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Abstract

We present a modular open-source library for polarizable embedding (PE) named

Cppe. The library is implemented in C++, and it additionally provides a Python

interface for rapid prototyping and experimentation in a high-level scripting language.

Our library integrates seamlessly with existing quantum chemical program packages

through an intuitive and minimal interface. Until now, Cppe has been interfaced to

three packages, Q-Chem, Psi4, and PySCF. Furthermore, we show Cppe in action

using all three program packages for a computational spectroscopy application. With

Cppe, host program interfaces only require minor programming effort, paving the way

for new combined methodologies and broader availability of the PE model.
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1 Introduction

Accurate computational spectroscopy requires a realistic description of the key interactions

of the chromophore with the molecular environment.1,2 To model such interactions of solute-

solvent systems at a reasonable computational cost, embedding methods for continuum sol-

vation and explicit environments exist.3–5 A quantum mechanical method of choice is com-

bined with one or multiple environment models to simulate molecular properties, such as

electronic excitation energies. The procedure of including environmental effects can, to some

extent, be uncoupled from the quantum mechanical method. Hence, implementations of a

single embedding method can be modularized and interfaced to multiple quantum chemical

program packages. Exploiting modular libraries puts the main focus back on the develop-

ment of quantum mechanical methods: Using a well-tested, production-ready library for

the inclusion of environment contributions is much more sustainable and time-efficient than

re-implementations for each program package and method. In this paper, we show the im-

plementation of such an open-source modular library for the polarizable embedding (PE)

model, named Cppe (C++ and Python library for PE). The PE model6,7 has, over the last

years, emerged as a powerful and user-friendly approach to study molecular properties in

complex embedded systems.8,9 A large variety of combinations with wave function and den-

sity functional theory methods has been developed,10–19 where the most used implementation

is publicly available in PElib20 which is interfaced to the Dalton21 and DIRAC22 programs.

Furthermore, a closed-source implementation in the Turbomole package exists,12,23 especially

employed for correlated wave function methods.

Our novel Cppe library contains the necessary routines to implement ground state and

molecular property calculations with PE. Through its minimalist application programming

interface (API), Cppe can be easily coupled to any quantum mechanical host program with

little programming effort. The library is inspired by PCMSolver24 and libefp,25 which are

similar libraries for continuum solvation models and the effective fragment potential (EFP)

method, respectively. The continuum and EFP models, as well as the PE model presented

3



in this paper, all belong to the class of so-called explicitly polarizable effective Hamiltonian

models. In fact, due to the similar mathematical structure of these models, modularization

may be devised based on similar strategies. Indeed, this is also the case for other polarizable

embedding models like the fluctuating charges26,27 or Drude oscillator28 approaches which

have, to the best of our knowledge, not yet been formulated employing a modular library.

Of note, a general linear-scaling implementation for PE models was recently presented.29

Cppe provides both a C++ and a Python API, exposing the necessary high-level func-

tionality. The Python API allows for quick manipulation of data and rapid prototyping to

try out new variants or combinations of the PE model. On the low level, Cppe is based

on the original implementation of the PE model, PElib.20 Cppe is designed to be as mod-

ular as possible, such that it can be interfaced to any program without any spill-over of

host-program-specific code into Cppe. In the long run, Cppe will make calculations using

PE more accessible to a broad user base through several program packages and allow for

novel combined methodologies in computational spectroscopy. Of note, we have already

interfaced Cppe to three existing quantum chemical program packages Q-Chem,30 Psi4,31

and PySCF.32 The remainder of this paper is structured as follows: First, we briefly review

the theoretical background of the PE model. Second, we introduce the design of the library,

together with its implementation and capabilities. We also show a step-by-step guide on

how to connect Cppe to a new host program. Finally, we investigate the solvatochromism of

nile red using existing Cppe interfaces: The absorption spectrum of the chromophore in an

aqueous and a protein environment is modeled using the algebraic-diagrammatic construc-

tion (ADC) method, equation-of-motion coupled cluster (EOM-CC), and time-dependent

density functional theory (TDDFT) in combination with PE.
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2 Theoretical Background

The theoretical foundation of the PE model has been presented in previous works.6,7 Fur-

thermore, there exists an extensive tutorial review9 on the necessary steps to perform PE

calculations for spectroscopic processes in chemical or biological systems. The composite PE

energy functional6,7 can be written as

Etot = EQM + EPE + Eenv , (1)

with the energy of the quantum region EQM which includes wave function polarization. The

interaction energy of the quantum region and the environment EPE includes polarization of

the environment. The internal energy of all fragments in the environment Eenv is completely

independent of the wave function since polarization is already contained in the previous term.

Further decomposition of EPE leads to contributions from the electrostatic interaction energy

Ees between the quantum region and the environment, and the induction energy Eind due

to induced charge distributions in the environment. The permanent electrostatic interaction

energy consists of a nuclear contribution Enuc
es and an electronic contribution Eel

es, where the

nuclear contribution is given by

Enuc
es =

S∑
s=1

Ks∑
|k|=0

(−1)|k|

k!
Q(k)

s

N∑
n=1

T (k)
sn Zn . (2)

The summation over |k| runs over (|k| + 2)(|k| + 1)/2 multi-indices up to the truncation

level Ks of the multipole expansion and the summation over s is running over the S sites

in the environment. The k-th component of the |k|-th-order Cartesian multipole Q
(k)
s is

located at the site coordinate Rs in the environment, and Zn is the nuclear charge of the

n-th nucleus located at Rn in the quantum region, comprised of N nuclei in total. Here, the
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k-th component of the interaction tensor, T
(k)
ij , between two sites i and j,

T
(k)
ij =

∂|k|

∂xkxj ∂y
ky
j ∂z

kz
j

(
1

|rj − ri|

)
, (3)

was used. Further, the electrostatic interaction energy of the electrons with the environment

is given by the expectation value of the electrostatic operator V̂es using the electronic density

matrix of the quantum region Pel, that is

Eel
es = Tr(PelV̂es) . (4)

Using the second-quantization formalism, we can write the electrostatic operator as

V̂es =
S∑

s=1

Ks∑
|k|=0

(−1)|k|

k!
Q(k)

s

∑
pq

t(k)pq (Rs)Êpq , (5)

with the one-electron orbital excitation operator Êpq and general molecular orbital indices p

and q. The integrals are given by

t(k)pq (Rs) = −
∫
φ∗p(r1)T

(k)
s1 φq(r1) dr1 , (6)

and include again the k-th component of the interaction tensor (eq (3)). The induction

energy contribution of a linearly responsive environment amounts to

Eind = −1

2

S∑
s=1

µµµind

s
(F)TF(Rs) , (7)

where µµµind
s

(F) is the induced dipole moment at site s in the environment, and F(Rs) is the

electric field vector acting on site s, comprising the field from nuclei and electrons, as well
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as the fields caused by the permanent multipole moments, i.e.,

F[Pel] = Fnuc + Fel[Pel] + Fmul . (8)

Note that the electric field from the electrons, and in turn the total field vector, F, explicitly

depend on the electronic density matrix Pel. The electric field created by the electrons is a

simple expectation value of the field operator. Further, we define the electric-field operator

as

F̂ e
a (Rs) =

∑
pq

ta,pq(Rs)Êpq . (9)

The electric-field integrals are defined as

ta,pq(Rs) = −
∫
φ∗p(r)

Ra,s − ra
|Rs − r|3φq(r) dr , (10)

such that the expectation value is simply

Fel[Pel](Rs) = Tr(PelF̂
e
(Rs)) . (11)

The induced moment at a site s depends on the total electric field through

µµµind
s (F) = αααs

(
Fs[Pel] + Find

s

)
. (12)

Here, the induced fields created by all other sites were added, i.e.,

Find
s =

∑
s′ 6=s

T
(2)
ss′µµµ

ind
s′ (F) . (13)
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This leads to a linear system of equations,

Bµµµind(F) = F[Pel] , (14)

with the classical response matrix B,33 given by

B =



ααα−11 −T(2)
12 . . . −T(2)

1S

−T(2)
21 ααα−12

. . .
...

...
. . . . . . −T(2)

(S−1)S

−T(2)
S1 . . . −T(2)

S(S−1) ααα−1S


. (15)

The inverse site polarizability tensors ααα−1s are on the diagonal and the negative dipole-dipole

interaction tensors T(2) reside on off-diagonal elements. Subsequently, we can include the

induced dipole field into the wave function optimization through the induction operator

V̂ind[Pel] = −
S∑

s=1

∑
a=x,y,z

µind
a,s (F)F̂ e

a (Rs) , (16)

using a for the respective Cartesian component x, y, or z. Finally, one solves the self-

consistent field (SCF) problem in the presence of the total embedding operator,

V̂PE[Pel] = V̂es + V̂ind[Pel] . (17)

Since the embedding operator depends on the wave function itself, namely through the

electric fields created by the electronic density, the overall embedding operator is non-linear.

The embedding operator is updated in every iteration using the current SCF electronic

density matrix. Thus, polarization effects are treated in a self-consistent manner for the

electronic ground state.
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3 Design and Implementation

Implementation of the Cppe library was, on the low level, guided by the existing Fortran

library, PElib.20 We aimed for high modularity, host program agnosticy24 and extensibility

to design the library as sustainable as possible. Therefore, the Cppe library is implemented

in C++ which provides the necessary toolkit for data containers and standard algorithms

through the standard template library (STL) together with advantages of object-oriented

programming. The latter make the implementation of the necessary data structures for our

PE library intuitive and easily extensible. Cppe is built with CMake,34 widely used in quan-

tum chemical program packages and thus making Cppe easy to integrate in an existing build

systems as an optional external dependency. To perform numerical operations on matrices

and vectors, e.g., solving the linear equations for induced moments, we employ the header-

only Eigen3 library.35 To bring Cppe to modern Python-based quantum chemistry codes, we

aimed at exposing the functionality of the library to the Python layer. This is accomplished

through the lightweight header-only pybind11 library,36 providing interoperability between

C++-based codes and Python. The pybind11 interface code inside Cppe is very concise and

allows for rapid extension of Python-exposed functionality. Furthermore, Eigen3 matrices

and vectors are seamlessly converted to numpy arrays37 and vice versa through pybind11.

Python bindings also enabled us to implement a set of unit and functionality tests using

pytest.38 Thus, the suite of test cases can be easily extended on the Python layer. In gen-

eral, the here presented hybrid C++/Python programming approach has also proven powerful

in the recently published Psi4NumPy package.39

The most recent version of the Cppe source code can be downloaded from GitHub (https:

//github.com/maxscheurer/cppe). The C++ core library is contained in the cppe/core di-

rectory in the downloaded folder, whereas the Python bindings reside in cppe/python iface.

A table with the source code location of all C++ classes explained in the following can be

found in Table S1 in the Supporting Information. Most importantly, the core library is

equipped with data containers for embedding potentials, comprised of multipole moments
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({Q(k)
s }, Multipole class) and polarizabilities ({αsαsαs}, Polarizability class). The main

parameter container for each site in the environment is the Potential class, comprised of

coordinates Rs for a site s, together with a list of multipoles (std::vector<Multipole>),

polarizabilities (std::vector<Polarizability>), and some helper functions. All together,

the full environment parametrization is stored as a std::vector<Potential>. The three

parameter container classes are depicted in Figure 1. Cppe reads the parameters mentioned

class Potential

int index; s

double m_x, m_y, m_z; Rs

std::vector<Multipole> m_multipoles; {Q(k)
s }

std::vector<Polarizability> m_polarizabilities; {αs}

void add_multipole(Multipole);

void add_polarizability(Polarizability);

bool is_polarizable();

class Multipole

std::vector<double> m_values; Q
(k)
s

unsigned m_k; k

void remove_trace();

class Polarizability

std::vector<double> m_values; αs

void make_isotropic();

Figure 1: C++ classes containing the embedding potential. The Multipole and
Polarizability classes contain the actual parameters and provide helper functions, e.g.,
to remove the trace of a multipole moment or to make a polarizability isotropic. A single
site in the environment is fully parametrized through an instance of the Potential class,
consisting of the site index s, the coordinates, and vectors of multipoles and polarizabilities.
Helper functions make it easy to add additional parameters or to check if a specific site is
polarizable.

above from a so-called potential file. The format is identical to that used in PElib, ex-

plained in Ref. 9. Read-in is performed by the PotfileReader class. If a special treatment

of the border between the quantum and classical region is required, the PotManipulator

class can, for example, redistribute or remove parameters of the affected sites. In addition

to parameters, information about the quantum region has to be stored, for example, to eval-

uate the nuclear electrostatic interaction energy (eq (2)). This is achieved by the Molecule

class, which is a slightly decorated std::vector with coordinates Rn and charges Zn of the

individual atoms.

The core library also provides classes to compute all classical energies and electric fields:

MultipoleExpansion computes the nuclei-multipole interaction energy (eq (2)), whereas
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NuclearFields and MultipoleFields implement electric field contributions from nuclei

and multipole moments, respectively (eq (8)). Furthermore, the system of linear equations

for the induced dipole moments is solved iteratively with a Jacobi algorithm9 including

Anderson mixing (sometimes called DIIS mixing) for accelerated convergence.40 As can be

seen from the theory section, the most important building block of the classical expressions

are the T -tensors (eq (3)) which we compute using an open-ended formula.9,41 To avoid

over-polarization, interactions involving T -tensors, i.e., permanent multipole fields (Fmul in

eq (8)), or dipole-dipole interaction tensors (T(2) in eq (15)) can be damped using Thole’s

exponential scheme.42,43 Since the implementation of the T -tensors is pivotal, it is tested

against auto-generated Python code.44

User-provided options, e.g., the path of the potential file, convergence thresholds, or treat-

ment of the border between the quantum and classical region, are defined in the PeOptions

class. All available options and their default values are listed in Table S2. Of note, the afore-

mentioned low-level building blocks and functions do not need to be assembled from scratch

when interfacing Cppe to a new host program, which would be tedious and error-prone.

For this reason, Cppe provides a convenient top-level wrapper of all low-level functions ex-

posed through the CppeState class (Fig. 2). Using the CppeState to manage all necessary

PE tasks reduces the programming effort because all implemented functions and data fields

of CppeState are self-explanatory and correspond to the formulas previously given. The

CppeState can be constructed from a Molecule object and a PeOptions object. After in-

stantiation, the potential file is automatically parsed, manipulated, and stored inside the

CppeState. The CppeState is then ready for use, taking care of, e.g., setting up and calling

the induced moments solver under the hood.

Having established the components of Cppe in a bottom-up manner, we will now explain

how to actually use CppeState for the implementation of a host program interface.
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class CppeState

Molecule m_mol; quantum region molecule

std::vector<Potential> m_potentials; potentials for all sites

Eigen::VectorXd m_nuc_fields; Fnuc

Eigen::VectorXd m_multipole_fields; Fmul

Eigen::VectorXd m_induced_moments; µind

PeOptions m_options; option container

CppeState(PeOptions options, Molecule mol); explicit constructor

void calculate_static_energies_and_fields();
calculates Fnuc,

Fmul, and E
nuc
es

void update_induced_moments(...); solves Bµµµind(F) = F

double get_total_energy(); returns EPE

std::string get_energy_summary_string();
returns a string with

all energy contributions

Figure 2: CppeState class members. The CppeState serves as the top-level interface of the
Cppe library. It exposes a variety of functions to carry out all host-program-independent
tasks. All the building blocks, e.g., to solve the linear equations for induced dipole mo-
ments, are properly assembled in the CppeState functions. Further, CppeState manages
bookkeeping of energy contributions and electric fields.

3.1 Guide to Using Cppe in a Host Program

Cppe is completely agnostic of any host-program-specific code and data. As a result, only

an interface on the host program side needs to be implemented, integrating both Cppe and

program-specific routines. A schematic overview of the overall interface structure is shown in

Figure 3. The host program side of the interface communicates with the input reader, integral

library, SCF driver, and post-SCF drivers of the host program. A mock implementation of

such a CppeHostProgramInterface is presented using Python code snippets. First of all,

the constructor of the class (Listing 1) takes a Molecule and PeOptions object to build the

initial CppeState. Furthermore, the function constructs a numpy array with the coordinates

of all polarizable sites for downstream computation of field integrals. Finally, the static

contributions to the electrostatic interaction energy (eq (2)) and electric fields are calculated.
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CPPE core CppeState

host program
side

interface

input reader

integral library

SCF driver

post-SCF driver

host program

Figure 3: Schematic overview of the interface structure. The host program side of the
interface to Cppe requires access to the input reader, integral library, SCF driver, and post-
SCF driver of the host program. The host-program-independent tasks are taken care of on
the Cppe side, wrapped by a state object. Since the interface to include the Cppe state is
minimal, the major programming work is in gathering the required data and integrals from
the host program that one is already familiar with.

The key ingredient of the host program interface is to expose a routine to compute the PE

Listing 1: Mock constructor of CppeHostProgramInterface

1 import numpy as np

2 import integral_library # host program integral library

3 from cppe import CppeState

4

5 class CppeHostProgramInterface:

6 def __init__(self, molecule, options):

7 self.cppe_state = CppeState(molecule, options)

8 # coordinates of polarizable sites

9 self.polarizable_coords = np.array([

10 site.position for site in self.cppe_state.potentials

11 if site.is_polarizable

12 ])

13 self.cppe_state.calculate_static_energies_and_fields()

operator and energy from an input density matrix. Such a density-driven function can be

employed both in the SCF driver and a post-SCF driver. An illustrative implementation

of the PE contribution routine is displayed in Listing 2. The PE contribution routine first

needs to compute the electrostatics operator (eq (5), step I), making use of the host program
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Listing 2: Mock PE contribution routine of the CppeHostProgramInterface class

1 def get_pe_contribution(self, density_matrix, elec_only=False):

2 # step I: build electrostatics operator

3 if not self.V_es and not elec_only:

4 self.build_electrostatics_operator()

5 e_electrostatic = np.sum(density_matrix * self.V_es)

6 self.cppe_state.energies["Electrostatic"]["Electronic"] = e_electrostatic

7

8 # step II: obtain expectation values of elec. field at polarizable sites

9 elec_fields = integral_library.electric_field_value(

10 self.polarizable_coords, density_matrix

11 )

12 # step III: solve induced moments

13 self.cppe_state.update_induced_moments(elec_fields)

14 induced_moments = self.cppe_state.induced_moments

15

16 # step IV: build induction operator

17 V_ind = np.zeros_like(self.V_es)

18 for coord, ind_mom in zip(self.polarizable_coords, induced_moments):

19 field_int = integral_library.electric_field_integral(site=coord)

20 V_ind += -1.0 * sum(ind_mom[i] * field_int[i] for i in range(3))

21 E_pe = self.cppe_state.energies.total_energy

22 V_pe = self.V_es + V_ind

23 # only take electronic contributions into account

24 if elec_only:

25 V_pe = V_ind

26 E_pe = self.cppe_state.energies["Polarization"]["Electronic"]

27 return E_pe, V_pe

integral library together with the multipole moments stored in the CppeState. A sketch of

this function inside the CppeHostProgramInterface class is displayed in Listing 3.

The required integrals (eqs (6) and (10)) must be available in the host program. For practical

applications, however, it is often sufficient to have potential derivative integrals through

second order, i.e., normal Coulomb integrals (used for the nuclear attraction operator),

electric field integrals, and electric field gradient integrals. With these features, it is possible

to model electrostatic interactions up to quadrupole moments and to employ self-consistent

treatment of dipole polarization.

Once computed, the electrostatics operator can be stored in memory since it is density-
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independent. After storing the operator, the electronic contribution to the electrostatic

interaction energy (eq (4)) is obtained as the product-trace with the density matrix (l. 6

in Listing 2). Second, the PE routine must obtain the expectation values of the electric

Listing 3: Mock code snippet for construction of the electrostatics operator.

1 def build_electrostatics_operator(self):

2 n_bas = integral_library.n_bas # number of basis functions

3 self.V_es = np.zeros((n_bas, n_bas)) # empty numpy array for operator matrix

4 for site in self.cppe_state.potentials:

5 for multipole in site.multipoles:

6 self.V_es += integral_library.potential_derivative(

7 position=site.position, order=multipole.k,

8 moments=multipole.values

9 )

field operator from the input density matrix (step II) to obtain the total electric field at

all polarizable sites (eq (8)). Third, a simple call to the CppeState is made, requesting

induced dipole moments from the given electric fields (step III). In the background, the

system of linear equations (eq (14)) is solved, the induction energies are updated (eq (7)),

and the resulting induced dipole moments are returned as a numpy array. In the fourth step,

the induction operator (eq (16)) is formed by contracting the electric field integrals with

the induced dipole moments (step IV). If the flag elec only is set to True, only electronic

contributions to the energy and PE operator are taken into account, as it is required for post-

SCF procedures. Otherwise, the full operator (eq (17)) is assembled and returned, together

with the PE energy contribution (l. 21-27 in Listing 2). Due to the simple structure of the

host program interface, only a single routine needs to be called from all places in the program

where PE contributions are required, as illustrated in Figure 4. For example, the SCF driver

of the host program will call get pe contribution every iteration providing the current

SCF density matrix, and in turn receives the PE contribution to the Fock operator without

further ado. This simplistic and clean design makes it easy to implement PE contributions

in various places in the host program with a single function call. Furthermore, it makes the

interface code easily maintainable.
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program start build density build Fock
post-SCF

TDDFT, CC, ADC, etc.

CppeHostProgramInterface

diagonalize

init get_pe_contribution

SCF

Figure 4: Overall PE program flow employing the CppeHostProgramInterface. After the
host program (red boxes) starts, the host program interface is instantiated. In downstream
routines, e.g., the SCF procedure or post-SCF methods, only the get pe contribution

function needs to be called with an input density matrix to implement PE contributions
where needed.

3.2 Existing Interfaces

The Cppe library is already interfaced to three program packages, Q-Chem, Psi4, and

PySCF. All three host program interfaces do not exceed 200 lines of code in total and

could be implemented with minimal time effort according to the guide above. In Q-Chem

(Version 5.2),30 Cppe is interfaced through C++ and enables ground state PE-SCF calcu-

lations together with the simulation of excited states using the PE-ADC method.19 In this

context, Cppe was used in our previous work to model excited states with PE-ADC in a

large biomolecular environment.19 The two open-source packages, Psi4 and PySCF, were

connected to Cppe via Python. In Psi4, we also optimized existing integral code to make

PE calculations more efficient, showing the benefits of modular and open-source software

development.

4 Results

To showcase the features of our new library in all three program packages, Q-Chem, Psi4,

and PySCF, we investigated the absorption spectrum of nile red both in water and pro-

tein environment using three different methodologies, ADC, EOM-CC, and TDDFT. In the
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following, we briefly outline the ease of implementation of these combined methods before

presenting the results of our case study.

4.1 Linear Response TDDFT with PySCF and Cppe

Listing 4: PE-TDA contributions in PySCF

1 # compute the PE contribution of the i-th state in AO basis from the current

transition density↪→

2 e_pe, v_pe_ao = mf._pol_embed.get_pe_contribution(dmov[i], elec_only=True)

3 # transform the PE contribution to molecular orbital basis

4 v_pe_ov = lib.einsum('pq,pi,qj->ij', v_pe_ao, orbo.conj(), orbv)

5 # add PE contribution to the matrix-vector product

6 v1ov[i] += v_pe_ov

Solving the time-dependent Kohn-Sham eigenvalue problem using an iterative Davidson

solver requires computation of matrix-vector products of the orbital Hessian matrices with

response vectors (also called transition densities).45 In the case of linear response, one can

construct the PE operator using the current iteration’s response vector as input density to

solve for the induced moments. Subsequently, the induction operator is formed as in eq (16)

and added to the matrix-vector product.46 If the Tamm-Dancoff approximation47,48 (TDA)

is employed, only a single block of the orbital Hessian is taken into account.49 Having the

necessary routines in PySCF for ground state PE-SCF calculations implemented, just three

lines of code in the matrix-vector product routine for TDA had to be added. The code

fragment is displayed in Listing 4. It involves calling the host program side of the Cppe

interface with the current transition density dmov[i] and specifying that only electronic

contributions should be taken into account. The returned operator is transformed to the

molecular orbital basis and added to the matrix-vector product v1ov[i].
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4.2 CorrelatedWave Function Methods in Combination with Cppe

In post-SCF methods where full treatment of PE response is more involved, excited states

can be computed from the self-consistent PE-SCF ground state only, i.e., keeping the in-

duced moments frozen during the post-SCF procedure. This approximation, however, entails

erroneous excitation energies which can be corrected by means of perturbation theory. In

the previously mentioned PE-ADC method,19 the perturbative corrections are based on the

transition density (perturbative linear-response-type correction, ptLR), and the difference

density (perturbative state-specific correction, ptSS) of the respective excited state. The

Listing 5: Computation of ptSS corrections with Psi4NumPy and Cppe

1 def compute_ptss_corrections(ccwfn, nroots):

2 ptss = []

3 for i in range(1, nroots + 1):

4 # obtain the CC density matrix

5 ccdmat = ccwfn.variable("CC ROOT {} DA".format(i))

6 # obtain the SCF density matrix

7 scfdmat = ccwfn.Da()

8 # compute the difference density

9 ccdmat.subtract(scfdmat)

10 ccdmat.scale(2.0)

11 # compute the energy correction

12 energy, v_pe = ccwfn.pe_state.get_pe_contribution(ccdmat.np,

elec_only=True)↪→

13 ptss.append(energy)

14 return ptss

Psi4 program package offers a set of coupled cluster approaches for excited states. Densi-

ties of the excited states are readily available. With our Cppe interface to Psi4 in place,

we implemented ptSS corrections for EOM-CC excited states using Psi4NumPy. The cor-

responding Python code snippet is shown in Listing 5. A converged coupled cluster wave

function object ccwfn, together with the number of excited states nroots is passed to the

Python function. Inside the loop, an energy correction is computed for each individual ex-

cited state. This implementation is analogous to the one for ADC inside the adcman library50

in Q-Chem.
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4.3 Nile Red in Water and Protein Environment

With the combined methodologies at hand, we investigated the absorption spectrum of nile

red in different environments. Nile red is known for its strong solvatochromism that can be

used as a probe for hydrophobic protein surfaces51 or lipid droplets.52 We modeled excited

b) BLG

a) water

Figure 5: UV/Vis spectrum of nile red employing the three lowest singlet states in a) water
and b) BLG. Dashed lines represent the spectrum in vacuum. The strong solvatochromism
both environments is clearly visible.

states of nile red in vacuum, water, and in β-lactoglobulin (BLG). The full computational

methodology is given in the Supporting Information. Coordinates of the chromophore, em-

bedding parameters (potential files), Python scripts for Psi4 and PySCF calculations, and

input files for Q-Chem calculations can be found in the Supporting Information as a ZIP

archive. Here, we consider only a single snapshot in each case, as we seek to demonstrate
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the broad applicability of the Cppe library rather than providing statistically converged

results. The resulting spectra for vacuum and both environments using ADC(2),50 EOM-

CC2,53 and TDA/TD-CAM-B3LYP54 (referred to as TDA in the following) are depicted

in Figure 5. Energies, oscillator strengths, and solvent shifts for the energetically lowest,

bright singlet state, are summarized in Table 1, whereas results for S2 and S3 transitions are

given in Tables S3 and S4, respectively, in the Supporting Information. One can clearly see

that the lowest peak in the spectrum, corresponding to the S0 → S1 transition, is strongly

red-shifted compared to vacuum, where the red-shift is approximately twice as large for BLG

as for water.

Table 1: Summary of the first singlet excited state of nile red (S0 → S1) with all employed
methods and environments.

Eexc [eV]a fb ptLR [eV] ptSS [eV] Eshift [eV]
Environment Method
vac. ADC(2) 2.920 0.776 – – –

EOM-CC2 3.005 0.962 – – –
TDA 3.370 1.096 – – –

water ADC(2) 2.741 0.796 −0.061 −0.032 −0.179
EOM-CC2 2.885 0.976 – −0.039 −0.12
TDA 3.136 1.168 – – −0.234

BLG ADC(2) 2.518 0.534 −0.064 −0.037 −0.402
EOM-CC2 2.669 0.656 – −0.039 −0.336
TDA 2.864 0.863 – – −0.506

a For ADC(2) and EOM-CC2, the perturbative corrections are added to the excitation energy.
b Oscillator strength.

This is the case for all employed methods. Of course, the solvent shift cannot solely

be attributed to differing environment dielectrics, but also to geometric differences of the

chromophore in the diffferent environments. Excluding perturbative corrections, the excita-

tion energied obtained from ADC(2) and EOM-CC2 constantly differ by approximately 0.09

eV. Since the ADC(2) and EOM-CC2 methods are rather similar, this close agreement is

expected. Note that the ptSS corrections for the S1 state are almost identical. The overall

solvent shifts for EOM-CC2 differ from ADC(2) by approximately the magnitudes of the

20



ADC(2) ptLR correction terms, which are not included for EOM-CC2. Even though the

absolute energies are not in good agreement between CAM-B3LYP and the wave function

methods, the solvent shifts from vacuum to water and vacuum to BLG exhibit smaller dif-

ferences: For PE-TDA, the red-shift of the S1 state is more pronounced. Due to the bright

nature of the involved state, coupling of the environment to the transition density is strong.

Since the coupling is included iteratively in our PE-TDA procedure, the solvent shift is larger

than for the perturbatively corrected approaches.

The case study of nile red presents Cppe in action employing all three program packages

with different methods for computational spectroscopy. The analysis of environment effects

conclusively shows that our implementations can reliably model the excited states of nile red

at various levels of theory.

5 Conclusion

We presented the design, implementation, and application of our open-source, modular Cppe

library for the PE model. Cppe enabled us to easily implement the PE model in three pro-

gram packages, together with combined approaches for modeling spectroscopic properties.

The capabilities of Cppe were exemplified by simulating the UV/Vis spectrum of the nile

red chromophore in water and protein environments using all existing interfaces with dif-

ferent quantum-chemical methods. Our presented step-by-step guide makes it possible to

interface Cppe to any host program with minor programming effort, especially facilitated

by the Python interface of Cppe. Additionally, the outlined implementation procedure to-

gether with the combined methods make the PE model more accessible from an educational

point of view. The design of our library will enable support of related polarizable embedding

models, such as the fluctuating charges (QM/FQ) model,26,27 or the capacitance molecular

mechanics (CMM) approach,55 in the future. All in all, the presented library makes the PE

model accessible to a broad user base through open-source packages and will hopefully trig-
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ger further method development for spectroscopic properties employing PE as environment

model.
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