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1 Introductory Chapter 

This volume collects three articles which constitute the bulk of my PhD research. The 

overarching theme of the volume is the role of attractors - a concept from dynamical systems 

theory – in the neural realization of phonological grammar. 

The motivation for this line of inquiry begins with the claim that the study of language should 

provide some insight into the workings of the human mind/brain. Indeed this is one of few 

mantras shared by linguists of the seemingly irreconcilable “Generative” and “Cognitive” 

schools (e.g. Chomsky 2002; Lakoff 1988). Given this apparent consensus then, it is perhaps 

surprising that no breakthrough in our understanding of the brain can yet be attributed to some 

insight from the study of language.  

An analysis and critique of this state of affairs is given by Poeppel & Embick (2005), who 

identify (amongst other things) that we currently have no way of relating the ontologies of 

linguistics and neuroscience. This Ontological Incommensurability Problem (OIP) can be 

resolved, they argue, by the use of a Linking Hypothesis, which spells out linguistic 

computations at the relevant level of algorithmic abstraction, such that the neuroscientist need 

only find the exact implementations of those algorithms in the brain. If such a hypothesis were 

sufficiently complete then it could, in principle, predict the kinds of neural configurations 

required for natural language processing, using linguistic theories as their starting point. In this 

way, we could finally realize the long sought-after goal of cashing in theories of language for 

understanding of the human brain. Simultaneously, a Linking Hypothesis also has the potential 

to unearth lower-level explanations for linguistic phenomena, for example where those 

explanations might depend on purely neurobiological notions (e.g. neuronal morphology, 

synaptic density, metabolic efficiency, etc.). 

1.1.1 Emergence as a Linking Hypothesis 
The specific approach to the OIP advocated by Poeppel & Embick treats the neurobiological 

level of analysis as something akin to a decomposition of a linguistic theory. That is, a linguistic 

theory can be reduced to individual processes (e.g. concatenation, linearization, etc.), and the 

problem of how to realise each process can be attacked individually. And, while this approach 

is certainly a logical possibility for resolving the OIP, it rests on assumptions which treat the 

brain as being fundamentally like a digital computer. Implicitly, it has borrowed from computer 

science the idea that the different levels of abstraction for which we might describe a cognitive 

function, are related to one another through a strict compositional semantics. That is, any 
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property at one level of abstraction can be neatly decomposed to some combination of 

properties at a lower level of abstraction (e.g. Block 1995). 

A full rebuttal of these assumptions is well beyond the scope of this introductory chapter. It is 

sufficient to note that this view is by no means the only starting point for constructing a Linking 

Hypothesis. The alternate approach offered here draws inspiration from the natural sciences, 

where the apparent incommensurability between different levels of abstraction is frequently 

resolved by treating the higher levels as epistemologically emergent1 from lower ones (e.g. 

Anderson 1972; Luisi 2002). According to this approach, the goal is not to decompose a macro-

level ontology to see how each component is “implemented” at the micro-level. Rather, the 

goal is to see what kinds of configurations at the micro-level give rise to a complex system 

whose behaviour is captured by the macro-level theory. 

Therefore, to claim that linguistics is emergent from neuroscience entails that linguistic 

properties do not separately decompose to neuroscientific properties, contra the way that the 

functions of a high-level computer language reduce to combinations of primitive operations. 

Instead, the relationship between linguistics and neuroscience would be analogous to (e.g.) the 

molecular theory of gasses2. Under this view, linguistic properties would be analogous to 

macro-level concepts like temperature or pressure, while neuroscientific properties are 

analogous to molecular explanations of these phenomena. The most relevant aspect of this 

analogy is that the properties present at each level of abstraction are quite different. So different, 

in fact, that the different levels of abstraction can seem metaphysically inconsistent. For 

example, while a notion such as pressure can be reduced to the average behaviour of all 

molecules in a system, no single molecule can be said to possess, explain, or cause pressure in 

                                                 

1 Alternatively: weakly emergent (Bedau 1997). Also note that this notion of emergence is 

strictly orthogonal to the notion of ontogenetic emergence employed in the study of language 

acquisition. Whether linguistic ontology is epistemologically/weakly emergent does not predict 

whether it is learned/innate/none of the above. 

2  Conceptually at least, this analogy is not a novel idea in phonology. The same basic 

assumptions underlie Smolensky’s Integrated Connectionist/Symbolic architecture and, by 

extension, Harmony theory and Optimality Theory (Prince and Smolensky 1997). 
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any meaningful sense. Pressure is simply a concept which exists at the macro-level, but not at 

the micro-level. Nor can pressure and temperature be decomposed separately (e.g. there are 

not two types of molecule which cause pressure and temperature independently), rather, the 

properties of the macro-level appear to emerge, fully-formed, once the micro-level analysis 

becomes sufficiently complex. In more general terms, there is some point in our analysis at 

which the collection of molecules ceases to be, and is a replaced by something radically 

different: a gas. 

Applying this analogy, if we allow that the relationship between the brain and phonology is one 

of emergence, rather than a strict compositional semantics, then a Linking Hypothesis should 

take the form of a complex dynamical system, and demonstrate the emergence of phonology-

like properties from some specific combination of brain-like elements 

1.1.2 Introducing Attractors 
The preceding argument leaves us with a well defined problem: What kind of dynamical system 

could possibly give us something like a phonological grammar? The first obstacle to answering 

this question is that, while formal grammars are defined over a set of discrete symbols, 

dynamical systems (such as the brain) are typically understood as being fundamentally 

continuous. This is where attractor dynamics are critical, because they allow us a way of 

realizing discrete behavior in an otherwise continuous system. Moreover, they are easily 

realizable in neural networks, making them a plausible candidate for a neural mechanism 

capable of underlying the discrete behaviour observable in phonological grammars. 

Like other artificial neural networks (ANNs), attractor networks consist of a number of simple 

units, which are interconnected with varying degrees of efficacy. Unlike other ANNs, attractor 

networks are characterized by symmetrical connections between units, which cause the network 

activity to settle on one of a number of asymptotically stable network states (i.e. attractor states). 

These stable states can be formally defined as local minima in an energy function and the 

behaviour of the network can be understood as analogous to the second law of thermodynamics: 

the entropy of the system increases over time, as the free energy decreases. This is sometimes 

visualised as a landscape of peaks and valleys (Figure 1), with the network always rolling down 

into the nearest valley. 
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Figure 1: Conception of a network state-space. The z-axis corresponds to the free energy of the network. The red 
dots are attractors. http://www.scholarpedia.org/article/Attractor_network 

The dynamics of attractor ANNs were popularized by Hopfield (1982), who noted that, if the 

attractor states are taken to represent pieces of information, then the network functions as a 

content addressable memory system. 

Crucially for linguists, these attractor-memories are effectively discrete pieces of information. 

This is even true in cases where the individual units of the network are functionally gradient 

(Hopfield 1984). Thus, attractor dynamics are arguably our best candidate for explaining how 

a grammar over discrete elements could emerge in a seemingly analogue system like the human 

brain. 

1.1.3 Overview of Introductory Chapter 
The rest of this introductory chapter is split into two parts: first, a brief summary of each of the 

three articles in this volume; and secondly, a collection of smaller comments and technical 

discussions which are of a more general and speculative nature than the articles themselves. 

These are intended to provide some theoretical background for the articles, as well identifying 

certain deeper issues for further discussion. 
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1.2 Summary of the Articles 

1.2.1 The Phonological Latching Network 
The first paper could be considered the primary contribution of this volume, and it represents 

by far the largest time commitment of the three articles. It contains an analysis of a model 

dubbed the Phonological Latching Network (PLN), which is an extension of earlier Potts 

latching networks. The key claim is that the model appears to reproduce certain quintessentially 

phonological phenomena, despite not having any of these phonological behaviours 

programmed or taught into the model. Rather, they appear to emerge spontaneously from the 

combination of a few basic “brain like” ingredients with a “phonology like” feature system. 

The significance of this can be interpreted from two angles: firstly, the fact that the model 

spontaneously produces natural language patterns can be taken as evidence of the model’s 

plausibility; and secondly, it provides a potential explanation for why these patters appear to 

frequently in natural language grammars. 

The PLN consists of a number of so-called “Potts” units, intended as effective models for small 

patches of cortex, which are linked via symmetrical, synapse-like connections of varying 

efficacy. The model belongs to a broader class of neural networks called attractor networks, 

which are noteworthy for their ability to store quasi-discrete memories as stable, distributed 

patterns of activity. The PLN is also capable of spontaneously producing strings of discrete 

elements as it “latches” between the memories stored in the network. The latching behavior is 

not prescribed by the experimenter, but rather emerges naturally under very specific 

configurations, due to the fatigue of active units in the network. Previous numerical analyses 

of latching behavior have shown that the probability of a latch between any two memories 

depends on the similarity of those memories’ representations (broadly: how many units their 

representations share; see paper for details). In linguistic terms, this notion of similarity can be 

thought of as shared features. Therefore, latching behavior is one of few explicit hypotheses for 

how an analogue system, such as the brain, can produce more complex structures of discrete 

elements, of the sort posited by linguists. 

The PLN represents an inventory of phones as distributed patterns of activity, which are split 

across “motor” and “auditory” subnetworks. Each phone is created algorithmically by 

superimposing the representations for a given number of phonological features, each of which 

is defined by a lowly correlated noise pattern. The representations for the phones are then 

encoded as synaptic efficacies in the network, using a Hebb-rule. Electrophysiological data on 
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the encoding of speech information in the Superior Temporal Gyrus and premotor areas shows 

a spacial asymmetry in encoding of place and manner features. Therefore, in the PLN, the 

features are weighted such that place features are more active in the “motor” sub-network, while 

manner features are more active in the “auditory” network. For the sake of simplicity, laryngeal 

features are excluded from the PLN. This is partly because laryngeal processes can often be 

treated as orthogonal to place and manner, but also because the current electrophysiological 

data give no clear insight into how laryngeal features should be incorporated into the model. 

As the network latches, it produces phonological words of varying length (e.g. Figure 2). By 

repeating the simulation with fixed variables, but randomly determined initial states, the PLN 

produces a corpus of data which can be taken to represent a single grammar. Each grammar can 

then be described using similar tools to those used to describe natural grammar. For the purpose 

of this study, each transition (or latch) produced by the PLN was characterized using 

phonological criteria (e.g. “do these two adjacent segments share a place feature?” etc.). These 

characterizations are then tallied, and then compared to chance level, i.e., a grammar in which 

the probability that any given segment will occur is equal for all segments, which in turn can 

be used to calculate the chance occurrence of given phonological feature. The extent to which 

the PLN grammars diverge from chance level can be taken as an indication of which properties 

(if any) emerge naturally from the implementation of phones (as defined by phonological 

features) in a latching network. 

The latching network was found to exhibit three types of “phonology-like” behavior. Firstly, 

the latching strings tend to obey the Sonority Sequencing Principle, which in turn leads to more 

typologically common syllables (e.g. CV, CVC, etc.). Secondly, the network is near-incapable 

of immediately repeating a segment, which in turn means that the network obeys the Obligatory 

Contour Principle (at least at the surface/segmental level – generalization to underlying and/or 

suprasegmental OCP remains a topic for future investigation). Thirdly, when compared to 

chance levels, adjacent segments exhibit a preference for place agreement. 

These results are striking insofar as the apparent naturalness of the strings produced by the PLN 

do not depend on stipulating any of these properties a priori. Rather they emerge spontaneously 

from the combination of a neurologically motivated model, with phonologically motivated 

representations. For this reason, the PLN presents not only a plausible hypothesis for why 

certain properties form a part of the phonological faculty, but also a first step towards 

understanding their neurological implementation in greater detail. More generally, the model 
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demonstrates the application of dynamical systems modelling as a way of relating formal 

linguistics to specific mechanisms for neural computation. 

  

1.2.2 Digital Grammar and Analogue Brains 
The second paper also features an attractor neural network, albeit a much simpler type than the 

PLN. The focus of this paper itself is far more conceptual in nature. The contribution is not so 

much a particular result, but rather an attempt to understand how formal theories of grammar 

should be understood in relation to “neural” models of cognition. The primary focus of the 

paper is the apparent incommensurability of digital formalisms with the view of the brain as an 

essentially analogue machine. Of course, this is not a new topic and many different stances on 

this issue can be gleaned from the philosophy of mind literature. Rather the rehashing the 

philosophy however, this paper applies an information theoretic method, Effective Information 

(EI), to an explicit “toy” phonological grammar, and an attractor neural network realization of 

that same grammar. EI is defined as the mutual information between the interventions on a 

system, and the effects of those interventions. In this way, EI provides a measure of the causal 

information conveyed by a scientific model. 

The attractor network demonstrates the emergence of discrete categories from an underlyingly 

gradient system. But it can also be proven that the formal phonological analysis has a higher 

Effective Information (EI) than the neural attractor model. I argue that this shows that discrete 

formalisms compatible with a gradient view of the brain, but also that they are causally 

Figure 2: Example of a latching string. The PLN produces /nof/. 
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emergent (Hoel 2017), and therefore necessary if we wish to have a complete explanation of 

natural grammar. 

The model itself focuses on the phenomenon of incomplete devoicing, which has been argued 

to be an example of phonetic gradience that discrete phonological models cannot explain (c.f. 

van Oostendorp 2008). Therefore, the toy phonological grammar consists of 6 possible phones 

– 3 places of articulation ([LABIAL], [CORONAL], [DORSAL]), each with a voiced and 

voiceless variant – and the capacity to distinguish coda and non-coda positions, as well as 

simple rule which devoices any voiced phone in a coda position. For the attractor network, the 

6 phones are encoded as attractor states in the network, while information about syllable 

structure is supplied to the network as a simple inhibitory signal, which is used to signal a coda-

position. Analysis of the network behavior shows that, when the network is told to retrieve a 

voiced phone in the presence of the inhibitory coda signal, 

the network spontaneously retrieves the voiceless 

counterpart. In this way, the model is implementing the 

devoicing rule of the formal model. 

Interestingly, however, the voiceless outputs which are 

derived from a voiced input can vary fractionally from 

those voiceless outputs which are underlyingly voiceless. 

This small variation is could be easily interpretable as a 

small, but consistent difference in the voicing of the phone 

during realization. In this way, this simple model is a proof 

of concept for how a discrete phonological system, when 

implemented in an underlyingly continuous system, can 

exhibit the sorts of gradience observed in phenomena such 

as incomplete devoicing. 

In order to compare the EI of the formal and attractor 

model we must understand both as kind of dynamics over 

a state space. The toy grammar can be understood as a 

system having n=12 possible states S={[b]#, [d]#, [g]#, 

[b], [d], [g], [p]#, [t]#, [k]#, [p], [t], [k]}. The dynamics of 

the system can be understood as an intervention over each 

state si, at time=t, and a resulting effect at time=t+1. With 

ID at time=t  t+1 ED 

<do(b#)>= 1

12
 [p]# <b#>=0 

<do(d#)>= 1

12
 [t]# <d#>=0 

<do(g#)>= 1

12
 [k]# <g#>=0 

<do(p#)>= 1

12
 [p]# <p#>= 2

12
 

<do(t#)>= 1

12
 [t]# <t#>= 2

12
 

<do(k#)>= 1

12
 [k]# <k#>= 2

12
 

<do(b)>= 1

12
 [b] <b>= 1

12
 

<do(d)>= 1

12
 [d] <d>= 1

12
 

<do(g)>= 1

12
 [g] <g>= 1

12
 

<do(p)>= 1

12
 [p] <p>= 1

12
 

<do(t)>= 1

12
 [t] <t>= 1

12
 

<do(k)>= 1

12
 [k] <k>= 1

12
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the formal system defined, we can then determine two probability distributions, Intervention 

Distribution (ID)  and Effect Distribution (ED), which can then be used to calculate the 

effectiveness of the system. This is slightly simpler than calculating the EI directly, but it stills 

allows to determine the relative EI of the formal and attractor models. The ID  is considered in 

the maximum entropy case, where ID(i)=n-1. and the ED is calculated by observing the effects 

of the interventions at time=t+1 (see table above). These values can then be used to determine 

the degeneracy of the system:  

𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑐𝑦 =
𝐷𝐾𝐿(𝐸𝐷|𝐼𝐷)

𝑙𝑜𝑔2(𝑛)
= 𝑙𝑜𝑔𝑛(2) ∑ 𝐸𝐷(𝑖)𝑙𝑜𝑔2

𝐸𝐷(𝑖)

𝐼𝐷(𝑖)
𝑖

 

This will then allow us to calculate the 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = [𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑚] − 𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑐𝑦. 

Since out toy grammar is strictly deterministic, the determinism is equal to 1. Crunching the 

numbers gives our toy grammar 𝑒𝑓𝑓 = ~0.93. 

We then repeat this process to determine the effectiveness for the attractor model. This is 

slightly more complicated because the state space is both continuous and intractably large. 

However, by using a simple approximation method (see paper), we can determine that 𝑒𝑓𝑓 =

~0.174 for the attractor model. 

These two values can be used to determine the relative EI, because it can be proven that a 

system is only causally emergent when the gain in information from increased EI outweighs 

the loss in information from the smaller state space at the coarser, or more “abstract” level of 

analysis. Given that the size of the state space is known for the both the toy formal model and 

the attractor network, it is easy to prove that the formal model must have a higher EI than the 

attractor network (see paper). 

Therefore, even when our discrete phonological representations are taken as emergent 

phenomena from an underlyingly gradient system, such as an attractor network, it is in fact the 

phonological model which has the highest EI, rather than the neurological model. Thus, the 

formal analysis of the grammar carries more information about the underlying causal structure 

of the system. This is argued to be the utility of formal linguistics within cognitive science more 

broadly. 

1.2.3 On the Language Specificity of Vowel Maps 
The third article focuses on attractor dynamics in the domain of speech perception. Specifically, 

the way a continuous acoustic space, such as the vowel space, can be perceived by speakers as 
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being composed of quasi-discrete objects, i.e. the vowel inventory. The paper gives the results 

from three different vowel perception experiments, carried out with the help of collaborators in 

several different countries. By comparing the results from participants with different L1s, we 

can see the way the perception of the vowel space depends on the participants native vowel 

inventories. Finally, a visualization method, developed by collaborator Zeynep Kaya allows us 

to generate a deformed map of the vowel space for each language tested.  

For our first experiment we tested speakers of Italian, Turkish, Spanish and Scottish English on 

their ability to discriminate ambiguous pairs of vowels. The experiment is designed around a 

confusability paradigm, whereby participants are played pairs of CV-syllables and asked to 

press a key if they believe the two vowels to be the same. The stimuli were generated first by 

recording a phonetically trained speaker, then using a morphing algorithm to generate new CV-

syllables with intermediate vowel qualities. This way, we could produce groups of four CV-

syllables whose vowel qualities are approximately evenly distributed along a small continuum 

within the vowel space. The perception results show definite, albeit small, differences between 

the language groups. 

The second experiment tested speakers of Italian, Norwegian and Turkish. For this experiment 

we extended the paradigm of the first experiment by generating new, intermediate stimuli. This 

allowed us to test participants perception over approximately the whole vowel space. In this 

case the result present a much clearer picture of the differences between the language groups. 

Moreover, we were able to use participants responses to generate deformed “maps” of the vowel 

space for each language. While this visualization method does result in some information loss, 

it nonetheless captures some important differences in vowel perception between the language 

groups. 

Finally, we conducted a variation of the second experiment using only (late-)bilingual 

Norwegian speakers of English. The paradigm remains the same as before, with the addition of 

language priming sessions for the participants. These were interspersed during the vowel 

discrimination test, in the form of aural short stories in either English or Norwegian. The results 

do not show any evidence that the priming affected participants vowel perception. This supports 

the hypothesis that L2 learners merge the vowels of the new language onto their existing “vowel 

map”, rather than developing a new map. These results also present an explanation for why the 

Norwegians exhibited better discrimination over English-like (but non-Norwegian) vowels in 
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the second experiment: their higher exposure to English compared to the other groups has left 

them with a vowel map which merges both English and Norwegian vowels. 

The subdivision of labour among the three co-authors is approximately as follows: 

Zeynep Kaya: Experimental design, coding experiment program, Turkish/Italian data 

collection, applying morphing algorithm. 

Joe Collins: Producing stimuli, Norwegian data collection, coding statistical analyses, writing 

up and analysis from a phonological perspective. 

Alessandro Treves: Supervision over all aspects, especially during experimental design and 

writing phases. 

With additional data collection by Simona Perrona. 

1.3 Background, Tangents and Outstanding Issues 
This final portion of the introductory chapter collects a number of smaller technical discussions 

which relate to issues surrounding the articles, but which I have chosen to edit out of the articles 

themselves.  How tangential these topics seem will depend largely on the reader’s own technical 

background. However, they are included here in the hope that they may provide some context 

for various (potentially contentious) assumptions which motivated the research in this volume. 

1.3.1 Linguistics and Neural Networks 
This volume is far from the first attempt to fuse insights from Artificial Neural Networks 

(ANNs) with formal linguistic theory, as the subject has been broached many times before (see 

Alderete & Tupper 2018). Indeed, the entire formalism of Optimality Theory was largely an 

attempt to resolve the tensions between the assumptions of ANNs and the symbolic models of 

formal linguistic (Prince & Smolensky 1997). Nonetheless, there is still an implicit assumption 

among some that generative models and ANNs are fundamentally competitors (c.f. Pater 2019). 

The roots of this belief arguably stem from a perception that ANNs and generative grammars 

belong to different schools in the “theory of mind” debate. ANNs are often thought to be 

synonymous with “connectionism”, while generative grammars are regarded as a form of 

(classical) computationalism. 

There are a variety of reasons to think that this dichotomy is both unhelpful and misleading. 

Firstly, it is something of an oversimplification to equate all ANNs with connectionism. The 
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models in this volume are not really connectionist models per se, the reasons for which I discuss 

in section 1.3.2. However, even if we restrict the discussion to connectionist ANNs, the 

distinction between connectionism and classical computationalism is considerably murkier than 

some might suppose. Consider, for example, that any sufficiently general definition of “neural 

network” will end up including digital computer architectures by extension. This is true if only 

because, for a great many ANNs, the individual units are capable of functioning as Boolean 

operators. In the case where all the units of an ANN are Boolean operators, the ANN is not 

merely simulating a digital computer, it is a digital computer under any reasonable definition. 

The implication then, is that digital computers are actually a very specific subset of neural 

network architectures (see Piccinini 2015:ch13 for a more complete account of this argument). 

This conclusion might strike us as radical, but in reality it is trivial and fairly uninteresting. A 

digital computer constructed using modern machine-learning methods would be both deeply 

implausible as a neural model and fairly useless for machine learning (doubly so given than 

modern ANNs are usually simulated using digital computers). Thus, in the modern context, the 

distinction between ANNs and digital computers is more a question of appropriate application, 

rather than any well-defined difference in the architectures themselves. 

But if this is true, why are ANNs and computationalism so often regarded as competitors? The 

answer I will advance here, is largely sociological. Historically, there does not seem to be much 

evidence for a strong divide between ANNs and classical computationalism until the 

connectionist wave of the 1980s, which brought with it a set of long-enduring arguments about 

the relative merits and failings of ANNs and digital computers. These arguments also spilled 

over into the realm of linguistics, and were to some extent mirrored by the 

cognitivist/generativist split at the same time. 

With that in mind, what follows then is a terse and (at times) speculative history of ANNs, as 

it pertains to the connectionist/computationalist divide. I argue that this provides some much 

needed context and demonstrates just how recent and arbitrary this divide really is. 

1.3.1.1 A Terse History of ANNs I: The early days 
The early days of computing saw pioneers pursue a multitude of hypothetical computing 

machines (see e.g. von Neumann 1951). During this era, work on neural networks and classical 

computers emerged not only at the same time, but largely by the work of the same people. As 

early as 1948, the father of computing himself, Alan Turing, submitted a technical report on so-

called “unorganized machines”, which were intended as simplified model of the nervous 
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system. To the modern eye, these machines are unambiguously a form of neural network, and 

are arguably no less prescient than Turing’s more widely-lauded work on symbolic 

architectures (Copeland & Proudfoot 1996). 

Of course, we’ve no way of knowing how Turing’s version of the neural network would have 

progressed had his life not been cut short. However, similar ideas would be pursued by others. 

These include John von Neumann, who is perhaps most famous for creating the architecture for 

program-loading digital computers which became the standard for all computers as we know 

them today. Despite this herculean contribution to digital computer design, von Neumann was 

also deeply concerned with the problems of probabilistic computation in distributed 

architectures (von Neumann 1956). Indeed, von Neumann expressed a concern that would 

become critical for the connectionists of the 1980s: 

“[N]atural organisms are constructed to make errors as inconspicuous, as 

harmless, as possible. Artificial automata are designed to make errors as 

conspicuous, as disastrous, as possible. Natural organisms are sufficiently well 

conceived to be able to operate even when malfunctions have set in. They can 

operate in spite of malfunctions, and their subsequent tendency is to remove these 

malfunctions.” (1951:432) 

This type of observation would later become a cornerstone argument levied as evidence of the 

biological plausibility of connectionist models. Namely, that connectionist models exhibit 

“graceful degradation” (e.g. Rumelhart 1998). However, while von Neumann pre-empted some 

of the limitations of purely symbolic/logical methods, he did not appear to advocate abandoning 

them so much as extending them to a “general and logical theory of automata” (1951:430). 

There is some irony then, that recent attempts to delineate neural networks from classical 

computers fall back on the terms “Turning machine” and “von Neumann architecture” (Fodor 

& Pylyshyn 1988; Gallistel & King 2009), given that their namesakes were pioneers of both 

fields, and apparently perceived no great conflict between the two areas of research. 

Still, Turing and von Neumann’s early work on ANNs is arguably more of a historical curiosity, 

insofar as it appears to have had limited impact on later ANN developments3. Indeed, Turing’s 

proto-connectionist proposal seems to have been something of a secret until the mid-1990s 

                                                 

3 At least in comparison to the impact their work on digital computers had. 
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(Copeland & Proudfoot 1996). The same could not be said, however, of Warren McCulloch 

and Walter Pitts seminal 1943 paper, "A logical calculus of the ideas immanent in nervous 

activity", which is widely regarded as a foundational paper for neural network research. It is 

frequently cited, in large part, because it contains a tractable mathematical approximation of 

single neurons. This model would, in time, be generalized by others (e.g. Rosenblatt 1958) and 

allow for the creation of ANN simulations of the sort we would recognise today. Interestingly 

however, McCulloch & Pitts themselves appeared to have a slightly different focus from 

modern connectionist research. What it is perhaps most striking about McCulloch and Pitts 

(1943) from a modern perspective, is that they are explicitly concerned with Turing’s notion of 

computability. They themselves regarded their conclusions as being… 

“of interest as affording a psychological justification of the Turing definition of 

computability and its equivalents, Church’s A-definability and Kleene’s primitive 

recursiveness: if any number can be computed by an organism, it is computable by these 

definitions, and conversely.” (1943:113) 

Far from attempting to instigate an alternative to Turing’s work, McCulloch and Pitts were 

trying to demonstrate its relevance for the study of cognition. Moreover, as noted by Piccinini 

(2004), a formalism introduced by McCulloch and Pitts was an important step towards the 

concept of finite automata – a fundamental concept in computer science - suggesting that 

McCulloch and Pitts’ contribution may be as significant for classical computation as for neural 

networks. 

Of course, the work of McCulloch and Pitts would ultimately pave the way for many others 

interested in artificially imitating the architecture of the brain. This includes not only Turing 

and von Neumann (Piccinini 2004), but also theoretically important work by Stephen Kleene, 

who wrote: 

“Finally, we repeat that we are investigating McCulloch-Pitts nerve nets [sic] only 

partly for their own sake as providing a simplified model of nervous activity, but 

also as an illustration of the general theory of automata, including robots, 

computing machines and the like.” Kleene (1956[1951]:3) 

This quote encapsulates the divide between the modern view of neural networks and that of the 

1940s and 50s. The notion that studying ANNs could provide insights into a general theory of 

computation sounds quite radical to the modern ear (c.f. Piccinini 2015:ch13). Within cognitive 
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science at least, it is perhaps more common to interpret ANN research as an attempt to 

undermine the classical computational theory of mind (see Marcus 1998). However, there is 

little evidence that the early pioneers of both ANNs and computation generally perceived any 

such antagonism. Rather, there seems to have been a sense that all types of automata and 

computing machines belonged to some larger, common class of systems. 

1.3.1.2 A Terse History of ANNs II: The birth (and death) of connectionism 
The earliest pioneers of ANNs showed little sense that these models were at odds with the 

programmable machines that would precede modern digital computers. So, when does this 

divide begin to emerge? Perhaps the first serious attempt to delineate neural models from purely 

logical or symbolic architectures comes from Frank Rosenblatt, who could rightly be called the 

father of connectionism (not least because Rosenblatt seems to have inadvertently given the 

term its modern meaning in his 1958 paper). However, as we shall see, there are certain key 

aspects in which even Rosenblatt’s views do not fully approach the modern discord between 

connectionism and computationalism. 

Rosenblatt’s own model, the Perceptron, differed from earlier ANNs in that the connections 

between units had an efficacy (or weight) which was represented by a continuous variable. By 

using a learning algorithm to determine the weights between units, the Perceptron could be 

taught to classify input data into different categories. For these reasons, the perceptron is often 

regarded as the first connectionist network. 

Rosenblatt himself was clear about presenting the perceptron as a departure from the types of 

models that preceded it. When discussing the (then) start-of-the-art, he writes: 

“During the last few decades, the development of symbolic logic, digital computers, 

and switching theory has impressed many theorists with the functional similarity 

between a neuron and the simple on-off units of which computers are constructed, 

and has provided the analytical methods necessary for representing highly complex 

logical functions in terms of such elements. The result has been a profusion of brain 

models which amount simply to logical contrivances for performing particular 

algorithms [...]”(1958:387) 

Rosenblatt is discussing earlier ANNs (e.g. McCulloch & Pitts 1943), however his description 

is clearly applicable to what we would now call classical or symbolic computation, i.e. the type 

of computation that would become ubiquitous after the rise of the silicon microchip. Inspired 
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partly by von Neumann, Rosenblatt argues that these systems are too fragile and idealized to 

capture the randomness and imperfection of real biological systems. This is what leads him to, 

in his own words, “formulate the current model in terms of probability theory rather than 

symbolic logic.”(1958:388) 

Where Rosenblatt draws the line, between probabilistic and logical systems, seems much closer 

to the modern distinction between classical and connectionist architectures. Rosenblatt also 

explicitly relates the perceptron to the empiricist philosophical tradition (1958:386), which 

would later become a sticking point for nativist critics of connectionism (e.g. Fodor 1975).  

It seems then, that Rosenblatt deserves at least some of the credit (blame?) for driving a wedge 

between ANNs and classical computationalism. Despite this, it is worth noting that Rosenblatt’s 

exposition of the Perceptron is concerned almost entirely with the architecture of the physical 

brain, and not necessarily cognition or the mind more generally. This is relevant because the 

great clash between connectionists and classicists in the 1980s focused heavily on the 

plausibility of connectionism as a cognitive architecture (e.g. Fodor & Pylyshyn 1988), whereas 

it is not clear that Rosenblatt (1958) had an explicit stance on this point. The final sentence of 

Rosenblatt (1958) is also somewhat revealing for the present discussion: 

“By the study of systems such as the perceptron, it is hoped that those fundamental 

laws of organization which are common to all information handling systems, 

machines and men included, may eventually be understood.”(1958:407). 

This seems to echo the earlier comments of McCulloch & Pitts (1943:113) and Kleene (1956 

[19561]:3), as well as von Neumann’s (1951) speculation of an overarching theory for both 

analogue and digital automata. Moreover, it strongly suggests that Rosenblatt did not perceive 

ANNs and digital computers as being two incommensurable classes of machine. Thus, 

Rosenblatt’s criticism of symbolic logic (1958:387), is perhaps better understood as a criticism 

of those formalisms and their limitations. The more modern argument in cognitive science, that 

the mind/brain is either a connectionist network or a digital computer, does not seem to have 

registered as a possibility for Rosenblatt (1958). So, while Rosenblatt may have sown the seeds 

for the modern connectionist/computationalist divide, there are nonetheless important 

differences between the aspirations of Rosenblatt (1958) and the later arguments around 

connectionism that emerged in the 1980s and 90s. 
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Rosenblatt’s Perceptron model sparked a wave of interest into the learning capacities of ANNs, 

which lasted until the late 1960s. Some have credited Marvin Minsky and Seymour Papert’s 

1969 book Perceptrons with killing interest in Rosenblatt’s model and ANNs more generally 

(cf. Olazaran 1996). According to this argument, Minsky and Papert pointed out a fundamental 

flaw in the Perceptron (that it couldn’t learn XOR relations), which caused almost everyone in 

AI to lose interest in neural networks and revert to symbolic/logical approaches. 

It might be tempting then, to credit Minsky and Papert with firing the first real salvo in the 

battle between connectionists and computationalists. However, there are several details that 

question the accuracy of such an account4. Firstly, both Minsky and Papert pursued research 

into neural networks (e.g. Minsky 1954). Furthermore, Minsky’s subsequent comments suggest 

that his focus was on prompting new solutions to ANN problems, rather than attempting to kill 

interest in ANNs entirely (Web of Stories 2016). Thus, the perception of Minsky and Papert as 

staunch critics of ANNs and advocates of classical computationalism seems to be a case of 

retrospective rationalizing. 

Secondly, the subsequent method for solving the XOR problem was the same method that led 

to the reemergence of connectionism in the 1980s (backpropagation training over hidden layers; 

Rumelhart et al 1985). Thus, the XOR issue was already resolved before the most active debates 

in cognitive science that pitted connectionism against classical computationalism. So, while the 

inability to learn XOR might have been a critical factor for ANNs in machine learning, there’s 

no particular reason to think that this was a decisive issue as far as theories of cognition go.  

Still, the 1960s and 70s did see the coalescence of an explicitly symbolic research program in 

AI (Newell & Simon 1963;1976), as well as various criticisms of this approach (e.g. Dreyfus 

1972), which set the scene for connectionism’s resurgence in the mid-1980s. However, there is 

some evidence that most researchers in AI during the 1960s and 70s were relatively pragmatic 

(see Olazaran 1996). And what disagreements did exist appear to have been of a more technical 

nature than the polemics that characterized later discussions. 

1.3.1.3 A Terse History of ANNs III: Rebirth and shots fired 
While earlier work had focused on the distinction between systems which were analogue vs 

digital, deterministic vs probabilistic (etc.), the idea that ANNs and classical computers are 

                                                 

4 This paragraph draws from an unpublished manuscript by Istvan Berkeley (1997). 
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fundamentally at odds seems to have solidified in the 1980s. Exactly who deserves 

responsibility for this is not obvious. However, many connectionists appeared to promote their 

research as an alternative to the status quo which was, for them at least, classical 

computationalism. As Rumelhart, Hinton & McClelland put it: “We wish to replace the 

'computer metaphor' as a model of the mind with the 'brain metaphor' as a model of the 

mind.”(1986:75). 

This represents something of a departure from ANNs research in earlier eras. While Rosenblatt 

(1958) sought to draw a distinction between probabilistic and purely logical models, he 

nonetheless seemed to view them as all belonging to some broader class of systems, and 

believed that his Perceptron model could provide insights into brains and computers alike. For 

Rumelhart et al, however, ANNs were a means of replacing outright the computational model 

of the mind/brain. 

Interestingly, this change in perspective between Rosenblatt and Rumelhart et al is not 

obviously related to a development in the ANNs themselves. The primary advancement that 

distinguished Rumelhart et al’s model from the Perceptron was the backpropagation algorithm, 

which allowed the use of extra layers of units between the input and output layers. While this 

had a profound impact on the applicability of ANNs, it does not introduce any new conceptual 

distinctions between ANNs and classical computers. This suggests that the explanation for this 

shift might not be purely technical but at least somewhat sociological. 

Some evidence for this lies in Rumelhart et al’s claim that computers are a metaphor for a 

model, rather than a model in-and-of itself. This is a subtle but potentially indicative change 

compared to earlier eras. Speculatively, we might ascribe this change to a cultural shift in the 

perception of computers. Indeed, it would have been very odd for McCulloch & Pitts (or even 

Rosenblatt) to talk about computers as a metaphor for anything, because computers in the 

modern sense didn’t quite exist yet. The only real computers were large and impractical 

mainframes, which very few people had access to. Consequently, during the early days of 

ANNs, the people who would have had the most contact with actual computers were also the 

people who were deeply interested in computation as a field of study. By the time of Rumelhart 

et al however, personal desktop computers were starting to become widespread. GUIs, 

keyboard interfaces and word processors had taken over, creating a significant number of 

philosophers and psychologists (etc.) who used computers regularly, without having any deep 

interest in the mathematics that preoccupied the early pioneers of ANNs and other automata. 
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Perhaps for this newer generation then, the notion of a “computational theory of mind” would 

be more easily interpretable as a metaphor with “that machine in my office”, rather than an 

appeal to some overarching theory of automata, information processing, and the like. Moreover, 

wider exposure to computers would have perhaps provided a widespread intuitive grasp of von 

Neumann’s earlier argument, namely that digital computers exhibit a kind of rigidity which 

seems deeply at odds with naturally occurring systems5. These factors may have led to a subtle 

reinterpretation of classical computational models, even if not by Rumelhart et al, then most 

likely by the wider community of researchers for whom connectionism suddenly seemed like a 

new and viable alternative for explaining cognition. 

Still, whatever the reason for this shift, the new perspective subsequently percolated into the 

philosophy department, where the antagonism between the connectionist and computationalist 

worldview was expounded and reified. Perhaps the most explicit example of this are the 

philosophers of the so-called eliminativist school (e.g. Churchland 1986). They interpreted 

connectionist models as a proof-of-concept for rejecting not only classical computationalism, 

but indeed all “folk psychological” concepts which had underlain much cognitive science up 

until that point. According to the eliminativists, psychological concepts such as emotions and 

memories are pre-scientific notions to be replaced by hitherto undiscovered scientific ones, 

much as Newtonian concepts such as force and gravity came to replace Aristotelian physics. 

The eliminativists included in their definition of folk psychology many of the foundations of 

classical computationalism (symbolic representations, etc.), and looked to connectionism 

instead to provide a new foundation.  

The merits and flaws of the eliminativist view will not be discussed here (see Marcus 1998 for 

criticism) and it is worth noting that far from all connectionists openly endorsed eliminativism. 

Nonetheless, many at least flirted with the idea that connectionist models could partially replace 

or outdo classical computation in certain contexts (e.g. Rumelhart & McClelland 1987). And 

certain aspects of the eliminativist position can arguably be inferred from Rosenblatt (1958). It 

is perhaps fair to say then, that eliminativism represented the apex of anti-computationalist 

connectionism, weaker versions of which were favourably regarded by many connectionists. 

                                                 

5 Anyone who has found themselves shouting in exasperation at a nonsensical error message can 

surely recognize this. 
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Regardless, it was inevitable the anti-computational rhetoric would generate a response. And 

while there have been many criticisms of connectionism by computationalists, the most 

pertinent for linguistics relates to the issue of systematicity, which was perhaps expressed most 

forcefully by Fodor & Pylyshyn (1988). The term “systematicity” here refers to the lawful 

relationships between complex representations and their constituents. For example, the 

representation of a sentence should be lawfully related to the representations for the individual 

words, as well as the syntactic and semantic bonds between them. For Fodor & Pylyshyn, this 

is an essential property of cognition, and one which computational models could account for 

better than connectionist ones. 

However, it should be also noted that Fodor & Pylyshyn did not seek to prove that connectionist 

ANNs were in principle incapable of systematicity. Rather they suggested that connectionist 

models could only recreate the systematicity of computational models, if the connectionist 

model was a “mere implementation” of the computational model. And therefore, they argued, 

there is no sense in which the connectionist model can supplant the computational model as a 

model of cognition. But they were nonetheless quite explicit that connectionist models could 

still be valid as models of how the brain implements a computational architecture6. Thus the 

core of Fodor & Pylyshyn’s argument is concerned with refuting the idea that all cognitive 

explanations can be reduced to an ANN.  

Fodor & Pylyshyn’s paper also garnered a significant number of responses. Many took issue 

with their failure to properly distinguish the properties of local and distributed representations 

(Chalmers 1990), and pointed to cases where distributed representations might seem to solve 

the problem of systematicity in ways which cannot be dismissed as “mere implementation” 

(Smolensky 1987; Dawson et al 1997). David Chalmers (1990) also argued that Fodor & 

Pylyshyn faulting connectionists for not solving systematicity is akin to a behaviouralist 

faulting computationalists for not solving classical conditioning. In other words, Fodor & 

Pylyshyn’s arguments would have been devastating if systematicity were the only aspect of 

cognition in need of a scientific explanation. But as long as systematicity is one of many aspects 

                                                 

6  In fact, most of the criticism of the neural plausibility of connectionist-style ANNs comes from 

neuroscience. See section 1.3.2 for more on this point. 
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in need of an explanation, then Fodor & Pylyshyn’s argument might seem like a case of special 

pleading. 

Regardless of the merits (or otherwise) of the arguments, the perspectival shift evident in 

Rumelhart et al (1985), as well as the subsequent expunction among philosophers, created a 

heated debate which persists to this day. Meanwhile, von Neumann and Rosenblatt’s aspiration, 

a general-mathematical theory for all computing systems, has since become something of a 

minority position. 

1.3.1.4 Linguistics and ANNs: Where we are now 
Elements of the connectionist debates naturally spilled over into linguistics. For example, 

Rumelhart & McClelland’s (1987) model of past tense verbs, explicitly sets their connectionist 

account in opposition to a classical rule-based account. The subsequent response by Pinker & 

Prince (1988) expresses a similar perspective to Fodor & Pylyshyn (1988), namely that the 

connectionist model fails to capture the systematicity of regular past tense morphology (see 

also Pater 2019). 

At the same time, the connectionist/computationalist divide among philosophers seemed to map 

loosely onto to an ever-widening schism within linguistics, namely, the divide between the 

generativists and cognitivists (see Harris 1995). Chomsky, the father of generative linguistics, 

described connectionism relatively recently as having “failed so badly that it was effectively 

abandoned” (Chomsky & Guignard 2011)7.  Meanwhile George Lakoff, a key proponent of the 

cognitivist school, was clearly positive about connectionism (Lakoff 1988), and, along with 

coauthor Mark Johnson, would go on to coin the notion of “second generation cognitive 

science” (Lakoff & Johnson 1999), which can be read as an attempt to unify various, loosely 

anti-computational approaches to cognitive science. This apparent alliance of anti-generative 

cognitivists with anti-computational connectionists may well have helped to seal the impression 

among generativists that ANNs were, in some sense, the enemy. 

Despite this, various attempts at integrating ANNs with aspects of linguistics have proceeded 

undeterred (see e.g. Alderete & Tupper 2018). Harmonic Grammar and Optimality Theory are 

examples of formalisms which were explicitly designed to integrate aspects of both ANNs and 

                                                 

7  Somewhat awkwardly, this comment was made the year before the deep convolutional net of 

Krizhevsky et al (2012) won the ImageNet Large-Scale Visual Recognition Challenge. 
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traditional symbolic grammars (Prince & Smolensky 1997). Meanwhile, advances in machine 

learning have allowed researchers to probe ANNs for the kinds of computational properties 

supposed by formal linguistic theories (e.g. Kuncoro et al 2017). 

So, the animosity generated by the connectionist arguments of the 1980s and 90s was far from 

fatal. Indeed, a recent special issue of Language was dedicated to the topic of neural networks 

and generative grammars. In this issue, Joe Pater (2019) makes the argument that ANNs can 

complement generative grammar best if ANNs are treated primarily as theories of learning. The 

argument differs from the one presented in this volume, where I treat attractor ANNs as a neural 

realization of formal grammars, without making any strong claims about learning at either the 

neural or formal levels of abstraction. To a large degree, the distinction between Pater’s view 

and my own can be traced to differing approaches to ANNs in general. While Pater is primarily 

interested in ANNs which come from the connectionist tradition, the attractor models I examine 

here come from the tradition of theoretical neuroscience. The distinction between these two is 

blurry but also potentially relevant. Therefore, I will dedicate the next section of this 

introductory chapter to this topic. 

1.3.2 Connectionism vs Theoretical Neuroscience 
The previous section considered the relationship between linguistics and Artificial Neural 

Networks (ANNs) in terms of the historical divide between connectionist and computationalist 

theories of mind. However, I’ve already argued that the attractor networks examined in this 

volume are a somewhat distinct species from connectionist ANNs. This means that not all 

arguments that pertain to connectionism are necessarily relevant for attractor networks. 

Unlike connectionist models, most attractor networks do not derive from Rosenblatt’s 

Perceptron. Rather, they typically derive from the Hopfield network (Hopfield 1982). The 

Hopfield network is itself a generalization of models from statistical physics, which were 

originally posited to study emergent phenomena such as ferromagnets (Hopfield 2007). The 

key distinction between the Hopfield model and its statistical physics forebears, is that the 

Hopfield model allows units to (potentially) interact with any other unit via connections of 

varying efficacy, whereas physical models typical place units on a lattice which only permits 

interaction between neighbours. Thus, while the physics models are a loose approximation of 

(e.g.) electrons with individual spins, the Hopfield model is a loose approximation of neurons 

with individual levels of activity, and synaptic connections of varying efficacy. 
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Consequently, the general structure of the Hopfield model and its descendants differs from 

those derived from the perceptron, and each is suited to a somewhat different approach to 

explaining the mind/brain. Attractor networks are often regarded as belonging to branch of 

neuroscience varyingly referred to as theoretical or computational neuroscience (e.g. Dayan & 

Abbott 2001), rather than connectionism in the narrow sense. It should also be noted that the 

field of theoretical neuroscience is not restricted to ANNs, and broadly subsumes a wide variety 

of mathematical approaches to brain function, from complex models of single neurons (Brunel 

et al 2014) to holistic models of neural functions (e.g. receptive fields; Jones & Palmer 1987). 

Moreover, it should be acknowledged that the divide between connectionism and theoretical 

neuroscience can be somewhat fuzzy, since ANN models from both fields typically share a 

number of traits: both typically exploit large numbers of simplified “neurons” connected to one 

another with varying degrees of efficacy, and both generally assume that cognition emerges 

through the collective organization of those units. And importantly, there is at least some cross-

fertilization between the approaches. 

Still, while connectionist models are a somewhat familiar concept to many linguists, attractor 

networks and theoretical neuroscience generally are not. With that in mind, what follows is an 

approximate guide to delineating connectionist ANNs from those of theoretical neuroscience. 

Understanding the distinction can help us to understand how different ANNs should be assumed 

to relate to linguistic theory. Rather than concentrating on purely technical aspects that 

distinguish the networks, I will concentrate on three areas where the goals or focus of 

connectionists and computational neuroscientists tend to differ. They are: static vs. dynamic 

representations, learning vs. intrinsic properties, and biological realism vs. functional 

application.  

Finally, I will briefly compare and contrast a connectionist account of the OCP effect in 

phonology (Alderete et al 2013), with the account given in the first paper of this volume. I will 

argue that these accounts are not necessarily in competition, but nor is the relationship between 

the two simple to decipher. 

Static vs. Dynamic Representations 

The prototypical connectionist ANN has a multi-layer, feed-forward architecture. This means 

the networks typically contain one layer of units that receive an input, and then pass the signal 

onto one or more “hidden” layers, before the signal finally arrives at an output layer (e.g. 
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Rumelhart et al 1986). Which mathematical function the network implements can be defined 

in terms of the difference between the input and output layers. In this regard, the prototypical 

connectionist network is broadly similar to a classical computer: both take a static input string, 

do something to that string, and then return a static output string somewhere else. 

By contrast, the connections in a Hopfield network are symmetrical, i.e. activation flows in 

both directions8, and therefore the network has no input or output layers as such. Consequently, 

computation in a Hopfield-style network is usually defined as the evolution of the entire 

network over time. For example, if the experimenter places the network in one state, and the 

network evolves to a different state, then the network can be said to have computed its ending 

state from the starting state. For this reason, theoretical neuroscientists tend more to discuss the 

properties of their models in terms of dynamical systems theory, rather than input/output 

mappings. 

The distinction between static and dynamic representations is particularly relevant for linguistic 

models in a cognitive/neuroscientific context. This is because formal linguistic models are also, 

by and large, static models. That is, grammars are assumed to act over entire strings or tree 

structures. And to the extent that formal linguistic models do reference time (e.g. phases, 

domains, etc.), they are generally not bound by the flow of time in the normal sense. For 

example, a wh-word can raise from the object position, or vowel harmony can travel backwards 

from a suffix to the root, even though these descriptions are clearly odds with the order in which 

they are actually spoken. This is not a flaw of linguistic models per se, since they are designed 

to account more for grammaticality and competence rather than the specific algorithms which 

underlying processing. And the question of how a linguistic model relates to real time processes 

in the brain is something of an open question. 

Still, for the linguist, this presents an interesting distinction between connectionist models and 

those of theoretical neuroscience. Connectionist models share with linguistic models the 

assumption of static representations, thus in this regard, drawing comparisons between 

connectionist models and formal linguistic model might seem easier9. On the other hand, any 

                                                 

8 It is precisely this fact which allows a Hopfield network to implement attractors, since symmetrical 

connections permit equilibria. 

9 See, for example, Smolensky’s tensor product vectors which equate static ANN states with tree-

structures (Smolensky 1987). 
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model of brain function will ultimately have to reduce to some kind of real-time dynamics (e.g. 

Edelmann 2017), so the problem of how to recast static connectionist models as a real-time 

process has been pushed back (presumably to some other level of analysis) rather than solved. 

Conversely, relating static linguistic models to the models of theoretical neuroscience forces us 

to take the leap from static to dynamic at the same time as the leap from symbolic to “sub-

symbolic” (Smolensky 1987). 

Learning vs. Intrinsic Properties 

A key component of Rosenblatt’s Perceptron was the method he proposed for training the 

model. Rather than be programmed or pre-wired like most computers, the Perceptron could be 

“conditioned” to categorize data by exposing the network to different inputs and then 

strengthening or weakening connections to associate each input with the desired output. 

Subsequent waves of connectionist research were driven in large part by modifications to 

Rosenblatt’s original method, which allowed for ever bigger networks and improved 

performance. Connectionism then, places a strong emphasis on “supervised” learning, i.e., 

learning where the algorithm already knows a dataset of “correct” answers (c.f. Bartunov et al 

2018). The measure of a connectionist model is, to a large extent, what it can or cannot be 

taught using these methods. Thus, the properties of the network architecture and the learning 

algorithm are inextricably bound together, since any changes to the network architecture 

frequently necessitate a change to the learning algorithm and vice-versa. 

By contrast, the Hopfield network and its descendants are typically trained using 

“unsupervised” or Hebbian learning. This method is far more limited for teaching the network 

(e.g.) to categorize data, but it has the key advantage of turning the memories into a controlled 

variable. In practice then, this method does not usually involve training datasets, but rather the 

experimenter deciding what the memories should look like and then solving a simple equation 

to determine the individual connection weights. Thus, the experimenter is free to examine the 

intrinsic properties of the network, without worrying about whether the results are indicative of 

the network architecture or the training algorithm. For example, theoretical neuroscientists have 

studied the relationship between the storage capacity of a network and various neural 

parameters, such as the sparsity of connections or the average firing rate of the units (Treves & 

Rolls 1991). Thus, for theoretical neuroscientists, the ANN can be an object of study in-and-of 

itself, with the deeper assumption that, if the model has some basis in reality, then properties of 

the model will reveal properties of real nervous systems.  
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Functional Application vs. Biological Realism 

Both connectionism and theoretical neuroscience engage in a serious amount of abstraction 

from biological reality, and neither can claim an accurate, fine-grained description of a 

complete nervous system. Nonetheless, as already noted, theoretical neuroscientists often make 

the assumption that studying ANNs will reveal properties of the brain, an assumption which 

only holds if the ANNs are grounded in some kind of neural realism. Thus, it is probably fair 

to say that theoretical neuroscience places a much higher value on biological realism than does 

connectionism.  

This might seem strange, given that one of the early arguments raised in support of 

connectionism was its supposed adherence to observations about the physical structure of the 

brain (Rumelhart et al 1986). However, this case was always somewhat overstated, not least 

because connectionist training algorithms (mentioned above), are already a fairly significant 

departure from reality. So the fact that biological realism was slowly deprioritized by many 

connectionists is perhaps not as surprising as it might seem. In general, the divergence of 

connectionism from its early biological commitments can be understood as a consequence of 

two facts: Firstly, the more was learned about real neurons, the less realistic the connectionist 

models of neural activity seemed (e.g. Connors & Gutnick 1990). Secondly, biologically 

implausible mechanisms often seem to produce better results in applied domains such as 

machine learning. To give one example, many convolutional ANNs depend on “weight 

sharing”, whereby connection weights from one portion of the network need to be copied 

perfectly and entirely to a different portion of the network.  This is, of course, a deeply 

implausible neural mechanism (c.f. Bartunov et al 2018), but one which has nonetheless 

produced impressive results (ibid). 

Perhaps in response to this, various connectionists have embraced the implausible aspects of 

their models and argued that this is proven approach for making progress in complex scientific 

domains. Some have drawn an explicit comparison with the history of aerodynamics, for 

example: 

“Birds provided an existence proof of how an object could fly through the air under 

its own power. However, as the principles of aerodynamics began to be understood, 

researchers studied artificial man-made systems of flight.” (Schneider 1987:73) 
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Variants of this analogy appear in the literature, but the general gist is as follows: The earliest 

attempts at human powered flight involved imitating birds, i.e. flapping wings to generate lift. 

These attempts all failed (often suddenly and violently). Progress was only made once people 

abandoned wing-flapping and instead pursued fixed wing aircraft with a propeller attached. In 

other words, people stopped imitating natural systems and instead attempted to engineer an 

artificial system from the ground up. It was only after artificial flying machines had been built, 

that scientists began to understand aerodynamic principles (e.g. aerofoils), and then apply those 

principles back onto natural systems (e.g. birds’ wings). By analogy then, the goal of 

connectionist models is not to imitate natural nervous systems exactly, but rather to engineer 

artificial systems that perform approximately the same task. The hope, then, is that this will 

reveal principles which can be applied back to real nervous systems. 

The general approach taken by theoretical neuroscientists, however, is slightly different. The 

limitations of unsupervised learning mean that such networks cannot outcompete a 

connectionist network in (e.g.) an image classification task. Instead, the measure of a model 

within theoretical neuroscience is more akin to the measure of other scientific theories 

(parsimony, empirical coverage, etc.). Thus, models within theoretical neuroscience are often 

abstracted for the sake of tractability or analytical solvability, but rarely for the sake of chasing 

improved performance on some task. For example, the PLN in the first paper of this volume 

uses “Potts” units, which subsume whole patches of cortex into a system of differential 

equations. The motivation for doing so is not that this system is neutrally exact, but rather that 

mathematical methods for solving systems of Potts systems exist in the physics literature, which 

can then be applied to neural models allowing for quantitative analyses of the system’s 

properties (e.g. Naim et al 2017). 

Of the three dichotomies (static vs dynamic representations, learning vs intrinsic properties, 

functional application vs biological realism), it is this last one which arguably presents the 

biggest divide between the connectionist and theoretical neuroscience approaches. Particularly 

within machine learning, connectionists have generally demonstrated a willingness to integrate 

elements of dynamics (Elman 1990; Hochreiter & Schmidhuber 1997) or unsupervised learning 

(e.g. Bengio et al 2007) into their models, but only provided it improves the performance of the 

model in some task. Indeed, many of the most sophisticated deep learning networks are hybrid 

models which can incorporate any number small tweaks that seem to further blur the static vs 

dynamic or learning vs intrinsic divides. However, these tweaks are invariably in the service of 

functional application, and often at the cost of biological realism. 
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1.3.2.1 Comparison of a connectionist model and the PLN 
As already noted, these three distinctions are only an approximate guide to the fuzzy boundary 

between connectionism and theoretical neuroscience, and exceptions can certainly be found in 

the literature. Nonetheless, it is perhaps insightful to demonstrate all three with a more specific 

comparison between a connectionist and theoretical neuroscience model. To that end we can 

compare a connectionist account of the Obligatory Contour Principle (Alderete et al 2013) with 

the Phonological Latching Network (PLN) account given in the first paper of this volume. 

The model of Alderete et al can be regarded as a fairly typical feedforward connectionist 

network. It takes as its input an activation vector representing a triliteral Arabic root (i.e. three 

consonants), and returns as its output a single numerical value from -1 to 1, representing a 

grammaticality assessment of the input root. 

The training dataset for the model is a combination of attested Arabic roots, and unattested-but-

possible roots generated using a second, simpler network. The second network relies on random 

noise to generate the unattested roots, which provide “negative evidence” during the training 

phase.  The model is trained using a backpropagation algorithm, which adjusts the weights in 

the network such that attested roots should (ideally) produce the output “1”, while unattested 

roots should provide the output “-1”. 

While the results of the model are too extensive too list in detail here, it is enough to note that 

the model does indeed to appear to approximate an OCP-effect during the testing phase: Novel 

forms which violate the OCP were rated considerably lower than forms which did not. 

So, does the model of Alderete et al conform to the connectionist side of the three distinctions 

given above? On the issue of static vs dynamic representations, the PLN and the connectionist 

model of Alderete et al are fairly typical examples of their respective fields. The connectionist 

model uses purely static representations, i.e. it receives and processes an entire triliteral root at 

the same time, and then returns an assessment for the grammaticality of the entire root. 

Conversely, the PLN does not quite process inputs in the same sense, however, it latches 

between phones one at a time, and the OCP-effect is explained as the model’s reluctance to 

latch between phones which are too similar. 

On the issue of learning vs intrinsic properties, the two models again capture the proposed 

distinction well. In the connectionist model the key issue, as presented by the authors, is 

whether or not an Arabic-OCP effect can be induced from linguistic data. Thus, it is framed as 
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a contribution to the nature vs. nurture debate. It does not, however, make strong claims as to 

why the OCP is a fact of language in the first place. Conversely, the PLN model has no 

aspirations towards a theory of learnability. Indeed, there is currently no method for training a 

latching Potts model on real language data (e.g. Arabic roots). Rather, the PLN starts with a set 

of “phonology-like” representations, with no particular commitment to where those 

representations come from. However, the PLN attempts to provide an answer to why the OCP 

exists in the first place: the neural representations themselves cannot be “reactivated” once they 

are fatigued, which is not an arbitrary restraint on the system, but follows as a consequence of 

the mechanism which makes string production possible: latching dynamics. 

Finally, the issue of biological realism vs functional application is perhaps less clear cut in the 

case of these two models. The model of Alderete et al does not make any specific reference to 

neurological facts that might inspire its design, since it is not clear that the model is even 

intended to model a particular cognitive task. Indeed, the basic function of the model is as a 

classifier for grammaticality – its output is a unit whose sole job is to specify which forms are 

ungrammatical, and it’s debatable whether such a unit would have an analogue in an actual 

nervous system. However, the authors are quick to draw parallels between the biologically 

implausible aspects of their model and similar aspects in other, non-connectionist theories of 

learning (e.g. the non-attested forms used during training). This suggests that the model is 

perhaps best understood as a model of learning first, and only indirectly a model of neural 

function. Certainly, this interpretation is congruous with the “connectionism-as-learning” view 

advanced by Pater (2019), mentioned in section 1.3.1.4. 

By contrast the architecture of the PLN is designed explicitly to capture both broad 

neuroanatomical facts – the separation of motor and auditory areas – as well as certain 

properties of inhibitory interneurons and resource depletion in synapses. However, the Potts 

units which constitute the model are heavily abstracted from neural reality. And as such it would 

be a mistake to regard the PLN as an exact model of neural function. It is rather, designed to 

occupy an intermediate level of abstraction between the neural and linguistic levels. 

It seems then, that the connectionist model of Alderete et al (2013) and the PLN have only a 

partially overlapping domain of explanation, despite ostensibly being models of the same 

phenomenon (OCP-effects). From one perspective, the models could be seen as contradictory: 

the PLN claims the OCP is a property of latching dynamics, while the connectionist model 

claims that the OCP is learned from exposure to linguistic data. However, this interpretation is 
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likely premature. The OCP effect in the PLN depends on representations of phones having 

certain properties, but the model has no theory of how those representations come to be. 

Conversely, the connectionist model is not, in the words of the authors, a “blank slate [...] that 

[is] completely free of bias and a priori assumptions.” (2013:58). Perhaps then, we could view 

these models as complementary, rather than in competition. One could speculate a synthesis of 

the PLN’s dynamic computational insight with the connectionist model’s learning, might 

provide us with a more complete account of phenomena such as the OCP.  

Despite this, there is no obviously simple way in which this synthesis could be accomplished. 

The basic architectures of the two models are not easily commensurable, not least because they 

sit on opposite sides of the static vs dynamic divide. Moreover, the learning model used by 

Alderete et al is not applicable to the PLN without serious modification, if indeed it is possible 

at all. So, while it seems that the two models may hint at some deeper continuity, for now such 

an insight is frustratingly beyond our grasp. 

1.3.3 Linguistics and Attractor Dynamics 
The models examined in this volume are examples of attractor neural networks. That is, 

networks of units which self-organise toward stable states (attractors) representing stored 

memories. 

However, attractors are not solely a property of certain neural networks. Rather, “attractor 

dynamics” can apply to a much broader class of dynamical systems which tend towards a small 

subset of configurations over time. In practice, their application ranges from ferromagnetism 

(Ising 1925) to ant cooperation (Feinerman et al. 2018) and much more besides. One classic 

example of an attractor system in physics is that of a vertical mass-spring system. That is, if 

one imagines a simple spring with a weight hung from one end, by pulling and then releasing 

the weight the spring will contract and extend such that the weight “bounces” up and down. 

Provided the system has some damping (as any real system will via friction, etc.) then the 

weight will eventually come to a standstill. Crucially, how low the weight hangs once it stops 

is entirely dependent on the mass of the weight and the rate of the spring – it does not matter 

how hard one pulls the weight or how many times its bounces up and down, it will always come 

to rest at the same point (until we change the mass of the weight or the properties of the spring). 

The point at which the weight comes to rest is an example of a “point attractor”, and is 

conceptually no different from the memories in an attractor neural network. 
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The study of attractor systems is sufficiently well developed that they can also be studied in 

purely mathematical terms. That is, in much the same way one can discuss the properties of 

(e.g.) triangles without needing to discuss any particular triangular object, so too can one 

discuss attractor systems without needing to refer to any particular physical system. Compared 

to attractor neural networks, these “holistic” attractor systems are typically quite simple, 

making them more amenable to analytical study10. Similarly, they are also more transparent 

than attractor neural networks, making them well-suited to conceptual or qualitative arguments 

about cognition. 

Because of this, holistic attractor models have also been applied to the problems of cognition 

without reference to neural networks, or indeed any explicit neural structure. The late 80s and 

early 90s saw a rise in the interest of dynamical systems theory to cognitive science (e.g. Haken 

& Stadler 1990; Serra & Zanarini 1990;). Arguably this reached a zenith with Tim van Gelder’s 

1995 paper “What Might Cognition Be, If Not Computation?”, in which dynamical systems 

theory is posited as direct competitor to the computational theory of mind. According to this 

view, the brain is not a computer at all, but rather a type of control system, whose explanation 

can be found in the mathematics of differential equations. Various subsequent authors have 

argued that van Gelder was probably overstating his case (e.g. Eliasmith 1997), and that 

dynamical and computational approaches could be unified (e.g. Crutchfield 1998; Dale & 

Spivey 2005). Still, versions of this anti-computational dynamicism have persisted and even 

permeated into phonology (e.g. Port & Leary 2005). Nonetheless, this wave of interest in 

dynamic approaches to cognition brought with it a number of holistic attractor models, some of 

which would subsequently be applied to the study of language. 

One early important example for phonologists is a study of categorical perception in speech by 

Tuller et al (1994). They conducted perception experiments using stimuli which could be 

ambiguously interpreted as either the words say or stay. The ambiguity was introduced by a 

silent pause (up to 76ms) between the /s/ and vowel portion of the utterance, as well as varying 

the vowel between either a simple synthesized /ei/ (as in say), or the same diphthong extracted 

from a synthesized utterance of stay, which contained information of the preceding stop in the 

formant structure. The experiments studied the effects of the length of the silence and the 

quality of the vowel on participants perception of the stimulus. Participants performed the 

                                                 

10 At least within cognitive science. 
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perception task with both vowel types, and both with stimuli presented in a random order, as 

well as in a “sequential” order, where the length of the silence was progressively increased or 

decreased in 4ms increments. 

The results from the random order trials were consistent with other research on categorical 

perception. As the length of the silence increased, participants were more likely to perceive the 

stimulus as stay rather than say. Furthermore, the relationship between silence length and 

perception was approximately sigmoidal, rather than linear, which is characteristic of 

categorical perception, as participants switch between perception of say and stay. The effect of 

the vowel was also fairly predictable; the stay-derived diphthong biased participants towards a 

stay perception at a shorter pause length compared to the say-derived diphthong. 

However, the results from the sequential trials revealed a slightly more complicated picture. 

The critical silence length at which participants switch from say to stay (or vice-versa) was 

dependent on whether the lengths were presented in an increasing or decreasing order. 

Moreover, the exact nature of the dependency was not consistent across trials or across 

participants. Tuller et al interpret these results as being indicative of a complex non-linear 

system that drives categorical perception, rather than a simple, immovable boundary between 

categories. 

Tuller et al present a holistic attractor model as a qualitative model of the phenomenon. The 

model is a simple function in two dimensions, which allows for two adjacent attractor basins, 

i.e. the function traces a “W” shape when graphed. Each of these basins is understood to 

represent the words say and stay respectively. And, as with all attractor systems, the behaviour 

of the system is understood as seeking local minima, i.e. it “rolls downhill” to one of the bottoms 

of the “W” shape. This means that it always retrieves either say or stay and not some ambiguous 

point in between. However, by manipulating a single parameter in the system, Tuller et al 

demonstrate that the shape of the function morphs such that one of the basins raises as the other 

one lowers, i.e. the “W” morphs slowly into a wonky “U” shape. In that case, one of the words 

is no longer a local minimum (because it has risen up), and attempting to retrieve that word 

would simply cause the system to roll down into the other, deeper basin, thereby retrieving the 

other word instead. In this way, this single parameter in Tuller et al’s model can approximate 

the changes in participants responses, whereby either say or stay becomes the preferred 

perception of a given stimulus, depending on context. 
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Of course, while the study by Tuller et al focuses on categorical perception (which is clearly 

relevant for phonologists), it is not focused on phonological grammars per se. Arguably the first 

attempt to apply attractor dynamics to phonological grammar is Gafos & Benus (2006). They 

discussed the role that attractor dynamics could play in phenomena such as vowel harmony and 

final devoicing. The latter is particularly relevant since this is also a topic for the second paper 

in this volume. And, like that paper, Gafos & Benus also advocate attractor dynamics as a way 

of explaining the gradient effect of incomplete devoicing, i.e. situations where an underlyingly 

voiceless coda segment appears to have fractionally less voicing than the corresponding 

devoiced segment. 

Gafos & Benus re-employ the same two-dimensional “W” shape system as Tuller et al. 

However, rather than being a model of categorical perception, the basins represent a categorical 

distinction within the grammar (in this case [+/-voice]). The devoicing context is equated with 

the wonky “U”-shape, where the [+voice] basin has been raised, causing the system to roll into 

the [-voice] basin instead. However, as Gafos & Benus note, in this context the [-voice] basin 

can shift slightly relative to the underlying voiceless case, which allows for the interpretation 

of incomplete devoicing. 

In many ways then, the model of Gafos & Benus can be regarded as a precursor to the attractor 

network model in the second paper of this volume. The analysis of incomplete devoicing in 

terms of shifting attractor basins is very much the same in both models. However, the key 

difference between the models is that the dynamics investigated by Gafos & Benus are of a 

holistic type. That is, it is a simple system where the relationship to neural reality is left open 

to interpretation – one is left to presume that bundles of neurons could implement such a 

dynamical system, but Gafos & Benus do not advocate any view of exactly how. The second 

paper in this volume gives a more explicit account of how such dynamics can be realized in the 

brain, and can therefore be regarded as an extension of the basic premise of Gafos & Benus. 

1.3.4 Definitions of Computation 
I argue in this volume that attractor networks can be understood as realizations of the formal 

theories posited by linguists to explain the grammar of natural languages. The second paper in 

particular, is an exploration of this topic. Nonetheless, there is an underlying issue which the 

paper only deals with in passing: namely, neural networks can seem to produce the same outputs 

as a formal grammar, but they do often do so without realizing explicitly the machinery of the 

formal model. For example, I argue the Phonological Latching Network (PLN) exhibits a kind 
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of place assimilation between adjacent segments in a string. In a formal theory, assimilation 

might be accounted for in any number of ways (e.g. rewrite rules, linking nodes, agreement 

constraints, etc.), but the PLN doesn’t have any components that obviously resemble any of 

these formal mechanisms. So is the PLN really commensurable with these formal accounts, or 

are they actually competing accounts of how the brain really works?  

Opinions on this issue diverge greatly. Some authors would clearly reject the claim that the 

neural network and the formal are equivalent (e.g. Port & Leary 2005; Gallistel & King 2009). 

Conversely, there are a great many others who would accept the equivalence without batting an 

eyelid11. This disagreement is interesting insofar as the terminal principles from which these 

viewpoints derive are rarely stated explicitly. This can result in an impasse between different 

viewpoints, as each side is operating from fundamentally different assumptions, which neither 

side has properly expressed. And while there might be many different aspects to this 

disagreement, I argue here that one of the most important (and understated) points of 

disagreement is differing understandings of the term “computation”.   

Computation is invoked extensively in neuroscience, linguistics, and cognitive science more 

generally, however it is rarely defined exactly by anyone other than philosophers. Of course, it 

shouldn’t be controversial that different implicit definitions of this term can greatly affect our 

reasoning on the topic of cognition. For example, formal linguistic theories are often said to be 

computational theories, which in turn (depending on definition) might entail that the brain must 

be a computer, which (depending on definition) might delimit which neural theories we think 

are commensurable with formal linguistic theories. There is a potentially long chain of 

deduction here that depends on exactly how we define what is meant by “computation”, or a 

“computational theory”. And in practice this creates problems because there is no universally 

agreed upon definition.  

Here I argue that the view of neural and computational models as “in conflict” typically comes 

from an excessively narrow definition of computation. Under a narrow definition, to claim the 

brain is a computer is claim that it is very much like the digital, programmable computers that 

have come to dominate our everyday lives. And to call a linguistic theory “computational” is 

to claim that it should be implemented in the brain in a manner very similar to a computer 

                                                 

11 See the various citations on this point in the second paper. 
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program. However, I will also argue that these narrow definitions introduce more problems 

than they solve. And that a much broader definition of computation entails easier reconciliation 

of the neural and the computational, and that this broader definition is in keeping with the way 

mathematics is usually applied to explicanda in the natural world. However, such a broader 

definition is not without its own thorn, namely, the specter of pancomputationalism. 

1.3.4.1 The specter of pancomputationalism 
According to the broadest definition, computation is the physical realization of some 

mathematical operation. While intuitive, this definition has the unintended consequence that 

literally everything can be regarded as a computer. This follows from the arbitrariness of 

physical representations of mathematical objects. For example, if we take any normal window 

and specify that “open window = 1” and “closed window = 0”, then the act of opening the 

window is an act of (trivial) computation, i.e., 0→1. With a bit of imagination, we can impute 

similar computations onto any state of the world. Often these are trivial, like the window 

example, but sometimes they are less obviously so (e.g. does a planet “compute” its orbit?). 

This conclusion is referred to as pancomputationalism, and whether we accept it can have 

profound importance for subsequent arguments (certainly, arguing about whether the brain is a 

computer doesn’t make a lot of sense from a pancomputationalist perspective). 

A full discussion of this topic is far beyond the scope of this introductory chapter (see e.g. 

Piccinini 2015:ch4). But for the sake of expediency we can loosely distinguish three types of 

response to pancomputationalism: 

1. Reject the conclusion - develop a definition of computation which excludes 
windows, planets, etc. (e.g. Fodor 1981, Piccinini 2015). 

2. Accept the conclusion - whether or not something counts as computation is a 
matter of perspective/utility (e.g. Dennett 1987, Shagrir 2006, Dewhurst 2018). 

3. Accept the conclusion - reject entirely “computation” as an explanation for natural 
systems, including the brain (e.g. Searle 1992). 

 

I’ll ignore the third option here and take it as a given that computation is at least useful as a way 

of talking about the mind/brain12. Nonetheless, the distinction between the first two options is 

                                                 

12 See the second paper in this volume for a more rigorous rejection of the third option. 
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still relevant for our understanding of how a formal linguistic theory relates to (e.g.) a neural 

network. 

Generally, if we accept pancomputationalism (option 2) then we should have few qualms 

equating an attractor network with a formal/computational model, since we’ve already accepted 

that everything can be equated with at least some computational model. The only outstanding 

issue is whether or not that computational model tells us anything useful. However, if we reject 

pancomputationalism (option 1) then the issue becomes more complex. Depending on our 

definition of computation, we might not think that the neural network is actually computing 

anything. And even if it is, there’s no guarantee that it’s computing the same thing as the formal 

model. This is ultimately the starting point for an argument that, even if a neural network and 

a formal model are extensionally equivalent, their intensional differences make them into 

competitors rather than complementary points of view. 

My own implicit stance in this volume is option 2, which can be broadly referred to as 

perspectival pancomputationalism. However, given the (often implicit) acceptance of option 1 

among many commenters, it is worth explicating why I disagree. Especially given that my on 

this issue stance underlies much of the work in this volume. While attempts to avoid 

pancomputationalism come in many different forms, for this discussion I’ll focus on Piccinini 

(2015)’s mechanistic account of computation. And although I don’t suppose that everyone who 

would pick option 1 (above) would also endorse Piccinini’s account, it is arguably one of the 

most thorough definitions of computation in the literature, and therefore a good starting point 

for this (condensed) discussion. 

1.3.4.2 Piccinini’s Mechanistic Account 
Piccinini (2015)’s main goal is a principled way of defining what counts as a computer, and 

thereby avoiding the conclusion of pancomputationalism. The crux of Piccinini’s solution to 

pancomputationalism is a distinction between computational modelling and computational 

explanation: Cases like the open/closed window, or the planet’s orbit, are examples of a 

computational model, but not a computational explanation. According to Piccinini, 

pancomputationalism is only true to the extent that every system can be modelled with some 

computation(s). However, for a system to be explained by computation, a system needs to have 

certain properties that define it as a computer and distinguish it from other, non-computational 

systems. Piccinini then proceeds to develop his account of exactly what delineates 

computational and non-computational systems. This ultimately boils down to the claim that a 
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system is computational if the system has computing as a teleological function, where 

functional analyses are understood to be a special type of mechanistic analysis. 

Since Piccinini’s account is far more thorough than I can possibly dedicate space to here, I will 

focus on two main points of disagreement: Firstly, Piccinini’s account has a reductionist flavour 

insofar as it privileges a single level of explanation, i.e. there is some level at which a system 

really is (or is not) a computer, and that level of explanation has exactly one correct scientific 

explanation. Although Piccinini does concede that complex systems permit multiple levels of 

explanation, the relationship between these levels is quite restrained. For Piccinini, micro-level 

explanations of a computational system can be mechanistic but not themselves computational 

(e.g. a mechanistic account of the silicon atoms in a transistor), while macro-level abstractions 

of a computational systems are simply “sketches” which remove certain details from the model, 

purely for legibility or convenience (e.g. high-level programming languages). 

For this reason, it is not obvious to me how Piccinini’s definition deals with the notion of 

emergent computation, as explored in the first two papers in this volume. For example, in the 

case where a (continuous) neural network is realizing a (discrete) formal grammar, it is not 

clear which level of abstraction should be privileged as the computational explanation. If we 

suppose that the formal model is the computer, then the micro-level account of the neural 

network must be mechanistic but non-computational. However, this is obviously false because 

both the individual units, and the network itself, are unambiguously performing computations 

(see Piccinini 2015:ch13). But if we concede that the neural network is itself a computer then 

the formal account is relegated to a “sketch” of the neural network – a notion which is at odds 

with the fact of causal emergence in the macro-level of abstraction.  

Thus, privileging only one level of abstraction as having computation as its teleological 

function leaves us with an arbitrary choice. The real problem in this case is not just that both 

levels of abstraction are computational, it’s that each level exhibits a different type of 

computation (continuous vs discrete), and the explanation of one does not neatly reduce to a 

proper subset of the other. 

This problem can be viewed as a specific case of the limitations of a reductionist program. In 

many cases, moving to a micro (or more fine-grained) level of abstraction is not simply filling 

in the gaps of the macro-level account (pace Piccinini). It can often mean transitioning to a 

radically different ontology which can even obscure the scientific problem at hand. Or to put it 
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another way, there are cases where abstraction or approximation are not merely conveniences 

or restrictions imposed by limits on computational resources, but are in fact prerequisites for 

any kind of scientific theory at all.  

A pertinent example here would be the faculty of language. That is, it is completely 

uncontroversial that people speak different languages, and that those languages are fuzzy 

collections of dialects, which are themselves fuzzy collections of idiolects, etc. There mere 

notion of a faculty of language is a kind of approximation that cannot be reduced a single micro-

level configuration in peoples’ heads. Indeed it is quite conceivable that no two human beings 

have exactly the same wirings in their heads. Therefore, simply “zooming in” on a single 

person’s neural wiring does not give us a more detailed theory of the language faculty as a 

whole – in fact it may well do the opposite. 

This situation is not unique to language, or even cognitive science. Many forms of scientific 

explanation work precisely because they do not distinguish states of the world which are distinct 

but equivalent in some important regard – not for legibility or convenience, but because this is 

the crux of the causal explanation. For example, a distant ancestor of attractor neural networks 

is the Ising model of ferromagnetism (Ising 1925; Hopfield 2007). The Ising model allows for 

exact prediction of phase transitions, such as the Curie temperature in a ferromagnet13. For 

example, whether or not iron behaves as a magnet depends on the alignment of the spins of the 

electrons: if they are all aligned then it is a magnet, if they are not aligned then it is simply a 

regular lump of iron. Of course, for any given number of iron atoms there are only 2 possible 

configurations where the spins are all aligned (all “up” or all “down”), but a very, very large 

number of possible unaligned configurations. The key observation of the Ising model is that the 

unaligned cases are effectively all equivalent as far magnetism goes, and thus the model does 

not need to distinguish them. The result is that the model can be solved by treating all the 

interacting electron spins as “averages” to determine when the system transitions from an all-

aligned to a not-aligned configuration. Thus, there is no need to ever determine exactly the spins 

of the not-aligned configurations in a theory of magnetism, because what matters is that they 

are not aligned, not which of the many, equivalent not-aligned states the system is in. And it is 

                                                 

13  i.e. the temperature above which a magnet ceases to be a magnet. The description here also 

simplifies and ignores various other phenomena (e.g. ferrimagnetisim), as these are not the author’s 

expertise. 
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important to note that the Ising model is not just an engineer’s approximation for sake of 

computational tractability, but rather has “given microscopic insight into the many body 

collective phenomena of phase transitions and [has] developed new areas of mathematics” 

(McCoy 2010). To be sure, it is precisely by ignoring individual spins that the model becomes 

exactly solvable under certain conditions. But it is also the model’s solvability that allows it to 

prove properties of phase transitions. Thus, it is not clear that a version of the Ising model which 

deterministically modeled each spin could be called a more “detailed” model, since that version 

of the model would lose the ability to prove anything. 

My argument then is that the specific electron spins in the Ising model are like the exact neural 

wiring in a theory of language: they are, in principle, distinguishable from a God’s eye (or 

Laplacian demon’s eye) perspective. That is, a given person’s brain or a given lump of iron 

may have one exact micro-level description at a given moment in time; but that exact 

description is not only irrelevant for the scientific theory, but in some cases actively unhelpful. 

Thus, it is misleading to characterize a theory of language or the Ising model as mere “sketches” 

with conveniently missing details to be filled in later, because it is only by removing irrelevant 

details that a causal account becomes possible in the first place.  This runs counter to Piccinini’s 

rigid distinction between models and explanations, with only the former depending on 

approximation, and only the latter potentially qualifying a system as actually computational. In 

scientific practice, all explanations are models to some extent, and some explanations 

presuppose approximation.  

Of course, Piccinini is correct when he notes that macro-level (or coarse-grained) theories 

should constrain micro-level theories (ch.5). And thus, linguistics and neuroscience (for 

example) could never be truly autonomous enterprises. But exploring the types of models 

presented in this volume generally entails a more complex interaction (e.g. causal emergence) 

than the sort allowed by Piccinini’s mechanistic account. 

This brings us to my second contention with Piccinini’s account. Namely that, in practice, it is 

not clear if the mechanistic account allows for prediction that could not follow from 

perspectival pancomputationalism. This is because, while Piccinini does propose a somewhat 

loose set of properties that might help identify which functional mechanisms can be properly 

called computational, in practice they are properties which have to be uncovered through the 

normal scientific method. Piccinini writes: 



 

40 

“A system X is a functional mechanism just in case it consists of a set of 

spatiotemporal components, the properties (causal powers) that contribute to the 

system’s teleological functions, and their organization, such that X possesses its 

capacities because of how X’s components and their properties are organized […] 

To identify the components, properties, and organization of a system, I defer to the 

relevant community of scientists.” (p.119) 

Consequently, Piccinini’s mechanistic account can only be distinguished from a perspectival 

account after the fact. That is, the mechanistic account presumes the existence of a community 

of researchers who have adopted a pragmatic form of perspectival pancomputationalism and 

are willing to apply computational models to any novel systems they discover. Over time, the 

community of researchers will converge on a set of conventions whereby certain systems are 

more profitably described as computational mechanisms, while others are not. At this point, the 

philosopher is free to declare the computational models as examples of explanation, and that 

the relevant systems have computation as their teleological function. My counter-argument is 

simply that it is not obvious what positing is gained by positing computation as a teleological 

function after the fact. The scientists’ standard heuristic of “is this mathematical analysis telling 

me anything?” seems to lead us to the same outcome. 

One could counter that, the scientific process is an iterative one, and therefore the process of 

discovery may continue even after one has declared a given system to be a computer. However, 

even then it is not clear what the categorization of a system as a “genuine computer” 

subsequently enables that the perspectival view does not. 

1.3.4.3 Why we can’t agree – a speculation 
For the reasons discussed so far, nothing in Piccinini’s arguments has motivated me to abandon 

my perspectival pancomputationalism, which I regard as a much weaker ontological 

commitment. Nonetheless, I agree with Piccinini that the general disagreement on the topic of 

pancomputationalism demands some form of explanation. For example, Piccinini begins his 

chapter on pancomputationalism with the following observation: 

“I have encountered two gut reactions to pancomputationalism: some philosophers 

find it obviously false, too silly to be worth refuting; others find it obviously true, 

too trivial to require a defense. Neither camp sees the need for this chapter. But 

neither camp seems aware of the other camp.” (2015:51) 
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I count myself in the second camp here - pancomputationalism seems obvious and attempts to 

refute it intuitively strike me as post-hoc avoidance of a non-issue. Nonetheless, Piccinini is 

correct that the sharp bifurcation of opinions on the matter suggests that something remains 

unresolved. My own suggestion here is that the disagreement arises from a failure to distinguish 

two slightly different things: computers-as-objects versus computation-as-mathematics. 

Computers-as-objects is a fuzzy, natural language category, which is defined by similarity to a 

prototypical computer-as-object - for example the laptop on which I am typing this sentence. If 

one implicitly derives one’s definition of computation from this category, then it seems 

strikingly obvious that planets and windows don’t belong in this category, and thus one is forced 

to conclude that something in the pancomputational line of reasoning is wrong, and so begins 

the search for a more selective definition of computation. 

However, if one accepts pancomputationalism then one has implicitly accepted that similarity 

to prototypical computers-as-objects is not the main criterion for whether a system can be 

described as computational. Instead, one is treating computation as a type of mathematics, and 

as such it seems reasonable to apply it as freely as one would any other mathematics. For 

example, consider the claim that a fair coin toss has a 50/50 chance of turning up heads. Surely 

no-one disputes this, and yet the scientific worldview supposes that we live in a deterministic 

universe - some Laplacian demon with an understanding of the forces involved could accurately 

predict outcome of a coin toss 100% of the time. Does this mean it is wrong to apply probability 

theory to a coin toss? Are statisticians mistaken for thinking that the world is non-deterministic 

when the reverse is true...? Probably not. A less radical interpretation is that probability is 

simply a powerful tool for understanding systems with an intractable number of variables and/or 

interactions14. It would be a bizarre kind of sophistry to insist that probability theory entails that 

coins possess a physics-defying, non-deterministic essence. By analogy then, we might simply 

say that computational analyses of complex systems are not actually claims about whether the 

system is a computer, just as a probabilistic analysis is not a claim that the system is 

probabilistic.  

Of course, this much is compatible with Piccinini’s notion of computational modelling: 

                                                 

14 Once you hit bedrock, all probabilities are epistemic in a Galilean universe. 
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“The computational descriptions play a role fully analogous to the role played by 

differential equations, diagrams and other modelling tools […] Just as being 

described by a system of differential equations does not entail being a systems of 

differential equations in any interesting sense, being described as a computing 

system in the present sense does not entail being a computing system in any deep 

sense...”(2015:64) 

This quote is perfectly in line with the probability example given above. However, Piccinini 

finishes the paragraph: 

“…So, computational descriptions in the present sense say nothing about whether 

something literally computes. They are not a basis for computational explanation 

in computer science or cognitive science.”(2015:64) 

And this is where my stance diverges with Piccinini’s – I’m simply not convinced that whether 

something literally computes is a useful distinction, in much the same way that probability 

theory does not need us to distinguish things which are literally probabilistic (i.e. nothing). 

As a rejoinder, one might contest that computation is special precisely because it is so intimately 

connected to the physical machines which implement it. However, computation is not the only 

branch of mathematics to be closely associated with its own canonical, non-Platonic 

implementation. One other potential example is the relationship between clocks and modular 

arithmetic (sometimes called clock arithmetic), which studies number systems which “wrap 

around” at some particular value. An analogue clock is the classic example of a modulo 12 

system, i.e., 12 o’clock plus 14 hours equals 2 o’clock (not 26 o’clock). But other systems are 

useful in other contexts, such as modulo prime systems for encryption, or modulo 2π for 

anything involving circles or sinusoidal functions.  

So, we could say that a digital computer is a canonical example of computation in the same 

sense that a clock is a canonical example of modular arithmetic. But of course, while it is true 

that some implicit understanding of modular arithmetic is a prerequisite for understanding 

clocks, there are also a great many cases where modular arithmetic can be applied to systems 

which are not clocks in any interesting sense (oscillations, cryptography, etc.). Indeed, at some 

banal level, everything can be given a trivial treatise in clock arithmetic, as is also true for 

probabilities and computations. However, to my knowledge, no one treats “panclockism” as a 
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serious problem to be avoided. That is, no one worries whether the application of clock 

arithmetic to a system is an implicit claim that the system is a type of clock. 

My proposal then, is that the difference between panclockism and pancomputationalism is a 

sociological one. That is, clocks and clock arithmetic are conventionally understood to be 

separate things in a way that computers and computation are not. Perhaps it is because the 

invention of sundials precedes modern modular arithmetic by several millennia, whereas 

computers-as-objects and computation-as-mathematics were effectively invented at the same 

time by largely the same people. If we allow ourselves a somewhat trite account of history: 

Turing developed his ideas largely as a response to the ongoing discussion about the foundation 

of mathematics and the limitations of formal systems (Eberbach et al 2004). He invented a 

hypothetical machine to prove a mathematical point. Of course, once the hypothetical machine 

existed, it made quite a lot of sense to turn them into actual machines. 

The solving of a mathematical problem by first envisioning a type of machine that solves that 

problem might well be unique to Turing, and this may explain why computers-as-objects and 

computation-as-mathematics are so intermingled in the popular imagination. However, I do not 

see that this justifies treating computation differently to other forms of mathematics. In the end, 

they are all potential tools in our toolbox. And for a system as complex as the mind/brain, we 

are likely to need every tool at our disposal. 

1.3.5 The PLN and Exemplar Theory 
Anecdotally, presentations of attractor networks to groups of phonologists have tended to elicit 

questions about Exemplar Theory (ET). In part this is because, like attractor models, ET also 

trucks heavily in the concept of emergent representations. However, there are some important 

differences between ET and the Phonological Latching Network (PLN) which prevent us from 

assuming a simple equivalence between the two. But first it is worth defining what is meant by 

ET. One recent definition is given in Frisch (2018): 

“Exemplar theory is a theory of the representation and processing of categories in 

which stimuli are processed by comparing them to a set of previous experiences 

stored in memory” 

Therefore, ET proposes that categories are emergent in the sense that they are not stored but 

rather computed on the fly from a large number of stored exemplars. This can be contrasted 
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with “categorical” or “abstractionist” theories, which assume that speakers store only the 

categories themselves (c.f. Krämer 2012). 

For a long time, ET and abstractionist theories of phonology were generally regarded as 

competitors. That is, it was assumed that phonological representations must be either abstract 

categories, or richly detailed episodic memories. Arguably ET’s strongest argument is its ability 

to deal with frequency effects, which are typically not expressible in abstractionist frameworks. 

This fact (amongst others) led some to conclude that abstractionist theories must be 

fundamentally incorrect (e.g. Bybee 1999). 

However, in recent years this antagonism has given way to a more conciliatory approach. For 

example, Pierrehumbert (2016) makes a strong case that both episodic and abstract 

phonological representations are necessary for a complete account of phonological behaviour. 

Amongst the pieces of evidence given in support of abstract representations, is the observation 

that type frequency, rather than token frequency, is more predictive of phonological behaviour 

in adults. And as Pierrehumbert notes: “Type frequency can only be defined by forming 

generalizations over an abstract phonological code, rather than directly over the surface 

realizations.” (p.11) 

This conciliatory approach adopted by Pierrehumbert was pre-empted by others, most 

relevantly Nguyen et al (2009), who cited attractor dynamics as a way of breaking the apparent 

deadlock between exemplar and abstract models of phonology. In addition to reviewing 

evidence for both episodic and abstract phonological representations, Nguyen et al also argue 

that point-attractors exhibit the crucial property of chopping up (or quantizing) a continuous 

space into a set of quasi-discrete categories. To a first approximation at least, this seems like a 

plausible mechanism for incorporating both fine-detailed episodic memories and abstract 

categories into the same system. 

So, given that the PLN exploits point-attractors as memories, does this mean that the PLN is 

also a way incorporating both episodic and abstract representations? The answer is “no”, or at 

least “not quite”. In the PLN there are no exemplars to speak of - the system is moving through 

a small set of quasi-discrete attractor basins, which are understood to represent phonological 

categories (i.e. phones). And although the system does exploit the continuity of the state space 

in order to encode similarities or relationships between those phones, there is nothing we can 
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point to in the system as a kind of exemplar. In one sense then, the PLN is closer to an 

abstractionist theory, because what it stores are categories and the relationships between them.  

Nevertheless, this observation does not entail that the PLN is necessarily at odds with ET either, 

because the PLN itself provides no strong prediction as to how the attractors in the system came 

to be. In isolation, the model is ambivalent as to whether the attractors are genetically specified 

or the result of repeated exposure to stimuli (or both, or something else entirely). This is relevant 

in light of recent work by Boboeva et al (2018), which allows us a tantalizing speculation as to 

how the PLN could be reconciled with a dualistic architecture that incorporates both episodic 

and abstract representations. Specifically, they studied the behaviour of Potts networks under 

very high memory load, i.e., networks where the number of memories is too great for the 

network to be able to reliably retrieve all of them. In these contexts, when the network fails to 

retrieve a cued memory, it tends to instead retrieve a similar memory which shares some (but 

not all) of the properties of the cued memory. Simplifying the results of Boboeva et al 

somewhat, this means that, under certain conditions, a high-load network causes related 

memories to cluster together, in the sense that the network loses the ability to distinguish among 

the memories in the cluster, but can still distinguish the cluster itself from other clusters. Thus, 

this spontaneous clustering presents a general mechanism for the emergence of categories from 

episodic memories. However, it should be emphasized that, because of the clustering, the 

episodic details are largely lost in the high-load network. Thus, it is ultimately the newly 

emerged categories which would drive subsequent latching behaviour in the network. This 

entails that if the lost episodic details are to have any role in cognitive behaviour, then they 

must simultaneously be stored in a lower-load network. To put this in context, it is quite 

conceivable that the memories in the PLN could be the result of such spontaneous clustering, 

in which case the PLN itself would represent only the abstract portion of phonological memory. 

Episodic details would ultimately have to be stored elsewhere (e.g. the lexicon). 

This story is quite congruent with the view expressed by Pierrehumbert (2016), that both 

episodic and abstract representations play a role in phonological behaviour. Moreover, 

Pierrehumbert’s observation that token frequency is critical for pre-lexical infants, while type 

frequency is critical for adults, seems to fit the general story implied by Boboeva et al’s 

findings, namely that children would first learn large amounts of episodic speech information, 

before consolidating that information into more abstract phonological categories, such as the 

categories in the PLN. This general hypothesis could provide an interesting avenue for future 

research using theoretical models such as the PLN. 
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“Our theoretical objective is not dependent on the assumptions fitting exactly. It is 

a familiar stratagem of science, when faced with a body of data too complex to be 

mastered as a whole, to select some limited domain of experiences, some simple 

situations, and to undertake to construct a model to fit these at least approximately. 

Having set up such a model, the next step is to seek a thorough understanding of 

the model itself. It is not to be expected that all features of the model will be equally 

pertinent to the reality from which the model was extracted. But after understanding 

the model, one is in a better position to see how to modify or adapt it to fit the 

limited data better or to fit a wider body of data and when to seek some 

fundamentally different kind of explanation.” 

(Kleene 1956 [1951]) 
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2 The Phonological Latching Network 

Joe Collins 

2.1 Introduction 
As noted the introductory chapter, the overarching assumption of this volume is that an attractor 

neural network can function as a Linking Hypothesis (Poeppel & Embick 2005) for linguistics 

and neuroscience. The model under examination here, the Phonological Latching Network 

(PLN), represents an attempted first step towards such a model. In its nascent form, it is 

necessarily an incomplete model of phonological grammar. It has no notion of lexical items, 

suprasegmental phenomena, or even a distinction between underlying and surface forms. 

Nonetheless, it does demonstrate how quintessentially phonological phenomena, such as 

assimilation, the Sonority Sequencing Principle (e.g. Clements 1990), and the Obligatory 

Contour Principle (e.g. McCarthy 1986), can emerge spontaneously from a relatively simple 

form of neural coding and memory retrieval. 

2.2 Background and Outline of the Model 
The PLN is a type of attractor network, similar to the Hopfield network (Hopfield 1982). This 

means that it stores memories as asymptotically stable states, which the network “self-

organises” towards. However, most Hopfield-like ANNs have relatively simple dynamic 

properties: once switched on, the network will begin rearranging itself into the closest attractor 

state, where it will remain until the simulation is switched off. This limited degree of complexity 

has proven sufficient for investigating certain aspects of perception (e.g. Nasrabadi and Choo 

1992) and memory capacity (e.g. Tsodyks and Feigelman 1988). However, it is clearly 

inadequate for modelling natural language grammar, which requires (minimally) the ability to 

define relationships between discrete elements. 

Latching networks can be understood as an attempt to introduce between-element dynamics 

into an attractor network. Fundamentally, they behave like a Hopfield network, with the 

additional property that once an attractor state has been reached; the network begins to “latch” 

into a different attractor basin. Thus, the network can produce strings of discrete elements, 

which exhibit a kind of inherent grammar. 

The latching dynamics themselves emerge from the introduction of a “fatigue” function (i.e. 

adaptation or inhibition) to active units, which means that attractor states become increasingly 
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unstable once reached. This is what causes the network to latch into a different, nearby attractor, 

and ultimately places restrictions on what kinds of strings the network can produce. 

2.2.1 The Potts Unit 
The notion of fatigue in a latching network requires that individual units have an inactive state. 

Thus, the model differs from the binary-unit Hopfield network in being comprised of multi-

state (or “Potts”) units. As in the case of the Hopfield network, single unit dynamics can be 

modelled using a rule based on heat bath dynamics (Treves 2005; Kanter 1988). These 

dynamics can be conceptualized as something akin to a compass needle being pulled in different 

directions by the various inputs received from other units in the network. The number of 

different directions in which the needle can be pulled is determined by the parameter S , which 

is typically in the order of 5 to 9, with one extra direction for the inactive state.  Therefore, the 

state of a given Potts unit i is a probability vector of S+1 components, denoted below by 𝜎𝑖
𝑘 for 

the active states, and 𝜎𝑖
0 for the null-state.  

At time t, the value for each active state k of any given unit i is given by the equation: 

𝜎𝑖
𝑘(𝑡) =

𝑒𝑥𝑝[𝛽𝑟𝑖
𝑘(𝑡)]

∑ 𝑒𝑥𝑝[𝛽𝑟𝑖
𝑙(𝑡)]+𝑒𝑥𝑝[𝛽(𝜃𝑖

0(𝑡)+𝑈)]𝑆
𝑙=1

   ( 1 ) 

Where r is dynamic input variable, β is the global noise parameter, and U is a global parameter 

determining input to the inactive state. The time dependent thresholds for each state of each 

unit are given by the vector θi, which also has S+1 components denoted by 𝜃𝑖
𝑘 for the active-

state thresholds, and 𝜃𝑖
0 for the null-state threshold. 

Complimenting eqn 1, the value for the inactive state at time t is given by: 

𝜎𝑖
0(𝑡) =

𝑒𝑥𝑝[𝛽(𝜃𝑖
0

𝑖

𝑘
(𝑡)+𝑈)]

∑ 𝑒𝑥𝑝[𝛽𝑟𝑖
𝑙(𝑡)]+𝑒𝑥𝑝[𝛽(𝜃𝑖

0(𝑡)+𝑈)]𝑆
𝑙=1

   ( 2 ) 

Calculating the values for 𝜎𝑖
  at time t requires first determining both the values for the dynamic 

thresholds  𝜃𝑖  and the input variables 𝑟𝑖 , which are linked through a system of differential 

equations (eqns. 3,4, and 5). 

Firstly, the dynamic thresholds for the active-states are calculated from the current state of 𝜎𝑖: 

𝜏2
𝑑𝜃𝑖

𝑘(𝑡)

𝑑𝑡
= 𝜎𝑖

𝑘(𝑡) − 𝜃𝑖
𝑘(𝑡)     ( 3 ) 
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As the level of activation of a given state, k, in 𝜎𝑖  increases, so too will the corresponding 

threshold in 𝜃𝑖, modulated by the coefficient 𝜏2, which is a global parameter controlling the 

rate of active-state fatigue (or adaptation). 

The dynamic threshold for the null-state is given by: 

𝜏3
𝑑𝜃𝑖

0(𝑡)

𝑑𝑡
= ∑ 𝜎𝑖

𝑘(𝑡)𝑆
𝑘=1 − 𝜃𝑖

0(𝑡)    ( 4 ) 

Therefore, 𝜃𝑖
0 increases relative to the sum of all active-states in 𝜎𝑖, modulated by the global 

parameter 𝜏3. 

Note that 𝜃𝑖
0  and 𝜃𝑖

𝑘  (and their respective parameters 𝜏3  and 𝜏2) are intended to model two 

different forms of fatigue over two different timescales. While 𝜏2  is typically assumed to 

represent the rate of short-term depression in synapses, 𝜏3 is assumed to represent the rate of 

slow inhibition within a cortical patch. 

Finally, once the dynamic thresholds for unit i at time t are known, the input variables 𝑟𝑖
𝑘, can 

be calculated with respect to the local field ℎ𝑖
𝑘: 

𝜏1
𝑑𝑟𝑖

𝑘(𝑡)

𝑑𝑡
= ℎ𝑖

𝑘(𝑡) − 𝜃𝑖
𝑘(𝑡) − 𝑟𝑖

𝑘(𝑡)    ( 5 ) 

The local field for each state at time t is defined as the summed influence of presynaptic units, 

added to a local feedback term with the coefficient w: 

ℎ𝑖
𝑘(𝑡) = ∑ ∑ 𝐽𝑖𝑗

𝑘𝑙𝜎𝑗
𝑙(𝑡) + 𝑤(𝜎𝑖

𝑘(𝑡) − 1

𝑆
∑ 𝜎𝑖

𝑙(𝑡)𝑆
𝑙=1 )𝑆

𝑙=1
𝑁
𝑖≠𝑗   ( 6 )

 

Where 𝐽𝑖𝑗
𝑘𝑙 denotes the connection strength between state k of unit i and state l of unit j (see 

2.2.3.1 for explanation of how connections strengths are determined). 

Under the standard interpretation, each Potts unit is an effective model for a smaller attractor 

network (Naim 2017). Therefore, the w-term is intended to subsume the internal dynamics of 

each cortical patch. Using the compass needle analogy, it can be thought of as giving the 

compass needle an extra push towards whichever direction it is currently closest too. 
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2.2.2 Latching Dynamics 
The relationship between fatigue on individual units and the emergence of latching dynamics 

is relatively transparent: an attractor state simply can’t be maintained once the active units start 

switching off. What is less transparent however, is the rich complexity of the latching dynamics 

themselves. 

In one sense, a latching network obeys the same principle of minimizing free-energy that all 

attractor networks obey, i.e. it “rolls into the valley” (Error! Reference source not found.). 

The additional complexity arises from the fact the free-energy of any given network state is 

continuously changing as the fatigue rises and declines on individual units. In other words, the 

attractor landscape itself is constantly shifting. What was “downhill” at one moment in time 

can become “uphill” the next. The sheer mathematical complexity of these dynamics means 

that attempting to give a deterministic account of why one attractor latches into another is, 

although theoretically possible, massively intractable in practice. 

For this reason, latching dynamics have more commonly been analysed probabilistically, e.g. 

what determines the probability of a latch between any two attractors? This is still a non-trivial 

problem, but in general terms we can state that the probability of a latch between any two given 

attractors in the network depends on the overlap in the representations of those attractors (Russo 

& Treves 2012; Kang et al. 2017).  The notion of “overlap” here has two dimensions: Firstly, 

how many active units do the two attractor states share? Secondly, how many of those shared 

units are in the same unit state? The interaction between these two types of overlap is quite 

complex, owing to the fact that they are governed by slightly different fatigue effects. The 

fatigue on individual unit states is controlled by the parameter τ2, while the fatigue on whole 

units is controlled by the parameter τ3 . In the case where τ2<<τ3, an individual unit state will 

fatigue long before the unit itself begins to switch off (i.e. enter its inactive state). Thus, the 

degree of fatigue of an individual unit can bias the target of a latch in several ways: If a given 

unit is not fatigued, then the network will prefer to latch into an attractor in which that unit is 

both active and remains in the same unit state. However, if an individual unit state is fatigued, 

but not the whole unit, then the network might prefer to latch into an attractor in which the unit 

is active but in a different state. Finally, if the unit itself is fatigued, then it will begin to enter 

to switch off and the network will prefer to latch into an attractor in which that unit is inactive.  

The resulting global dynamics produces distinct “latching bands” in the degree of overlap 

between attractors: for some degrees of overlap, a latch will be highly probable, while for other 
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it will be impossible (Russo & Treves 2012). If we allow ourselves a rhetorical simplification, 

we could say that the latching obeys a Goldilocks-principle; preferring to latch between 

memories which are neither too similar nor too dissimilar. In this sense a latching network 

always has an inherent grammar to it, since encoding multiple attractors in the network will 

always produce varying degrees of overlap between those attractors. Thus, a given latching 

network typically cannot produce all possible permutations of the memories represented by its 

attractors, but only a subset. 

Finally, although the description of latching dynamics given so far only considers the 

probability of a latch between any two attractors, it should not be inferred that the network 

behaves like a finite-state machine. A latching network typically does exhibit long distance 

effects. This is a consequence of two facts: Firstly, the recovery time of a fatigued unit will 

typically be longer than a single latch. Thus, even if a given unit is inactive in the current 

attractor, it may still be fatigued from some earlier activation, and thus be less inclined to switch 

on again for the next latch. Secondly, in practice the retrieval of a memory is not actually 

understood as reaching one specific attractor state, but rather as passing through that state’s 

basin of attraction. This means that there are very many network states that would all be 

interpreted as a retrieval of the same memory, and each of these network states can behave 

differently in terms of where they would prefer to latch next.  

When viewed from the macro-level then, the behaviour of the network might seem quite 

opaque: a single memory (or attractor basin) can produce a latch to one of many different 

targets, for reasons which are only apparent when viewed from the micro-level. This typically 

precludes reducing the global behaviour of the network to that of a deterministic automaton15.  

Despite this, it is nonetheless possible to uncover distinct tendencies or biases in the strings 

produced by latching, when using probabilistic methods. As we shall see, the Goldilocks 

behaviour of the network can be seen to give rise to common phonological processes such as 

place assimilation and the Obligatory Contour Principle (OCP), while the slower cycles of 

fatigue can reproduce a kind of Sonority Sequencing Principle (SSP). 

                                                 

15 This does not entail that no configuration of a latching network can reproduce some level of complexity 

on the Chomsky hierarchy;; this ultimately remains to be seen. 
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2.2.3 Constructing a Neurologically Plausible Model 
Unlike many ANNs, the Potts units of the latching network do not strive to model individual 

synapses, firing rates or action potentials.  Rather they can be thought of as an effective, or 

“grey box”, model, where certain details are subsumed into a system of differential equations. 

For this reason, a Potts model is as much a theoretical model of specific system dynamics, as it 

is a model of neurological reality. Indeed, while many aspects of the latching model are 

intended to capture known facts about neural function, the exact neural implementation of a 

Potts unit is somewhat open to interpretation16. Under the standard view, each Potts unit is an 

effective model for small patches of cortex. The active states of each unit represent different 

local attractors in each patch, while the self-reinforcement term represents the internal attractor 

dynamics of the patch. Then the behaviour of the network as a whole is taken to model global 

dynamics between relatively distant areas of the cortex (Naim et al. 2017). This standard view 

of a Potts network seems well suited to modelling language, which is known to be a widely 

distributed cognitive faculty (see e.g. Hickok & Poeppel 2007). 

The PLN is intended to model the representation of phonological information in the cortex. 

While a great deal is still unknown on this topic, recent ECoG studies have uncovered a striking 

degree of congruence between phonological representations in the cortex and the abstract, 

discrete features employed by linguists to explain the behaviour of phonological grammars 

(Bouchard et al, 2013; Mesgarani et al. 2014).  Specifically, these studies uncovered the 

existence of small patches of cortex which are highly sensitive to specific phonological features. 

Moreover, they found a spatial asymmetry between manner and place features, with manner 

features being distinguished more strongly in the Superior Temporal Gyrus (STG), and place 

features being distinguished more strongly in the ventral Sensorimotor Cortex (vSMC). 

Similarly, both experimental results and theoretical modelling have suggested that phase 

coupling between these areas may form a critical component of the phonological capacity 

(Assaneo and Poeppel 2018). 

These findings suggest three relevant criteria for the structure of the PLN: Firstly, the network 

should be split into two sub-networks: an auditory sub-network for manner features, and a 

                                                 

16 In Marrian terms (e.g. Marr & Poggio 1973), if the linguistic model is the Computational level, then the 

latching network is the Algorithmic level, while the Implementational level would be occupied by some 

exact neural model of the Potts units. 
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motor sub-network for place features, and that production should arise from synchronous 

activity between these areas. Secondly, phonological similarity between phones should be 

captured in terms of shared units in the network (i.e. shared patches of cortex), such that the 

Goldilocks-principle is acting over phonological properties.  Finally, the congruity between the 

ECoG studies and phonological theory suggests that the representations themselves could be 

constructed using abstract phonological features as a guide. 

2.2.3.1 Building Phones 
Unlike neural networks typically employed in machine learning and connectionist frameworks, 

the PLN is not subject to any form of supervised learning. Rather, the patterns of activity which 

represent memories are generated algorithmically by the experimenter, and then encoded in the 

connections between units using a simple Hebb-like rule. 

Because the memories in the PLN are intended to represent phones, the algorithm for memory 

generation in the PLN works from a given phoneme inventory, which is formally defined in 

terms of a relevant set of phonological features (see Appendix: Parameters and phonological 

inventory). Broadly, each of the features is defined as a random pattern of activity. These 

patterns can then be combined into phones, following the definitions in the phoneme inventory. 

The process for combining features is a competitive one, whereby the individual features are 

used as competing “suggestions” for the final phone. Contradictions between suggestions are 

resolved by weighting individual features, such that only the strongest suggestions for each unit 

will contribute to the phone representation. 

The same features are used in both the auditory and manner sub-networks, and the asymmetry 

is achieved by reversing the weighting of those features. So, the auditory network 

representations are generated with heavily weighted manner features and weakly weighted 

place features, and vice-versa for the motor sub-network. 

The phone inventory is loosely derived from English phonology, with the important caveat that 

there are no minimal pairs based on voicing distinction. The large number of features means 

that phones are redundantly over-specified, as otherwise the algorithm tended to produce 

phones with excessive overlap. Slowly adding redundant features to the inventory was a way 

of overcoming this problem. However, it should be noted that some information is lost during 

phone creation, so not all the features should not be regarded as playing a role in the behaviour 

of the system (by extension, the PLN should not be interpreted as for or against any particular 

theory of phonological features). 
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The process for generating representations in the PLN will now be described in detail. First, 

each phone µ is formally defined as a set of M features: 

𝜇 ∶= {𝜑1
𝜇

, 𝜑2
𝜇

, … , 𝜑𝑀
𝜇

}     ( 7 ) 

The notation 𝜑𝜇 indicates that feature 𝜑 is a member of phone µ. 

The features defining a given phone are, in principle, unordered. However, the process for 

generating phones requires two different orderings of the features in µ (one for each sub-

network). 

A sub-network is defined as a pool of units and is denoted by Q, which in the PLN can take 

the value mot or aud. Any given unit in the network, i, is assigned membership to one, and 

only one, of the pools. The two pools contain the same number of units: N/2. 

The auditory and motor components of each phone are defined as ordered tuples of all elements 

in µ.  

𝜇𝑄 ≔ 𝜑1
𝜇𝑄

, … , 𝜑𝑚
𝜇𝑄

, … , 𝜑𝑀
𝜇𝑄

     ( 8 ) 

The order is always derived from the inventory on page . Also note that 𝜇𝑎𝑢𝑑  and 𝜇𝑚𝑜𝑡 

always contain the same elements, but in the reverse order, i.e., the relationship always holds 

that 𝜑𝑚
𝜇𝑚𝑜𝑡

= 𝜑𝑀−𝑚+1
𝜇𝑎𝑢𝑑

. 

The function W assigns a weight to each feature, with respect to its position in 𝜇𝑄, such that: 

𝑊(𝜑 
𝜇𝑄

) = ℯ
𝑞(𝑚−1)

𝑀−1
 
     ( 9 ) 

Where m is the index of feature 𝜑 in 𝜇𝑄, M is the total number of features in 𝜇𝑄, and q is a 

global parameter used to control the cumulative influence of lowly weighted features (the 

smaller the value of q, the greater the influence of the lower weighted features).  

The result of the function W is that the weightings of the features in 𝜇𝑄  fall along a logarithmic 

scale between 1 (when m=1) and ℯ𝑞 (when m=M). 

The weightings from W are used to determine the actual representations for a phone. 
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First, the representation for phone 𝜇 in pool Q is denoted as 𝜉𝜇𝑄
, which is defined as a tuple 

whose components represent the units in pool Q, and can take a value from 0 to S. 

𝜉𝜇𝑄
∶= 𝜉1

𝜇𝑄

, … , 𝜉𝑖
𝜇𝑄

, … , 𝜉𝑁

2

𝜇𝑄

     ( 10 ) 

The final representation for a given phone will simply be the concatenation of the two pools: 

𝜉𝜇: = (𝜉𝜇𝑚𝑜𝑡
, 𝜉𝜇𝑎𝑢𝑑

). 

Generating the representations for phones depends on the representations for individual 

features. Each of the features in the phoneme inventory is defined as a hypothetical network 

state within each sub-network which, following Pirmoradian and Treves (2012), are generated 

using sparse17 patterns of noise. The random noise pattern representing a feature 𝜑 is indicated 

as 𝜉𝜑, where, again, each element takes a value between 0 and S. 

𝜉𝜑 ∶= 𝜉1
𝜑

, … , 𝜉𝑖
𝜑

, … , 𝜉𝑁

2

𝜑
     ( 11 ) 

Crucially, the patterns for features are uncorrelated with one another, i.e. they should be 

approximately equally dissimilar. 

Additionally, the sparsity of these patterns is enforced by the parameter 𝑎𝑓𝑒𝑎𝑡, which represents 

the probability that the value of any component 𝜉𝑖
𝜑

 is non-zero. In practice, the value of 𝑎𝑓𝑒𝑎𝑡 

is typically lower than the value of a, the sparsity of the phones. This ensures that no phone can 

be dominated by a single feature. 

Note that any given feature pattern, 𝜉𝜑, is constant for all phones and all pools. Features vary 

only in terms of their membership in µ and weighting in 𝜇𝑄. Also note that each feature pattern 

is only defined over half the total units of the network. This is because, in principle, each feature 

appears in both the auditory and motor sub-networks. 

                                                 

17 i.e. only a small subset of units are active 
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As well as the patterns representing phonological features, each phone also has a corresponding 

“noise” feature, 𝒩, which is introduced as a means of preventing excessive overlap between 

phones. The noise feature is similarly defined: 

𝜉 
𝒩 ≔  𝜉1

𝒩 , … , 𝜉𝑖
𝒩 , … , 𝜉𝑁/2

𝒩
    ( 12 ) 

Having defined and generated all the relevant feature representations, the final value of any unit 

in 𝜉𝜇𝑄
 is set to the value of k (between 0 and S) which carries the highest weight, from W, which 

is summed over all features in phone µ. 

𝜉𝑖
𝜇𝑄

= arg max
1≤𝑘≤𝑆

∑ 𝛿𝜉𝑖
𝜑

𝑘
 
𝜑∈𝜇  𝑊(𝜑 

𝜇𝑄
) + 𝑝𝑒𝑞𝛿𝜉𝑖

𝒩𝑘  ( 13 ) 

The Kronecker delta is a function which equals 1 when its arguments are the same, but 0 

otherwise. The last term represents the influence of each phones’ unique noise feature, 𝒩, 

where p is a global parameter used to control the influence of all noise features. Note that if 

p=1, then the weight of the noise feature will be equal to the weight of the strongest feature in 

𝜇𝑄. High values of p (greater than 1), were found to be useful for maintaining an optimum 

degree of overlap between representations. 

Additionally, the sparsity of the representations is maintained by assigning a value of 0 to those 

units whose weighted suggestion falls below some threshold. The value of this threshold 

depends on the sparsity parameter a, such that only the aN/2 strongest suggestions in 𝜉𝜇𝑄
 are 

non-zero. 

Having generated the representations for each phone, the patterns are encoded in the weight 

matrix as attractors using a Hebb-rule. Each phone μ suggests a connection strength J between 

state k of unit i and state l of unit j, which is given by the rule in:  

𝐽𝑖𝑗
𝑘𝑙(𝜇) = (𝛿𝜉𝑖

𝜇
𝑘 − 𝑎

𝑆
)(𝛿𝜉𝑗

𝜇
𝑙 − 𝑎

𝑆
)(1 − 𝛿𝑘 0)(1 − 𝛿𝑙 0)  ( 14 ) 

Here, as before, the Kronecker delta’s output is 1 when the two arguments are equal, and is 0 

otherwise. Therefore, in a pattern, 𝜉𝜇, if unit i is in state k and unit j is in state l, where k=l, then 

the connection will be positive (excitatory), else the connection will be negative (inhibitory). 

The last two factors ensure there are no connections to/from units in the null state (if k or l equal 

0). 
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The final value for each connection is determined by summing over all memories in the 

network, and multiplying by a normalization factor:  

𝐽𝑖𝑗
𝑘𝑙 =

𝑐𝑖𝑗

𝐶𝑎(1−𝑎
𝑆

)
∑ 𝐽𝑖𝑗

𝑘𝑙(𝜇) 
∀𝜇     ( 15 ) 

Where 𝑐𝑖𝑗 is set to 1 when i and j share a connection and is 0 otherwise. This value is normalized 

by C, the average number of connections per unit, and a, the sparsity parameter. 

The probability that they share a connection is defined by the variable cint if i and j are both in 

the same sub-network, or cext if they are not: 

𝐹𝑜𝑟 𝑄 ≠ 𝑅, 𝑐𝑖𝑗
𝑄𝑅 = {

 
 
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑒𝑥𝑡

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑐𝑒𝑥𝑡)
 

𝐹𝑜𝑟 𝑄 = 𝑅, 𝑐𝑖𝑗
𝑄𝑅 = {

 
 
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑖𝑛𝑡

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑐𝑖𝑛𝑡)
 

 This process is intended to ensure that the similarity between the representations of phones in 

the PLN correlates strongly with their phonological similarity, as is given by the feature 

definitions in the phoneme inventory. We can see evidence of the non-random structure of the 

PLN memories, shown in Figure 3. Here we can see that, in general, the more units two 

memories in the PLN share, the more likely it is that those shared units are in the same Potts 

state. This implies that overlap between representations is a consequence of shared features 

which suggest specific Potts states for individual units. 
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Figure 3:Overlap of memories produced by feature super-position. The size of each circle indicates the total number 
of attested transitions between the two memories during the simulations. 

2.3 Analysis of PLN Behaviour 
Because the process of generating features depends heavily on randomization, it is possible to 

generate multiple weight matrices for the same phoneme inventory which have different 

latching properties (i.e. they produce different grammars). 

Using the same phoneme inventory (see appendix), the latching strings from 125 trials, 

representing 8 different grammars, were collected into a corpus containing a total of 464 

individual phoneme transitions. This was found to be large enough to allow statistical 

generalization, but small enough that all latching transitions could be manually checked for 

network pathologies (failed retrievals, mixed states, etc). Only strings which exhibited no 

obvious pathologies were included in the corpus. All strings were between 2 and 8 segments 

long, with an average length of 4.7 segments. Strings were generated by placing the network 

into a state which matched a 50% memory retrieval, and allowing it to run for 400 time steps. 

The strings were assessed for evidence of assimilation, OCP and SSP. The rate at which these 

phenomena occur was then compared to chance level, i.e. a grammar in which the probability 

of a transition between any two phones is the same for all phones in the inventory. The extent 
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to which the PLN grammars deviate from chance level can be taken as evidence of whether 

these processes are inherent to the PLN. 

 

Figure 4: Example of a latching string 

2.3.1 Segmental-OCP 
In its general form, the Obligatory Contour Principle (OCP) requires that there be some 

minimum degree of difference between adjacent objects. In relation to segmental phonology, 

this can be interpreted in two different ways: firstly, it can mean that the same phone cannot 

surface twice in a row, or secondly, that adjacent segments cannot be similar with regards to 

some featural specification (McCarthy 1986). 

This first sense of segmental-OCP is a trivial property of the PLN, since the latching dynamics 

are driven specifically by an active memory becoming unstable. There is simply no way the 

network could latch out of, and immediately back into, the same memory. The simulations 

confirmed this, with phone repetitions exhibited in exactly 0% of the recorded transitions. 

The PLN also seems to exhibit something closer to the second definition of segmental-OCP. 

For example, there were no recorded examples of a transition between /s/ and /ʃ/, suggesting 

that the network has reproduced something like the OCP-driven epenthesis seen in English 

plurals and possessives (e.g. bu[ʃ] -> bu[ʃəz] etc.). However, one grammar did spontaneously 

produce the string [kŋut͡ ʃsθu], where the transition from /t͡ ʃ/ to /s/ would normally be seen as an 

OCP violation in the context of English phonology. 

A closer examination of the representation overlap of these phones reveals the important 

difference. Firstly, the total percentage of shared units between /s/ and /ʃ/ in this grammar is 
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much higher (31.2%) than /s/ and /t͡ ʃ/ (22.4%). And secondly, of those shared units, a much 

higher percentage are in the same Potts state when comparing /s/ to /ʃ/ (50%) than /s/ and /t͡ ʃ/ 

(28%). This supports the hypothesis the absence of /s/->/ʃ/transitions in the PLN is an OCP 

effect, while /s/ and /t͡ ʃ/ are dissimilar enough to fall within the “Goldilocks” zone. 

 

Figure 5: The /θ/ and /t/ phones are similar in both their manner and place of articulation, but are still a possible 
transition for the PLN. 

2.3.2 Assimilation 
Processes in which segments become more similar to their neighbours – in terms of their feature 

specification – are extremely common cross linguistically (cite). With the PLN, a transition was 

counted as an instance of assimilation if the two phones shared a feature, as defined by the 

inventory in the appendix  An example of this is shown in Figure 6. 

 

Figure 6: The /f/ and /u/ share the feature [round], so the first transition is interpreted as an instance of place 

assimilation. 
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2.3.2.1 Place 
Transitions exhibiting place assimilation were found in 244 (52.6%) transitions, which is  

slightly above the chance rate (44%). However, the picture becomes more interesting when we 

break down the assimilation probabilities for each feature. As we can see in Table 1, the features 

HIGH, EXTERIOR, LABIAL, VELAR and ALVEOLAR appear to assimilate at above chance 

rate, while the others assimilate below chance rate. 

Feature Assimilation % Baseline % 

High 3.66 1.7 

Low 1.08 4.73 

Front 3.45 6.8 

Exterior 35.34 18.9 

Labial 15.73 6.8 

Dorsal 2.16 6.8 

Coronal 9.27 12.1 

Velar 2.59 0.76 

Glottal 0.22 0.76 

Anterior 0.65 1.7 

Alveolar 6.03 4.73 

Post-alveolar 0.43 0.76 

Table 1: Place assimilation probabilities by feature, ordered from strongest weight in motor sub-network (HIGH) to 
lowest (POST-ALVEOLAR). 

These numbers suggest that only some of the features are participating in assimilation. This is 

arguably a welcome result, since natural phonological grammars typically only exhibit 

assimilation for one or, at most, a few place features. 
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However, these numbers alone do not immediately inform us of why some features participate 

in assimilation, but not others. This picture is further complicated by the fact that not all of 

these features are independent. In cases where the phones delineated by one feature are a strict 

subset of the phones delineated by another feature (e.g. all labials are also exterior, etc.), then 

a purly statistical method doesn’t allow us to determine which feature is decisive for causing 

assimilation. 

We can partially circumvent this problem by comparing mutally exlusive pairs of features, e.g., 

HIGH vs LOW, LABIAL vs CORONAL, and ALVEOLAR vs POST-ALVEOLAR. Each 

phone may have, at most, one of the features from each of these pairs. 

Looking at Table 1, we can see that within each pair, it is the feature with the highest weight 

during phone generation (section 2.2.3.1) which appears to assimilate at above chance rate, 

while the feature with the lower weight assimilates at a below chance weight. 

This gives us some indication that the relative weighting of features during phone creation plays 

a role in determining assimilation in the emergent grammar. Intuitively, this makes sense 

insofar as features with heavier weights will “suggest” more unit states for the final 

representation of each phone. Therefore, the heavier the weight of a feature, the more overlap 

we should expect between any two phones which share that feature, and the greater the 

probabilty that the network will prefer to latch between them. 

2.3.2.2 Manner 
The random baseline for manner assimilation is much higher at 81.1%, owing to the smaller 

number of manner features, and the larger number of individual phones delimited by each 

manner feature. The actual rate of manner assimilation within the network is, again, slightly 

above chance at 89.4%. 

Similar to place features, we also see a difference between individual manner features: 
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Feature Assimilation % Baseline % 

Approximant 0.22 2.01 

Continuant 76.29 54.63 

Nasal 3.01 1.7 

Sonorant 61.42 31.94 

Vocalic 17.89 7.05 

Consonantal 26.5 37.05 

That the CONTINUANT and NASAL features exhibit assimilation is broadly in keeping with 

the phonological literature (e.g. intervocalic spirantization and vowel nasalization). More 

surprising, perhaps, is the apparent assimilation of the features SONORANT and VOCALIC, 

which are typically not thought to spread or assimilate (see e.g. Clements & Hume 1995 where 

these features appear on the root node). However, this can actually be explained as an effect of 

the sonority sequencing effect in the network (see sections 2.3.3), whereby the network tends 

to slowly oscilate between greater and lesser sonority. Since the features SONORANT and 

VOCALIC are the main delineators between degrees of sonority, the sonority sequencing will 

naturally cause phones with these features to cluster together, rather than being even distributed. 

Thus, the statistical effect needn’t be regarded as a consequence of spreading or assimilation 

per se, but rather of sonority sequencing. 

2.3.3 Sonority Sequencing Principle 
The Sonority Sequencing Principle (SSP) refers to the tendency for sonority to follow a 

monotonically rising-then-falling pattern across a single syllable. Arguably, this forms the very 

definition of a syllable: it is a sonority peak (Clements 1990). For this reason, the SSP represents 

a good measure for the “naturalness” of the strings produced by the PLN. For example, strings 

which neatly transition between consonants and vowels could be regarded as more natural than 

strings which consist only of stops. 

Unlike the other measures, the extent to which the network obeys sonority sequencing is defined 

in relation to whole syllables, not individual transitions. And since the PLN does not itself 

process any information relating to syllable structure, the experimenter must parse the strings 
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into syllables manually. This requirement presents the basis for a simple metric for 

approximating the model’s preference for strings which obey SSP. Specifically, each string 

produced by the PLN is given the best possible parse according to the SSP. The string is then 

assigned a value from the sonority scale (Table 2), according to the least sonorant nucleus 

required when parsing (Table 3).  

Table 2: Sonority scale 

Vowels Glides Liquids Nasals Obstruents 

0 1 2 3 4 

 

Note that this method ignores syllable plateaus and size of the sonority “jump” between 

adjacent segments. Some examples of how these scores would be assigned to example strings 

are given in the table below: 

Table 3: Example sonority scores 

String Syllable parse Least Son. Nuc. Sonority Score 

“ʃ l o” ʃlo o 0 

“l ʃ o” l. ʃo l 2 

“θ n æ l p f” θnælpf æ 0 

“θ n æ l p f m” θnæl.pfm m 3 

Once every string in the database has been assigned a sonority score, the mean score (across all 

strings) is compared to a random baseline, whose sonority sequencing score has been computed 

for strings of length 3, 4, 5, 6, 718. The sonority scores for different string lengths, both from 

the PLN and the baseline, are given in the figure below: 

                                                 

18 Note that the SonSeq score worsens (increases) as the strings lengthen by simple virtue of the fact 

that the longer the string, the greater the probability of encountering a low sonority nucleus. 
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Figure 7: Sonority Sequencing score for latching strings (red) versus random baseline (blue). 

The SonSeq score for the latching strings is lower than the baseline for all string lengths, 

suggesting that the PLN tends towards strings which can be parsed by to the SSP. 

Naturally, this simple metric inherently ignores various complexities associated with sonority 

sequencing in natural grammars (minimum/maximum distance, permissible plateaus, 

onset/codas asymmetries, etc.). However it does capture the extent to which the PLN wants to 

oscillate monotonically between vowels and obstruents. This is informative insofar as it 

presents an unbiased measure of how well the latching strings conform to sonority sequencing, 

within the confines of a system which has no actual notion of syllable structure. 

2.3.3.1 SSP as Oscillation 
Having established the PLN’s propensity for oscillating between sonorous and non-sonorous 

segments, it remains to determine why the network exhibits this behaviour. Much like the OCP 

effect, the SSP effect can also be understood as following from the fatiguing of individual units. 

In simple terms, because the network representations are intended to reflect phonological 

properties, we should expect that certain units will be more active when representing sonorous 

phones than non-sonorous ones (and vice-versa). Thus if certain “sonority” units are fatigued 

from repeated activation, then we should expect the network to latch into non-sonorous 

memories for a time, at least until the “sonority” units have recovered from their fatigue. 

Similarly, the converse will be true for any “non-sonority” units which are most active for non-

sonorous phones. Therefore we should expect the network to slowly oscillate between sonorous 

and non-sonorous states, driven by the slow fatiguing and recovery of the individual units. 

0
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Of course, this oscillation can only persist if sonority is indeed encoded in the network in this 

way. As already noted in section 2.3.2.2, the degrees of sonority within the phone inventory are 

determined primarily by the features SONORANT and VOCALIC. However, because the 

process of generating representations relies on randomisation, we need to look at the network 

representations themselves to see whether or not these features actually play a role in producing 

the SPP effect. We can get a sense of this by grouping the individual phones in the network into 

3 broad sonority categories: vowels, sonorant consonants, and obstruents (which correspond to 

the features SONORANT+VOCALIC, just SONORANT, or neither, respectively) and 

examining the average representation overlap within and across these categories19. 

The data in Table 4 show the overlaps across these categories from a single grammar of the 

PLN. As we might expect, the average overlap is highest within each category (obstruent, 

sonorant, vowel), somewhat lower when comparing obstruents to sonorants and sonorants to 

vowels, and lowest when comparing obstruents to vowels. The divide is even sharper when we 

examine the ratio of those shared units which are in the same Potts state, where we also see a 

much higher ratio of shared unit states within categories, when comparing across categories: 

Sonority categories Average shared units % % of shared units in same 

state (absolute%) 

Son-son 29.24 30 (8.8) 

Obs-obs 27.6 31 (8.55) 

V-V 27.6 33 (9.2) 

Son-V 26.05 25 (6.47) 

Obs-son 25.63 25 (6.38) 

Obs-V 24.83 20 (5.05) 

Table 4: Overlap across sonority categories within a single grammar. 

                                                 

19 Distinguishing the entire sonority hierarchy requires additionally the features APPROXIMANT and 

NASAL. However, for legibility we can restrict ourselves to this tripartite distinction. 
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This pattern, taken with the high rate of SONORANT and VOCALIC assimilation (section 

2.3.2.2), supports the oscillation explanation outlined above. To understand why, recall that the 

network has two types of fatigue, one which applies to individual Potts states, and one which 

applies to whole units. The tension between these two types of fatigue are critical for 

determining the behaviour of the latching network. Specifically, latching is driven by memory 

overlap in the case where unit fatigue is slower than individual Potts state fatigue (Kang et al. 

2017), which is the case in the PLN. This is because latching occurs when an attractor becomes 

unstable due to fatigue, and since unit states fatigue faster than whole units, then latching will 

be driven the competing drives to maintain active units but to deactivate fatigued unit states. 

The consequence in this case will be a latch between memories which share the most units, but 

only if those units differ enough in their individual states. 

2.4 Discussion 
The analysis of the latching corpus presented here suggests that the PLN exhibits a degree of 

place assimilation and sonority sequencing, with a near-absolute kind of segmental OCP, or 

anti-adjacent-repetition of phones. 

In terms of understanding why the network exhibits certain behaviours, arguably the most 

straightforward of the three is the segmental OCP. The “Goldilocks” behaviour of the PLN – 

preferring latching targets which are sufficiently dissimilar but not too dissimilar – will 

naturally prohibit latching out of and back into the same phone. Of course, depending on the 

specific overlaps of the memories in the network, this OCP effect can also to extend to phones 

which are similar though not identical. Thus, as seen in section 2.3.1, it is perfectly possible to 

create an English-like grammar where /s/ and /ʃ/ are separate phones, but where transitioning 

from one to the other is strictly impossible, by virtue of the high degree of overlap in their 

representations. 

Similarly, the PLN’s bias towards assimilation can be straightforwardly understood as a result 

of the “Goldilocks” principle – the network prefers latching targets which are sufficiently 

different from the current state (OCP), but not too different (assimilation).  Once again, whether 

or not a given grammar actually exhibits a given type of assimilation depends on the exact 

network representations that constitute the phones in the inventory: if two phones share a 

feature with a higher weight (during phone creation), then more overlap between the phones 

will be determined by that feature, ergo strongly weighted features are more likely to cause 

assimilation. 
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Finally, the PLN’s apparent preference for oscillating between greater and lesser sonority can 

also be understood as a cumulative effect of the fatiguing of individual units in the network. 

However, unlike the OCP and assimilation effects, we need to consider the role of fatigue over 

a longer timescale. 

Nonetheless, because the PLN is, in some sense, an incomplete model of phonological 

processing, a certain degree of care is required when attempting to draw direct comparisons 

with concepts taken from phonological theory. With that in mind, it is worth considering some 

of the limitations of the PLN model, how that affects our interpretation in phonological terms, 

and what that might mean for future research. 

For example, the OCP-like effect exhibited by the PLN does not, by itself, capture the variety 

of different phonological effects which phonologists might ascribe to the OCP. This is true even 

if we ignore suprasegmental phenomena (tone, etc.) of which the PLN has no notion. Indeed, 

even at the segmental level, we might cite the OCP as a motivator for epenthesis, deletion, 

gemination, metathesis, etc. But whether or not the PLN can exhibit any of these processes is a 

moot point, since they are defined as the relationship between a surface form and a 

corresponding underlying form, whereas the PLN has only a single level of representation. 

However, this should not be regarded as a fatal flaw in the PLN per se, but rather as an 

indication of how the PLN should be expected to interact with the other components of a 

complete linguistic system. Speculatively, if the representations in the PLN were interpreted as 

surface phonological representations, then the underlying representations should correspond to 

the lexical representations which trigger a given latching string. In this way, input-output 

mappings in the phonology could be understood as the interaction between the lexical input and 

the PLN itself. 

Again, the PLN does not have a lexical-memory component, so exactly how the activation of a 

lexical item triggers a latching string is not yet modelled explicitly. But the possibilities here 

are clearly bounded. For example, the PLN simulations are conducted by “giving” the network 

a single, incomplete pattern. The exact properties of this initial pattern are what determine the 

trajectory of the subsequent string. Moreover, it has already been established that small 

differences in the initial pattern can produce large effects much later in the string – an effect 

loosely analogous to a butterfly’s flapping wing causing a hurricane on the other side of the 
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world. For example, consider these three strings, taken from the same grammar in the PLN 

corpus: 

1)  

a) ʔ m u o i ʃ n m 

b) ʔ m u o i s n m 

c) ʔ m u o ɑ ʃ n m 

Each string begins with an incomplete version of the same phone, /ʔ/, and the strings follow the 

same trajectory for the subsequent 3 latches, before diverging at the 4th and 5th latches, and then 

returning to the same trajectory for the final two latches. Note that the cause for the differences 

in each string lies solely in the subtle differences in the initial state for each case, which are 

invisible when the system is viewed from the macro-level (recall: memory retrieval is 

understood as passing through an attractor basin, not arriving at an exact point). 

This presents an obvious hypothesis that lexical items could trigger a given string simply by 

sending a short, initial cue to the phonological system. If we suppose that one such cue is sent 

every time (e.g.) the syntax/morphology picks a new morpheme, then the cues sent to the 

phonology would correspond to word/morpheme boundaries, and phonological processes could 

be understood as the latching network resolving the mismatch between the input from 

syntax/morphology and its own internal bias for preferred latching targets. 

To give an explicit example, suppose we have a network which has latched into an /ʃ/, and then 

receives a new initial cue in the form of an /z/, as in the case of an English plural like bu/ʃ-z/. 

If, in the given language, the representation for these two phones are too similar, then directly 

latching into the /z/ will be impossible. Therefore, the network could react in a number of ways. 

For example, additional excitation might lengthen the duration of the current retrieved memory 

(gemination), the network might latch a similar but sufficiently different memory 

(dissimilation), it might latch to an intermediate memory before latching to the /s/ (epenthesis), 

or might fail to latch to the /s/ entirely (deletion). Exactly which strategy the network adopts 

will depend on the exact nature of the input received from the lexicon. Thus, the phonological 
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grammar for a given language would be localized both within the PLN, and the connections to 

the lexicon themselves20. 

Whether or not this model is workable in practice is a topic for future research, since it 

presupposes a model of lexical storage and retrieval. Currently, there exists no method for 

exactly “controlling” the strings produced by a latching network. In part, this is because the 

number of possible initial states for the network is unfathomably large, 8200 in the case of the 

PLN (which is a number 180 digits-long if expressed in regular notation). However, while it is 

quite conceivable that the majority of those possible initial states do nothing interesting, it need 

only be true that a tiny subset of them produce unique strings in order for the PLN to be able to 

produce a vocabulary of lexical items which is comparable in size to a typical adult speaker 

(i.e. in the order of 10s of thousands). 

Finally, it should be noted that the method for producing representations, outlined in section 

2.2.3.1, is somewhat volatile, insofar as it frequently produces grammars with obvious 

pathologies (failing to retrieve phones, mixed-state retrievals, etc.). The solution pursued here 

was to produce large numbers of grammars and filter out the pathological cases before 

conducting the analysis. However, in addition to being time-consuming, this method does not 

allow for a detailed analysis of exactly which variables distinguish the pathological cases from 

the phonology-like cases. A preferred approach would be the development of a memory-

generating algorithm which allows for a more exact control over the variables that differentiate 

the possible configurations of the network. Such an algorithm has been developed in the context 

of semantic memories (Boboeva et al 2018), but has not yet been generalised to a phonology-

like case. Of course, semantic memories are fundamentally different to phonological memories 

insofar as the semantic system is much larger and depends on radically different associations 

between those memoires. However, it is quite conceivable that the method employed by 

Boboeva et al might be modified for a smaller phonology-like system. This remains a plausible 

topic for future research. 

                                                 

20 Conceptually, this is strongly analogous to the Optimality Theoretic concepts of markedness (PLN 

representation) and faithfulness (connection to lexicon). 
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2.5 Conclusion 
At the start of this paper I claimed that the PLN can be understood as a Linking Hypothesis 

which bridges the ontological incommensurability between neuroscience and phonological 

theory. It does not do so by decomposing specific linguistic models into simpler computational 

mechanisms, but rather by demonstrating how to produce strings which exhibit phonology-like 

behaviour (assimilation, OCP, SSP), using only a small number of brain-like ingredients 

(recurrent connections, distributed representations, short-term adaptation), plus a system of 

memories defined in terms of phonological features. In this way, the components of the 

linguistic formalism are understood to be emergent from a complex dynamical system. 

The relevance of the results from the model can be understood from two perspectives: that of 

the neuroscientist and that of the linguist. From the neuroscientist’s perspective, it is significant 

that the phonological behaviours exhibited are not explicitly taught to the network, nor are they 

pre-programmed in any way. Rather, they seem to emerge spontaneously from the specific 

combination of phonologically-inspired representations and neurally-inspired network 

dynamics. This fact supports the plausibility of latching dynamics as a real neural mechanism. 

This type of indirect evidence is crucial because, although latching dynamics have been studied 

theoretically in a variety of contexts, measuring them directly is likely beyond current 

neuroscientific techniques. Of course, the PLN still leaves open a number of questions about 

the underlying neurological reality. Most notable is the specific neural correlate of the Potts 

units themselves, which are intended to subsume a large amount of potential complexity into a 

relatively simple and tractable approximation. However, the Potts units are not totally opaque, 

and the specific parameters of the model implicitly delimit the range of possible underlying 

biological mechanisms that we can posit. Further research into the PLN is likely to yield clearer 

predictions in this regard, because as the parameters of the model become more fine-tuned, so 

too do the neural predictions. Thus, the PLN presents us with an interesting case where 

linguistic facts could be used to deduce relatively fine-grained neural properties. 

From the linguist’s perspective the implications of the PLN are less direct, since we are 

discussing across two quite different levels of abstraction. In general, we should be cautious 

about drawing direct correlations between the ontologies of neutrally inspired models and 

formal linguistic theories21. However, the PLN could nonetheless inform the discussions and 

                                                 

21 See the second paper in this volume for more discussion of this point. 
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assumptions surrounding formal linguistic theories, if not the theories themselves. One 

example of this is the topic of innateness and learnability which, although not necessarily 

properties captured within a formal theory, are nonetheless topics of thorough debate by 

linguists (e.g. Odden 2013, etc). Indeed, under one reading, Chomsky’s articulation of 

Universal Grammar (UG) could lead one to believe that the primary goal of formal linguistics 

is precisely to disentangle the innate parts of language from the rest (Chomsky 2005, etc.). Of 

course, it should also be noted that the PLN itself is not a theory of language acquisition. 

However, if the PLN is remotely plausible then it suggests that this disentangling project is not 

something that could be properly expressed at the level of a linguistic theory. That is, the 

components of linguistic theory are themselves an irreducibly complex mixture of genetic and 

environmental factors. For example, if the OCP or SSP are consequences of latching dynamics 

(as the PLN suggests), then they neither need to be independently learned nor innately specified, 

since they appear to be largely coextensive with latching dynamics. They could perhaps be 

equated with Chomsky’s “third factor” (Chomsky 2005), however even this categorisation may 

be too coarse. Because although the OCP and SSP do seem to follow from a purportedly more 

general mechanism (i.e. latching), it is also true that these behaviours appear to depend on the 

way the memories themselves are encoded, which seems to be a fact about phonological 

inventories and the features which define them. The SSP for example is dependent on the 

particular properties of manner features – namely that they loosely cluster the inventory into 

two groups along a single dimension: sonorants and obstruents. Given this clustering, latching 

dynamics seems to naturally produce oscillation between the two clusters. Thus, the SSP is the 

result of a complex interaction between something specific to phonology (sonority) and 

something much more general (latching dynamics). Of course, this interaction is not necessarily 

captured at the level of linguistic formalisms, meaning that the relevant subdivision into 

innate/learned/third-factor cannot occur at the level of the linguistic theory itself.  This does not 

necessarily entail that UG is a doomed project, merely that the complex influence of genetic 

and environmental factors on language acquisition may only be understandable when we 

integrate insights from linguistic theory into neutrally inspired models such as the PLN (and 

beyond, into neurobiology, etc.). Thus, properly defining UG may not be a problem that 

linguists can solve in isolation. This conclusion could render moot long standing discussions 

about the innateness of (e.g.) phonological features (Mielke 2008, etc.), since features might 

not be atomic objects which can be neatly described as either innate or learned. 
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Of course, this brief discussion of learning is by no means exhaustive. It is intended merely to 

demonstrate how intermediate, neutrally-inspired models such as the PLN can help to bridge 

the gap between linguistics and neuroscience in a way that permits more nuanced 

argumentation, rather than causing “interdisciplinary cross-sterilization” (Poeppel & Embick 

2005). The ultimate goal is integration of linguistic and neuroscientific theories into a grander 

understanding of the mind/brain and, while this goal is certainly a long way off, models such 

as the PLN do present us with a potential way forward. 
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2.7 Appendix: Parameters and phonological inventory 
The results in section 2.3 were all obtained from simulations using a constant set of network 

parameters: 

S = 5  N = 200 afeat = 0.2 a = 0.25  p = 1.1 

q = 0.1  𝜏1 = 1.5 𝜏2 = 70 𝜏3 = 100  𝛽 = 4 

w = 1.8 U = 0.45 cint = 0.2 cext = 0.2 

 

The inventory of phones and their featural specification is given in the table on the next page. 

Note that the ordering of the features in the table reflects the weighting of the features within 

each sub-network: 
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“What we should do is to pursue all approaches to the brain as best we can, seeing 

what one can learn from the other. The discoveries of the chemist provided certain 

guidelines for the revolution in physics, and it could turn out that the discoveries of 

the cognitive scientists will do the same for the brain sciences. Or, the latter might 

develop some new approach to properties of language and other aspects of 

cognition that would suggest new directions for the cognitive sciences. One can 

have no doctrines about such matters.” 

(Chomsky 1994) 
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3 Digital Grammar and Analogue Brains: A Defence of 

Formal Linguistics 

Joe Collins 

3.1 Introduction 
Various critics have made the claim that the formal linguistics is at odds with the prevailing 

view of the mind/brain (Edelman 1992; Lakoff 1993; Port & Leary 2005, etc.). This critique 

often centres around the discrete (or digital) nature of linguistic formalisms, which are assumed 

to be incompatible with a nervous system which is widely thought to be continuous (or 

analogue) in character. 

The argument against discrete, formal linguistic analysis is articulated perhaps most forcefully 

in Port and Leary 2005, who write: 

“Generative phonology seems to have overlooked that, in order for there to be a 

formal system, there must be something or someone to execute the rules, whether a 

computer, a linguist or the subconscious brain. Unfortunately there is no evidence 

whatever that human brains automatically and unconsciously implement any 

formal system at all.” (Port & Leary 2005) 

Port and Leary are arguing from a philosophical stance of Dynamicism, which contends that 

the brain is a form of control system, and that notions like “computation” or “symbols” are 

fundamentally inapplicable (see Port & van Gelder 1995). This stance can be contrasted with a 

synthetic approach to theories of the mind/brain, which contends that dynamical and symbolic 

approaches to cognition can be reconciled with a sufficiently nuanced definition of what each 

framework contributes to our understanding, e.g.: 

“One consequence of such a synthetic framework is that it renders entirely moot 

arguments between symbolic and dynamical approaches to cognition and also 

debates about discrete versus analog embodiments of computation. In short there 

simply is no antagonism between a dynamical view and a computational view as 

long as one is willing to fairly assess where each field is and be willing to extend 

the notions each brings to the problems of cognition.” (Crutchfield 1998) 



 

88 

This paper adopts the synthetic position advocated by Crutchfield. I claim that, not only are 

formal linguistic models commensurable with non-discrete systems, such as the brain, but a 

formal model can in many cases provide a better account of why the grammar behaves the way 

it does. 

A key flaw in Port and Leary’s argument is their assumption that because formal grammars are 

discrete, that means that they can only be implemented in a system which is also a “discrete-

time symbol processing device” (p.937). They then note that this implementation is implausible 

in the context of a seemingly analogue system like the human brain22, and thus conclude that 

the formal grammar must be fundamentally incorrect. However, this reasoning is ultimately an 

argument against one particular implementation of a formal grammar, and Port and Leary do 

not give any convincing argument as to why formal linguistic models presuppose such an 

implementation. Indeed, the performance/competence distinction adopted by many formal 

linguists (and maligned by Port and Leary (p.932)) deliberately renders linguistic models 

agnostic with regards to their implementation in human wetware. 

As a rebuttal to Port and Leary’s argument, we need only consider an alternate approach to 

implementing a formal grammar - one which does not suppose any discrete or otherwise 

biologically implausible elements. This is the topic of Section 3.2, which will demonstrate in 

detail how a discrete, formal phonological model of grammar can be equated to a neural-

attractor model which is continuous. This provides an explicit example of how a complex neural 

system can appear to be both continuous or discrete, depending one’s level of analysis. 

Additionally, this model is designed to capture the phenomenon of incomplete devoicing – cited 

by Port and Leary as an argument against discrete phonology – which also allows us some 

insight into relationship between the rigid characterization of formal phonological grammars 

and the gradient reality of phonetic details. 

                                                 

22 For example, although action potentials are “digital” in the sense of being an all-or-nothing event, 

neurons cannot transmit a binary code because (unlike the transistors of a CPU) their firing rates are 

not synchronized. Moreover, the calculus of post-synaptic potentials is unambiguously continuous in 

nature, depending not only on the number, efficacy, and distribution of synapses, but also on the 

morphology of the membrane itself. 
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Section 3.3 builds on the model in section 3.2, and argues for the significance, and even 

necessity, of the formal/linguistic level of analysis given a continuous attractor model. That is, 

the formal model is not rendered obsolete by its implementation in a continuous model of the 

brain. This argument will depend on the application of Effective Information (EI) (Tononi & 

Sporns 2003; Hoel et al 2013) to the model from section 3.2. EI is an information theoretic 

measure which attempts to quantify the extent to which a model informs us about the underlying 

causal structure of a given system. Crucially, it can be shown that the formal/linguistic level of 

analysis has a higher EI than the neural model. In Hoel’s terminology, this is an example of 

Causal Emergence, and it represents a profound and robust cornerstone for understanding the 

role of formal linguistic models within a broader, cross-disciplinary understanding of cognitive 

function. Specifically: the formal analysis elucidates the causal structure of the grammar. 

Finally, it should be noted that there are multiple prongs to Port and Leary’s paper which will 

not be dealt with in detail here. These include the issues of universal phonetics and discrete vs 

continuous time. The former is arguably tangential given that it is not a position endorsed by 

all, or even most phonologists in the 21st century. While the latter appears to follow entirely 

from Port and Leary’s own debatable interpretation of phonological theory23. 

3.2 Macro vs. Micro 
A cornerstone of the counter-argument presented here is a rejection of naïve reductionism, in 

favour of the idea that complex systems can be analysed at different levels of abstraction, and 

that the phenomenology of these different levels can seem radically different.  

Certainly, this is not a novel idea. The importance of understanding the mind/brain at multiple 

levels of abstraction has been stressed by various commenters, e.g.  Marr’s tri-level analysis 

(Marr 1982) and Smolensky’s integrated connectionist/symbolicist architecture (Smolensky & 

Legendre 2006) and many others besides (Cruchfield 1998; Dale & Spivey 2005; Edelman 

2008). Moreover, the various conceptual and philosophical underpinnings of emergent 

properties in scientific theories are so thoroughly dissected by philosophers that they need not 

be rehashed here (see O’Connor & Wong 2015). For our purposes we need only acknowledge 

                                                 

23 Certainly, the claim that phonological theories depend on “serial, discrete time”(p932.), seems deeply 

at odds with the widespread acceptance of (e.g.) regressive rules and hierarchical prosodic domains, 

which are clearly not bound by the laws of serial time in any conventional sense. 
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that complex things may possess properties that their individual components do not (and vice-

versa). 

With this in mind, this paper will consider a case where a phonological grammar is a macro-

level abstraction of a substrate which is non-symbolic at the micro-level. That is, the 

components of the system are clearly continuous when viewed up close, but the behaviour of 

the system as a whole appears to be discrete, thereby demonstrating how a digital grammar can 

be implemented in an analogue system. 

The first question to be answered is: what form might such a micro-level take? There are, of 

course, many potential answers to this question. Here however, we will consider the case where 

the micro-level is an attractor neural network, which has been specifically designed to 

implement a simplified (or “toy”) phonological grammar. 

3.2.1 Attractor Model 
Attractor networks compose a class of complex dynamical systems which have been posited to 

explain certain computational properties of nervous systems (Hopfield 1982, Amit 1989, 

Conklin & Eliasmith 2005, Kropff & Treves 2008).  

To understand how a dynamical system can have computational properties, we need to think of 

the system as being a kind of behaviour over a state space, i.e. the set of all possible 

configurations of the systems, expressed such that each configuration is a unique point in the 

space. If the individual states of a system are understood as representing information (e.g. 

numbers), then any movement from one point in the space to another can be understood as 

implementing a function (e.g. arithmetic). Therefore, computation is ultimately a form of 

system dynamics. 

Attractor networks are a class of dynamical system, named after the so-called attractor states 

which characterize the network dynamics. In simple terms, attractors are states which the 

network will always tend to over time. This is often visualized as if the state space were a 

landscape of peaks and valleys, and attractor states are the lowest points of the valleys which 

the network always rolls down into. Consequently, attractor dynamics can be treated as a model 

of memory, since the attractor states can always be retrieved by the system.  

Moreover, one relevant property of these memories is that they are effectively discrete 

(Hopfield 1982), since the basins of attraction are non-overlapping. In effect, they quantize or 
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“chop up” the continuous space into distinct regions. For this reason, attractor models are a 

means of crossing the continuous/discrete divide which is taken as a fundamental sticking point 

for criticisms of formal linguistics (e.g. Port and Leary 2005). 

What follows then is an attractor model where the individual attractors are taken to represent 

discrete phonological entities (in our case, phones), and the dynamics of the system are such 

that certain attractors are only stable under certain contexts. That is, there is some context in 

which attempting to retrieve one phone will result in the retrieval of a different phone – a simple 

form of context dependent allophony (see also Gafos & Benus 2006). 

3.2.2 Incomplete Devoicing 
Clearly, attempting to implement an entire phonological system in an attractor network would 

exceed not only the space restrictions of a single paper, but most likely our current 

understanding of both neuroscience and linguistics. A more fruitful goal for our purposes then, 

is to restrict our focus to a single phonological pattern: that of final devoicing, where a voiced 

obstruent loses its voicing in a syllable coda or word-final position. This is a pattern which is 

both widely attested (in familiar languages such as German, Russian, Dutch, etc.) and is 

arguably a prototypical example of a phonological process, which finds a home on many 

Phonology 101 syllabi. Consider the following examples from Dutch: 

 

1. Dutch (from Van Oostendorp 2008): 

a) kwaa[t] ‘angry (PRED.)’  - kwa[də] ‘angry (ATT)’  

b) laa[t] ‘late (PRED.)’  - la[tə] ‘late (ATT)’ 

 

In the case of 1a, the final [t] appears as a [d] when a vowel is suffixed to the stem, while in 1b, 

the final [t] remains as a [t], even in the presence of the vowel. The standard analysis of these 

facts is that the [t] in 1a is derived from an underlying /d/, which then devoices in a word final 

position, while the final [t] in 1b is derived from an underlying /t/, and therefore appears as such 

regardless of whether it is in word final position. 

In fact, this analysis generalises to all obstruents in Dutch – the voiced variants never appear in 

a final position. Moreover, similar patterns appear in many other languages. Thus, the pattern 

is not an arbitrary fact about /t/ and /d/ in Dutch, but rather one aspect of a deeper insight into 
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the relationship between laryngeal specification and vowels, syllables and prosodic structure 

more generally. 

Yet a number of studies have shown that, contrary to the classical phonological analysis of the 

phenomenon, the contrast between devoiced and underlyingly voiceless segments is not fully 

neutralized. That is, there exists a small difference in voicing between those segments which 

are underlying voiceless and those which are derived via devoicing. The difference is not salient 

enough to be consistently perceivable by speakers, but there is nonetheless evidence that 

speakers are able to “guess” whether they are hearing the voiceless or devoiced segment at an 

above-chance rate (see Roettger et al. 2014). 

Under the classical, modular view of the phonetics-phonology interface, incomplete 

neutralization poses a problem since it seems to suggest that the phonetics has access not only 

to the surface phonological form, but also to the underlying form. Clearly, this breaks the entire 

premise of the classical-modular system, which treats information encapsulation and shallow 

inputs as critical properties (Fodor 1983). 

Various solutions to account this fact have been proposed within the phonological literature 

(e.g. Van Oosteendorp 2008; Iosad 2012), however the validity of these approaches will not be 

discussed here. Instead, this article merely argues that the existence of gradience in 

phonological categories does not undermine the enterprise of formal phonology. Rather than 

being interpreted as evidence that discrete categories don’t exist, the gradience is better 

understood as “wiggle room” which emerges from implementing discrete categories in a 

continuous system. 

This interpretation stands in contrast to, e.g., Port & Leary (2005), who argue that this gradience 

constitutes evidence that the categories posited by phonologists have no neurological or 

psychological reality. That is to say, there are no “symbols” in the brain. 

3.2.3 Constructing a Model 
To demonstrate how gradient final devoicing can be accomplished in an attractor network, we 

can construct a minimal “toy” grammar, consisting of 6 phones (/p/,/t/,/k/,/b/,/d/,/g/), which 

distinguish 3 places of articulation ([LAB],[COR],[DOR]) and a 2-way voicing distinction, as 

well as a distinction between final and non-final positions. 
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For a formal analysis of this toy grammar, we would need a rule to trigger the devoicing. Using 

traditional phonological notation, we could write: 

2. [
𝑣𝑜𝑖𝑐𝑒

𝛼𝑝𝑙𝑎𝑐𝑒
] → [𝛼𝑝𝑙𝑎𝑐𝑒]/_# 

This ensures that /b/,/d/ and /g/ will be realized as [p],[t] and [k], respectively, in a final context. 

In dynamical systems’ terms, this grammar can be thought of as a landscape of 6 attractors, 

where each attractor basin corresponds to a phone. Additionally, the system should be sensitive 

to information about final/non-final position, such that a final position causes the voiced phone 

attractors to become unstable, forcing the network instead into the basin of a voiceless 

counterpart. 

Our system for realising this grammar will consist of 40 individual units, loosely analogous to 

neurons, connected to one another via symmetrical “synapses” of varying efficacies. The size 

of the network is approximately the smallest still large enough to allow successful retrieval of 

all 6 memories in the system. 

Each unit, i, in the network obeys a simple rule, whereby its state at any given moment is a 

continuous value, 𝜎, between 0 and 1, representing “inactive” and “fully active” respectively.  

The value of 𝜎𝑖 is given by equation 1: 

𝜎𝑖 = 𝜃 (1 − 𝑒−ℎ𝑖𝑇) (1) 

The summed, weight input from the other units to unit i is denoted by ℎ𝑖 . The symbol 𝜃 

represents a threshold function whose output is 1 if ℎ𝑖 falls within some pre-defined values24 

and 0 otherwise. And T is a gain parameter used to regulate the activity level of the network. 

The value of ℎ𝑖 is given by equation 2, where 𝑤𝑖𝑗 represents the efficacy of the connection 

between any two units i and j, and n is the total number of units in the network. 

                                                 

24 These values are set to accomplish two things: Firstly, to ensure that very small inputs cannot cause 

a unit to activate. And secondly, to ensure that large inhibitory inputs cannot cause a unit to go into a 

negative state (i.e. 𝜎𝑖 < 0). 
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ℎ𝑖 = ∑ 𝑤𝑖𝑗𝜎𝑗

𝑛

𝑗≠𝑖

(2) 

Thus, the exact value a given unit takes is determined by the weighted sum of the inputs from 

the other units, modulated by a squashing function. Consequently, all the units in the network 

are engaged in a feedback loop where each unit is adjusting its activity in accordance with every 

other unit. If the network arrives at a state where the activity levels of every unit are optimally 

in balance with each other, then the network will simply remain in that state indefinitely. These 

states are the attractors, and which of the network states constitute attractors is determined 

entirely by the configuration of synaptic efficacies between the units. Therefore, the process of 

“teaching” the network a set of memories means adjusting the efficacies until the states 

representing each memory are attractors. This is accomplished with a simple Hebb-like rule, 

given in equation 3: 

𝑤𝑖𝑗 =
1

𝑛𝑎(1 − 𝑎)
∑ ∑(𝜉𝑖

𝜇
− 𝑎)(𝜉𝑗

𝜇
− 𝑎)

𝑛

𝑖≠𝑗

𝑚

𝜇

(3) 

Here, a is a value between 0 and 1 representing the average sparsity of the memories in the 

network. The parameter m is the total number of memories (6 in our case) each denoted by a 

value of 𝜇, and 𝜉 denotes a pattern of activity, such that 𝜉𝑖
𝜇

 denotes the state of the ith unit in 

memory 𝜇. 

Encoding our phones in this way presupposes that they have already been defined as points in 

the state space, i.e. each phone must be represented by a specific pattern of activity in the 

network, before each pattern can be made into an attractor by manipulating the connections 

between units. The process of defining each phone was accomplished by first creating pseudo-

random sparse patterns for each phonological feature (LAB,COR,DORS, and VOI), then 

superimposing the relevant features for each phone (e.g. /b/ is LAB+VOI, etc.). Each phone 

was also superimposed with a unique “noise” pattern, to ensure that each memory was distinct 

enough to enable correct retrieval. 

This method of generating phones ensures that the overlap between the memories in the 

network reflects shared phonological properties. For example, both /p/ and /b/ will share a 

number of units, deriving from the shared feature LAB. This is essential for ensuring that when 
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the network cannot retrieve a voiced memory, it will instead default to the voiceless equivalent, 

rather than returning a random memory or mixed-state. 

Finally, in order to control the effects of final and non-final position, we can add one additional 

unit to our network, which will be used to trigger the devoicing rule. This unit can be switched 

off or on by the experimenter. When active, it will inhibit those other units that are associated 

with the representation of voicing. This unit is a simplification loosely inspired by the 

hypothesis that prosodic information is transmitted across the brain, in the form of slower 

oscillations which can excite or inhibit local networks (Giraud & Poeppel 2012). 

3.2.4 Results 
If our grammar has been encoded successfully, then activation of the final-position unit should 

cause the attempted retrieval of a voiced phone, to instead result in the retrieval of its voiceless 

counterpart. This is indeed what we see in Figure 8, which demonstrates the retrieval of the 

coronal phones /t, d/ in various contexts: 

 

Figure 8: Network evolution during retrieval of coronals. 
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The horizontal axis shows time, while the vertical axis shows the distance of the network state 

from a given memory. When the memory distance is equal to 0, it means that the network has 

arrived exactly at an encoded attractor. 

The four plots each show the retrieval of a given memory, which can be interpreted as deriving 

a surface form from a given input. In each case, the network is given an ambiguous or 

incomplete pattern of one of the memories in the system at t=1, and as the system evolves over 

time, it proceeds to retrieve a (near-)complete memory. In the first 3 plots, we see the system 

retrieving exactly the memory it is told to retrieve, i.e. the input and surface form are one and 

the same. In the fourth plot however, the network is asked to retrieve /d/, but instead returns a 

/t/. That is, the network has devoiced a /d/ because the “final position” unit is active. 

The simulations demonstrate how the model can exhibit discrete behaviour: it clearly tends 

towards one of the encoded memories, even when it begins in an intermediate state. This is the 

effect of the attractor basins quantizing or “chopping up” the state space. Additionally, the 

model is able to implement a simple context sensitive rule: the inhibitory signal is enough to 

push the model away from a “voiced” memory into its voiceless equivalent. 

However, the model can also give us some insight into the gradience observed in final 

devoicing, and how this gradience relates to the apparently discrete attractors. Although the 

model clearly tends towards one of the encoded memories, closer examination reveals that the 

memory retrieval is slightly different depending on the context. 

To help us visualize this difference, we can perform a simple multi-dimensional scaling 

algorithm to the trajectories of each memory retrieval, allowing us to plot the trajectories onto 

two, abstract dimensions. 
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This gives us an abstract Euclidean 

distance between the four different 

phones. Crucially, we can see that the 

non-final segments are distinct from 

their coda equivalents, and while the 

coda position /t/ and /d/ are very 

similar to one another, they are in fact 

not the same. Thus, although the 

system clearly exhibits discrete-like 

behaviour, there is nonetheless a 

small amount of “wiggle room” 

which can emerge during memory 

retrieval. And while the network contains no notion of production factors such as voice onset 

time (etc.), it is easy to envisage how these small differences in the network activity could carry 

forward into production, thereby giving rise to phenomena such as incomplete neutralization. 

Conceptually, the wiggle room itself can be understood as a natural consequence of 

implementing discrete categories in a continuous space. More specifically however, the wiggle 

room is caused by two different factors. Firstly, the activation of the inhibitory “final position” 

unit causes the basins of the different attractors to shift slightly, thus creating the large 

difference between the initial /t/ and the final /t/ and /d/. 

Secondly, the trajectory of the individual memory retrievals is altered by the fact that each 

retrieval begins from a different point. By analogy, the journey to New York is different 

depending on whether one begins in Hong Kong or London. Thus, even if the attractor point is 

the same, the actual trajectory the network traces through the basin is different. 

Of course, this second point requires us to understand the memory retrieval as being more than 

simply arriving at a static point in the state space. That is, memory retrieval is defined as moving 

through a basin attraction, rather simply arriving at fixed point. The significance of this point 

is not immediately obvious in the toy model under examination here. However, this becomes 

critical in more sophisticated attractor models which transition between individual memories 

over time (e.g. the Latching Network; Collins 2019). 

Figure 9: MDS of memory retrieval for coronals. 
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3.2.5 Discussion of the Models 
Simplistic though these models of final devoicing are, the comparison of the two does present 

a more general schema for relating the continuous and the discrete. While the network is 

fundamentally continuous, it is ultimately capturing the same facts as our formal rule. The fact 

that we can observe gradience within a discrete category (something not specified by our formal 

analysis) does not entail that the discrete category does not exist. To be sure, the discrete 

categories of the grammar are emergent phenomena, insofar as each unit in the network has no 

conception of what a discrete category could be. But the categories are unambiguously present, 

exactly definable, and indispensable to explaining the dynamics of the system. Therefore, it is 

meaningless to impose a total dichotomy between discrete and continuous systems, since the 

model can be viewed as both25. 

Finally, some critics might respond that the attractor and formal grammar are only loosely 

equivalent in an extensional sense. That is, the attractor network is only approximating the 

formal grammar, rather than implementing it. This sort of reasoning often appears in 

conjunction with the claim that formal linguistic theories should be understood as intensional 

theories of cognition (e.g. Hale and Reiss 2008; Odden 2013, etc.). I will respond briefly to this 

argument in section 3.4.1. In short, I argue that this reasoning misattributes the utility of a 

formal analysis. Rather than being a tool for directly deducing the intensional representations 

in speakers’ heads, a formal analysis can be shown to carry more information about the causal 

structure of the grammar. This is the topic of the next section. 

3.3 Effective Information and the Role of Formal Analysis 
So far, this paper has argued that the formal model and the attractor network in section 3.2 can 

be understood as different analyses of the same system – in our case, a toy phonological 

grammar. However, even if we accept the equivalence of the two models in some sense, this 

doesn’t entail that both models are necessary for understanding the system in question. To put 

it another way: if we can talk about grammar in neurobiological terms, what use then is a formal 

theory? 

Clearly, the two models are of a radically different character. While the formal model stipulates 

discrete objects (phones, features) and a rule which acts over those objects (devoicing), the 

                                                 

25 See also Gafos & Benus (2006) for a thorough discussion of phones-as-attractors. 



 

99 

attractor model attempts to derive the same behaviour from a system of elements which, 

individually, bear no real resemblance to the ontology of the formal model. 

One might be tempted to argue that the attractor model should be interpreted as implying that 

the formal model is in some sense misleading, or not “real”, and should therefore be dispensed 

with. For Port and Leary, for example, the fact that the formal analysis is technically correct 

(insofar as it makes correct predictions about the behaviour of the language in question) is not 

sufficient to make formal analysis a worthwhile endeavour, and propose instead that symbols 

be demoted to the status of “symboloids”: 

“We do not deny that the phonologies of languages exhibit symbol-like properties, 

such as reusable and recombinable sound patterns. A small inventory of segment-

sized, graphically represented phonological categories can provide a practical 

scheme for representing most languages on paper. But what is in speakers' heads 

is apparently not symbols analogous to graphical letters. The term symboloid seems 

appropriate for these cognitive patterns.” (p.950) 

That is, we may continue using our symbol(oid)s for descriptive purposes, but we shouldn’t 

pretend that they offer some insight into how language works, and we certainly shouldn’t 

entertain the notion that symbols actually exist in speakers’ heads. 

I contend that this final point, whether symbols exist in speakers’ heads, is likely a philosophical 

goose chase that goes far beyond linguistics and neuroscience26. However, on the issue of 

whether formal linguistics actually improves our understanding of cognitive function, what can 

be shown is that Port & Leary’s argument is precisely backwards. Somewhat counter-

intuitively, in the case where discrete symbols are emergent from some underlyingly continuous 

system27, those symbols are not merely descriptively useful, but are in fact a more revealing 

explanation of the causal structure of the system. 

The crux of this argument depends on the concept of Effective Information (EI), proposed by 

Tononi and Sporns (2003) as a measure of information regarding causation within a system. As 

                                                 

26 Indeed, Port & Leary’s argument here is a logical corollary of the “implementational view” mentioned 

in section 3.2.5 and 3.4.1. 

27 As opposed to elements in a discrete-time, symbol-processing device. 
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Hoel et al. (2013) note, there are certain cases where the EI of an emergent, macro-level 

abstraction is higher than the micro-level description. Hoel et al. argue that such cases are 

example of causal emergence.  

Causal emergence is counter-intuitive, since it seems to contradict the assumption that lower 

levels of explanation are, in some sense, truer or deeper than a macro-level generalization. For 

example, explaining the behaviour of a gas in terms of the kinetic energy of individual 

molecules seems perhaps more insightful than an equation which simply predicts changes in 

pressure as a function of heat. According to an EI-analysis however, the simple thermodynamic 

equation reveals more about the causal relationship between pressure and heat than the 

molecular explanation, implying that causation itself is a property which emerges only at the 

macro-level. 

Hoel (2017) resolves this apparent puzzle by relating causal emergence to the concepts of 

compression and bandwidth. In the simplest possible terms, the standard, reductionist view of 

macro-level abstractions treats them as something akin to lossy compression, i.e. a way of 

discarding information while keeping the general gist for practical purposes, but ultimately an 

incomplete version of the data (see “symboloids” above). However, causal emergence is 

something closer to denoising, i.e. it provides clearer version of the true signal, where the 

“signal” is understood to be information about the underlying causal structure of the system. 

In the case of our toy phonological system then, the formal description ultimately gives us the 

clearest view of why the system behaves the way it does (i.e. something devoices because it is 

in a final position), while the attractor model ultimately gives us the same information with a 

lot of extra noise. 

Crucially, this claim is not just a philosophical speculation. Using EI, we can actually quantify 

the amount of information both the attractor network and our formal analysis, thereby proving 

the causal emergence of the macro-level. 

3.3.1 Defining Effective Information 
EI is defined in terms of Mutual Information (MI), which is a core concept in Information 

Theory. MI is centred around the idea that, if two variables are correlated then each variable 

implicitly contains information about the other. For example, if we know that British people 

drink tea more often than Americans do, then knowing whether someone is British or American 

improves our ability to infer whether or not they also drink tea. That is, information about one 
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variable (nationality) is implicitly also information about another variable (propensity for tea 

drinking). The intuition here is fairly straightforward, MI is simply the measure of how much 

two variables tell us about each other. What Hoel’s method shows is that this concept can be 

levied to help us understand how much a scientific theory actually elucidates the causal 

structure of the system under examination. 

This method depends on the idea that any well defined model can be recast as a (potentially 

infinite) number of possible states, (i.e. the state space) and some principle(s) which determine 

which states are actually possible at a given point in time, i.e. the interventions. The notion of 

“state space” here is identical to the one in the attractor network. However, these concepts also 

have direct translations in phonological models: for example, in Optimality Theory, the state 

space and the interventions are equivalent to GEN and EVAL respectively, while in a rule-based 

system they would be equivalent to the set of all possible representations and the rules. 

With these concepts in place, we can give an exact definition of EI, namely, it is the MI between 

the possible states of a system, and the possible interventions on that system. Therefore, a high 

EI means that knowledge about the interventions on the systems also gives us a lot of 

information about the subsequent state of the system (and vice-versa).  Given that the 

interventions and states are determined by the model under examination (e.g. a formal 

grammar), EI can be understood as a measure of how much a model actually captures the causal 

structure of the underlying system. Moreover, because the same system can be analysed at 

different levels of abstraction, we can use EI to quantify how much causal information is 

conveyed at each level of abstraction. 

Because our attractor model and formal model have radically different state spaces, our 

comparison will depend on a component of EI, termed effectiveness, which is normalized to the 

size of the state space. Formally, this is defined as the EI of a model divided by the entropy of 

the intervention distribution. However, since the MI between two variables is highest when 

each variable perfectly determines the other, effectiveness can be defined wholly in terms of the 

determinism and degeneracy of the system (Hoel 2017): 

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = [𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑚] − 𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑐𝑦 (4) 

Therefore, the effectiveness of a system is equal to 1 in the case where the system is wholly 

deterministic and non-degenerate, i.e. where each intervention on the system always produces 

exactly one outcome and where each outcome is always the possible result of only one 



 

102 

intervention. The effectiveness will tend to 0 in the cases where all outcomes are equally 

probable for any intervention (maximum indeterminacy), or where all interventions produce 

the same outcome (maximum degeneracy). 

3.3.2 Effectiveness of the Formal Phonological Grammar 
To see how this measure can apply to linguistic model, we can now turn to our toy phonological 

system from section 3.2.  

Normally, calculating the effectiveness of this system would entail calculating both the 

determinism and the degeneracy of the system (eqn 4 above). Conveniently however, because 

the system is strictly deterministic, the determinism of the system is equal to 1. Therefore it 

remains only to calculate the degeneracy of the system. This is defined in terms of the Kullback-

Leibler divergence (DKL) between two probability distributions: the Intervention Distribution 

(ID) and the Effect Distribution (ED), with regard to the size of the system n: 

𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑐𝑦 =
𝐷𝐾𝐿(𝐸𝐷|𝐼𝐷)

𝑙𝑜𝑔2(𝑛)
(5) 

First, we can determine the size of the state space, i.e. the total number of states in the system. 

In the case of the formal phonological model, there are 6 possible phones – 3 places of 

articulation, each with a voiced and voiceless variant – and the capacity to distinguish coda and 

non-coda positions. Therefore, the model has 12 possible states ()Table 5: 

Figure 10: Toy Phonological System 

 Coda Non-coda 

 Voiced Voiceless Voiced Voiceless 

Labial b# p# b p 

Coronal d# t# d t 

Dorsal g# k# g k 

To define  ID and ED, we must evaluate the system’s behaviour in terms of the possible 

interventions over every state of the system, and the effects of those interventions. This is made 

simpler in our case as we need only consider a single intervention, namely our final-devoicing 
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rule(number). We proceed then by specifying, for every state in the system, what the effect of 

the devoicing rule would be. This is shown in Table 5: 

Table 5: Interventions and Effects 

Here, Hoel’s notation of do(si) is used to denote an 

intervention over a given state si. Of the 12 interventions, 9 of 

them produce no change in the state of the system. In the case 

of the 3 voiced codas however, the intervention results in a 

change of state, namely: the voiced segment devoices 

(marked in red). 

The left column in Table 5 contains the elements of the 

Intervention Distribution (ID). Since effectiveness is always 

calculated in the maximum entropy case (i.e. all interventions 

are equally probable), the probability of every do(si) in our 

system is simply 𝑛−1 = 1

12
. This, then, gives us our 

Intervention Distribution. 

To determine the ED, we turn to the right hand column in 

Table 5, the effects of each intervention on the system. This 

allows us to calculate the probability for all states in the 

system, after the intervention has been applied. Owing to the 

simplicity of our toy phonological system this is relatively 

trivial, and gives us the values in Table 6. 

 

  

Interventions  

(time = t) 

Effects  

(time = t+1) 

devoice(b#) p# 

devoice(d#) t# 

devoice(g#) k# 

devoice(p#) p# 

devoice(t#) t# 

devoice(k#) k# 

devoice(b) b 

devoice(d) d 

devoice(g) g 

devoice(p) p 

devoice(t) t 

devoice(k) k 
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Table 6: 

Once we have the values for both ID and  ED, we can calculate the 

degeneracy using equation (5), and subsequently the effectiveness, 

which come out as ~0.07 and ~0.93 respectively. The value of the 

effectiveness comes very close to a perfect score of 1. But in this case, 

the system has a small amount of degeneracy because at time t+1, the 

states p#, t# and k# can each be reached from two different states at 

time t.28 

3.3.3 EI of the Attractor Network 
Having determined the effectiveness of our formal phonological model, 

we can now turn to the micro-level model of the same system, i.e. our 

attractor network. Once again, we need to determine the determinism 

and degeneracy. And like our formal model, the attractor network is 

strictly deterministic and therefore has a determinism  of 1, leaving us 

only to calculate the degeneracy. 

In fact, it is trivially true that attractor networks have a high 

degeneracy. This is because the number of attractors must be 

significantly smaller than the total state space of the model. This 

follows from the observation that, if every state in the system were 

stable, then the system could never move from one state to another, 

ergo attractor dynamics (or indeed any dynamics) would be strictly 

impossible. Indeed, Hoel himself notes that “A high degeneracy is a mark of attractor 

dynamics.” (2017:4).  

This point becomes even more obvious when we begin consider the scale of the state-space (i.e. 

the value of n) in an attractor implementation of a symbolic system such as our toy grammar.  

Of course, the state space of our attractor network is continuous rather than discrete, so strictly 

speaking n is not defined. However, for the sake of calculating the effectiveness, we can treat 

the individual units in the model as if they were binary. This simplification is possible because 

the memories themselves are defined in terms of units which either active or inactive (i.e. either 

                                                 

28 In phonological terms, they could be derived either from underlyingly voiced or voiceless segments. 

This entails that neutralization in the phonology will always result in a non-zero degeneracy. 

si ID ED 

b# 1/12 0 

d# 1/12 0 

g# 1/12 0 

p# 1/12 2/12 

t# 1/12 2/12 

k# 1/12 2/12 

b 1/12 1/12 

d 1/12 1/12 

g 1/12 1/12 

p 1/12 1/12 

t 1/12 1/12 

k 1/12 1/12 



 

105 

a 0 or a 1). Thus, although the continuous values between 0 and 1 do play a role in individual 

unit updates, they aren’t in fact necessary to define the memories (i.e. attractor states) in the 

system. Bearing this in mind, if our model contains 41 binary units, the state space of our 

attractor model contains 241 individual states. That is, n=2,199,023,255,552 and is massively 

larger than the state space of the formal model (n=12). 

 Of course, computing the effect distribution over 2 trillion states is utterly intractable. 

Nonetheless, we can approximate the effectiveness of the system by employing a simple trick, 

which is to treat the timestep between an intervention and its effect as the complete retrieval of 

a memory, rather than the transition between each of the 2 trillion individual states. This 

simplification is possible because most of the 2 trillion states are not attractors but simply 

transitory states which the system will tend away from over time. 

Thus, by treating 𝑡+1 as convergence on an attractor, our effect 

distribution only contains 9 non-zero values (i.e. 6 possible onset 

segments and 3 coda segments). Therefore our effect distribution will 

in fact resemble the effect distribution of the formal system, but with 

an additional 2 trillion or so  zero-states (i.e. states which cannot be 

reached after an intervention): 

Recall that the three zero-states in the Effect Distribution of the formal 

model were enough to bump the effectiveness from a perfect score of 

1 down to 0.93. Thus, we should expect the huge increase in zero-

states in the attractor model to have a much larger detrimental effect 

on the effectiveness.  

This is indeed the case. Given the simplifications discussed above, we 

can calculate that our attractor model is effectiveness≅0.174, which 

is considerably lower than the value of 0.93 for the formal model 

(recall: the scale is between 0 and 1). 

However, effectiveness does not take into account the different sizes 

of the two models. To see which gives us the most causal information, 

then the size of the systems needs to be taken into account. 

Specifically, a greater effectiveness will only result in a greater EI if 

si ID ED 

1 2-41 2/12 

2 2-41 2/12 

3 2-41 2/12 

4 2-41 1/12 

5 2-41 1/12 

6 2-41 1/12 

7 2-41 1/12 

8 2-41 1/12 

9 2-41 1/12 

10 2-41 0 

… … … 

241 2-41 0 

Table 7: 



 

106 

the effectiveness-difference is greater than the difference between the size of the macro and 

micro models: 

𝐸𝐼(𝑚𝑎𝑐𝑟𝑜) > 𝐸𝐼(𝑚𝑖𝑐𝑟𝑜) 𝑖𝑓𝑓 
𝑒𝑓𝑓(𝑚𝑖𝑐𝑟𝑜)

𝑒𝑓𝑓(𝑚𝑎𝑐𝑟𝑜)
>

𝑛(𝑚𝑎𝑐𝑟𝑜)

𝑛(𝑚𝑖𝑐𝑟𝑜)
 (6) 

In our case, 0.174

0.93
 is considerably larger than 12

241, meaning that the formal linguistic model has a 

higher EI than the attractor model, and is therefore a clear case of causal emergence. In other 

words, the formal model carries more information about the causal structure of the underlying 

system. 

3.3.4 Discussion of the EI Analysis 
While the mathematics of the EI analysis are relatively straightforward, it is worth spelling out 

some of the implications of causal emergence in this case. 

Firstly, as one can infer from equation (6), the higher EI of the formal model does not arise 

trivially from a simplification of the underlying neural model. It is not enough to merely 

subsume the many states of the micro model into a smaller number of states in the macro model 

because, if all else is equal, a larger state space will contain more information than a smaller 

state space. Rather, causal emergence occurs only when the information lost from shrinking the 

state space is outweighed by the information gained from a decrease in randomness or 

degeneracy. 

Thus, not all systems can be abstracted in a way that conveys more information about the causal 

structure. For example, a micro-level system which is already strictly deterministic and non-

degenerate already has an effectiveness of 1, and thus already gives us the maximum amount of 

casual information. Similarly, macro-level abstractions can only beat the EI of non-

deterministic and/or highly degenerate systems in the case where the micro-level also exhibits 

asymmetric causal relationships (Hoel 2017:9). So it is noteworthy, and perhaps convenient, 

that the attractor model in section 3.2 is amenable to a macro-level abstraction, since not all 

systems will be. And on the occasion that they are, it seems foolhardy to reject formal methods 

given their clear utility. 

3.4 Conclusion 
The thesis of this paper is relatively simple: that linguistic formalisms are commensurable with 

the prevailing, “analogue” view of the mind/brain, and that such formalisms are indispensable 

if our ultimate goal is a complete account of the language faculty. 
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Variations on this general idea have been advocated many times before (Marr 1982; Gafos & 

Benus 2006; Smolensky & Legendre 2006; Edelman 2008, etc.). Nonetheless, it is clearly not 

universally accepted (Port and Leary 2005). Therefore, I have attempted to reiterate the 

argument by relating, in exact terms, a specific model of grammar with a specific model of 

neural function, and demonstrating, with an exact mathematical method, what the linguistic 

formalism gives us that the neural model does not, namely, a more informative account of the 

underlying causal structure of the system. 

Of course, the exactness of this argument is only made possible by the use of models which are 

a drastic simplification of reality, both from the point of view of linguistics and neuroscience. 

However, there seems to be no reason to doubt that the general conclusion will hold even as the 

models increase in complexity. Indeed, if anything we should expect that the higher EI of the 

formal model would become even more indispensable as the complexity of the system 

increases, and the neural model becomes increasingly opaque. 

Nonetheless, there are certainly related issues which these simplified models cannot address. 

For example, it could be argued that, for the toy grammar in section 3.2, only the attractor model 

can account for incomplete neutralization, and is therefore the better model. And this is true in 

some sense – EI should not be regarded as the absolute measure of a scientific theory, since 

there are many other factors which define a good theory (empirical coverage, parsimony, 

legibility, etc). However, as noted in section 3.2.2, there are many attempts to account for 

incomplete neutralization effects even within formal models (van Oostendorp 2008; Iosad 

2012), and my goal here is not to suggest that these approaches are on the wrong track. Exactly 

what should be regarded as the proper domain of explanation for formal linguistics is rightly 

an open question. Moreover, it is a question which is largely orthogonal to my argument, since 

I am not claiming that formal linguistics should explain everything about the language faculty. 

Clearly, many topics will remain firmly in the domain of neuroscience, or phonetics, or 

psychology and the social sciences more generally. My claim is merely that formal linguistics 

can provide something which those other domains cannot: a proper treatment of the causal 

structure of grammar. 

3.4.1 Implications for Formal Linguistics 
Although this paper is positioned as a defence of formal linguistics, it is nonetheless at odds 

with various other conceptions of linguistic formalisms. As already noted (section 3.2.5), the 

implementational view of linguistic formalisms naturally leads to a very different approach to 
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relating neuroscience and linguistics. For example, consider the following quote from Bale & 

Reiss (2018): 

“[W]e have attempted to build phonological theories out of a general logical and 

mathematical toolbox containing functions, sets, set operations, and variables. 

Theories built with these tools can be easily translated to precise algorithms. 

Precise algorithms, in turn, should ultimately make it easier to associate 

neurological states and activity with phonological cognition. […] Once we state 

our phonological patterns in such general terms, neuroscientists can try to figure 

out how functions, sets, set operations, and variables can be implemented in 

biological systems more generally.” (p.4) 

This quote captures the implied utility of a formal linguistic model under the implementational 

view: it provides a computational parts list for neuroscientists (c.f. Poeppel and Embick 2005; 

Poeppel 2012). 

However, we can note that the approach Bale & Reiss are describing doesn’t seem applicable 

to the models presented in section 3.2, where some elements of the formal model can be easily 

translated into some phenomenon in the attractor model (e.g. phones are attractors) but others 

cannot - for example the rule in the formal model does not map onto any distinct component or 

algorithm in the attractor network  (only when the global behaviour of the network is considered 

can we see the parallel between the two levels of abstraction). This demonstrates an important 

obstacle for the implementational approach: a macro-level abstraction can be decomposed in 

any number of extensionally equivalent ways, each of which can lead to intensionally different 

assumptions about the underlying neural reality (for example, Bale & Reiss’ choice of set-

theoretic notation could never lead us to deduce anything like the attractor model). And of 

course, from the linguist’s perspective, there is no way of knowing a priori which method of 

decomposition will ultimately lead to the correct intensional model of the brain. This forces 

linguists to make unprovable claims about the intensional properties of their own models. For 

example, a phonologist might be forced to claim that phonological features are either privitive 

or binary (c.f. Odden 2013) – on the grounds that this distinction corresponds to some important 

difference at the neural level – long before they have even the vaguest notion of what that neural 

difference could possibly be. 
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By contrast, under the causal emergence view, the linguistic model is related to the neural model 

by the behaviour of the whole system. In effect, we are mapping a class of extensionally 

equivalent linguistic formalisms onto a class of extensionally equivalent neural models. Thus, 

the linguistic model still delimits the class of possible neural models, but the claim is a slightly 

weaker one than under the implementational view. Of course, this doesn’t entail that there is no 

way of distinguishing between the equivalent models in each class – it might still be true that 

features really are either binary or privitive at the neural level – but we can postpone answering 

such questions until we at least have some coherent way of formulating them in neural terms. 

In the meantime, linguists can adjudicate between models using all the usual scientific criteria 

(empirical coverage, parsimony, legibility, etc), and those models can still be used to make non-

trivial predictions about the underlying neural mechanisms (e.g. Collins 2019) 

Ultimately, exactly how linguistic models relate to the neural reality is an unanswered question. 

However, the EI analysis does give linguists one final motivation to be cautious of putting all 

their eggs in the implementational basket: recall from section 3.3.4 that causal emergence 

cannot occur in the case where the micro-system is already deterministic and non-degenerate. 

This implies that, if linguistic models can be neatly decomposed into (e.g.) neural algorithms 

implementing set-theoretic operations, then it is unlikely that the linguistic model could give us 

any more causal information than the neural model. In other words, the implicit goal of the 

implementational program is one of reductionism: a complete neural account would make 

linguistic models scientifically redundant. Conversely, if the linguistic model is causally 

emergent (as in the case of the attractor network) then formal linguistics will persist as the best 

account of the causal structure, irrespective of how sophisticated the neural model becomes. 
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“Speech is the only window through which the physiologist can view the cerebral life.”  

(Fournie 1887 via Lashley 1951) 
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4 On the Language Specificity of Vowel Maps 

Zeynep Kaya, Joe Collins, Alessandro Treves 

4.1 Introduction 
The vowels of natural languages can be largely mapped onto a 2D Euclidean space, whose 

dimensions span the frequency of the first (F1) and second (F2) vowel formants. These two 

acoustic parameters are in remarkable, although not quite linear correspondence with the way 

each vowel is produced, that is, how open is the vocal tract (F1) and how much the occlusion 

is moved towards the front of the tract.29The striking phenomenon, in fact, is that although this 

space is inherently continuous, individual languages employ the space as if it were divided into 

a small number of quasi-discrete basins, commonly referred to as the vowel inventory of a given 

language, or the set of vowels that a fluent speaker can reliably produce and discriminate. This 

partitioning of the continuous space can be regarded as a natural consequence of Ferdinand de 

Saussure’s observation that the relation between sound and meaning in human language is 

arbitrary (de Saussure 1966). For example, a sound exactly half-way between the words “hat” 

and “hit” cannot obtain a meaning half-way between these words, but rather must be parsed as 

meaning one, the other, or neither. 

Another consequence of this arbitrariness is that languages vary from one another both in terms 

of how they divide the acoustic space, and how the divisions are treated by the grammar. This 

is true even though the outer boundaries of the space itself are relatively invariant cross-

linguistically, owing to consistent physiology between speakers of different languages (barring 

individual differences in vocal tract length, etc.). 

This high degree of cross-linguistic variance has led phonologists to consider the sound patterns 

of languages in terms of abstract cognitive categories, called phones, rather than purely acoustic 

objects. Indeed, there are many attested phonological patterns which appear to contradict 

perceptual or articulatory considerations (Bach & Harms 1972, Buckley 2000, Collins & 

Krämer 2016), suggesting that the relation between phones and measurable acoustic quantities 

is complex and strongly language-dependent. 

                                                 

29 “Largely” alludes to other features of vowel production, such as rounding, which also play a role in 

vowel discrimination. 
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This distinct nature of acoustic objects and cognitive categories necessitates the existence of 

language-specific processes for mapping the “physical” acoustic space onto a more abstract 

cognitive representation of that space. Native speakers of different languages, whose vowel 

inventories differ, should then perceive the similarity between sounds not in agreement with 

their acoustic Euclidean distance, but rather with a language-specific perceptual distance. With 

two different experiments, we aim to assess this hypothesis quantitatively, by measuring 

language-specific deformation of the common acoustic space. 

4.2 Background: Categorical Perception as Attractor Dynamics 
Minimal word pairs such as “hat” and “hit” have parallels in other domains such as bistable 

percepts in visual perception (e.g. Necker cubes; Necker 1832), as well as various other auditory 

phenomena (Warren & Gregory 1958; Deutsch 1974). This suggests that categorical perception 

in the vowel space may not be a language specific capacity per se, but perhaps a specific 

instance of a more fundamental neural mechanism. 

One likely candidate for such a mechanism is attractor dynamics, whose application to 

cognition has been studied within theoretical neuroscience since the 1980s (Amit 1989; Daelli 

& Treves 2010). Attractor dynamics can be characterized as those of a dynamical system, which 

evolves towards a small subset of possible configurations. This is often visualized as a 

landscape of valleys and peaks, with the stipulation that the system will always roll downhill 

towards a valley floor. If we conceive of the valley floors as being memories, such as lexical 

items like “hat” and “hit”, then attractor dynamics will be enough to ensure that the system will 

always evolve towards the memories themselves, and away from the ambiguous zones in 

between. 

Various researchers have then posited attractor dynamics as a fundamental mechanism for 

categorizing speech sounds. Attractor dynamics have been used in this context for reconciling 

theoretical frameworks of grammar (Gafos & Benus 2006), but also as motivation for 

experimental work in speech perception. For example, Tuller et al (1994) investigated English 

speakers’ ability to distinguish the pair say/stay by inserting a silence between the /s/ and the 

vowel portion of the stimuli. By increasing or decreasing the length of the silence, Tuller et al 

found that participants could be biased towards perceiving the stimulus as the word stay, even 

when the formant structure of the vowel does not suggest a preceding /t/. Importantly, the 

relationship between the length of the silence and participants perception was dependent on the 

presentation order of the shorter and longer silences. Consequently, the bifurcation of say/stay 
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does not take the form of a sharp, context independent boundary, but rather is suggestive of a 

complex non-linearity as one attractor slowly weakens and gives way to another. 

Others have pursued a similar line of enquiry motivated by the so-called “perceptual magnet” 

effect30. For example, Iverson and Kuhl (1995) studied the warping of the space around the 

high, front vowel /i/. In one experiment, participants were played synthesized pairs of vowels, 

between /i/ and /e/, and asked to judge whether they thought the vowels were the same of 

different. They found that the closer two vowels were to a prototypical /i/ or /e/, the more likely 

they were to be confused by participants. And conversely, the closer two vowels were to a 

category boundary, the more likely they were to be discriminated. 

Our experiments employ a similar vowel-confusion paradigm to Iverson and Kuhl (1995). Our 

first experiment uses stimuli that span the continua between four different acoustically defined 

vowel pairs, to contrast the perception by subjects in four different L1 groups: Italian, Spanish, 

Turkish, and Scottish English. Our second experiment extends the comparison between L1 

groups to 2 dimensions, by using stimuli that cover the whole vowel space, in neighboring pairs. 

This allows us to visualize vowel perceptual space as a deformed map of the acoustic space for 

L1 speakers of Italian, Turkish, and Norwegian. In a variant of the second experiment, we probe 

the stability of the vowel maps for Norwegian (late-)bilinguals in L1 vs L2 contexts. 

4.3 First Experiment 
Stimuli 

Stimuli were created by first recording pairs of CV syllables, and using software to generate 

new CV syllables with intermediate vowel qualities. For example, given the recorded CV pair 

[fu] and [fy], with approximately equal first formant for the vowels [u] and [y], the software 

would produce two new CV pairs with the same initial consonant and F1 as the recorded pair, 

but with intermediate F2 values. The result in this case is a total of four CV syllables, which 

are spaced roughly “equidistant” along a single continuum, namely the F2 of the vowel (Figure 

12). Equidistant is in inverted commas, because even for pure tones equal distances in Hz are 

not perceived as equally distinct, an issue often addressed by using the “bark” scale mentioned 

below, which is roughly linear from 0 to about 600 Hz, and then roughly logarithmic (Zwicker 

1961). We refer to each set of four stimuli, generated from the same two recordings, as a CV-

                                                 

30 Essentially a qualitative descriptor for attractor dynamics. 
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quartet. Any two vowels from a quartet can be related in terms of their “distance” from one 

another, on a discrete scale from 0 (same vowel) to 3 (original recorded pair). 

The following CV syllable pairs were used to generate each quartet: [vu]~[vy]; [fu]~[fy]; 

[bo]~[bœ]; [po]~[pœ]; [dæ]~[dɛ]; [tæ]~[tɛ]; [gɔ]~[gʌ]; [kɔ]~[kʌ]). These stimuli were chosen 

to satisfy two constraints: i) all the syllables in each quartet should have the same initial 

consonant, and ii) each quartet has a “voice counterpart” quartet with the same vowels but with 

an alternate voicing specification in the initial consonant (e.g. [vu]~[vy] is the voice counterpart 

of [fu]~[fy], etc). This allows us to manipulate the presentation of the stimuli so as to minimize 

confounds from the initial consonant. 

  

Figure 11: Recorded vowels (grey circles) and continua for morphs shown on standard vowel parallelogram. 

 

 

Figure 12:Spectrograms of a single CV-quartet from [fu] (leftmost) and [fy] (righmost) recordings, with intermediate 
morphs (middle two). The circles show the frequencies of the first and second formants, which form anchor points 
for the morphing algorithm. 
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CV syllables were produced by recording a phonetically trained native speaker of British 

English. Each syllable recording was trimmed to 400ms. 

Participants 

A total of 64 subjects participated, comprised of four equally sized groups of native Italian, 

Spanish, Turkish, and Scottish English speakers. All participants exhibited sufficient 

competence in English to interact fluently with the researcher. 

Method 

For each trial, participants were played two CV syllables in succession, with a 300ms pause in 

between, from a pair of voice-counterpart quartets – in other words, the consonant was always 

different (voiced/non-voiced or vice versa), while the vowel sound could be the same. After the 

second CV syllable, they were asked to press a button within a 2 second time window if they 

perceived the two vowels as the same. Conversely, if they perceived them as different they were 

asked not to respond. Responses given up to 100ms after the elapsed 2 second window were 

counted as a “same” response for the purpose of the analysis. 

Each participant was presented with 160 trials. The trials were presented in a random order, 

with a different order for each participant, in order to minimize the order effects described by 

(e.g.) Tuller et al (1994). 

Results 

By counting “same” responses to each vowel pair, we can assess the participants ability to 

discriminate between ambiguous vowels within each CV-quartet. First, we can sketch possible 

curves for the proportion of “same” responses as a function of the distance between the vowels. 

The extent to which these responses deviate from linear gives some indication of the topography 

of the attractor space. Figure 13 shows idealized psychophysics curves for hypothetical 

“narrow” and “broad” attractors. In the case of “narrow” attractors, we expect participants to 

confuse only those vowels which are close to a prototypical vowel. In the case of “broad” 

attractors however, we expect higher confusion between vowels which are further apart, as both 

vowels fall within the same basin of attraction. The ill-defined notion of equidistance along the 

x-axis makes the comparison between results for speakers of different languages more 

interesting than the actual curves for a single group of subjects per se. 
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Figure 13: Idealized diagram showing psychophysics curves for hypothetical "narrow" or "broad" attractors, as 

compared to a strictly linear response. 

 

Figure 14: Native vowels for Spanish, Italian, Turkish and Scottish English (left-to-right). The circles and dotted lines 
denote those which coincide with the recorded stimuli and morph continua (respectively). 

 

Figure 15: Psychophysics curves for each CV-quartet. The different colour lines correspond to the different 
language groups. 
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The results in Figure 15 show some differences between language groups and vowel-pairs. 

First, across language groups it appears that the [u]-[y] “continuum” tends to fit better the 

narrow attractor concept (narrow relative to the perceptual distance between the extremes), 

relative to the [æ]-[ɛ] continuum, where the extremes are perceived as closer (though still easily 

discriminable, except by Turkish speakers). The [o]-[œ] continuum falls somewhat in between 

the narrow and broad attractor models. Finally, the [ɔ]-[ʌ] continuum appears close to linear, 

and none of the language groups seemed to perceive two distinct attractors along it. Turning to 

language-specific effects, in the case of the [u]-[y] quartets, Turkish seems to show the 

narrowest basins of attraction, presumably owing to Turkish’ high, unrounded [ɯ] vowel which 

falls approximately in the [u]-[y] quartets. Conversely, Turkish appears to have the broadest 

attractors in the [æ]-[ɛ] continuum, likely owing to the lack of native vowels in this portion of 

the vowel space. Speakers of Scottish English share some of the perceptual peculiarities of 

Turkish speakers, but to a reduced extent. However, overall the differences between the 

language groups are perhaps smaller than we might expect. It is possible that these 

psychophysics curves mask some differences due to averaging across morph pairs, therefore in 

Figure 16 we plot the mean frequency of ‘same’ responses between individual vowel morphs 

for each language group. 

 

Figure 16: Mean frequency response for each CV-quartet by language group. Within each language, the colour 
shade corresponds to the vowel distance, such that the darkest shade represents distance=0 while the lightest 

shade represents distance=4. 
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The plots in Figure 16 reveal a few more details. For example, the Turkish response to the [u]-

[y] CV-quartet shows a generally lower degree of confusion between more distant vowels 

(wider bars). However, the plot in Figure 16 also tells us that all language groups showed 

greater confusion on the [u]-[y] continuum further back (closer to [u]), and that Turkish is 

distinguished specifically by a lower confusion in the middle of this CV-quartet, which again 

suggests the  presence of another distinct standard vowel, the Turkish [ɯ], along this morphing 

continuum. 

4.4 Second Experiment 
The first experiment shows some differences between language groups, but the differences are 

nonetheless smaller than we expected. We speculated that this is because each CV-quartet only 

spans a unidimensional segment, in two instances quite short a segment, in the vowel space. 

Therefore, for the second experiment we wanted to extend the analysis to a potential language-

specific distortion of the full 2D maps, by using stimulus pairs that still probe local perceptual 

distances (at larger separations, all stimuli are discriminable, so these experiments would not 

be informative) but allowing for a complete “triangulation” of the vowel space in each 

language. 

Stimuli 

The second experiment employs most of the same CV syllable recordings as the first 

experiment, in particular the four morphs in each of the two longer [u]-[y] and [o]-[œ] segments, 

and only the two extremes in the shorter [æ]-[ɛ] and [ɔ]-[ʌ] segments, for a total of 12 vowel 

sounds. We then added 4 additional intermediate vowels at relatively empty locations in vowel 

space (positions 6,7,8,12 in Figure 17) and, most importantly, we contrasted each sound with 

all its immediate neighbors, thus obtaining a triangulation based on the 35 segments in Figure 

17. Each subject was tested on each contrast 4 times, the 4 combinations of which vowel sound 

and which consonant comes first.  
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Figure 17: All 16 vowel stimuli plotted in “triangulated” vowel space (frequency in barks). 

Participants 

60 subjects participated, comprised of three equal-size groups of Italian, Turkish, and 

Norwegian speakers. 

Method 

The method for each trial was the same as the first experiment, however the number of trials 

increased to 256. Of those 256 trials, 64=16x4 presented two stimuli with identical vowels, 

140=35x4 presented two stimuli which are adjacent nodes in Figure 17 (i.e. joined by a single 

line with no intervening nodes), and the remaining 52 presented stimuli in which the vowels 

were separated by more than one node, but still members of the same CV-quartet. 

For the analysis, only the responses to adjacent or identical vowel-pairs were included. We 

defined a “perceptual distance” between two vowels, i and j, as the negative log transformation 

of the symmetrized matrix representing the proportion of “same” response between i and j. 

𝑑(𝑖, 𝑗) = −ln (
𝑆(𝑖|𝑗)𝑆(𝑗|𝑖)

𝑆(𝑖|𝑖)𝑆(𝑗|𝑗)
) 

This value is calculated for each adjacent vowel-pair in each language group. Then a gradient 

descent algorithm (see appendix), adapted from Kohonen (1982), finds a best fit for mapping 

the relative perceptual distances within each language group onto a 2D plane. 
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Results 

The average perceptual distance for each vowel pair, across all language groups, is shown in 

Figure 18, as well as any language group outliers (p<0.001; calculated from 1000 ensembles of 

20 participants). In general, we see that the Norwegian group has much better perception than 

the Italian and Turkish groups. 

 

Figure 18: Mean perceptual distance for each adjacent vowel pair. In the case where a language group were outliers 
(p<0.001), the perceptual distance for that language group is also plotted. 

Using the definition of perceptual distance above, we generated the deformed vowel maps for 

each language shown in Figure 20. In general, some information is lost during the deformation 

process, therefore the clusters generated by the algorithm do not align perfectly with the native 

inventories for each language (Figure 19). All three languages exhibit a clear difference 

between the perceptual space and the acoustic space. And all three languages show significantly 

more clustering in the back (low F2) portion of the space compared to the front. However, there 

are also significant differences between the languages, which become clearer when comparing 

the outliers in Figure 18 with the corresponding links in Figure 20. 
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Figure 19: Vowel inventories of (left-to-right) Italian, Turkish, and Norwegian. The identification with the stimuli used 

in Exp.2 is somewhat arbitrary, particularly for Norwegian.  

 

Figure 20: Deformed perceptual maps for Italian (green), Turkish (red), and Norwegian (dark blue), as well as the 
average map (light blue) that is created by feeding the algorithm with the perceptual distances of the three 
languages and then by averaging the three maps obtained for each language. High outlier links are indicated by 
dashed lines, while low outliers are indicated by thicker lines. 

The Norwegians had showed better perception across a large number of vowel pairs, which 

results in less clustering in the deformed map. The two low outliers among Norwegian 

participants, 9-2 and 0-1, produce slightly different effects in the deformed map. While 9 and 

2 are relative distant on the deformed map, there is a very tight cluster between sounds 0 and 1 

(which had a very low perceptual distance in Figure 18). Given that this cluster is in the centre 

of the vowel space, we speculate that it is perhaps caused by the presence of a rounded central-
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mid vowel in the native vowel inventory. Although the Norwegian inventory also has a schwa 

in this portion of the space, its distribution is heavily restricted by prosodic and morphological 

conditions, which our simple CV-stimuli do not consider. Therefore, it seems unlikely that any 

of the stimuli would have been perceived by Norwegian participants as containing a schwa.  

Conversely, Italian participants were high outliers for the pair 0-1, which is reflected in a lack 

of clustering in the central portion of the space. This is likely because Italian lacks a true schwa, 

as well as any central vowel. However, Italian it does show a partial collapse of vowel 4 and 

12 onto the nearby 15 and 14, even though we would have perhaps expected it to distinguish 

clearly between open [ɔ] (15) and closed [o] (14), given that these two vowels form minimal 

pairs in many dialects of Italian (including standard Italian; Bertinetto & Loporcaro 2005). 

However, not all dialects distinguish these vowels, and even in dialects which do maintain the 

distinction, it is restricted to stressed syllables (Krämer 2009). Our monosyllabic stimuli cannot 

capture all of these factors. Moreover, the Italian participants were not low outliers for any of 

these sounds, so the excessive degree of clustering is also likely a consequence of the algorithm. 

Turkish shows a cluster in the high-centre portion of the space, sounds 1, 0 and 2, which appears 

to encompass both Turkish [ɯ] and [œ] – this is perhaps a consequence of the complex 

allophonic variation in Turkish vowel harmony, a consequence of which is that [ɯ] and [œ] 

cannot appear in the same word. Again, our monosyllabic stimuli cannot disentangle these 

factors31. 

Finally, the Norwegian group appeared to have generally better discrimination in the low/back 

portion of the space, particularly between vowels 6 and 5. This is arguably surprising given that 

Norwegian does not differ greatly from Turkish or Italian in the way this neighborhood is used. 

However, it is noteworthy that many varieties of English do distinguish more vowels in this 

space (Figure 14). This leads us to hypothesis that the increased Norwegian discrimination in 

this space may be caused by increased exposure to English (Ef.edu 2018). This is one of the 

questions we address in our next experiment, a variant in which we focus on bilingual subjects. 

                                                 

31  Furthermore, there is evidence that many Turkish speakers lower mid-vowels in certain closed 

syllables (Gopal & Nichols 2016), whereas all our stimuli are open syllables. This might well lead to a 

perceptual-raising effect for our stimuli. 
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4.5 Bilingual variant of Experiment II 
For the final experiment, IIb, we consider the role of L2 competence in the deformation of the 

vowel space. This experiment allows us to probe two questions: Firstly, do (late-)bilinguals 

employ separate vowel maps for each language, or do they merge their maps (c.f. Flege et al 

2003) – which might indirectly explain the Norwegian results in second experiment as an effect 

of increased English competence? 

And secondly, are our findings from the first two experiments confounded by the varying 

degrees of L2 competence among participants, and the differing linguistic contexts under which 

the experiments were conducted?  

Stimuli 

This experiment uses the same stimuli and paradigm as the second experiment, with the 

variation that participants were also presented with recordings of short stories in either English 

or Norwegian. The short stories were recorded by male (English) and female (Norwegian) 

native speakers. 

Participants 

Six native speakers of Norwegian, all with high self-reported competence in English. All 

participants were university students in fields where a high English competence would be either 

required or expected (e.g. English literature, etc). The stories were all trimmed to be of either 4 

minutes or 2 minutes in length. 

Method 

The 256 trials were divided into four test sessions. Before each test session, participants were 

primed for an English or Norwegian language context by listening to short stories. After each 

testing session, participants would answer yes-no questions on the previous story, to assess their 

attention during the story segment. The yes-no questions were presented visually, in the same 

language as the short story. The questions also had a secondary function of leading participants 

to believe that they were taking a memory test, thereby diverting their conscious introspection 

from the true task. 
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Participants would listen to a 4-minute short story (in either English or Norwegian) before the 

first session, a 2-minute story before the second session, and before the third and fourth sessions 

participants listened to two halves of the same four-minute story. 

Each participant completed a round of testing both with all Norwegian stories and all English 

stories, with a 15-minute break in between. The order of English vs Norwegian testing was 

evenly divided among participants. 

Results 

Accuracy rates for the yes-no questions were close to ceiling for the English stories (mean 95%) 

but lower for the Norwegian stories (mean 46.67%). Informal interviews after the experiments 

suggested that this is partially explained by one of the Norwegian questions being 

misunderstood, due to the use of an unusual wording in the question. We speculate that the 

remaining discrepancy is a consequence of participants paying more attention during the 

English stories, out of a desire to prove their English competence. 

The perceptual distance from both conditions were once again mapped onto a 2D space using 

the gradient descent algorithm. A visual inspection of the deformed maps for the English and 

Norwegian contexts show no noteworthy differences between the two contexts (Figure 21). A 

McNemar’s test (Cardillo 2007) for each vowel-pair over all trials suggests the priming 

condition had no significant effect (p<0.05) on all but 15 of the 64 vowel-pair combinations. 

The 15 pairs which passed the threshold for statistical significance all had low statistical power 

(McNemar’s Z-test<0.8, two-tailed). We interpret these results as showing no evidence that the 

priming conditions had any effect on the participants perception. This is in accordance with 

earlier results suggesting that late-bilinguals do not develop new L2 vowel categories, but rather 

merge their L1 and L2 categories (Flege et al 2003). 
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Figure 21: Comparison of the perceptual maps for the Norwegian (left) and English (right) priming conditions. 

However, when comparing these maps to the Norwegian map from the second experiment 

(Figure 20), we do notice some differences, most notably the position of vowel 7, which is far 

more central in Figure 21 than in Figure 20. This result runs counter to our expectation that the 

results from these two groups should be the same. 

First, we hypothesised that the unexpected difference could be a result of dialectal variation 

between the two groups, given that the two experiments were carried out in two different cities 

(Tromsø for the second experiment and Trondheim for the bilingual variation). However, while 

it is true that there are differences in this portion of the vowel space between the Trøndersk and 

Tromsø varieties of Norwegian (Vanvik 1979), it is not true that our participants were all 

speakers of these two varieties. The participants in both experiments spoke a wide variety of 

dialects, and most of them also had complex linguistic backgrounds (due to living in different 

cities, etc.) which precluded any neat categorization of the participants by dialect. Therefore, to 

explain the difference in perception, we would have to assume that merely living in Trondheim 

or Tromsø would be enough to alter the participants perception of the vowel space. Given that 

we could not find any significant effect from L2 exposure (Figure 21), it seems implausible that 

short-term exposure to dialectal micro-variation can nevertheless induce significant changes in 

speakers’ perceptual maps.  

Given this conclusion, we wanted to see if the different response from the two groups could be 

indirectly triggered by the different design of the two experiments. To do this, we compared 

the participants’ responses in the Norwegian context condition to the Norwegian participants’ 

responses in experiment II, for all trials involving vowel 7. This was the vowel whose 

perception clearly differed the most between the two groups. The other vowels with which 
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vowel 7 was most likely to be confused were vowels 6, 10 and 11. This was consistent for both 

groups of Norwegian speakers. However, the participants in experiment II were more likely to 

give a ‘same’ response for all three of these vowel-pairs (Table 8). 

 PERCENTAGE OF ‘SAME’ RESPONSES 

VOWEL-PAIR Second experiment Norwegian-primed condition 

7-6 23.75% 8.33% 

7-10 35% 16.67% 

7-11 43.75% 33.33% 

Table 8: Comparison of responses to trials involving vowel 7. Note that the other 2 pairings with vowel 7 (7-1 and 
7-0) both have a 'same' response rate below 0.02%. 

In qualitative terms then, the responses of the two groups were the same, but the group in the 

second experiment were more likely to press the key to indicate that they perceived both vowels 

as the same. 

Given these data, we might hypothesise that participants were fatigued or disinterested from 

the longer testing times required by the priming condition. However, the response rates across 

all vowel pairs do not support this hypothesis. On average, the group from the second 

experiment were actually less likely to press the ‘same’ button (mean 34.61%) compared to the 

group from the priming experiment (mean 36.13%). This observation holds even when 

comparing responses to trials involving identical vowels (mean 89.61% for 2nd experiment vs 

mean 95.57% for bilingual experiment). Therefore, there is no evidence that the participants 

who listened to the stories and yes/no questions were simply responding less due to fatigue. If 

anything, the mean response rates seem to suggest the opposite. 

Finally, this leaves us with the hypothesis that the difference between the two groups is a 

sampling error, perhaps a consequence of the smaller sample size in the third experiment. 

Mann-Whitney U-tests comparing the two groups for each vowel pair suggests that the different 

response rates between the two groups is not statistically significant (vowels 7-6: p=0.2467, 

vowels 7-10: p=0.1716, vowels 7-11: p=0.4285). This suggests that a sampling error is the 

most likely explanation for the difference between the two groups. 
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4.6 Conclusion 
Our first experiment extends the findings of (e.g.) Iverson & Kuhl (1995) to a wider portion of 

the vowel space, and provides some evidence for language specific perception of that space, 

perhaps governed by attractor dynamics. 

By extending the stimuli in the second experiment to cover the whole space, we are able to 

approximate the deformation of the acoustic space by participant perceptions of that space. This 

method provides a much clearer perspective on the language-specific mapping from the 

acoustic space to the phonological space.  

The null-result from experiment IIb suggests that the results from the first two experiments are 

unlikely to be confounded by the different linguistic contexts in which each language group 

performed the experiment. However, these results, combined with the higher Norwegian 

discrimination of English vowels, also supports the claims of Flege et al. that bilinguals merge 

their maps rather than developing separate maps for each language. 
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4.8 Appendix 
The algorithm proceeds as follows. The initial fit distance between the sounds i and j, that is 

f(i, j), equals the Euclidean distance between their coordinates, given by the first and second 

formants F1 and F2:  

f(i, j) =√{[F1(i)−F1(j)]
2+[F2(i)−F2(j)]

2}    ( 16 )   

In order to extract the perceptual distances in the same order of magnitude as the distances in 

the Bark space, we initially scale them by a scaling factor k: 

k = ∑links f(i, j) / ∑links d(i, j)      ( 17 ) 

where both sums are over the 35 edges or links between the sounds. The scaling factor k of 

Italian, Turkish and Norwegian comes out as 0.503, 0.516, and 0.402 respectively. If perceptual 

distances are larger on average, we need a smaller scaling coefficient k, and therefore a lower 

value for k corresponds to a higher ability to discriminate sounds (which is the case for the 

Norwegian listeners).  

At each iteration of the map adjusting algorithm, then, a sound i that is different from the 

previous one is randomly chosen. Its coordinates are then adjusted to minimize a cost function 

E, which is defined as: 

E = ∑links [ f(i, j)−d(i, j)]2 / [d(i, j)]2    ( 18 ) 

That is, we do gradient descent to find the local minima, with learning rate α: 

∆F1,2(i) =α ∑links [f(i, j)−d(i, j)][F1,2(j)−F1,2(i)]/[d(i, j)2f(i, j)] ( 19 ) 

where we set α= 0.01  
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