålesund was located much closer to the diesel 

power plant, a constant source of fresh NOx emissions, where the NO2/NOx ratio is 

much lower irrespective to the time of the day (Kimbrough et al. 2017). However, the 

lowest hourly NO2/NOx ratio of 0.29 and the highest peak of NOx were observed in 

Ny-Ålesund at 17:00 UTC 28th of April (Fig.2). The concentration of NO and NO2 were 

109.7 µgm-3 and 31.3 µgm-3, respectively, that indicates the presence of a strong 

emission source, for example snowmobiles, in the immediate vicinity from the station. 

Since it was a single NOx peak in the data, NO2/NOx ratio was unusually low and the 

meteorological conditions were untypical for pollution accumulation in Ny-Ålesund 

(south-easterly wind with moderate speed of 5.3 ms-1), this value has been excluded 

from further statistical analysis. 

Average concentrations of measured compounds have been calculated for each 

hour of the day. The diurnal variation in NO, NO2 and O3 concentrations at the stations 

is shown in Fig. 3. 

NO is a primary product of fossil fuel combustion (Arya 1999, Seinfeld and 

Pandis 2006), and higher NO/NOx ratio is expected close to the emission source. The 

station in Adventdalen is located at a distance of five kilometres from the coal power 

plant (Fig. 4), and snowmobile traffic there is a temporarily emission source present 

during daytime mostly. In contrast, measurement stations in Barentsburg and Ny-

Ålesund are located in the vicinity of the power plants releasing combustion products 

constantly at a variable rate (Fig. 5a and 5b). Thus, it is noticeable in Adventdalen that 

the NO concentration is close to zero during the night (dark blue bar in Fig. 3) in 
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absence of fresh traffic emissions and photochemical conversion of NO2 to NO. As the 

traffic intensity increases during the day, NO concentration rises, however, so does the 

NO2 concentration (red bar in Fig. 3) since there is rapid conversion of NO to NO2 by 

reaction with O3. 

One can see that the increase in the NOx concentration is followed by the rising 

O3 values in Barentsburg (black line in Fig. 3). In contrast, slight decrease in daytime 

O3 concentration is observed at the Zeppelin station. However, according to the t-test 

and the WRS-test, there is no statistically significant difference between nighttime and 

daytime O3 concentrations measured at the stations (Table 1).  

The average NO and NO2 concentrations measured at the stations are distributed 

unevenly over the wind directions. In Adventdalen, the southeasterly wind with wind 

speed of 4.1 ms-1 was dominating during the field campaign, and there was no 

significant difference between the daytime and nighttime observations. The highest 

average daytime NO and NO2 concentrations were observed when the wind was from 

NE and SE in Adventdalen (Fig. 4). In contrast, the highest average nighttime NO2 

concentrations were detected when the wind was from NW, which reveals possible 

influence of the coal power plant. The average nighttime concentrations of NO were 

very low regardless of wind direction. 

Figures 5a) and 5b) illustrate distribution of NO and NO2 concentrations over 

wind directions in Ny-Ålesund and Barentsburg, respectively. South-easterly wind with 

average speed of 3.6 ms-1 and 3.9 ms-1 in daytime and nighttime, accordingly, was 

dominating in Ny-Ålesund. However, the highest average NOx concentrations in Ny-

Ålesund were measured when the wind was coming from the north (Fig. 5a)). It points 

clearly to the local diesel power plant as an emission source. Similar results regarding 

the influence of the local power plant in Ny-Ålesund on NOx concentrations were 
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presented in Dekhtyareva et al., 2016 and Johnsrud et al. 2018. During the field 

campaign, the prevailing wind in Barentsburg was from south and south-east with 

average speed of 2.5 ms-1 and from south-east and east with mean speed of 2.3 ms-1 in 

daytime and nighttime, respectively. The NOx concentrations measured there were 

much lower than in Ny-Ålesund and the location of the emission sources was much 

more difficult to define (Fig. 5b). Daytime concentrations were probably influenced by 

the pollution from the port area and from the coal power plant located to the west and 

south-west from the measurement station, respectively. 

Since the data are not normally distributed, the Spearman partial correlations 

have been calculated in order to evaluate relationship between the NOx and O3, local 

meteorological parameters and UV (Table 2). 

The partial correlation of measured compounds with local wind speed is 

negative, varies from very weak for NO data from Ny-Ålesund and Barentsburg to 

moderate for NO2 data from Ny-Ålesund and Adventdalen and is significant for all the 

sites (p<0.05), except the Zeppelin station where the correlation with O3 was negligible. 

This may be explained by the fact that the local NOx emissions rarely reach the station, 

and thus the dispersion efficiency, which affects the possibility of local O3 production 

and is dependent on the wind speed, is not crucial factor influencing the O3 

concentration measured there. In contrast, there is weak negative correlation between 

O3 values and wind speed measured in Barentsburg. Indeed, light wind conditions may 

promote accumulation of O3 precursors and local O3 formation. Despite the fact that the 

local ground-level wind speed correlates significantly with all compounds measured in 

Ny-Ålesund, Barentsburg and Adventdalen, according to the Wilcoxon rank sum test 

(WRS-test), the vertical wind speed shear, detected in 55% of the radiosonde data, is not 

an important factor of influence. The radiosonde soundings are done only once a day 
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from Ny-Ålesund and the wind data from these measurements may not be 

representative for all the sites due to different mechanical and thermal processes 

controlling local circulations such as formation of katabatic winds and various 

mechanisms of wind channelling specific for each location (Esau and Repina 2012, 

Maturilli et al. 2013). 

Temperature inversions were detected in 28% of all the days in the measurement 

campaign period. This frequency of inversion occurrence is quite low in comparison 

with the results from previous studies of Dekhtyareva et al., 2018, where it was 

observed in 60% of the springtime profiles in 2009. Despite low frequency of 

occurrence, temperature inversions have significant influence on dispersion efficiency, 

and, according to the WRS-test, the median daytime (from 06UTC to 18UTC) 

concentrations of NOx at all three stations were higher (p<0.05) for the days when the 

phenomenon was observed in the radiosonde data. 

The correlation with atmospheric temperature is negative for NO and NO2 in 

Ny-Ålesund and Adventdalen. This may be explained by enhanced accumulation of 

locally emitted NOx in the ABL due to supressed vertical mixing in cold days. In 

contrast, the correlation between NOx concentration and air temperature and relative 

humidity is positive in Barentsburg. The major emission sources there are located on the 

seashore, and warmer marine air from west and south-west may bring local pollution to 

the station situated on the hill above them (Fig. 5b). There is moderate positive 

correlation between air temperature and O3 both in Barentsburg and at the Zeppelin 

observatory. This indicates that the excess of O3 might have been formed remotely and 

was transported to Svalbard with warmer air masses from mid-latitudes. Another 

explanation is that local colder air masses may have lower O3 concentration due to 

halogen driven O3 destruction. 
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The O3 correlates negatively with relative humidity. Previous studies in Arctic 

and Antarctica have shown that the air masses transported across the sea-ice covered 

areas exposed to sunlight had high relative humidity values and low O3 concentrations 

(Wessel et al. 1998). 

There is a very weak positive correlation between the UV-A measured in 

Longyearbyen and NO and NO2 concentrations in Adventdalen probably because the 

recreational snowmobile traffic increased with rising number of light hours per day. 

Other partial correlations between UV data and measured compounds are negligible and 

insignificant (absolute value of r is less than 0.1 and p>0.05). 

Since the meteorological conditions affect the concentrations of measured 

compounds differently, one needs to study the weather regimes affecting NOx 

(NO+NO2) and O3 concentrations separately. 

According to the t-test, the average meteorological conditions were statistically 

different (p<0.001) when the sum of NO and NO2 concentrations were above median vs 

hours with concentrations below or equal to median at all stations. Temperature was 

more than 1°C lower (-9.7 °C vs -8.6 °C), wind speed was more than 1 ms-1 lower (3.0 

ms-1 vs 4.5 ms-1) and the difference in pressure was 4 hPa (1012 hPa vs 1016 hPa) for 

the first group of values vs the second one. The difference between prevailing synoptic 

meteorological situation for both groups and mean for the whole period is shown in 

Figure 6. Hours when NOx concentrations were elevated are characterized by lower 

wind speed, more frequently observed westerly air flow and lower mean sea level 

pressure, while in hours when NOx values were below median, air masses were arriving 

from the north-east more frequently, wind speed and mean sea level pressure were 

higher than on average during the measurement campaign. However, the situations 

described above, when concentrations at all stations exhibited similar changes 
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simultaneously, occurs rarely, in 30% of all measurements distributed equally between 

the first and second groups. Indeed, NOx concentrations depend strongly on local wind 

direction and location of the station relative to the main source of emissions as has been 

presented in Figures 4 and 5. 

In accordance with the t-test, the average temperature, relative humidity and 

atmospheric pressure were statistically different (p<0.001) for hours when the O3 

concentrations were above median vs hours with concentrations below or equal to 

median in Barentsburg and at the Zeppelin station. Temperature was more than 3°C 

higher (-7.2 °C vs -11.0 °C), relative humidity was 3% lower (72% vs 75%) and 

atmospheric pressure was more than 5 hPa lower (980 hPa vs 985 hPa) for the first 

group of values vs the second one. Note, that the average pressure has been calculated 

for Barentsburg (70m a.s.l.) and Zeppelin stations (474m a.s.l.). One can see, that there 

is a difference in prevailing synoptic meteorological situation for both groups and the 

mean for the whole period (Figure 7). Southerly air flow was more frequent and mean 

sea level pressure was lower for hours when O3 concentrations were above median, 

while in hours when O3 concentrations were below median, air masses were more often 

transported from the north and mean sea level pressure was higher than on average 

during the measurement campaign. O3 concentrations in Barentsburg and at the 

Zeppelin station showed similar pattern of change in 63% of all measurements (the first 

and second group account for 30% and 33% of all data, respectively). This means that 

O3 concentrations at both stations were influenced by the meteorological conditions on 

the synoptic scale to a much higher degree than NOx concentrations. 

The comparison of the vertical O3 data from the ozone sondes from Ny-Ålesund 

(Fig. 8) and the ground-based measurements at the Zeppelin station and in Barentsburg 

(Fig. 2) reveals that the discrepancy in the data between the two stations may be 
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explained by the fact that the stations are located at different heights and measure air 

masses with uneven distribution of O3 in the lowest 500m. If one contrasts the closest 

point to the sounding time in the observations made in Barentsburg and in Ny-Ålesund, 

similar tendencies as in the O3 sonde data may be observed. For example, there is a 

significant difference between the data from Barentsburg and Ny-Ålesund (76.3 µg/m3 

vs 59.0 µg/m3) for the measurement closest to the time of sounding on 26th of April, and 

the reduction of O3 concentration with height between 50 and 500m is noticeable in the 

sounding data as well. 

The lagged linear correlation between the original O3 data from the Zeppelin 

station and the data from Barentsburg, which have been shifted forward in time, 

increases from r=0.69 (0-hour lag) to r=0.74 (4-hour lag) and reduces gradually to 

r<0.69 for 10-hour lag. Thus, the maximum allowable time lag for detection of joint 

extreme O3 depletion and increase events in the data from Barentsburg and Zeppelin 

station is set to 9 hours. The limiting 5th and 95th quantiles for Barentsburg and Zeppelin 

stations are shown by dotted light green and purple lines in Fig. 2, accordingly. 

Two joint O3 depletion events (31.03.2017 and 06.05.2017) and three increase 

events (13.04.2017, 28.04.2017 and 03.05.2017) have been detected. The HYSPLIT 

trajectory analysis shows that these O3 depletion events occurred when the cold air 

masses from the central Arctic reached Svalbard. The trajectory for the strongest 

depletion event is shown in Fig. 9a. The concentration of O3 in the Arctic air masses 

may be lower because of lack of ozone precursors such as NOx, hydrocarbons and CO 

needed for O3 formation. Further depletion may have occurred due to photochemical 

reactions with bromine species over the sea-ice in the period from 27.03.2017 12:00 to 

29.03.2017 12:00 when the simulated height of the lowest air masses arriving to the 

Zeppelin station and in Barentsburg  was below 500m (red line in Fig. 9a). The 
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simulated sun flux was quite low, but probably sufficient enough to support the halogen 

induced O3 destruction which may occur even under low light conditions (Simpson et 

al. 2015). The trajectories for the increase events revealed southerly origin of the air 

masses, but source regions were different for all three cases. In the first case, it was 

arriving from Northern part of Russia, in the second one from North America and 

Iceland, but the highest O3 concentrations at both stations were observed 03.05.2017 

when the air masses were transported from Europe (Fig. 9b). The conditions were 

favourable for O3 production, since the solar flux was much higher than for the 

depletion event described above and the air above the source region most probably 

contained O3 precursors. The simulated height over European sources for the lowest 

trajectory arriving to Barentsburg was around 1000m, while for the Zeppelin station it 

was around 3000m. This may explain why higher O3 concentrations were observed in 

Barentsburg during this event. 

Case study: short-term NOx measurements in Longyearbyen to investigate 

influence of other pollution sources on local air quality 

A case study to look at the influence of other pollution sources inside Longyearbyen on 

the local air quality was performed in the end of the measurement campaign. The NOx 

sensor was placed at the third floor at UNIS, approximately 1 km to the south-east from 

the harbour (Fig. 4). The sensor was recalibrated with zero air and span NO 

concentration before and after relocation from Adventdalen, and the air inlet hose was 

secured outside the window. In addition to NOx monitor, portable meteorological 

station Kestrel has been installed at the UNIS roof at 24 m height. One can see that first 

NOx concentrations had been below 10µg∙m-3, and then the peak in the values was been 

observed from 15:00 to 17:00 local time (Fig. 10). Elevated concentrations might be 

caused by the presence of ships in the harbour of Longyearbyen simultaneously. The 
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two-headed shape of the peak might be explained by the fact that, according to the local 

observations and data from the www.marinetraffic.com, the cargo ship Norbjørn 

departed and the offshore supply ship Polarsyssel arrived shortly after that. 

The wind with mean speed of 2.4 ms-1 and south-westerly (SW) direction, along 

the river from the local valley Longyeardalen, was prevailing according to the Kestrel 

data (upper left corner in Fig. 10) when the elevated NOx concentrations were observed 

in Longyearbyen. The local wind from SW might bring pollution from the reserve 

diesel generator located nearby UNIS. The generator works in cases of emergency, to 

warm up water used in central heating system in town and during maintenance of the 

coal power plant. It is unclear if the generator was working during the case study; 

therefore, its contribution to the pollution emitted by the ships is unknown. 

However, one can see from the meteorological data from the automated weather 

station in Adventdalen (lower left corner in Fig. 10) that the Kestrel data from UNIS 

roof represent a local wind, while westerly and north-westerly wind were prevailing on 

a regional scale. The same is supported by the data from the Svalbard airport where 

north-westerly wind with average wind speed of 2.6 ms-1 was observed. On the synoptic 

scale, anticyclone was located to the north-west of Svalbard, and therefore clockwise 

wind direction around anticyclone was prevailing. 

Unfortunately, it was not possible to continue observations in Longyearbyen due 

to technical error, which occurred with the NOx monitor in the evening 16.05.2017. 

However, results from the current case study illustrate that local NOx concentrations in 

the Longyearbyen town may be much higher than in the Adventdalen valley where 

maximum hourly NO2 concentration of 21.8 μg∙m-3 was measured on Easter holiday, 

13.04.2017. In that day, the combination of increased recreational traffic and mild 

weather conditions (wind speed below 1 ms-1 and air temperature -8°C) led to 
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accumulation of concentration 13 times higher than daytime hourly average measured 

during the field campaign. Such low wind speed is untypical for the wind regime in 

Adventdalen, where normally ventilation is sufficient to remove NOx emitted by the 

current amount of motorized traffic. In contrast, influence of complex circulation 

patterns in Longyearbyen, formed by combination of the local wind from a narrow 

valley Longyeardalen and the synoptic scale wind steered along the axis of broader 

valley Adventdalen, and multiple stationary and mobile emission sources on the local 

air quality in the town deserve further investigation. Furthermore, the case study results 

reveal that ships emissions may have dramatic effect on NOx concentration. Therefore, 

a summer field campaign, when the ship traffic in Svalbard is the most intensive, is 

necessary. 

Conclusion 

The NOx measurement results from the three stations-network, Ny-Ålesund, 

Barentsburg and Longyearbyen, and O3 data from two sites in Svalbard, Ny-Ålesund 

and Barentsburg, have been compared for the first time. 

The diurnal pattern in concentration of NOx at all three stations has been 

observed due to variable emissions from the local sources of NOx. However, only data 

from Barentsburg and Adventdalen station show significant change in NO2/NOx ratio 

during the day, since the station in Ny-Ålesund is located close to a diesel power plant, 

a stationary source of fresh NOx emissions contributing to higher NO concentration. 

Local emissions of NOx in Ny-Ålesund and in Barentsburg may reduce O3 

concentrations in the settlements by a few percent from the background value due to 

ozone titration, but this does not occur very often, and there is no significant difference 
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in daytime and nighttime O3 values measured in Barentsburg and at the Zeppelin 

station. 

As expected, the large-scale wind is channelled by the local topographical 

features and this determines the wind direction and speed in all three settlements, and 

therefore the concentrations of NOx measured at the stations correlate weakly. In Ny-

Ålesund and Barentsburg, the stations are located in the way that downwind 

concentrations from the local sources are observed rarely, because the prevailing wind 

direction is different. The measurements in Adventdalen have been made downwind 

from the source, since both the snowmobile route and prevailing wind direction are 

along the valley. However, traffic is a temporary source of emissions and the mean 

wind speed in Adventdalen valley is high, and therefore mean NOx concentrations there 

are low. Despite low correlation between the NOx values from the three stations, there 

are common synoptic conditions that promote accumulation of local pollution in the 

settlements, namely, lower wind speed and air temperature and presence of temperature 

inversions. In contrast to NOx, the concentrations of O3 in Barentsburg and at the 

Zeppelin observatory are strongly correlated and depend on synoptic conditions that 

promote transport of air masses enriched or depleted in O3. In other words, both these 

stations are regionally representative for O3 measurements. 

The measurements in Adventdalen reveal that the concentration of NOx is 

highly dependent on the intensity of snowmobile traffic in the valley and prevailing 

meteorological conditions. Nevertheless, the highest concentrations of NOx in 

Longyearbyen were measured during the case study at UNIS when a likely influence of 

the emissions from ships was revealed. The intensity of ships traffic in Svalbard region 

is highest in summer, thus, to investigate the magnitude of impact from ships emissions 
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on the local air quality, a new field campaign in Longyearbyen needs to be performed in 

that season. 
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Table 1. Measurement results from Adventdalen, Barentsburg and Ny-Ålesund. Pairs with significant (p<0.05) t- and WRS-test results are shown 

with bold font. 

Compound and station 
Daytime mean 
value, μg∙m-3 

Nighttime mean 
value, μg∙m-3 

p-value, 
t-test* 

Daytime median 
value, μg∙m-3 

Nighttime median 
value, μg∙m-3 

p-value, WRS-
test** 

NO, Adventdalen 0,40 -0,02 0,000 0,15 -0,02 0,000 
NO2, Adventdalen 1,79 0,78 0,000 0,94 0,53 0,000 
NO2/(NO+NO2), Adventdalen 0,80 0,83 0,009 0,82 0,85 0,000 
NO, Barentsburg 0,19 0,10 0,000 0,04 0,01 0,000 
NO2, Barentsburg 0,74 1,03 0,068 0,00 0,00 0,099 
NO2/(NO+NO2), Barentsburg 0,72 0,80 0,000 0,78 0,89 0,000 
O3, Barentsburg 71,12 69,47 0,139 74,50 71,33 0,051 
NO, Ny-Ålesund 1,61 0,65 0,001 0,18 0,03 0,000 
NO2, Ny-Ålesund 1,56 0,63 0,000 0,29 0,05 0,000 
NO2/(NO+ NO2), Ny-Ålesund 0,61 0,63 0,369 0,64 0,63 0,335 
O3, Zeppelin 70,95 72,12 0,203 74,20 76,40 0,057 

*two-sided t-test compares daytime and nighttime concentrations at each station and checks if there is a significant difference in mean values for these two 

groups 

**two-sided WRS-test compares daytime and nighttime concentrations at each station and checks if there is a significant difference in median values for these 

two groups 
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Table 2. Spearman partial correlations of NO, NO2, O3 and local meteorological parameters from Adventdalen, Barentsburg and Ny-Ålesund. 

The significant correlations with p < 0.05 and absolute r-value ≥ 0.10 are shown with bold font. 

Compound and 
station 

Wind speed Atm. temperature Relative humidity UV-A UV-B 
r-value p-value r-value p-value r-value p-value r-value p-value r-value p-value 

NO, Adventdalen -0,22 <0.001 -0,11 <0.001 -0,01 0,791 0,11 <0.001 -0,07 0,017 
NO2, Adventdalen -0,33 <0.001 -0,06 0,021 0,05 0,067 0,10 0,001 -0,09 0,001 
NO, Barentsburg -0,05 0,064 0,23 <0.001 0,10 0,001 - - - - 
NO2, Barentsburg -0,26 <0.001 0,26 <0.001 0,19 <0.001 - - - - 
O3, Barentsburg -0,09 0,002 0,47 <0.001 -0,19 <0.001 - - - - 
NO, Ny-Ålesund -0,11 <0.001 -0,26 <0.001 -0,05 0,099 <0.01 0,907 0,03 0,309 
NO2, Ny-Ålesund -0,33 <0.001 -0,31 <0.001 -0,05 0,068 0,04 0,181 -0,03 0,293 
O3, Zeppelin 0,07 0,018 0,46 <0.001 -0,30 <0.001 0,03 0,295 -0,08 0,005 



Figure 1. Map of Svalbard with three settlements where the NOx have been measured in
spring 2017.
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Figure 2. Time series of NOx and O3 concentrations from the measurement campaign.
NOx concentrations in Barentsburg, Ny-Ålesund and Adventdalen are shown with solid
blue, orange and red lines, respectively. Original and smoothed O3 concentration in
Barentsburg are illustrated with light green and dark green solid lines, while O3
concentration at the Zeppelin station is represented by solid purple line. Dotted light
green and purple lines show the 5th and 95th quantiles limits of O3 concentrations in
Barentsburg and at the Zeppelin station, respectively. The dashed black line represents
timing of the O3 sounding in Ny-Ålesund.

Figure 3. Variation of measured NO, NO2 and O3 concentrations depending on the time
of the day (in UTC) in Adventdalen (Adv), Ny-Ålesund (NyA) and Barenstburg stations
(BBG).
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Figure 4. Distribution of average NO and NO2 concentrations over wind directions in
daytime and nighttime at the station in Adventdalen.

Figure 5. Distribution of average NO and NO2 concentrations over wind directions in
daytime and nighttime at the stations in Ny-Ålesund (a) and Barentsburg (b).

38 



Figure 6. Mean deviation of the meteorological parameters from the mean for the whole
field campaign based on the surface ERA5 data: a) for hours when the sum of NO and
NO2 concentrations were above median at all stations; b) hours when the sum of NO
and NO2 concentrations were below or equal to median at all stations. The colour scale
show mean deviation of wind speed for each grid cell, the mean deviation of sea level
pressure in hPa is shown by white contour lines. The black arrows represent mean
deviation of wind direction and have the length relative to the difference in wind speed.
They are plotted with resolution of 1° of longitude and 0.5° of latitude.

Figure 7. Mean deviation meteorological parameters from the mean for the whole field
campaign based on the surface ERA5 data: a) for hours when O3 concentrations were
above median in Barentsburg and at the Zeppelin station; b) hours when O3 
concentrations were below or equal to median in Barentsburg and at the Zeppelin
station. For detailed description of lines in the figure, see Fig. 6.
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Figure 8. Ozone sonde data from Ny-Ålesund.

Figure 9. Air mass backward trajectories for the strongest O3 depletion (a) and O3
increase (b) events detected both in Barentsburg and at the Zeppelin station.
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Figure 10. NOx measurements at UNIS in Longyearbyen (wind roses for the
measurements at UNIS roof and in Adventdalen are shown in the upper left and lower
left corners of the figure, respectively).
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Abstract 

Air quality observations have been performed in three major settlements in Svalbard in 

summer 2018. The hourly concentrations of BC, SO2, NOx and O3 and meteorological 

parameters has been measured at the ground-based stations in all sites and daily filter samples 

for PAH analysis have been collected in Longyearbyen. In addition to this, airborne 

meteorological measurements using radiosonde and tethered balloon have been performed in 

Ny-Ålesund and Longyearbyen. Increase of the local SO2 and NOx concentrations and 

titration of tropospheric O3 due to ship emissions was observed in Longyearbyen and Ny-

Ålesund. Extremely high concentrations of SO2 and BC were observed in Barentsburg due to 

specific meteorological conditions leading to transport of the polluted air from the local coal 

power plant to the town. The combined influence of local and long-range transported air 

pollution was observed in Longyearbyen during the episodes of warm air advection over 

Svalbard, during which the air enriched in CO and O3 was brought from mid-latitudes, and the 

conditions favourable for accumulation of local pollution near the ground were created 

simultaneously. 
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Introduction 

Long-range transport of air pollution is a phenomenon often prevailing during winter and 

spring seasons in Svalbard [1], [2]. Although exceptional transport events may take place in 

summer as well [3], the background concentrations of air pollutants are typically low during 

that season [4]. However, local pollution sources such as ships become increasingly important 

in summer months [5], [6]. 

The two biggest settlements in Svalbard, Longyearbyen and Barentsburg, are located in 

Adventfjorden and Grønfjorden, the eastern and southern branches, respectively, of the wide 

fjord Isfjorden (Fig. 1a). The third biggest settlement, Ny-Ålesund, is situated in the north-

western part of Svalbard in the narrow fjord Kongsfjorden. Although stricter regulations to 

the quality of the ships’ fuel used in Svalbard have been applied , so that it is currently 

restricted to use heavy fuel oil in Kongsfjorden, Isfjorden remains the area where it is still 

allowed to use oil with maximum sulphur content 3.5% [7]. 

a) 

 

b) 

 

Figure 1 a) Map of Svalbard; b) local map of Longyearbyen 

Number of cruise and expedition ships’ passengers visiting the port of Longyearbyen (Fig. 

1b) has increased by almost 60% (from 37085 to 59150) for the period from 2006 to 2017 and 

shows positive trend for these years (R2=0.76) [8]. The traffic intensifies in summer because 

the cruise ships and transport vessels arrive to Longyearbyen more often than in other 

seasons. Furthermore, westerly winds with low wind speed are more often observed in 

summer, which may lead to accumulation of the pollution in the settlement [5]. Observations 

of nitrogen oxides performed in spring 2017 [9], indicate that ships currently may be the most 

significant point sources of nitrogen oxides (NOx = NO+NO2) in Longyearbyen. Previous 

studies have shown that the ship traffic is a substantial source of NOx, sulphur dioxide (SO2), 

black carbon (BC), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) in 
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Svalbard [5], [6], [10], [11], however, previously no measurements have been done in 

Longyearbyen to assess the influence of this emission source on the air quality in town. 

An overview of emissions from stationary sources, coal and diesel power plants [12]–[14] in 

Svalbard settlements, is given in Table 1. The data for Longyearbyen and Barentsburg are 

taken from the Norwegian emission database for 2017 [15], [16], while emissions in Ny-

Ålesund are calculated based on the environmental impact assessment report published in 

1998 [12]. Since no emission treatment system has been installed on the power plant in Ny-

Ålesund, and the average diesel fuel consumption from 2001 to 2013 [17] was almost the 

same as reported in 1998, around 1000m3 per year, we assume that emission quantities have 

not changed dramatically. The PM for Ny-Ålesund in the Table 1 stands for soot, and we 

assume that PM emissions from the diesel power plant mainly consist of soot agglomerates. 

Indeed, previous studies of plume samples from diesel aggregates installed in two other 

Svalbard settlements, Pyramiden and Svea, revealed that soot is the dominating component in 

PM there. In contrast, PM from power plants in Longyearbyen and Barentsburg consists of fly 

ashes, soot and secondary aerosol [18]. The coal power plant in Barentsburg is currently the 

biggest stationary source of PM and NOx in Svalbard and is the largest point source of SO2 in 

Norway [15]. Emissions from the coal power plant in Longyearbyen decreased dramatically 

after installation of new emission treatment system in 2015 [16]. However, there are also 

several reserve generators in Longyearbyen, and total diesel consumption there was 419 tons 

in 2018 [16]. 

Table 1 NOx, SO2 and PM emissions from the stationary sources in three major settlements in 

Svalbard 

Settlement 
Compound, tons/year 

NOx SO2 PM 

Longyearbyen coal power plant 85.61 0.035 1.49 

Barentsburg coal power plant 153.8 2233.06 177.92 

Ny-Ålesund diesel generators 35.04 6.14 2.98 

 

NOx emissions have complex climate effect. The lifetime of CH4 and other greenhouse gases 

is shortened by OH-radicals formed in the reaction between NO and hydroperoxyl radical 

HO2, but NOx also are precursors for the formation of tropospheric ozone (O3), a short-lived 

greenhouse gas and strong oxidant [19]. Arctic vegetation is especially vulnerable to negative 

effects from air pollution, since, in addition to stresses, which local ecosystems exhibit due to 

climate change, long photoperiods characteristic for high-latitudes summers intensify foliar 
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injury caused by elevated levels of O3 [20], [21]. 

The primary and secondary anthropogenic aerosols may have different climate effect. Primary 

aerosols containing BC are light absorbing and have positive radiative forcing. Moreover, BC 

deposited on snow covered surfaces such as glaciers reduces surface albedo dramatically and 

intensify melting [19]. In contrast, NOx and SO2 are oxidized to sulphate and nitrate, 

respectively, in the atmosphere, leading to an increase in number of secondary aerosol 

particles, which have direct effect on the amount of solar radiation reaching the surface and an 

indirect climatic effect as they are important for the formation of clouds and affect clouds’ 

physical properties [22]. In addition to climate influence, high ground-level concentration of 

BC containing aerosol has strong negative impact on human health, partly due to carcinogenic 

effect of the PAHs and other chemical compounds of varying toxicity absorbed onto the fine 

particles emitted in the process of fossil fuel burning [23], [24]. 

Meteorological conditions affect air quality in the settlements. Temperature inversions and 

low wind speed reduce the efficiency of pollutant dispersion and may lead to accumulation of 

air pollutants close to the ground. The frequency of inversion occurrence is lowest in summer, 

however, this season is characterized by lowest median wind speed, therefore adverse weather 

conditions for dispersion of pollutants may occur as well [4], [9]. 

The main aim of this study is to assess summer levels of air pollutants in the three major 

Svalbard settlements, identify influence of dominant emission sources on local air quality and 

define the atmospheric conditions promoting accumulation of air pollutants in cases when 

elevated concentrations have been observed. 

Following research questions have been stated: 

1. How do major local stationary emission sources affect air quality in Svalbard settlements 

in summer? 

2. What is the current influence of ship traffic on air quality in Longyearbyen and Ny-

Ålesund? 

3. What is the influence of synoptic-scale meteorology on accumulation of local pollution in 

the settlements and what conditions prevail during the long-range transport of air pollutants to 

Svalbard in summer? Is it possible to separate these weather regimes? 

4. What affects the vertical structure of summer atmospheric boundary layer (ABL) in 

Adventdalen (Longyearbyen) and Ny-Ålesund? How is the vertical local ABL structure 

related to the distribution of air pollutants in Adventdalen? 



 

5 
 

Methods 

Ground-based measurements in Longyearbyen, Barentsburg and Ny-Ålesund 

The seven channels aethalometer, NOx, SO2 and O3 analysers (UNIS in Fig. 1b), instrument 

numbers 1-4 in Table 2) were placed in the office at the third floor at the University Centre in 

Svalbard (UNIS), where the inlet of the sampling hose was fixed outside from the window. 

Table 2 Measurements in Longyearbyen 

N Instrument, Model Measurement Period Data owner 

1 Aethalometer, AE33 Equivalent aerosol 

concentration at 7 

wavelength 

26.06.18-

16.08.18 

Aerosol d.o.o. 

2 NOx Chemiluminescence 

analyser, T200 

NO, NO2, NOx 

concentration 

26.06.18-

16.08.18 

UiT The Arctic 

University of 

Norway (UiT) 

3 UV Fluorescence SO2, 

T100 

SO2 concentration 26.06.18-

16.08.18 

UiT 

4 Photometric O3 analyser, 

T400 

O3 concentration 26.06.18-

16.08.18 

UiT 

5 TE-PUF Poly-Urethane 

Foam High Volume Air 

Sampler 

16 PAH concentrations 

from 12 discrete samples 

14.07.18-

24.09.18 

The University 

Centre in 

Svalbard 

(UNIS) 

6 Automatic Sun Tracking 

Photometer CE 318 

Aerosol optical depth, 

angstrom exponent, 

precipitable water 

17.07.18-

13.08.18 

The University 

of Valladolid 

(UVa) 

7 The Kestrel 5500 

Weather Meter 

Temperature, relative 

humidity, pressure, wind 

speed, wind direction 

26.06.18-

16.08.18 

UiT 

8 Automatic weather 

stations 

Temperature, relative 

humidity, pressure, wind 

speed, wind direction 

26.06.18-

16.08.18 

UNIS 

9 Vaisala, TTS111, 

tethered balloon 

Temperature, relative 

humidity, pressure, wind 

speed, altitude 

03.07.18-

15.08.18 

UiT 

10 Microaethalometer, 

AE51, tethered balloon 

Equivalent aerosol 

concentration at 880 nm 

03.07.18-

15.08.18 

The University 

of Perugia 

11 Miniature Diffusion Size 

Classifier, MiniDISC, 

tethered balloon 

Particle number 

concentration 

06.07.18-

11.08.18 

The University 

of Milan-

Bicocca 

 

The SO2 and NOx monitors have been calibrated in-situ with use of zero-air generator and 

standard SO2 and NO gases with concentration of 361 ppb and 777ppb, respectively. The 

clean air test and the size selective inlet inspection and cleaning were performed on the 

aethalometer once a month. The O3 monitor was weekly calibrated online by the technical 

personnel from the Norwegian Institute for Air Research. 
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Since the nearest automatic weather stations were located few kilometres away, at the 

Svalbard airport and nearby the UNIS CO2 lab in Adventdalen, the portable environmental 

meter Kestrel 5500 Pocket Weather Tracker was installed at the UNIS roof to obtain local 

meteorological data (UNIS in Fig. 1b); number 7 in Table 2). The meteorological data from 

the two automatic weather stations operated routinely by UNIS (Adventdalen and Gruvefjellet 

in Fig. 1b); number 8 in Table 2) have been used for comparison with tethered balloon 

measurements and ERA5 data. 

In addition to BC, SO2 and NOx, fossil fuel burning elevates the concentrations of PAHs [25], 

and therefore 15 daily filter samples were collected for PAH analysis during the days when big 

ships were present in Longyearbyen, and 5 samples after the measurement campaign in autumn 

2018. Before the sampling, the GE Whatman (101.6 mm) quartz microfiber filters were heated 

for 6 h at 450 °C to remove any potential organic contamination, wrapped in aluminium foil, 

sealed in polyethylene bags, and stored in desiccator until deployed in the air sampler. Air 

samples were collected on the filters by use of a high-volume sampler (TISCH-1000 by Tisch 

Environmental, Inc., USA; about 14 m3∙h−1) on a roof of UNIS at 24 m height in 0.9 and 1.2 

km distances from a coal-fired power plant and a cruise ship port, respectively, in July-

September 2018. Sampling duration was approximate 24 hours. Total volume of each sample 

was about 330 m3. After collection, filters were wrapped in aluminium foil, sealed in 

polyethylene bags, and stored at −20 °C until the analysis was done. One field blank was 

performed every five samples. 

BC is emitted by the same pollution sources as PAH. Moreover, the surface of BC particles is 

porous and has high surface to volume ratio, and thus works as an effective adsorbent for non-

polar substances such as PAHs [26]. The available laboratory resources are limited, and 

therefore, two-step procedure has been implemented to choose seven filter samples with 

potentially high concentration of PAH out of 15, which had been collected during summer 

2018: 

1) Average concentrations of BC have been calculated for the periods when the filter samples 

have been installed at the UNIS roof. 

2) Days when BC concentrations were higher than the average daily value for the campaign 

period have been chosen. 

The difference in PAHs composition is expected between the samples taken from 14th July 

2018 to 26th July 2018, since the reserve diesel generator was a source of energy in 

Longyearbyen, while during other days the energy in Longyearbyen was produced only by the 

coal power plant. In addition to meteorological measurements and PAH sampling, sun 
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photometer has been installed at the UNIS roof. 

SO2, NOx, O3 and meteorological measurements (AARI in Fig. 2a; instruments number 1,2, 3 

and 4 in Table 3) were performed in Barentsburg at the same station as during the spring 

measurement campaign in 2017 [9]. 

Table 3 Measurements in Barentsburg 

N Instrument, Model Measurement Period Data owner 

1 NOx 

Chemiluminescence 

analyser, AC32M 

Environnement S.A. 

NO concentration 01.06.18-

31.08.18 

Arctic and Antarctic 

Research Institute 

(AARI) 

2 UV Fluorescence SO2, 

AF22M Environnement 

S.A. 

SO2 concentration 01.06.18-

31.08.18 

AARI 

3 UV Photometric O3 

analyser, O342 

Environnement S.A.  

O3 concentration 01.06.18-

31.08.18 

AARI 

4 Portable Vaisala weather 

station, WXT20 Vaisala 

Temperature, 

relative humidity, 

pressure, wind 

speed, wind 

direction 

01.06.18-

31.08.18 

AARI 

5 Aethalometer, MDA-02 

IAO SB RAS 

Equivalent aerosol 

concentration at the 

wavelengths of 460, 

530, 590, and 630 

nm 

01.06.18-

31.08.18 

V.E. Zuev Institute of 

Atmospheric Optics of 

Siberian Branch of the 

Russian Academy of 

Science (IAO SB RAS) 

6 Automatic Sun Tracking 

Photometer SP-9 IAO 

SB RAS 

Aerosol optical 

depth, angstrom 

exponent, 

precipitable water 

01.06.18-

31.08.18 

IAO SB RAS 

 

AARI personell calibrated SO2 and NOx monitors 29.06.2018 and 04.08.2018 using standard 

SO2 and NO gases with concentrations of 100ppb and the monitors’ internal zero-air 

generator. In addition to this, on the 8th of August 2018, the UiT personnel calibrated the 

Barentsburg instruments using the same standard SO2 and NO gases as in Longyearbyen. The 

calibration revealed that the NO and SO2 data were correct, however, the conversion of NO to 

NO2 was not functioning properly. Therefore, only NO and SO2 data from Barentsburg have 

been used for further analysis. 

The aethalometer MDA-02 and sun photometer SP-9 IAO SB RAS are installed in another 

building located 300m to the south from the first station, closer to the coal power plant (IAO 

SB RAS in Fig. 2a; instruments number 5 and 6). The measurement principle of the 

aethalometer developed by IAO SB RAS is described in [27] and [28]. The black carbon 
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concentrations were obtained from the 530nm channel data of the MDA-02 aethalometer, thus 

they were compared with AE33 data from Longyearbyen measured at closest wavelength of 

520nm. The influence of local pollution on sun photometer data in Barentsburg has been 

eliminated by the data screening and removal of the values obtained during the episodes when 

prevailing wind was from coal power plant, while data from aethalometer are utilized 

unchanged in order to investigate the effect of local emission sources on air quality. 

a) b) 

  

Figure 2 Local maps of Barentsburg (a) and Ny-Ålesund (b) 

SO2 and NOx monitors in Ny-Ålesund are installed in the middle of the settlement (NILU 

station in Fig. 2b; instruments number 1 and 2 in Table 4). Detailed description of the 

instruments installed there is given in [4], [5], [9]. The automatic WMO weather station (Fig. 

2b; instrument number 3 in Table 4) is operated by the Norwegian meteorological institute 

and provides continuous meteorological data of high quality. These data were used for 

analysis together with the chemical measurements from the NILU station. CO and O3 

measurements are performed at the Zeppelin station (Fig. 2b; instruments number 4 and 5 in 

Table 4), located at the mountain top (474 m a.s.l.) 2km to the south-east from Ny-Ålesund. 

Previous studies have shown that due to complex topography and elevation, separate 
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meteorological data from Zeppelin station (instrument number 6 in Table 4) should be used 

for analysis of chemical data obtained there [5]. In addition to the gaseous ground-based 

measurements, columnar aerosol measurements were performed in Ny-Ålesund from the roof 

of AWI station using sun photometer of the same type as was used in Longyearbyen (Fig. 2b; 

instrument number 7 in Table 4). 

Table 4 Measurements in Ny-Ålesund 

N Instrument, Model Measurement Period Data owner 

1 NOx Monitor, 

T200 

NO, NO2, NOx 

concentration 

26.06.18-

16.08.18 

Norwegian Institute for 

Air Research (NILU) 

2 UV Fluorescence 

SO2, T100 

SO2 concentration 26.06.18-

16.08.18 

NILU 

3 WMO weather 

station 

Temperature, relative 

humidity, pressure, 

wind speed, wind 

direction 

01.06.18-

31.08.18 

Norwegian 

Meteorological Institute 

4 Photometric O3, 

T400 

O3 concentration 26.06.18-

16.08.18 

NILU 

5 Picarro G2401 

temp 2017-NRT 

CO gas analyser 

CO concentration 26.06.18-

16.08.18 

NILU 

6 Automatic 

weather station 

(HMP-155 

Vaisala and 

WMT-700 

Vaisala) 

Temperature, relative 

humidity, pressure, 

wind speed, wind 

direction 

26.06.18-

16.08.18 

NILU 

7 Automatic Sun 

Tracking 

Photometer Ce 

318 

Aerosol optical 

depth, Angström 

exponent, 

precipitable water 

01.07.18-

31.08.18 

UVa 

8 Balloon-borne 

Sonde, Vaisala 

RS41 

Temperature, relative 

humidity, pressure, 

wind speed, wind 

direction, altitude 

01.07.18-

31.08.18, 4 

times per day 

Alfred Wegener 

Institute Helmholtz 

Centre for Polar and 

Marine Research 

9 Ozone sonde O3 concentration 28.06.2018-

09.08.18, 

weekly 

Alfred Wegener 

Institute Helmholtz 

Centre for Polar and 

Marine Research 

 

The data obtained from the sun photometer measurements in Longyearbyen (Fig. 1b) and Ny-

Ålesund (Fig. 1b) were included in the AErosol RObotic NETwork (AERONET), a global 

network originally intended to satellite products validation. However, through the years and 

thanks to the high reliability, stability and the wide spreading of its measurements, AERONET 

has become one of the main references to the remote sensing monitoring of the atmosphere. 
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The CIMEL Sun/Sky photometer CE318 is the main instrument of the network counting with 

two measurement routines, the direct sun measurement and an irradiance sky spectral 

measurement known as almucantar. Both of them present at several wavelengths (340, 380, 

440, 500, 675, 870 and 1020 nm). 

The data selected for this study corresponds to the Version 3, and is the level 2 of quality 

assurance. AERONET data present a high traceability and a standard calibration protocol 

between all the stations. Furthermore, Level 2 data are cloud screened which implies that 

punctual failures or instrument errors are filtered out. 

 

Airborne measurements in Longyearbyen and Ny-Ålesund 

Besides the ground-based measurements, tethered balloon launches with “Vaisala” 

meteorological sensors, microaethalometer AE51 [29] and MiniDISC portable particle 

counter [30] were performed from the UNIS CO2 laboratory located in the valley Adventdalen 

approximately 5 km to the south-east from Longyearbyen (Fig. 1b, instrument number 9, 10 

and 11 in Table 2). Although local pollution from ships and the power plant may reach the 

station only if the wind from north-west is prevailing, and therefore the launching location is 

not ideal for the air quality studies; it has been chosen in order not to disturb the aircraft 

traffic in the area. All the measurements have been performed in cooperation with the 

Svalbard airport in the hours when no planes or helicopters were arriving or departing from 

Longyearbyen. The tethered balloon with less than 3.25 m3 of helium was used in the hours 

when ground-based wind speed was below 10m/s since stronger wind could potentially 

damage the equipment. In the days when the launch was cancelled due to high wind speed, 

the wind was in direction from the Adventdalen valley, therefore, there was no influence of 

local air pollution from the town on concentrations near the UNIS CO2 lab. Due to air-traffic 

and meteorological restrictions, only 78 (39 up and 39 down) vertical meteorological profiles 

were obtained for 52 days of ground-based measurements. 95% of the launches were 

performed between 12:00 and 18:00 UTC, and only 5% were made from 18:00 to 00:00. The 

MiniDISC and AE51 could not be used when the air humidity was too high (relative humidity 

above 90% was used as a threshold), thus only 37 BC and 26 particle number concentration 

profiles were obtained. 

The following procedure has been implemented for tethered balloon profiles processing: 

1) The rate of pressure and temperature change with time dp/dt and dT/dt have been 

calculated for ascending and descending profiles separately. 

2) The calculated rates have been checked for normality of distribution using Kolmogorov-



 

11 
 

Smirnov test in the Matlab software. 

3) Since the data are not normally distributed, a robust measure to detect outliers has been 

chosen. The outliers in the dp/dt and dT/dt data have been defined as all points more than 

three scaled median absolute deviation (MAD) from the median values [31]. 

4) Pressure values for these outlier points are changed to the linearly interpolated value 

between closest non-outlier pressure points. As the sampling rate is irregular, the interpolation 

is done taking into account local time interval between two nearest non-outlier points. 

5) This method removes only extrene outliers; it does not smooth the data and the processing 

result is still close to the original values. 

6) The height has been calculated from pressure using hypsometric equation [32], which is 

common to use for radiosonde profiles. 

7) To compare BC profiles with the meteorological values, the height, temperature and wind 

speed have been averaged for 30 sec periods according to the timing at AE51 sensor. 

8) Since from time to time there was an up-and-down drift of the balloon, and since the 

removal of rough outliers and 30 sec averaging does not always compensate for this drift, the 

BC and MiniDISC concentration plots have been made for 50 m average in height. 

9) When non-averaged data were plotted, additional smoothing has been performed using 1-2-

1 smoothing filter as suggested by [33]. 

Meteorological and O3 soundings have been performed by the Alfred Wegener Institute 

Helmholtz Centre for Polar and Marine Research from the French–German AWIPEV research 

station in Ny-Ålesund (AWI in Fig. 2b); instrument number 8 and 9 in Table 4). The 

manufacturer’s processed radiosonde data for July 2018 are available in the database 

www.pangaea.de [34], while the data for August 2018 are available on request. The ozone is 

measured by electrochemical concentration cell [35]. The analysed data are stored in the 

Network for the Detection of Atmospheric Composition Change (NDACC) archive 

ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/nyalsund/ames/o3sonde/. 

 

Laboratory analysis of PAH filter samples from Longyearbyen 

Following chemicals and solvents were used for PAH analysis: 16 Priority PAHs defined by 

the United States Environmental Protection Agency (EPA) and 16 deuterated EPA Priority 

PAHs mixtures, 99.3-99.9% purity, obtained from Chiron AS, Norway. 1,2,3,4-

Tetrachloronaphthalene was from Cambridge Isotope Laboratories, Inc. and dichloromethane 

and n-hexane, GC-capillary grade, were purchased from VWR. 

Prior to extraction, samples were spiked with known amounts of deuterated 16 PAHs surrogate 

http://www.pangaea.de/
ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/nyalsund/ames/o3sonde/
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standard mixture. QFFs were placed in centrifuge glass tubes with 12 ml of DCM and vortexed 

for 1.5 min. Samples were then centrifuged for 5 min at 4,500 rpm. Supernatant was collected, 

concentrated to near dryness under a gentle nitrogen (99.999%) stream and dissolved in a small 

volume of n-hexane (500 μL). 

Sample extracts were purified on natural silica SPE cartridges (500 mg, 3 mL; Macherey 

Nagel). Alkanes were removed with 1 mL n-hexane. PAHs were then eluted with 9 mL 35:65 

(v/v) DCM–n-hexane. After concentration under a gentle nitrogen stream almost to dryness, 

residues were re‐dissolved with n‐hexane. Recovery standard 1,2,3,4-Tetrachloronaphthalene 

was added prior to mass spectrometer (MS) analysis to evaluate recoveries of labelled PAHs 

surrogates. One lab blank was performed every five samples. 

Samples were analysed using Thermo TRACE gas chromatograph equipped with Thermo 

TriPlus-100LS autosampler and coupled with Thermo Polaris Q ion trap mass spectrometer. 

Compounds were separated on DB5-MS+DG column (30+10 m Duragard × 0.25 mm × 0.25 

μm film thickness; Agilent J&W, USA) under electron ionization (EI) mode. Detector 

temperature was 200 °C. A volume of 1 μL was injected at 300 °C in splitless mode (splitless 

time 3.0 min) for analysis. The GC oven temperature started at 70 °C for 3.0 min, was increased 

at 40°C min−1 to 170 °C, next at 10 °C min−1 to 240 °C, and then increased at 5°C min−1 to 310 

°C. Ultra-pure Helium (99.9999 %) was used as carrier gas, at a constant flow rate of 1.0 mL 

min−1. Transfer line temperature was 325 °C. The MS was run in selected ion monitoring (SIM) 

mode. 

Target compounds were identified by matching of retention times and fragmentation profiles 

against corresponding standards, and were quantified using corresponding internal standard and 

the 8‐point calibration curves. 

 

Ship traffic analysis and air quality assessment 

During the campaign, the ship traffic in Longyearbyen has been logged based on the arrival 

and departure data reported at the marinetraffic.com. Although the cruise ships have not 

visited Longyearbyen every day, there have been plenty of smaller ships in the harbour or 

anchored in the fjord. Therefore, a parameter indicating the ship size and emissions has been 

chosen for the data analysis. Gross tonnage (GT) have been previously used for this purpose 

in other air pollution studies [36], [37]. Ships spend some time in Adventfjorden before 

arrival and after departure, therefore analogously with previous studies the time interval two 

hours before arrival and two hours after departure has been used to study the effect of ships 

emissions on the air quality in Longyearbyen [5], [6]. The ship traffic data from Ny-Ålesund 



 

13 
 

reported at the marinetraffic.com have been studied similarly. 

In order to assess the air quality in the towns, Norwegian air quality standards have been 

applied to check if the pollutant concentrations exceeded these limits in Ny-Ålesund and 

Longyearbyen [38]. Although located on Norwegian territory, Barentsburg is a Russian coal 

mining settlement and Russian Federal service for hydrometeorology and environmental 

monitoring provides environmental information about the town in the yearly “Overview of the 

environmental pollution” reports [39], therefore Russian air quality limit values may be 

applied there as well [40]. 

 

Influence of synoptic scale meteorological conditions on concentrations of air pollutants 

To check the influence of meteorological conditions on the ground level concentrations, the 

measurement results have been divided into two groups with concentrations of compounds 

below or equal to their median and above the median. Statistical significant difference in 

meteorological conditions for the two groups has been defined using Wilcoxon rank sum 

(WRS) test [4]. In addition to this, daily concentrations of all measurement compounds have 

been calculated. For the days with extreme pollution accumulation above 95 quantile of the 

daily value for each compound [41] and days when long-range transport of aerosol has been 

identified based on the CO and sun photometer data from Ny-Ålesund, the effect of the 

prevailing synoptic meteorological situation on the concentrations has been studied using 

hourly meteorological data from the global ERA5 reanalysis dataset [42]. Finally, backward 

air mass trajectories have been simulated using the Hybrid Single Particle Lagrangian 

Integrated Trajectory (HYSPLIT) model for the events when long-range transport of aerosols 

has been identified for 240 hours back in time to indicate the source regions of the air masses 

[43]. 

Results 

The prevailing wind directions in Longyearbyen was north-westerly-westerly and southerly in 

approximately 70% and 30% of measurements, respectively. Easterly and south-easterly 

direction was detected in 49% of the wind data from Ny-Ålesund, while in approximately 1/3 

of the measurement hours the wind was coming from the north-west and north. These results 

are consistent with previous studies [5].The wind from south-south-west was present in 

Barentsburg 57% of all measurement time. Wind directions along the fjords are characteristic 

for Svalbard, where the large-scale flows are topographically channelled and local thermally 

driven flows from colder to warmer areas are present [9]. However, this has an implication on 
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the frequency for which the concentrations of air pollutants are measured downwind from the 

major sources in each of the settlements. One may expect more frequent inflow of locally 

polluted air from the coal power plants in Longyearbyen and Barentsburg to the measurement 

sites (Fig. 1a and Fig. 2a), while the site in Ny-Ålesund is rarely influenced by the air masses 

impacted by local emissions (Fig. 2b). Indeed, there is a frequent inflow of air with higher BC 

and NO concentrations to the Longyearbyen station (Fig. 3a), and the smallest difference 

between the mean and median concentrations of air pollutants is observed there (Table 5). 

Table 5 Mean and median concentrations of measured compounds at the stations 

 

The mean and median concentrations of tropospheric O3 with NOx are lowest in 

Longyearbyen mainly due to titration of tropospheric O3 with NOx since there are moderate 

negative correlations between NO and O3 (r=-0.52, p<0.0001) and NO2 and O3 (r=-0.56, 

p<0.0001), while correlation between O3 and SO2 is very weak (r=-0.16, p<0.0001). Strong 

positive correlation between NO and BC values (r=0.73, p<0.0001) indicates that most of 

NOx and BC come from the same emission sources, while correlation of NO with SO2 

(r=0.29, p<0.0001) is weak. There is a clear diurnal pattern for all weekdays in NO and BC 

data from Longyearbyen with absolute values of autocorrelation coefficients increasing to 

r>0.15 every 24 hours. This pattern most probably occurs due to local car traffic near the 

station and is independent on wind direction. In contrast, the autocorrelation in SO2 data and 

O3 data is not so pronounced with r>0.2 only for the first 24 hours interval. According to the 

WRS-test, median daytime (06 UTC-17 UTC) concentrations of SO2, NO and BC were 

significantly higher than the nighttime (17 UTC-05 UTC) values, while O3 concentrations 

were significantly lower (p<0.01). 

In accordance with the power plant SO2 and PM emission data (Table 1), one may expect 

stronger influence of the power plant in Barentsburg on the local air quality than in other 

settlements. Certainly, the highest mean SO2 and BC concentrations were measured in this 

town (Table 5). However, since the station is not always downwind from the major sources 

(coal power plant and harbour area), the autocorrelation coefficients support the hypothesis 

that the concentration at the station depends on the persistency of wind direction with r>0.2 

Station 
O3, µg∙m-3 SO2, µg∙m-3 NO, µg∙m-3 NO2, µg∙m-3 BC, ng∙m-3 

mean median mean median mean median mean median mean median 

Longyearbyen 44,5 44,9 0,3 0,3 2,3 1,2 5,4 3,5 197 147 

Barentsburg 53,4 53 16,1 2,2 4,9 3,2 - - 263 37 

Ny-Ålesund 52 50,8 0,1 0 2,9 0,2 2,1 0,4 - - 
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only at 24 and 48 intervals when similar wind direction is present. However, according to the 

WRS-test a significant difference in median daytime and nighttime values is present only in 

BC data. The pattern of NO concentrations in Barentsburg is unique having a smooth shape of 

the peaks rather than sharp increase of hourly concentrations as in Longyearbyen and Ny-

Ålesund (Fig.3b). Indeed, the autocorrelation coefficient remains above 0.2 for the first 42 

hours interval. In addition to this, there is a significant negative correlation between NO and 

wind speed (r=-0.37, p<0.001). This may indicate that in presence of some pollution source, 

such as, for example, emissions from a ship in Barentsburg harbour and calm wind conditions 

which persist for a longer time than several hours, there is insufficient ventilation of the local 

ABL. Unfortunately, no ship data from Barentsburg are available. 

Despite the fact that previous short-term sampling campaigns performed there have not 

revealed the concentrations exceeding the Russian air quality limits [39], [44], the station in 

Barentsburg is influenced by acute pollution when certain meteorological conditions are 

present. Such situation occurred 9th, 10th and 11th of July 2018 when the wind bringing 

pollution from the power plant to town dominated during a period of three days. Daily SO2 

concentrations exceeded the Russian allowable limit of 50 µg∙m-3 three times in this period 

(Fig. 3b) and the Norwegian limit of 125 µg∙m-3 once, on 10th of July. In that day, the SO2 

concentration reached its peak values and was above Russian 20-minutes limit of 500 µg∙m-3 

three times, while the Norwegian hourly limit of 350 µg∙m-3 was exceeded two times. NO 

concentrations were correlated with SO2 values very strongly (r=0.98 and p<0.0001), 

however, daily NO values were not higher than 3.3 µg∙m-3. There is a strong correlation 

between SO2 and BC concentrations (r=0.75 and p<0.0001), despite the fact that the 

aethalometer was installed at the IAO SB RAS station, it was closer to the power plant, and 

the polluted air was detected there prior to the AARI station. The daily average BC 

concentrations of 2241ng∙m-3 were more than 8 times higher than average for the campaign. 

There was south-south-westerly wind direction and the wind speed was high, 5.6 m∙s-1, in that 

day. Strong positive correlations between the wind speed and SO2 concentration (r=0.62, 

p=0.001) and wind speed and air temperature (r=0.78, p<0.001) were present.  

In order to investigate the meteorological conditions, which caused the semi-persistently high 

pollution levels lasted over three days in Barentsburg, we need to assess the behaviour of the 

plume from the coal power plant depending on the local atmospheric stability. The 

persistency of pollution for such a long period might indicate that the observed episode may 

be a coastal fumigation event when a plume from a stack located on the sea shore undergoes 
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little diffusion due to stable stratification above and is rapidly transported with the onshore 

wind into the internal ABL forming above the land [45]. In this case, downward turbulent 

mixing below the stable layer brings warmer polluted air to the ground level. In order to 

confirm this hypothesis, the gradient Richardson number Rim [45] has been calculated using 

the meteorological data from two Barentsburg stations located at different heights, 70m and 

255m (AARI lab and AARI mount, respectively, in the Figure 2a). Rim varied from -0.08 to 

0.01 in the three days, from 9th to 11th of July, which indicates quasi-stationary, near-neutral 

stability due to mechanical mixing which is often present during strong winds and overcast 

skies. Indeed, the median wind speed at the AARI mount station was much higher than at the 

AARI lab station, 13.1m∙s-1 vs 4.6 m∙s-1, and the calculated median lapse rate based on the 

data from the two stations was superadiabatic, -11.7℃/1000m, an indicator of unstable to 

neutral conditions. Similarly, no inversion was present in the radiosonde profiles from Ny-

Ålesund for this period. Thus the hypothesis about coastal fumigation is inconsistent and, 

most probably, the coning behaviour of the plume was present. According to the classical air 

pollution meteorology [45], normally these conditions do not lead to high concentrations at 

the ground level. However, due to local topography, the town and the AARI lab station are 

located on the hill above the coal power plant, and in conditions when there is no lifting of the 

plume, but direct transport of it to the town by strong wind from south-south-west, high 

concentrations may be observed even in absence of the atmospheric inversion. Thus, long-

term observations of atmospheric stability, wind and SO2 concentrations are needed to define 

the frequency of the occurrence of adverse meteorological conditions affecting air quality in 

Barentsburg. 

As expected from the amount of emissions (Table 1) and from prevailing wind direction, the 

median concentrations of measured compounds were the lowest in Ny-Ålesund (Table 5); 

however, one can see that there were several discrete high peaks of NO concentration 

(Fig.3c). Despite very low concentrations there is a clear diurnal pattern for all weekdays in 

SO2 data from Ny-Ålesund with r>0.45 for the first 24 hours and absolute values of 

autocorrelation coefficients increasing to r>0.15 every succeeding 24 hours. The station is 

located at the distance of 50m from one of the major roads in Ny-Ålesund and may be 

influenced by local car emissions. However, the marine biogenic emissions of SO2 from 

Kongsfjorden may cause this diurnal pattern as well [4]. In contrast, the diurnal pattern in the 

autocorrelation in NO data is not so pronounced with r=0.14 for the first 24 hours interval 

only. According to the WRS-test, there was a significant difference in median daytime and 
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nighttime values of NO and SO2 data in Ny-Ålesund. In contrast to the O3 data from 

Longyearbyen, which showed diurnal pattern, the autocorrelation coefficient for O3 

concentrations measured at the Zeppelin station was steadily declining to r<0.2 for the first 32 

hours and exhibited a pronounced maximum at 113 and pronounced minimum at 136 hours of 

lag. Since similar pattern was observed in O3 data from Barentsburg, this may indicate 

influence of large-scale circulation. The pattern of CO concentration measured at the Zeppelin 

station follows the variation in O3 data there closely (Fig.3c). 

One can see that irrespectively of wind direction, the lowest O3 values are observed in 

Longyearbyen (Fig.4 a), while concentrations in Ny-Ålesund and Barentsburg are quite 

similar. The number of local NOx sources is much higher in Longyearbyen where both ship 

and road traffic are more intensive than in other settlements, while NOx emissions from the 

coal power plant there are similar to those in Barentsburg. The NO/NOx ratio is higher in 

fresh emissions [9], therefore the distribution of NO over wind directions points towards the 

nearest local sources of NOx: power plant situated 300m to the north from the measurement 

station in Ny-Ålesund (Fig. 4b) and port areas and roads located to the south-west and to the 

north from the NOx monitors in Barentsburg and Longyearbyen, respectively. In Barentsburg, 

the biggest source of SO2 and BC is coal power plant, and there is strong positive correlation 

between the SO2 and BC (r=0.77, p<0.0001) and the values of these compounds measured 

downwind from the power plant are extremely high and (Fig4c, d). In Ny-Ålesund and 

Longyearbyen, the port area is the source of SO2. 
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a) 

 

b) 

c) 

Figure 3 Concentrations of measured compounds in: a) Longyearbyen; b) Barentsburg; c) Ny-Ålesund 
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Figure 4 Distribution of concentrations over wind directions: a) O3; b) NO; c) SO2; d) BC 

 

Influence of ships emissions and local power plants on air quality in Longyearbyen, Ny-

Ålesund and Barentsburg 

According to the statistics from Longyearbyen anchorage and port reported in 

marinetraffic.com, ships with total GT>100 may have influenced the air quality in town in 

44% of the time. Number of individual ships with GT>100 is 21. According to the statistics 

from Ny-Ålesund port, ships with total GT>100 may have influenced the air quality in town 

in 45% of the time, and the number of individual ships with GT>100 is 27. However, the 

median GT and 95-quantile of GT for ships visiting Longyearbyen were much higher than in 

Ny-Ålesund: 6344 tonnes vs 2183 tonnes and 131954 tonnes vs 39618 tonnes, respectively. 

This means that although the number of ships with GT>100 was higher in Ny-Ålesund, the 

size of ships and, consequently, amount of emissions were higher in Longyearbyen. 

Based on the location of major emission sources, port area and power plant, hours when the 

air in Longyearbyen may be mostly influenced by the long-range transported pollution and car 

traffic have been defined as hours, when the wind speed was above 2 m/s and wind direction 

could be reliable measured as between 90 and 180 degrees (Fig. 4). Only 17% of the hourly 

data fits to this criteria. Average concentrations of NO, NO2, SO2 and BC were very low (0.6, 

1.7, 0.04 and 76 µg/m3, respectively) while O3 values were 11% higher than when the wind 

was from other directions.  
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The WRS test has been performed to check if the influence of ship traffic on air quality was 

significant. The test results with p-value <0.05 are shown with bold font in Table 6. 

Table 6 Median concentrations of compounds in Longyearbyen and Ny-Ålesund based on 

wind direction and absence or presence of ships with GT>100. The WRS test results with p-

value <0.05 are shown with bold font. 

Settlement Wind direction Median concentrations, µg/m3 

NO NO2 SO2 BC O3 

Longyearbyen E (91°-179°), ships absent 0.3 0.7 0.03 0.065 48.3 

Longyearbyen E (91°-179°), ships present 0.4 0.8 0.04 0.088 46.7 

Longyearbyen Other directions (0°-90° and 

180°-360°), ships absent 

1.1 3.6 0.3 0.136 44.5 

Longyearbyen Other directions (0°-90° and 

180°-360°), ships present 

2.1 5.2 0.3 0.213 43.9 

Ny-Ålesund 91°-269°, ships absent 0.10 0.33 -0.05 - 51.1 

Ny-Ålesund 91°-269°, ships present 0.09 0.37 0.29 - 50.8 

Ny-Ålesund 0°-90° and 270°-360°, ships 

absent 

0.20 0.4 -0.06 - 51.3 

Ny-Ålesund 0°-90° and 270°-360°, ships 

present 

0.52 0.8 0.13 - 49.8 

 

Statistically significant influence of ship traffic on local BC, SO2, NO and NO2 concentrations 

have been observed throughout campaign in Longyearbyen. Generally, the average hourly 

BC, SO2, NO and NO2 concentrations were on 52%, 38%, 73% and 37% higher in the time 

period two hours before arrival and two hours after departure of the ships with total GT above 

100. However, influence of ships emissions on O3 concentration was insignificant reducing 

the O3 values on only 1% in comparison with hours without ships. 

According to WRS-test, there was statistically significant difference in median concentration 

of SO2, NO, NO2 and O3 between the two groups: with ships and without ships with GT>100 

in Ny-Ålesund. Average hourly SO2, NO and NO2 concentrations in the settlement were on 

3.6 times, 23%, 34% higher, while O3 concentration at the Zeppelin station was 2% lower in 

the time period of two hours before arrival and two hours after departure of the ships with 

total GT above 100. Effect of ships emissions on average SO2 concentration is stronger in Ny-

Ålesund, because the absolute background concentration is very low due to absence of other 



 

21 
 

significant sources of SO2. In contrast, in Longyearbyen only background concentrations 

(when wind is from the east) are comparable with background concentration in Ny-Ålesund 

(0.04 µg/m3), however, average background concentration for all other wind directions was 5 

times higher than in Ny-Ålesund. 

As the coal power plant and harbour are co-located in respect to the measurement station in 

Longyearbyen, the concentration of PAH on filter samples is influenced by these two major 

sources and may be impacted by traffic emissions from the nearby road to some extent. 

However, since the sampler was placed at the UNIS roof, the effect of road emissions is likely 

to be small. Total concentration of 16 PAH compounds in seven samples collected in summer 

(14.07-14.08) and 5 samples collected in autumn (17.09-24.09) varied from 108 to 2040 

pg/m3 and from 70 to 881 pg/m3, respectively. Average and median total PAH concentrations 

were almost three times higher for the summer samples than for the autumn samples. This is 

due to the fact that prevailing wind direction during summer sampling was north-westerly, 

downwind from the major sources mentioned above, while during autumn measurements it 

was south-easterly, from the Adventdalen valley. 

The percentage of PAH in summer and autumn samples is shown in Figure 5a) and Figure 

5b), respectively. Five summer samples and one autumn sample dominated by naphthalene 

were collected in days when north-westerly and westerly was observed. The coal combustion 

may be the source of this compound [46], however, Agrawal et al., 2010 found it to be 

dominant in PAH compounds in emissions from ship main engine [47], and similar results, 

which show prevalence of naphthalene family compounds in ship exhaust, are presented by 

Cooper, 2003 [48]. The lifetime of naphthalene is in the order of one day, and the compound 

is further transformed to nitro-naphthalene through the reaction with hydroxyl-radical and 

nitrates [49]. The reaction rate depends on environmental parameters, such as air temperature, 

amount of sunlight and air composition. Thus, studies of nitro-metabolites of PAHs from 

local emission sources in Svalbard may give further insight into environmental fate of 

naphthalene. The highest total PAH concentration for the whole campaign was measured 

when the biggest ship was visiting Longyearbyen.  

There is a strong linear correlation between total PAH concentrations and total GT of ships in 

the sampling days in summer (r= 0.995, p=0.005). Seven from 16 PAHs show tendency to 

increase with rising total daily GT: naphthalene, acenaphthylene, fluoranthene, pyren, 

chrysene, benzo(k)fluoranthene and benzo(ghi)perylene. There was an outlier from this rule, 

1st of August. In that day the lowest mean wind speed of 0.9 m∙s-1 and the highest mean air 

temperature of 11°C were observed, and the total PAH concentration showed 
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disproportionally high increase with respect to the total GT. 

 

 

Figure 5 Total percentage of PAHs in summer (a) and autumn (b) samples. 

There were two days in summer, when the coal power plant was closed on maintenance, and 

Longyearbyen was supplied by energy from the reserve diesel power plant located 70m to 

south-west from the measurement station. For these days, the southerly wind was prevailing 

and the total PAH concentration was much lower: 108.3 pg/m3 and 141.6 pg/m3. The 

percentage of PAH compounds was more evenly distributed within the samples: 

phenanthrene, naphthalene, benzo(k)fluoranthene and benzo(ghi)perylene contributed with 

22%, 16%, 15% and 14% of total PAH concentration in this group, respectively, while the 

contribution of each of the remaining PAHs was less than 10%. 

PAHs commonly present on soot particles [50], such as chrysene, benzo(b)fluoranthene, 
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benzo(k)fluoranthene, benzo(a)pyrene, benzo(ghi)perylene, have been detected in both groups 

of samples. Taking into account prevailing wind direction during autumn measurements and 

increased percentage of benzo(a)pyrene, benzo(k)fluoranthene, fluoranthene and pyrene, 

indicators of diesel emissions [51], and benzo(ghi)perylene, a marker for gasoline combustion 

[52], in the filter samples, one may conclude that the influence of road traffic pollution on 

PAH distribution was more pronounced in autumn. However, the sum of naphthalene, 

acenaphthylene, acenaphthene, fluorene and phenanthrene, highly abundant compounds in 

vehicle emissions [52], was higher for the summer samples and t-test with p-value<0.1 

showed that average concentrations of acenaphthylene were higher in this group. Anthracene 

absorbed on particles reacts with ozone more readily when sunlight is present [53] and in 

distilled water its photodegradation rate by sunlight is high [54]. This may explain why this 

compound has only been found in the autumn group of samples collected when insolation and 

air humidity decreased. 

 

Vertical black carbon and particulate profiles and meteorological soundings in 

Adventdalen and Ny-Ålesund 

During the fieldwork period from 26 June to 16 August 2018, 188 radiosonde soundings were 

made from Ny-Ålesund. Temperature inversions were detected in around 40% from them (76 

profiles). In the Ny-Ålesund soundings, 80% of all inversions were observed from 00:00 to 

12:00 and from 18:00 to 00:00, while only 20% of all inversions were observed in the 

soundings performed from 12:00 to 18:00, a typical time of tethered balloon launch in 

Adventdalen. 

37 radiosonde soundings from Ny-Ålesund, performed closest to the time of tethered balloon 

launch in Adventdalen, have been chosen for comparison. Temperature inversions with 

inversion strength above 0.3C and inversion depth more than 10m were detected in 24 profiles 

(65% from total). The overview of profile properties in Ny-Ålesund and Longyearbyen are 

given in Table 7. In six profiles from Ny-Ålesund, the altitude of the inversion bottom, where 

the temperature started rising, was higher than the maximum height reached by the tethered 

balloon in Adventdalen in the same day. There was a technical issue with launching of 

tethered balloon. In the days when wind speed aloft was lower than near the ground, the rope 

to which the meteorological and chemical sensors were attached was not straight, and when it 

occasionally went down too much and could touch nearby buildings in Adventdalen, the 

upward measurements were stopped and the instruments were taken down to the ground 

despite the fact that the balloon did not reach the maximum permitted height of observations, 
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1000m. Indeed, maximum height of 33% of Adventdalen profiles were less than 500m. For 

this group, according to WRS-test, median ground-level wind speed was significantly higher 

than for the rest of profiles (5.4 m/s vs 4.3 m/s). Therefore, direct comparison of temperature 

inversion statistics from the two stations would be ambiguous due to difference in maximum 

height of observations at the two stations. However, there were some common features in the 

profiles from the two measurement sites. According to the WRS-test, median profile wind 

speed and air temperature below 1000m in Ny-Ålesund and Adventdalen were significantly 

higher for the measurements with temperature inversions starting below 500m, than for these 

with inversion starting above 500m (shown in bold in the Table 7). The opposite relationship 

is observed for relative humidity in the two groups. Profiles without temperature inversions at 

the both measurement sites had highest median wind speed and lowest median profile 

temperature. 

Synoptic scale meteorological situation for the three groups (without temperature inversions 

in Adventdalen, with temperature inversions detected below 500m height and with inversions 

starting above 500m) are shown in Figures 6 a), 6b) and 6c), respectively. Both first and 

second group of days were characterized by high-pressure system located to the south-east 

from Svalbard. However, the south-westerly wind with higher wind speed was prevailing 

during the first group of measurements, while in the second group the wind speed was lower 

and air masses transported from the south were warmer, since higher air temperatures were 

over Scandinavia. In the last group of days, the north-westerly wind with low wind speed was 

bringing humid air from North Atlantic to Svalbard. Results of wind measurements for the 

same three groups from Longyearbyen (24 m a.s.l.), Adventdalen (15 m a.s.l.) and 

Gruvefjellet (464 m a.s.l.) are shown in Figure 6 d), e) and f). The mean wind speed observed 

in Adventdalen was almost the same for the three groups, however, according to the data from 

the Gruvefjellet station the wind speed aloft was lower for the days with temperature 

inversions. The wind direction in Adventdalen was always north-westerly, along the valley 

axis, while in the days without temperature inversion the wind direction observed at 

Gruvefjellet (Fig. 6d) was similar to the large scale flow (Fig. 6a). In most cases, north-

westerly and westerly wind direction in Longyearbyen was favourable for transport of local 

pollutants towards Adventdalen valley, where BC soundings were performed, except few days 

when south-westerly flow was observed in the town similarly to the measurements made at 

the Gruvefjellet station. 
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Table 7 Comparison of meteorological profiles Ny-Ålesund and Adventdalen: median values of temperature t, relative humidity RH, wind speed 

v, temperature inversion strength TIS and bottom height of lowest inversion zTb. The significant results of the WRS-test are shown with bold 

font. 

Sounding place Profiles without temperature 

inversion 

Profiles with zTb<500m Profiles with zTb>=500m 

% t, ℃ RH, % v, 

m/s 

% t, 

℃ 

RH, 

% 

v, m/s TIS, ℃ zTb, 

m 

% t, 

℃ 

RH, 

% 

v, 

m/s 

TIS, ℃ zTb, m 

Ny-Ålesund 35 2.2 90 3.7 40 5.8 80 3.2 0.6 54 24 2.5 93 2.1 0.9 781 

Adventdalen 58 4.9 74.2 4.6 32 7.0 72.9 3.3 0.5 153 10 5.1 86.8 1.9 0.5 716 

 

Table 8 Characteristics of 50m averages BC and particle profiles 

Groups of Adventdalen 

profiles 

Number of 

profiles 

Group median concentration Group median of 

maximum 

concentration in 

profiles 

Median height in 

m of maximum 

concentration in 

profiles 

Median BC 

concentration in 

Longyearbyen*, 

ng∙m-3 

BC Particles BC, ng∙m-3 particles, cm-3 BC, ng∙m-3 
particles, 

cm-3 
BC particles 

Profiles without 

temperature inversion 
43 32 94 483 147 644 350 100 158 

Profiles with 

zTb<500m 
25 16 94 1745 210 3080 100 0 181 

Profiles with 

zTb>=500m 
6 0 110 - 194 - 550 - 199 

*BC concentration in Longyearbyen is calculated for the period of two hours before the sounding to the time of tethered balloon launch with BC 

sensor in Adventdalen. 
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a) b) c) 

   

d) e) f) 

   
Figure 6 a), b), c) Meteorological conditions for the three groups of Adventdalen profile data described in Table 7: mean air temperature in ℃ 

(colour scale), wind direction (black arrows with the length relative to the wind speed) and mean sea-level pressure in hPa (white lines) in the 
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Svalbard area (black outline) and Ny-Ålesund, Longyearbyen and Barentsburg (red dots) based on ERA5 data; d), e), f) wind rose from the 

observations in Longyearbyen (UNIS), Adventdalen and Gruvefjellet for the same three groups
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The Aethalometer Optimized Noise-Reduction Averaging (ONA) post-processing algorithm 

for BC data suggested by [55], have been tried since the median concentrations of BC 

measured in Adventdalen were quite low (88ng∙m-3). The ONA-algorithm uses a predefined 

difference in the light attenuation ATN for averaging between the measurement points. It 

finds first point when the ATN difference is equal to a set ATN difference (the lowest value 

of 0.0 was used as suggested by [56] to remove only negative values). If the programme does 

not find the predefined ∆ATN, it checks next points until it finds it, and then gives the average 

value for all the points, which were skipped. The algorithm works well when there are few 

negative values in the data, but since the values from the profiles in Adventdalen have too 

many negative values in some of the profiles, it has not perform well. 

Therefore, the results of black carbon profile measurements have been averaged for 50m 

layers to reduce the level of negative noise in the data. However, there were still some values 

below zero in the 50m-averaged data. The statistics of vertical BC and particulate 

concentration measurements for the three groups, defined in Table 7, is shown in Table 8. 

There is positive statistically significant correlation between the height of maximum BC 

concentrations and height of minimum wind speed in the profiles (r=0.44, p<0.001). Indeed, 

in 92% of all profiles the height of maximum BC concentration is less or equal to the height 

of minimum wind speed. On average, maximum BC concentrations could be found 230m 

below the height of minimum wind speed. The correlation between height of maximum 

concentration and height of the maximum temperature is insignificant. 

Since the number of profiles with zTb>=500m is very small, the groups with zTb<500m and 

zTb>=500m have been combined into one group with 31 BC profiles (nBC=31) and 16 

particulate profiles (npart=16) and compared with a group when no temperature inversions 

were observed (nBC=43, npart=32). According to the WRS-test, there is no statistically 

significant difference between median BC concentrations for the two groups, while the 

median concentration of particles in the profiles with temperature inversion was significantly 

higher than in profiles where no inversions were observed (p<0.001). Group medians of 

maximum BC and particle concentrations in profiles with temperature inversions were 

significantly higher. Similarly, median BC concentration measured in Longyearbyen for the 

period of two hours before the sounding to the time of tethered balloon launch with BC sensor 

in Adventdalen was higher when temperature inversion was observed. 
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Events of long-range transport of air pollution based on AOD and CO data from Ny-

Ålesund 

CO is correlated with the aerosol at the source region since it is emitted from biomass and 

fossil fuel burning. However, during the transport the particles may be removed from the air 

masses through dry and wet deposition [57]. CO measurements performed at the Zeppelin 

station may at times be influenced by local pollution brought up to the mountain from Ny-

Ålesund, but, according to the previous studies, these cases are rare and may occur only a few 

percent of the total measurement time. Moreover, the titration of tropospheric O3 has been 

observed nearby the NOx sources such as diesel fuelled power plant or ships [6], [9]. Hours, 

when the CO and O3 data at the Zeppelin station may be impacted by the local pollution, have 

been excluded from the calculation of daily values based on the wind direction data in Ny-

Ålesund and at the Zeppelin station as it has been done in previous studies [9]. Then the 

quantiles of the daily CO and O3 values have been calculated. When daily CO concentrations 

were above median values plus one median absolute deviation (MAD) for the whole 

campaign, there was a possible long-range transport of polluted air masses. Nine days with 

CO concentration above the set limit have been identified. In six of nine days defined above 

as days with possible long-range transport of air pollution, the mean air temperature was 

8.5℃, there was prevailing NW-wind with mean wind speed of 1.1 ms-1 and daily 

concentrations of BC exceeded median plus MAD in Longyearbyen. In the remaining three 

days, when there was possible long-range transport of pollutants to Svalbard, but no local 

increase of concentrations in Longyearbyen, according to the WRS-test, the mean wind speed 

and air temperature there were significantly higher, 5.3 ms-1 and 9.6℃, respectively, and the 

prevailing wind direction was southerly. There were 16 days when no long-range transported 

pollution was detected at the Zeppelin, while elevated BC were observed in Longyearbyen 

due to local pollution. During these days, the mean air temperature was much lower, 7.5℃, 

and NW wind with mean speed of 2.2 ms-1 prevailed. Synoptic scale meteorological situation 

for the days when both local and long-range transported pollution may have influenced air 

quality in Longyearbyen and when only local pollution may have affected BC concentration 

there are shown in Figure 7 a) and Figure 7 b). 

Mean BC concentrations measured in Longyearbyen were on average 32% higher in days 

when both local and long-range transported pollution influenced the air quality in 

Longyearbyen vs days when only local pollution was dominating, 337ng∙m-3 vs 256 ng∙m-3. 
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 a) 

 

b) 

 

Figure 7 Synoptic-scale meteorological conditions (mean air temperature in ℃ (colour scale), 

wind direction (black arrows with the length relative to the wind speed) and mean sea-level 

pressure in hPa (white lines) in the Svalbard area (black outline) and Ny-Ålesund, 

Longyearbyen and Barentsburg (red dots)) based on ERA5 data for the hours: a) when both 

long-range transported and local pollution may have affected BC concentration in 

Longyearbyen; b) when only local pollution was present 

The CO concentration has been measured at the Zeppelin station at a height of 474m a.s.l., but 

no data about vertical distribution of CO values are available. Thus, if the polluted air masses 

were above the level of the Zeppelin station, they would be undetected by the monitor there. 

Therefore, another quantity, which is often used for studies of long-range transported 
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pollution, aerosol optical depth (AOD), can be applied to study events of elevated transport of 

polluted air masses. Unfortunately, clear sky conditions are needed for the sun photometer to 

correctly retrieve total column properties of aerosol and water vapour content from the sun 

and sky radiance measurements. Therefore, this instrument is not perfectly suitable for the 

Arctic summer campaigns, when the cloudy conditions are most common [4]. Thus, these 

data may give us information about the long-range transport events only in cloud-free hours. 

In Figure 8 the evolution of the aerosol optical depth (AOD) measured by the photometers can 

be found at two wavelengths (340 and 870 nm) shown by blue and black colours respectively. 

The x-axis represents the UTC time corresponding to the different days of 2018. The three 

different stations, the two from AERONET, Ny-Ålesund and Longyearbyen, and the 

Barentsburg station, are marked with the different dot shapes: cross, triangle and square, 

respectively. The three stations present a high consistency, with similar values for both 

wavelengths; especially in the days, where near to low typical values can be found. The ground-

based site with the higher AOD values is Longyearbyen, because the data from this site was not 

scrutinized to eliminate local influence. 

On the other hand, two major aerosol outbreak events may be identified in the AOD data from 

Ny-Ålesund and Longyearbyen: 05th of August and 13th of August. AOD values over 0.8 in 

Ny-Ålesund and Longyearbyen were detected at 340 nm and values over 0.2 (especially in 

Longyearbyen) at 870 nm. 

 

Figure 8 Aerosol optical depth at two wavelengths: 340nm (blue) and 870nm (black) 

The Ångström exponent indicates the prevailing aerosol size due to dependence of the spectral 

shape of the extinction from the particle size [58]. The evolution of the Ångström exponent 
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between the two channels 440 and 870 nm is shown in Figure 9, where also a high consistency 

among the three stations (marked by three different dots and colours) can be found in all the 

temporal selected period. In this case, no significant variation of this parameter can be detected 

between the expected climatological behaviour and the two events of August. Nevertheless, 

there is a remarkable presence of large size particles at the Longyearbyen station during the 5th 

of August. Probably local particles of bigger size could be brought aloft from the ground there 

since the average wind speed was two times higher (3.5 m∙s-1) than at two other stations. The 

southerly wind direction and low BC concentration measured in Longyearbyen by ground-

based instruments indicate that the particles were not coming from the major local pollution 

sources. 

 

Figure 9 Ångström exponent 440/870 nm at the three stations 

According to the data from HYSPLIT-model for the 5th of August, the air masses arriving 

below 2000m height were from Greenland (Fig. 10a), while trajectories arriving above this 

height to Ny-Ålesund and Longyearbyen could bring some air pollution from Eurasia (Fig. 

10b). This is probably the reason why no elevated concentrations of BC were detected by 

ground-level instruments and CO observations in Longyearbyen and at the Zeppelin station, 

respectively, in that day. 



 

33 
 

a) 

 

b) 

 

Figure 10 HYSPLIT air mass trajectories for 5th of August: a) below 2000m; b) above 2000m 

Figure 11a) shows the Ångström Exponent 440/870 nm as a function of the AOD at 500 nm at 

the three stations marked by three different dots and colours. As it can be observed, in the 

event of the August 13th there is no special variation of the Angstrom Exponent in any of the 

three stations, and their values are around 1.5. This is an indicator of the presence of small 

particles in the atmospheric column. The Angstrom Exponent results are in line with the size 

distributions obtained with AERONET inversion algorithm. 

Figure 11b) shows the size distribution inversions for August 13th for Longyearbyen and Ny-

Ålesund (AERONET sites). There is a large concentration of particles with radius below 0.4 

µm, so that event is dominated by the fine mode particles. 

a) b) 

  

Figure 11 a) Angstrom Exponent 440/870 nm as a function of the AOD at 500 nm; b) size 
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distribution inversions for August 13th for Longyearbyen and Ny-Ålesund 

The ground-level concentrations of BC in Longyearbyen and CO at the Zeppelin station were 

much higher on 13th of August. This may be explained by the fact that trajectories arriving at 

500m height above Ny-Ålesund and Longyearbyen in that day indicated transport of air 

masses from Eurasia (Fig. 12a). The median BC concentrations measured in profile from 

soundings in Adventdalen in that day were higher than normal (294 ng∙m-3). BC 

concentrations and meteorological parameters smoothed using 1-2-1 filter are shown in Figure 

12b). There were two layers with elevated concentrations: the first one was located below 

100m with maximum value of 420 ng∙m-3 at 68m and the second once between 800 and 900m 

with maximum value of 635 ng∙m-3 at 890m. The first layer coincides with local maximum of 

relative humidity, while the air was less humid in the second one. There was no pronounced 

temperature inversion most probably due to t mixing of the ABL due to high wind speed. The 

two maxima of wind speed in the profile were located above the maxima of BC concentration: 

5.8 m∙s-1 and 4.6 m∙s-1 at the heights of 154m and 960m, respectively. 

a) b) 

  
Figure 12 a) HYSPLIT air mass trajectories for 13th of August; b) BC vertical distribution and 

meteorological parameters measured in Adventdalen 

 

Case study 1st August: the day with highest BC and NOx concentration in Longyearbyen 

An extreme example of days when both local pollution and long-range transported pollution 
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may have affected local air quality in Longyearbyen is 1st of August 2018. The highest daily 

values of NO2 and BC values in Longyearbyen and CO concentration at the Zeppelin station 

were observed in that day, 15.1µg∙m-3, 538ng∙m-3 and 116.3µg∙m-3, respectively. 

This event may be caused by combination of increased local emissions from ships and 

accumulation of pollutants within the ABL due to adverse weather conditions and by long-

range transport of pollution from mid-latitudes. According to the analysis performed by the 

World Weather Attribution organization, a persistent high-pressure anomaly over Scandinavia 

caused long periods with extremely hot weather and reduced precipitation, which lasted from 

May to July 2018 [59]. The reanalysis data from ERA5 confirms that there was a period of 

anomalously hot weather over Northern Scandinavia from 29th of July to 1st of August 2018 

(Figure 13a). At the grid point near the latitude of Tromsø (69.75°N 19°E), for example, daily 

average air temperatures in this period exceeded 22°C, while four-day maximum temperature 

average was 26.7°C there. It is extremely hot weather for Tromsø, a town located beyond the 

Arctic Circle, where, according to statistics presented by the Norwegian Meteorological 

Institute available on yr.no, daily average temperatures in the time of the year are normally 

10°C lower. Warm air masses were transported from Scandinavia to Svalbard, and air 

temperatures in Longyearbyen and in Ny-Ålesund increased up to 14.5°C and up to 13.7°C, 

respectively. Average wind speed was very low: 1.4 m/s in Longyearbyen, 1.7 m/s in Ny-

Ålesund. Elevated concentrations of CO and O3 were observed at the Zeppelin station from 

28th of July to the 3rd of August (Fig. 1), and 240-hours backward air mass trajectories 

modelled in HYSPLIT indicated possible long-range source of air pollution on the 1st of 

August (Fig. 13b). 
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a) 

 

b) 

 

Figure 13 Average meteorological conditions over Svalbard on 1st of August based on ERA5 

data (a) and 240-hours backward air mass trajectories modelled in HYSPLIT (b) 

 

However, temperature inversions were observed in the radiosonde and tethered balloon 

soundings at the both stations in the same day (Fig. 14), and thus combined with low wind 

speed, created conditions favourable for accumulation of local pollution close to the ground. 

In this day, light wind conditions and saturation below the inversion layer promoted formation 

of thick haze in Longyearbyen. The smoke from the power plant and ships was trapped 

beneath the inversion and visibility was noticeable reduced. 

The temperature measured at the level of lowest measurement was 10.3℃, while maximum 

temperature of 13.1℃ was detected at the height of 256m (Fig. 14a). The median wind speed 

below this level was very low, 1.8m/s. Maximum BC concentration (603ng/m3) was observed 

at height of 156m where the minimum wind speed of 0.1m/s was observed. The ozone vertical 

profile in Ny-Ålesund was characterized by three maxima within the lowest 1000m (Fig. 

14b): 82.2 µg/m3 at 200m and 83.5 µg/m3 at 601m and 703m. The first O3 maxima was 

observed below the level where the minimum wind speed was detected. However, the ozone 

concentration at 1663m was even higher, 106 µg/m3. 

On the 2nd of August, the wind direction changed and wind speed increased, the temperature 

inversion was destroyed by mechanical mixing and warm air from aloft was brought down to 

the surface. This lead to dramatic reduction of the pollutant concentrations in Longyearbyen. 
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a)                                                                                   b) 

 
 

Figure 14 Tethered balloon profile from launch performed at 15:19 01.08.2019 in 

Adventdalen (a) and ozone sonde profile from launch performed at 17:05 01.08.2019 in Ny-

Ålesund (b). 

 

Discussion 

In order to compare the ground-based BC data from Longyearbyen and the profile data from 

Adventdalen, AE51 sensor was in-situ calibrated with the stationary monitor AE33 at UNIS 

eight times throughout the campaign with average calibration period of two hours each time. 

The temperature, humidity and wind speed range during the calibrations were 4.4℃-14.4℃, 

60%-100%, 0 m∙s-1-7.6m∙s-1, respectively. AE33 data had 1-minute resolution and were 

compared with 1-minute averaged data from AE51. The worst and the best correlation 

between the two instruments were obtained 21.07 and 01.08, accordingly, when the mean 

concentration of BC measured by AE33 was the lowest (191 ng∙m-3) and the highest (1051 ng∙ 

m-3), respectively. However, relationship between the BC concentrations and correlation 

coefficient is not linear. We have divided all the calibration AE33 and AE51 data into 4 

groups of almost equal size (~300 values in each) according to calculated AE33 BC 

concentration quartiles: BC values below 143 ng∙ m-3, from 143 ng∙ m-3 to 297 ng∙ m-3, from 

297 ng∙ m-3 to 610 ng∙ m-3 and above> 610 ng∙ m-3. As high time resolution BC data is often 
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noisy, especially at lower concentrations [56], [60], post-processing ONA-algorithm for noise 

reduction suggested by [55] was implemented on 30-seconds AE51 data before 1-minute 

averaging. The noise for AE51 1-minute averaged original data and data processed using 

ONA-algorithm was calculated for each group using the formula suggested by [55] and 

relative deviation of AE51 data from AE33 data was calculated using equation [56]. One can 

see that the correlation between AE51 and AE33 data increases rapidly for the BC 

concentrations exceeding a 4th quartiles’ limit, while relative deviation is the lowest for the 

same group (Table 9). The same procedure has been done for quartiles of air temperature, 

relative humidity and wind speed to check if these values influence the correlation, but no 

significant difference in correlation coefficients has been found for different groups within the 

range of meteorological parameters during calibration. 

 

Table 9 Calibration results between AE51 and AE33 

Concentration 

group 

Noise 

AE51, 

ng/m3 

Noise 

AE51-

ONA, 

ng/m3 

Relative 

deviation 

(A51 and 

AE33) 

Relative 

deviation 

(AE51-ONA 

and AE33) 

Pearson r 

(A51 and 

AE33) 

Pearson r 

(A51-ONA 

and AE33) 

BC<q25 90 45 0.9±3.5 1.25±4.34 0,29 0,27 

q25<=BC<q50 132 96 0.27±0.74 0.3±0.69 0,38 0,36 

q50<=BC<q75 174 169 0.1±0.49 0.06±0.49 0,33 0,33 

BC>q75 401 375 -0.04±0.33 -0.05±0.33 0,78 0,77 

Total 220 166 0.31±1.83 0.39±2.26 0,87 0,87 

 

The concentrations of BC measured during soundings in Adventdalen were very low, often 

within 1st quartile of AE33 data, therefore, there is high uncertainty in absolute values of BC 

data measured by AE51. However, since 50m-average values were applied to study profiles’ 

statistics, this averaging eliminated some of the noise, and thus, the BC change throughout 

individual profile should still be possible to study. 

In addition to the uncertainty in the BC data from the portable sensor, the ship traffic data 

may be imprecise. Although MarineTraffic utilizes the AIS data from the worldwide receiving 

station network, the data coverage may vary from region to region and depends on the data 

sharing agreements with third-parties. There is also inherent deficiencies in the data quality 

since the VHF radio signal coverage is limited to terrestrial range of 30 miles, and the 
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received data may be incomplete, corrupted or formatted differently from the AIS standard. 

These factors affect the completeness of the data available for the internal post-processing 

within MarineTraffic system [61]. Further studies using the data from the Norwegian Coastal 

Administration (kystverket.no) may be needed to assess the difference in ship traffic data and 

to study the influence of ship traffic on the air quality in Barentsburg. Unfortunately, at the 

time of publication, these data were not available. 

Previous studies have shown that the volatile PAHs such as naphthalene and fluorene are 

dominating compounds measured in the Svalbard zone [62]. Therefore, measurement results 

from the Zeppelin station are needed to identify the contribution from the local sources in 

Longyearbyen to the background PAHs concentrations. Similarly, BC values from the 

Zeppelin station would give the information about the increase of BC concentrations due to 

long-range transport events and allow to compare the BC concentrations in Longyearbyen and 

Barentsburg with the background level. 

 

Conclusion 

This article is the first comprehensive study comparing a broad range of air quality parameters 

measured in three Svalbard settlements. The summer levels of air pollutants in two 

Norwegian towns, Longyearbyen and Ny-Ålesund, did not exceed the Norwegian air quality 

standards, while concentrations of BC and SO2 were at times extremely high in Barentsburg 

in 2018. The 20-minutes, hourly and daily air quality limits for SO2 were exceeded there 

when the wind was coming from the local coal power plant. 

There was no ship traffic data from Barentsburg, but according to the data Longyearbyen, the 

concentrations of BC, SO2, NOx and PAHs increased significantly due to ships’ emissions. 

Similar results are obtained for Ny-Ålesund, but the relative influence of ship traffic on SO2 

concentration was higher there, while the absolute influence was lower due to lower 

background concentrations. 

Temperature inversions, created because of the warm air advection from Scandinavia to 

Svalbard, promote the conditions favourable for accumulation of local pollutants in the ABL. 

However, elevated concentrations may be observed in Longyearbyen even in absence of the 

long-range transported pollution. In these days, colder air masses were brought by the large-

scale westerly wind. The wind direction changed to north-westerly due to channelling along 

the Adventdalen valley, and locally polluted air was efficiently transported from the major 

local emission sources, the coal power plant and ships, to the town. 

The vertical structure of summer ABL in Adventdalen (Longyearbyen) and Ny-Ålesund was 
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similar with higher median wind speed and lower air temperatures in the profiles without 

temperature inversions and higher air temperature and lower wind speed in the profiles with 

inversions at both sites. In the days with inversions, higher maximum BC concentrations and 

particle concentrations were observed in Adventdalen profiles and by ground-based 

measurements in Longyearbyen. 

The work gives insight into the parameters important for the air quality in the changing 

Arctic. Increased pollution from the ship traffic accompanied by the higher air temperatures 

and lower wind speed create conditions favourable for accumulation of local pollution near 

the settlements, while similar meteorological conditions may prevail during long-range 

transport events. The impact of these factors on local ecosystems and health of the Arctic 

populations deserves further investigation. 
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