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Abstract 

Rapid changes to the physical environment of Arctic marine systems in recent years impact the structure 

and function of benthic ecosystems. Exploring the resilience of these systems to perturbations requires 

a solid understanding of key ecological processes and must be conducted over appropriate time scales 

due to the slow growth and recruitment of many Arctic benthic organisms. This study addresses the 

successional pattern of a hard-bottom benthic community in Smeerenburgfjorden (NW Svalbard) after 

a perturbation and the functional traits involved in the different stages of recolonization. Spanning nearly 

four decades, the time series was initiated in 1980 by clearing the substrate free of organisms on a 

vertical rock wall at 15 meters depth, and the site was subsequently photographed annually by scuba 

divers. The structure of the ecosystem was investigated by estimating the abundance (solitary taxa) and 

percentage cover (colonial taxa and macroalgae) of the benthic organisms from the images, whereas the 

ecological functioning of the system was examined via functional traits analysis based on literature 

sources. Single taxa showed different return rates and fluctuating abundance and cover throughout the 

time series. Hydrozoans and mobile mollusk grazers Tonicella spp. and Margarites spp. appeared in the 

early recolonization stage, whereas late-successional taxa included ascidians, sponges, barnacles, and 

the bivalve Hiatella arctica. A climate-driven foliose macroalgae takeover was observed in the year 

2000, in conjunction with a reorganization in the invertebrate community structure. Recovery rate at 

community level following the clearing confirms previous observations of slow recolonization in polar 

benthic systems. It took ten years for the cleared substrate to be covered by living organisms comparable 

to the control area, and the convergence of the community compositions of cleared and control transects 

took more than two decades. The community-weighted mean traits displayed a decrease in body size 

and longevity in response to the clearance manipulation, and a small increase in mobility and grazing 

and predatory feeding habits. This study provides insights into the succession and recolonization of 

Arctic hard-bottom benthic communities after a perturbation and their implications for ecosystem 

functioning, important knowledge at a time of rapid change and increasing borealization of high-latitude 

ecosystems. 
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1 Introduction 
Polar marine ecosystems are facing changes to their physical environment at an unprecedented rate due 

to anthropogenic climate change. Temperatures in the Arctic are increasing at up to three times the 

global average, resulting in rapidly retreating sea ice and increased freshwater discharge from thawing 

glaciers, which leads to altered light regimes in the water column (Kortsch et al., 2012, Krause-Jensen 

and Duarte, 2014, Wassmann et al., 2011). On the Westcoast of Svalbard, also altered ocean currents 

advect warm salty water northwards (Renaud et al., 2015), and all of these factors have major 

implications for marine communities. These include for example a poleward shift in the biogeographic 

range of cold-temperate species (Frainer et al., 2017, Grebmeier et al., 2006, Krause-Jensen and Duarte, 

2014), a prolonged productive season (Paar et al., 2016), and altered ecological interactions (Molis et 

al., in press). Drastic changes in benthic community structure caused by climate change have already 

been documented in the Arctic (Bartsch et al., 2016, Jueterbock et al., 2013, Kortsch et al., 2012, 

Wassmann et al., 2011). 

Benthos, i.e. the community living in or on the seabed, comprise over 90% of the Arctic marine fauna 

(Renaud et al., 2015), and are often characterized by high biomass in areas of high pelagic production 

due to the generally tight benthic-pelagic coupling (Cochrane et al., 2009, Iken et al., 2010). Arctic 

coastal hard-bottom habitats are dominated by encrusting coralline and canopy-forming macroalgae, 

and as ecosystem engineers, the algae stimulate biodiversity, provide habitat, shelter, and food to higher 

trophic levels (Krause-Jensen and Duarte, 2014). These systems host a diverse suite of invertebrates 

(Gulliksen and Svensen, 2004), including sponges, ascidians, bryozoans, cnidarians, as well as several 

taxa of crustaceans, molluscs, polychaetes, and echinoderms (Beuchel and Gulliksen, 2008, Palerud et 

al., 2004, Voronkov et al., 2016), but more extensive knowledge on the structure and dynamics of hard-

bottom habitats is yet to be established (Voronkov et al., 2016). 

Studies assessing temporal variability in community structure must be undertaken at appropriate time-

scales, particularly considering the high longevity and slow growth of many resident invertebrates 

(Beuchel et al., 2006). Here, long-term time-series are an essential but often underfunded tool. The few 

existing long-term studies indicate recent drastic reorganization in the structure of Arctic benthos 

(Bartsch et al., 2016, Beuchel and Gulliksen, 2008, Kortsch et al., 2012, Weslawski et al., 2010), further 

stressing the need for such baseline studies. Kortsch et al. (2012) found a sudden shift in community 

structure characterized by an eightfold and fivefold increase in macroalgal cover in Smeerenburgfjorden 

and Kongsfjorden, respectively. This regime shift, here defined as a sudden shift between alternate states 

of a community (Deyoung et al., 2008), was associated with simultaneous changes in benthic 

invertebrate community structure and was linked to altered light regime caused by increasing 

temperatures and associated number of ice-free days (Kortsch et al., 2012). Other long-term studies have 

found an increase in kelp biomass and a shift in the distribution of kelp to shallower depths on hard-
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bottom in Kongsfjorden, probably associated with reduced disturbance from ice-scouring, an extended 

ice-free period, and increased turbidity (Bartsch et al., 2016). This upwards trend of macroalgae was 

paralleled by a tenfold increase in biomass and production of macrozoobenthos in the upper sublittoral 

(Paar et al., 2016). This finding is in line with results from a study in Hornsund and Sørkappland, 

Svalbard, which also found an upwards shift in macroalgae and associated benthos in the intertidal, as 

well as a retreat of cold-water arctic species (Weslawski et al., 2010). These recent observations 

highlight the need for timeseries studies on both structure and function of Arctic benthos that span over 

several decades (Wassmann et al., 2011). 

Succession  is the observed change in a community over time following a perturbation that creates 

available substrata (Connell and Slatyer, 1977) and can be classified as either primary or secondary, 

depending on whether the substrate was previously inhabited. Primary succession is the process 

following a disturbance that made a previously uninhabitable area available for colonization, and a 

secondary succession is one where the area becomes available because the disturbance has eradicated 

the previous inhabitants (Connell and Slatyer, 1977). Near-shore polar benthic communities are thought 

to be among the most disturbed marine environments globally, with wave action, currents, periodic 

salinity fluctuations and close to freezing temperatures, and most importantly the influence of ice 

constantly putting pressure on these systems (Barnes, 1999). Succession of Arctic hard-bottom 

ecosystems is nevertheless poorly understood (Meyer et al., 2017), and recolonization appears to occur 

at much slower rates here compared to those of lower latitudes (Molis et al., in press). These habitats 

are anticipated to expand in the future when retreating glaciers and reduced ice-scour provide new areas 

for colonization (Krause-Jensen and Duarte, 2014, Paar et al., 2016), so it is crucial to gain insights into 

the dynamics of succession. 

Three different models are often used to describe the sequence of succession by early and late colonizers: 

the facilitation, inhibition, and tolerance models (Connell and Slatyer, 1977). In the facilitation model, 

early colonizers modify the environment in a way that facilitates colonization by later-succession 

species. In contrast, the inhibition model states that late colonists are inhibited by early colonists until 

space/resources have been released. According to the tolerance model, the modifications of the pioneers 

neither facilitate nor inhibit colonization of later colonists. Instead, the tolerance model assumes that 

late-succession species either simply arrived later or were present but grew more slowly, and that the 

sequence in which species appear is determined by their life-history characteristics (Connell and Slatyer, 

1977). 

Successful recruitment is the first step in colonization of newly exposed substrata and early colonists 

are often characterized by fast-growing poor competitors whereas slow-growing strong competitors 

dominate in later stages (Meyer et al., 2017). These two types of organisms can also be termed r-

strategists or opportunists and k-strategists, respectively (Jablonski and Lutz, 1983). This categorization 
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suggests that recovery time of a system following a perturbation inherently depends on several 

functional traits of organisms (Beuchel and Gulliksen, 2008, Molis et al., in press). A functional trait is 

defined in Degen et al. (2018) as a “component of an organism’s phenotype that influence ecosystem 

processes and its response to environmental factors”. Fast-growing organisms with planktonic life 

stages may for example promote colonization more readily than slow-growing organisms with a full 

benthic life cycle (Meyer et al., 2017, Renaud et al., 2015). Adult traits like mobility and feeding habit 

are also important since mobile taxa often migrate to disturbed areas to graze on newly established 

recruits (Beuchel and Gulliksen, 2008). In general, recruitment and recolonization appear to occur at 

very slow rates in the Arctic (Beuchel and Gulliksen, 2008, Konar, 2007, Molis et al., in press) and must 

preferably be studied over timescales exceeding the longest living occupants in the community. 

The main aim of this thesis is to investigate the secondary succession and ecosystem function of the 

benthic community in Smeerenburgfjorden, a shallow rocky fjord-like passage in Svalbard, over a 37-

year period. The long-term data from the manipulation study, initiated in 1980 by clearing a near-shore 

vertical wall free of organisms, were obtained from non-invasive, photographic samples taken annually 

at the same site. I combined taxonomic and functional traits approaches to address the implications of 

changes in community structure for the functioning of the ecosystem, given the strong link between 

ecosystem processes and functional traits (Hussin et al., 2012, Krumhansl et al., 2016). The thesis 

addresses the following questions about Arctic benthos;  

1) What is the successional pattern in a cleared rocky epibenthic community, and when is the state of 

the control community reached?  

2) Which functional traits are involved in the different stages of recolonization and succession of the 

community following a perturbation? 
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2 Methods 

2.1 Site description 

Smeerenburgfjorden is a glacial fjord located in the northwestern Svalbard archipelago (Figure 1). This 

part of Svalbard is influenced by the West Spitsbergen Current, which advects warm saline water 

northwards as an extension of the North Atlantic Current (Svendsen et al., 2002). The time series site is 

located at 79°41.33’N, 11°04.00’E, approximately 50 meters from the coast off Danskøya in the outer 

part of Smeerenburgfjorden (Figure 1). The fjord has three openings which in fact makes it a sound but 

given the name, the term fjord will be used in this thesis. Smeerenburgfjorden has an inflow of coastal 

water in the western part, often creating strong currents at the monitoring site. The fjord has three 

shallow sills at approximately 10 m, 20 m, and 50 m, and a maximum depth of approximately 220m at 

its deepest (Kortsch, 2010). Ice cover in winter and glacial run-off in summer influence light regime and 

sedimentation in the water column. 

No long-term hydrographic monitoring has been conducted in Smeerenburgfjorden. Satellite-derived 

data on sea-surface temperature and number of ice-free days obtained from the NW Svalbard region 

showed an increase of 0.5°C from 1980-2010 and 3.3 days per year over the same period (Kortsch et 

al., 2012). 

 

Figure 1. Map of Smeerenburgfjorden and the Svalbard archipelago. 

The underwater monitoring station is positioned on a vertical rock wall at 15 meters depth (+/-0.5m due 

to changes in tide). Above the sampling station is a plateau at 6-8 meters, followed by a vertical drop to 

another plateau ~17 meters, after which the bottom drops to 40-50 meters. A belt of macroalgae was 

present on the 6-8 meters plateau with decreasing density with depth at the time of sampling in June 
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cleared 

2017 (pers. dive obs.). The top three meters of the water column had a high content of particles at the 

time of sampling in June 2017, though the underlying water masses where less turbid. 

2.2 Experimental design and photographic sampling 

The experimental design was specified in 1980, by establishing a permanent underwater station with 

two rows of five adjacent 50cm x 50cm quadrats. In addition, an identical design was also applied in 

Kongsfjorden (Beuchel and Gulliksen, 2008), Isfjorden, and on mainland Norway (MD reports on 

Svalbard and mainland), which allow broader generalization of results if compared.  

The monitoring site is marked with bolts drilled in to the bedrock. A metal rod is attached to each bolt 

where a camera fitted on a 50cm x 50cm metal frame fits, ensuring the exact same areas are sampled 

each year by moving the camera rig along a fixed set of quadrats. The five lower quadrats where scraped 

clear of organisms with various tools, and the five upper quadrats were left untouched to serve as 

controls (Figure 2). The five manipulated plots were photographed by SCUBA divers before and after 

the clearing of substrate manipulation, and all plots were subsequently photographed every year in 

August/September. Exceptions to this systematic sampling procedure were in 2014 and 2016 in which 

no sampling was undertaken, and in 2017 where the images were taken in June instead of autumn. 

 

Figure 2. Experimental and sampling design redrawn from Lundälv (1971) in Beuchel et al. (2008). The bottom 

five quadrats were scraped free of organisms in 1980 and the top five left to serve as controls. 
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Several camera systems were used over the course of the time series. From year 1980 to 2003 an 

analogue Hasselblad Super Wide Camera with a Biogon 38 mm lens and a correction lens was used in 

a Hasselblad underwater casing with a Zeiss corrective glass port. From 2004 to 2013, a digital Nikon 

D100 6-mpx with a Nikkor 14mm lens F/2.8 AF-D was used, and this was replaced in 2015 by a Nikon 

D750 full-frame with a 20mm lens and two external Sea and Sea YS-D2 flashes. 

2.3 Image analysis and species identification 

Images were saved in variable resolutions throughout the time series. Analogue images from year 1980-

2003 and digital images in 2004 were saved as ~6 mega pixels TIF files, whereas images from 2006-

2013 where only available as ~2.5 mega pixels JPG files. From 2015 the resolution was strongly 

improved as the images were available as ~9 mega pixel NEF files. 

A total of 109 images were analyzed in the present study, consisting of five images from every second 

year (1980-2012 + 2013 +2015 +2017), and four additional images from 1980 (one image missing) 

before the clearing treatment was applied as well as five images of the control plots in 2017. The analysis 

was restricted to images from every other year due to the time-consuming nature of image analysis and 

for comparability with the control quadrats. This seemed reasonable given the generally slow rate of 

recolonization in Arctic hard-bottom communities (Beuchel and Gulliksen, 2008, Konar, 2007). All 

images were renamed as a random number between 1 and 109 and randomized prior to the image 

analysis in order to minimize analyzer bias. 

The remaining images of the control quadrats were analyzed by former UiT master students Susanne 

Kortsch (year 1980-2010) (Kortsch, 2010) and Carl Ballantine (years 2012 + 2013 + 2015). Image 

analysis was performed in Adobe Photoshop CC 2017 after the semi-automated method developed by 

(Beuchel et al., 2010). This method quantifies the abundance and area covered by each taxonomic group 

by utilizing different selection tools. First, the area of each image is calibrated to the original size of the 

frame (50cm x 50cm), allowing accurate measurements. Next, images are processed by adjusting 

saturation, hue, brightness, contrast, high-pass filter etc. when needed to correct images with lower 

resolution and over or underexposed areas. Each taxon is then identified and assigned a specific RGB 

color until the entire image is color-coded (Figure 3) and the abundance (individuals per image) of 

solitary organisms and cover (cm2 per image) of colonial organisms exported as a csv file. For a more 

detailed description of the image analysis, see Beuchel et al. (2010). 
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Figure 3 A-D. Images from 1980 before and after image analysis. Control quadrat 3 before (A) and after (B) 

image analysis. Cleared quadrat 3 after the clearance-of-substrate manipulation (C) and after image analysis (D).  

Identification of organisms was performed to the highest possible taxonomic resolution, following a list 

of taxa provided from the analysis of the control plots (Kortsch et al., 2012). Calibration in taxonomic 

identification was performed in training sessions with MSc. Frank Beuchel, Dr. Susanne Kortsch, and 

MSc. Carl Ballentine. In addition, expert opinion was sought when needed from Prof. Bjørn Gulliksen 

and Prof. Bodil Bluhm. Some difference in identification between analyzers was detected and 

difficulties in differentiating between the ascidians Dendrodoa aggregata and Styela spp., the different 

crabs, and ophiuroids from the images led to the decision of these taxa being pooled in to the family 

Styelidae, the infraorder Brachyura, and the class Ophiuroidea, respectively. Assemblages of two or 

three different taxa were specified when the quantitative assessment of component taxa was impossible. 

A                 B 

C                 D 
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These include assemblages of algae and hydrozoans, algae and bryozoans, hydrozoans and bryozoans, 

and lastly algae, hydrozoans, and bryozoans. See Appendix 1 for a list of all taxa identified in the present 

study. 

Physical identification of benthic invertebrates and macroalgae from dredge and trawl samples in 

Smeerenburgfjorden was conducted during the AB-321 Ecology of Arctic Marine Benthos cruise with 

R/V Helmar Hanssen in August 2017. Here I learnt that differentiating between Lebbeus polaris, Eualus 

sp., and Spironthocaris sp. in images is practically impossible, so these were pooled to the paraphyletic 

group Natantia and will be referred as such. In addition, personal observation of the organisms on site 

during photographic sampling in June 2017 further confirmed the taxonomic inventory of the site. All 

names where checked and standardized to the currently accepted taxonomy with the World Register of 

Marine Species (WoRMS) (Horton et al., 2018). 

2.4 Data analysis 

The five images of the control and the five of the cleared quadrats from each year were pooled and 

treated as two transects due to the autocorrelation in space. Abundances of solitary taxa were calculated 

as individuals per m2 and cover of colonial organisms as percentage cover in the univariate analyses and 

cm2/m2 in the multivariate analyses. Macroalgae were included in the colonial category for practical 

reasons and taxa which occurred in less than 1% of the samples were excluded. Unidentified and shaded 

areas were subtracted from the total area. 

All data analyses and graphical illustrations were performed in R studio (Team 2017). Maps were 

created with the “PlotSvalbard” package (Vihtakari, 2017), multivariate analyses with the “ca” package 

(Nenadic and Greenacre, 2007) and “vegan” package (Oksanen et al., 2017). 

2.4.1 Data analysis for objective 1 
What is the successional pattern in a cleared rocky benthic community in Smeerenburgfjorden, and 

when is the state of the control community reached? 

The successional pattern was investigated graphically by displaying the most conspicuous taxa over 

time, and the differences between the abundance/cover of those taxa in the cleared and control areas 

where quantified to assess when the two converged. These differences were calculated by subtracting 

the abundance/cover of the taxa in the control area from the cleared, resulting in a positive value if the 

cleared transect contained more of the given taxa, and negative if the control transect did. 

The succession and potential convergence of the entire community in each of the transects were explored 

with a correspondence analysis (CA). This multivariate, indirect ordination method relies on chi-squared 

distances between samples (see equation below).  
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𝑥𝑥,𝑦 = √∑
1

𝑐𝑗
(𝑥𝑗 − 𝑦𝑗)

2

𝐽

𝑗=1

 

Where χx,y is the chi-square distance between the profiles of two years x and y, cj is the proportion of the 

j-th species in the data set (Greenacre and Primicerio, 2013). An underlying assumption of CA is that 

the data is measured on the same scale. This was not the case in the present study, as the data consisted 

of both abundance and cover, but the problem was overcome by weighting the two tables of abundance 

and cover data differently to balance their inertia.  

2.4.2 Data analysis for objective 2  
Which functional traits are involved in the different stages of recolonization and succession of the 

community after a perturbation? 

The first and important step in a functional traits analysis is choosing the appropriate traits capable of 

addressing the research question. The first six traits in Table 1 were coded by Kortsch (unpublished) 

(Appendix 2), whereas I added an additional three traits which might be relevant for recolonization 

(Table 1). Information on trait modalities exhibited by each taxon was gathered from databases, 

literature searches and expert consultation (see Table 1 for references) and if information on a trait of a 

given taxon was unavailable, the trait of the closest related taxon was coded. Each trait contained 

different modalities and if a certain trait category was expressed by a species it was coded 1, and if a 

trait was not expressed 0, in addition, species displaying more than one modality within a trait was coded 

with multiple 1’s. This is similar to the commonly used “fuzzy coding” procedure (Bremner et al., 2006) 

except traits were coded as presence/absence. To illustrate which taxa exhibited similar traits, a complete 

linkage dendrogram was constructed. 

The community weighted mean (CWM) trait approach was employed to assess which traits 

characterized the different stages of recolonization by constructing an area-weighted-traits per year 

matrix. This approach inherently assumes that the traits of the dominant taxa will have the greatest effect 

on the ecosystem (Frainer et al., 2017). To overcome the challenge of defining traits for the four algae, 

hydrozoan, and bryozoan assemblages, these areas were divided into equal parts and added to the area 

of the “parent” taxa. Only the invertebrate community was considered in the traits analysis, thereby 

excluding all macroalgae. Autotrophic organisms are functionally very dissimilar to the invertebrate 

community and would in addition drive much of the observed traits analysis due to their extensive cover 

on all images. The relative changes in trait modalities over time were investigated with stacked barplots. 

For the computation, first a traits-by-taxa matrix of the most dominant taxa was compiled and analyzed 

with a CA to map the traits characterization of different taxa. The CWM of each sample was then 
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calculated for the first and the second CA axis, depicting the overall change in the functional identity of 

the community throughout the time series.  

Table 1. List of functional traits and their modalities. The traits in bold print were coded as part of this 

MS thesis and the other traits used in the analysis were coded by Dr. Susanne Kortsch. 

Trait Trait category Labels 

Relative adult body size Small  

Small-medium 

Medium 

Medium-large  

Large 

Indeterminate 

Small 

small_medium 

medium 

medium_large 

large 

indeterminate 

Living habitat Free living  

Crevice dwelling 

Tube dwelling 

Burrowing  

Epi/endo zoic/phytic 

Attached 

free_living 

crewice_dwelling 

tube_dwelling 

burrowing 

epi_endozoic_phytic 

attached 

Feeding mode Surface deposit feeder 

Filter/suspension feeder 

Grazer  

Opportunist/scavenger  

Predator 

surface_deposit_feeder 

filter_suspensionfeeder 

grazer 

opportunist_scavenger 

predator 

Relative adult mobility None 

Low 

Medium 

High 

mob_no 

mob_low 

mob_med 

mob_high 

Sociability Solitary 

Gregarious 

Colonial 

soc_sol 

sol_greg 

sol_col 

Longevity 1-2 years  

3-5 years 

6-10 years 

11-20 years  

>20 years 

1_2yr 

3_5yr 

6_10yr 

11_20yr 

over_20yr 

Egg/larval dispersal 1-10m  

10-100m  

100-1000m  

1-10km  

>10km 

disp_1_10m 

disp_10_100m 

disp_100-1000m 

disp_1_10km 

disp_over_10km 

Reproduction mode Asexual  

Sexual 

asexual 

sexual 

Development mode Lecithotrophic 

Planktotrophic 

lecithotrophic 

planktotrophic 
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3 Results 

3.1.1 Results addressing objective 1 - single-taxa succession 
In this study, a total of 45 taxa from the phyla Rhodophyta, Ochrophyta, Porifera, Cnidaria, Annelida, 

Arthropoda, Mollusca, Bryozoa, Echinodermata, and Chordata were identified. The most common taxa 

were red crustose coralline algae, Phycodrys rubens, Desmarestia spp., Haliclona spp., Hydrozoa, 

Spirorbis spirorbis, Balanus balanus, Natantia, Hiatella arctica, Tonicella spp., Margarites spp., 

Bryozoa, Dendrodoa aggregata and Styela spp. (pooled to family Styelidae in the taxonomic analysis), 

Halocynthia pyriformis, and Botryllus spp. and trends of these taxa are depicted in the following. See 

Appendix 1 for a full taxonomic list and Appendix 3 for their cover and abundance.  

Early colonizers in the cleared transect include sessile hydrozoans, and the solitary motile chitons and 

gastropods of the genus Margarites sp. Red coralline algae and Natantia shrimps were also present early 

but are not characterized as pioneers. 

Polyps in the group Hydrozoa showed a rapid increase in the cleared transect following the perturbation 

(Figure 4.a) and displayed a high but variable cover in the first two decades. The cover was generally 

comparable to the control area (Figure 4.b), with the exception of year 1980 prior to the clearing, here 

the control community showed five-fold larger area covered by hydrozoans. The cleared area did 

however display a much larger area covered the algae/hydrozoan assemblage (see Appendix 3), and this 

assemblage was generally dominated by hydrozoans with little turfing algae.  

The chitons Tonicella spp. were quick to invade after the substrate was cleared and were present 

throughout the whole study and in relatively high numbers in the 1980’s and ‘90’s (Figure 4.c). The 

abundance dropped in the 2000’s until a drastic increase in 2017. Chitons in the control transect 

fluctuated in a synchronized manner, though with approximately half of the abundance of the cleared 

transect in the first two decades (Figure 4.d). The snail Margarites spp. was not nearly as abundant as 

the chitons but did show an initial increase in 1982 beyond levels of the control transect and again in 

1988 hereafter fluctuating in both cleared and control plots (Figure 4.e-f).  

Red crustose coralline algae were not completely removed in the scraping experiment due to their strong 

adherence to the substrate, hence recolonized fast, covering almost half of the transect by 1982 (Figure 

4.g). Succeeding this was a period with a cover of coralline algae at 40-50% over the next decade after 

which the algae showed a general – though variable - decrease until the two very last years of the study. 

The control transect showed a similar trend but had a slightly higher coralline algae cover throughout 

the study period (Figure 4.h), particularly in the 2000’s. Shrimp of the paraphyletic group Natantia were 

also present in high numbers early in the succession on the cleared transect compared to the control. 

They showed similar fluctuations in abundance in both control and cleared plots, though with lower 

numbers in the 2000’s (Figure 4 i-j). 
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Figure 4 (continues on next pages). Early colonizers in cleared (red) and control (black) transects from 1980-

2017. The first point on the x-axis (1980b) is the cover/abundance of the taxa in 1980 before the clearing and the 

following point is after. a. Hydrozoa cover. b. Difference between Hydrozoa cover in cleared and control 

transect c. Tonicella spp. abundance. d. Difference in Tonicella spp. abundance in cleared and control transect. e. 

Margarites spp. abundance. f. Difference in Margarites spp. abundance in cleared and control transects. g. Red 

crustose coralline algae cover. h. Difference in red crustose coralline algae cover in cleared and control transects. 

i. Natantia spp. abundance. j. Difference in Natantia spp. abundance in cleared and control transects. 

 

a                 b 

        c            d 

        e            f 
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Sponges, ascidians, and barnacles required a decade or more to recolonize in numbers and cover 

comparable to the control areas. The sponges Haliclona spp. reached to pre-treatment cover 

approximately ten years after the area was cleared and covered about a tenth of the total area in the 

1990’s, but then remained at a cover of about half of the control area for over a decade after this (Figure 

5.a-b). The colonial ascidian Botryllus spp. showed greater variability, covering over 10% of the area 

before the area was cleared, increasing to a cover similar to pre-treatment and control cover 8 years after 

clearing (Figure 5.c) and essentially tracked control transect values from then on (Figure 5.d). 

Solitary ascidians Halocynthia pyriformis and Styelidae (Styela spp. and Dendrodoa aggregata) along 

with Balanus balanus and Hiatella arctica recolonized particularly slowly. H. pyriformis were present 

in the cleared transect in much smaller numbers compared to the control for over 15 years, only in 2000 

did this species exhibit an abundance comparable to pre-treatment and control transect (Figure 5.e-f). 

Styelidae were present in much lower numbers in the cleared transect compared to the control 

throughout the entire study. It reached about half of the pre-treatment levels in the 90’s but only showed 

a large increase in the last two years of the time series (Figure 5.g-h). The barnacle B. balanus recovered 

slowly after the substrate was cleared, only reaching pre-treatment and control abundance approximately 

   g                                                     h 

                 i            j 
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a decade later (Figure 5.i-j). From then on, B. balanus gradually declined in both transects with some 

fluctuations only to increase drastically in 2017. The bivalve H. arctica was abundant before the 

substrate was cleared but did not reach similar numbers until the last two years of the study (Figure 5.k-

l). The control area, on the other hand, had markedly higher, though variable, abundances. 

   

   

 
Figure 5 a-l (continues on next pages). Late colonizers in cleared (black) and control (red) transects from 1980-

2017. Haliclona spp. cover in cleared and control transect over time (a) and the difference between the transects 

       a                b 

       c                d 

                                                e              f 
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(b). Botryllus spp. cover (c) and difference (d). H. pyriformis abundance (e) and difference (f). Styelidae 

abundance (g) and difference (h). B. balanus abundance (g) and difference (h), and H. arctica abundance (k) and 

difference (l). 

 

  

  

The communities in both cleared and control transects were characterized by drastic reorganizations 

approximately 20 years after the clearing manipulation. Abundance and cover of most taxa in the two 

transects had converged by then and this period will be dealt with in section 3.1.3. Convergence of the 

            g        h 

            i        j 

            k        l 
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amount of available substrate i.e. cleared substrate, bedrock, and dead calcareous algae, was colonized 

by living organisms in the cleared transect to a degree comparable to the control community after ten 

years (Figure 6). 

 

Figure 6. Cover of non-living organisms including stone/bedrock, dead calcareous algae, and scraped area. 

3.1.2 Results addressing objective 1 - ecosystem succession 
Similarities between the community structure of the control and cleared transects were low in the first 

two decades. The control communities in the first 22 years displayed a relatively similar structure, as 

depicted in the bottom left sector of the CA biplot (Figure 7). The community of the pre-treatment 

(cleared) area is also located here, confirming the similarity of the control and manipulated communities 

prior to the treatment. These communities are characterized by a high presence of B. balanus, Styelidae 

spp., Haliclona spp., and to a lesser degree the coralline algae. The cleared community was highly 

dissimilar during the two decades following the manipulation, with large interannual variability. The 

observed differences in community structure were here driven by Natantia, hydrozoans, Tonicella spp., 

and the algae/Hydrozoa assemblage. Cleared and control communities showed similar patterns and 

trends from year 2002 and 2004, respectively, by moving towards the right side of the biplot, a structural 

change driven by an increase in P. rubens, bryozoans, S. spirorbis, and to a lesser degree macroalgae 

excluding P. rubens.  

A total of 62% of the variation was summarized by the first two CA dimensions, the first axis accounting 

for 47% of the observed variation, was associated with the climate-driven regime shift, whereas the 

second dimension, accounted for 15% of the variation, was related to the difference between the 

manipulated and control transects (i.e. clearing treatment).  
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Figure 7. Correspondence analysis biplot depicting variation in community structure of cleared (green) and 

control (blue) transects from year 1980-2017. Red labels in large font refer to the taxonomic groups with the 

greatest contributions to the observed variation in community structure. 80_1 is the community of the cleared 

transect in year 1980 before the substrate was cleared and 80_2 after. 

A drastic reorganization in the benthic community was observed in the late 1990’s and early 2000’s 

(Figure 8a-d). Taxa that had not previously been present or present only in small numbers suddenly 

occurred in high numbers and cover. Particularly conspicuous was the dramatic increase in macroalgae 

cover (Figure 9.c), primarily of the red algae Phycodrys rubens, and to a lesser degree the brown 

macrophyte Desmarestia spp., but also cover of bryozoans (moss animals) (Figure 8.a), and abundance 

of the polychaete Spirorbis spirorbis (Figure 8.e) increased markedly.  
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Figure 8 a-d. Community before (a-b) and after regime shift (c-d). Image 3 of the cleared community in 1994 

before (a) and after the image analysis (b) is characterized by sponges and ascidians. The same image from 2008 

before (c) and after (d) image analysis illustrate the large cover of Phycodrys rubens, Desmarestia spp. and 

bryozoans. 

Bryozoans were nearly absent in the study site until the early 1990s when a 38-fold and 10-fold increase 

in cover occurred between 1990 and 2000 in the cleared and control transect, respectively (Figure 9a-

b). Here after, the bryozoan cover fluctuated between 10 and 28% of the cleared plots and 4 and 20% of 

the control plots. Foliose macroalgae, largely Phycodrys rubens but also Desmarestia spp. (see 

Appendix 3 for cover of specific taxa), showed the most striking trend with a 23-fold increase in cover 

from 1998 to 2004 in the cleared transect, here after sustaining a cover of 30-60% of the area for the 

rest of the period (Figure 9.c). There was a spike in cover of mainly Desmarestia spp. in 1984 in the 

cleared transect, aside from this, the cover in the control transect followed a similar trend to the cleared 

A                 B 

C                 D 
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but with slightly lower values through the 2000’s (Figure 9.d). The polychaete Spirorbis spirorbis was 

largely absent in both cleared and control transects prior to the increase macroalgae cover in where after 

it appeared in very high numbers in both transects though with differences in densities (Figure 9e-f).  

  

  

 
Figures 9 a-g. Cover and abundance of taxa in cleared (red) and control areas (black) from year 2015-2017. 

Bryozoa cover (a) and difference between transects (b). Cover of all macroalgae (c) and difference (d). 

Abundance of S. spirorbis (e) and difference (f). 

            a        b 

                c      d 

            e        f 
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To sum up the findings of the taxonomic analysis, early-succession taxa appearing in the cleared transect 

were hydrozoans, Tonicella spp., and Margarites sp. to a smaller degree, also coralline algae and 

Natantia were present. 10 to 20 years after the clearing, sponges, ascidians, barnacles and H. arctica 

recolonized to pre-treatment and/or control area abundance/cover. In the late 1990’s/early 2000’s a 

drastic increase in bryozoans, foliose macroalgae and S. spirorbis was observed. The CA supported 

these findings and highlighted the cleared community showed high interannual variability in the first 

two decades. It also illustrated a more uniform composition of the control community in the first two 

decades, structured by barnacles, Styelidae, and H. arctica, where after the control community 

converged with the cleared. 

3.2 Results addressing objective 2  
Results from the literature review are presented in Table 2 and provide the trait modalities expressed by 

the most dominant taxa. A list of all traits is provided in Appendix 2.  

Table 2. Traits and references. See Appendix 2 for remaining traits.  

Taxa Longevity Dispersal Reproduction mode Development mode 

Balanus balanus 6-10 & 10-20yr 

(Gulliksen and Svensen, 
2004) 

>10km (Marlin, 2006) Sexual Planktotrophic (Marlin, 2006) 

Boltenia echinata 3-5yr (artdatabanken) 1-10m (est. from other 

solitary ascidians) 

Sexual Lecithotrophic (Svane and 

Lundälv, 1982) 

Botryllus spp. 1-2yr (Marlin, 2006) 1-10m (Grosberg, 1987) Asexual (Ali and 

Tamilselvi, 2016)  p. 

10 

Lecithotrophic (Grosberg, 1987, 

Marlin, 2006) 

Bryozoa 3-10yr (Gth) 1-100m (Mcedward, 1995) Asexual (Zimmer and 
Woollacott, 1977) 

Sexual 

Lecithotrophic (Dethier et al., 
2003) 

Dendrodoa 

aggregata 

1-2yr (Gth) 1-100m (est. Gth) Sexual & asexual Lecithotrophic (est. from other 

sol. ascidians) 

Didemnum albidum 1-2yr (Gth) 1-10m (Jackson, 1986) Asexual (Ali and 

Tamilselvi, 2016)  

p.10 sexual (Gth) 

Lecithotrophic (Marlin, 2006) 

 

Grantia sp. >20yr (est. from 
Haliclona spp.) 

1-100m (Mcedward, 1995) Sexual & asexual Lecithotrophic (est. Porifera) 
(Dethier et al., 2003) 

Halocynthia 

pyriformis 

3-5yr (Svavarsson, 1990) 1-100m (est. from other 

ascidians) 

Sexual Lecithotrophic (Svane and 

Lundälv, 1982)  

Henricia sp. 3-5yr (Marlin, 2006) >10km (Marlin, 2006) Sexual Lecithotrophic (Gth) 

Hiatella arctica >20yr (Sejr et al., 2004) >10km (Gth) Sexual Planktotrophic (Gth) 

Hyas sp. 3-10yr (Gth) >10km (Gth) Sexual Planktotrophic (Anger and 

Dawirs, 1981) 

Hydrozoa 1-2yr (Gth & MarLIN, 
2006) 

1-100m (Gth & MarLIN, 
2006) 

Sexual & asexual Lecithotrophic (Gth, MarLIN, 
2006, Ruppert 2004) 

Margarites 1-2yr (Arctic ocean 

diversity) 

1-10m (est. since brooder) 

(Strathmann, 1990) 

Sexual Lecithotrophic (Hadfield and 

Strathmann, 1990) 

Natantia 3-10yr (Gth, Gulliksen 
and Svensen, 2004) 

>10km (Gth) Sexual Planktotrophic (Gth) 

Sea spider 

(Nymphon sp.) 

1-2yr (Marlin, 2006) 10-100m (Marlin, 2006) Sexual Planktotrophic (Marlin, 2006) 

Ophiura sp. 3-10yr (Gth) >10km (Gth) Sexual Planktotrophic (Gth) 

Pagurus sp. 3-10yr (Gth and 

MarLIN, 2006) 

1-10km (Gth) Sexual Planktotrophic (Dethier et al., 

2003, Lovrich and Thatje, 2006) 

Polychaet indet NA NA Sexual NA 

Pteraster spp. NA NA Sexual Lecithotrophic (McEdward)  

Sea anemone >20yr (Gulliksen and 
Svensen, 2004) 

>10km (est. from long 11-
30 days larval duration) 

(MarLIN, 2006) 

Sexual & asexual Lecithotrophic & planktotrophic 
(Ruppert et al., 2003, Shick, 

1991) 

Spirorbis spirorbis 1-2yr (Ni et al., 2018) 1-100m (Mcedward, 1995) Sexual Lecithotrophic (Rouse, 2005) 

Haliclona spp. >20yr (Teixidó et al., 

2011) 

1-100m (Mcedward, 1995) Sexual & asexual Lecithotrophic (Carballo and 

Ávila, 2004) 
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Strongylocentrotus 
droebachiensis 

>20yr (Blicher et al., 

2007) 
>10km (MarLIN, 2006) Sexual Planktotrophic (MarLIN, 2006) 

Styela spp. 1-2yr (MarLIN, 2006)  1-100m (MarLIN, 2006) Sexual & asexual Lecithotrophic (MarLIN, 2006) 

Tonicella spp. 3-5yr (est. from 

Lepidochitona cinereal) 
(Fish and Fish, 1989) 

10-1000m (est from larval 

duration) (Barnes and 
Gonor, 1973) 

Sexual Lecithotrophic (Dethier et al., 

2003) 

See all web-based references in web resources section of bibliography. 

Taxa that have similar functional traits are clustered together in the dendrogram (Figure 10). Three 

distinct clusters of taxa group together. The first cluster contains the echinoderms Pagurus spp., Hyas 

spp., Henricia sp., Strongylocentrotrus sp., Pteraster spp., Nymphon sp., but also polychaetes and 

Tonicella spp. The second group is more heterogenous and consists of the ascidians D. aggregata, Styela 

spp., Botryllus spp., Didemnum albidum, the sponges Haliclona spp., Grantia sp., as well as hydrozoans, 

bryozoans and S. spirorbis. The third and last group contains Boltenia echinata, H. pyriformis, sea 

anemones, barnacles, Hiatella arctica, and Ophiura. 

 

Figure 10. Complete-linkage dendrogram clustering taxa with similar functional traits together. 
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3.2.1 Single trait succession 
Size and longevity traits showed the greatest change over time. A reduction in size was observed in the 

years following the manipulation (Figure 11a). Large and indeterminate (taxa with indefinite growth) 

sizes were dominant in 1980 but decreased in their contribution for the rest of the study, whilst a medium 

size was dominant in the 1980’s and early 1990’s, where after medium-large became the principal size. 

The life span of the invertebrate community also showed a reduction in the long-lived taxa and a 

concurrent increase in short-lived in the eighties (Figure 11.b). From 1990, the short-lived taxa declined 

throughout the rest of the study, whilst the long-lived increased for a bit, then declined to almost zero, 

while the 3-5- and 6-10-year-old taxa became more abundant. 

The community mobility trait was dominated by no mobility throughout the whole-timeseries, but a 

small increase in low, medium, and high mobility was observed following the clearing in 1980 (Figure 

11c). A similar small trend was evident in the feeding habit trait (Figure 11d). Filter/suspension feeding 

was by far the most common trait in all years, but grazing, predation and surface-deposit feeding rose a 

little after the manipulation. 

Sociability trait was completely dominated by colonial lifeforms, and gregarious and solitary taxa were 

reduced after the perturbation until the mid-2000’s where gregarious behavior was expressed more 

(Figure 11e). Dispersal capacities showed little or no trend, a short dispersal capacity (10-100m) 

governed the community, second by even shorter distance dispersal (1-10m) (Figure 11f). The 10-100m 

category increased slightly after 1980. Development was completely dominated by lecithotrophic 

development with minor fluctuations throughout the timeseries (Figure 11g). 

 

Figure 11a-g (continues on next page). Development in CWM trait expression over time in size (a), longevity 

(b), mobility (c), feeding habit (d), sociability (e), dispersal capacities (f) and development mode (g). Note the 

different scales on y-axes! 

 

 



 

Page 23 of 50 
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3.2.2 Multiple trait succession 

Correspondence analysis of the traits supported the clusters of similar taxa found in the dendrogram and 

yielded a total inertia of 2.2 with the two first axes accounting for 34.4% of the variation together (Figure 

12). The first CA axis accounted for 23.9% of the observed variation and illustrated a gradient of 

organisms characterized by colonial, filter/suspension feeding organisms with short dispersal capacity, 

lecithotrophic development, and indeterminate growth on the negative side and solitary, 

opportunists/scavengers, grazers with long dispersal, planktotrophic development and small/medium 

size in the positive side. This corresponds to the taxa identified in the dendrogram as functional group 

2 along with Boltenia echinata and Halocynthia pyriformis from group 3 in the negative side and group 

1 and the rest of group 3 on the positive side of CA axis 1. The second axis did not show as clear a 

gradient, but could be interpreted as a change in mobility, with mobile organisms, primarily of group 1 

in the positive side of the biplot and no mobility and the remaining taxa of group 3 in the negative side. 

This axis accounted for 10.5% of the variation in the trait space. 

The community weighted means on the CA axes was used as an indicator of the change in the functional 

identity over time (Figure 13a-b). The values on the y-axis in Figure 13a and Figure 13b corresponds to 

the values on the first and second CA dimensions, respectively in Figure 12. They illustrate a gradual 

and directional change in the mean trait value of the community throught the time series. In 1980 the 

functional identity (Figure 13a-b) moved from the coordinates -1.3 (1st axis) and 0.25 (2nd axis) 

approximately where Botryllus sp., Haliclona sp. and Hydrozoa are located, to -1 (1st axis) and -0.1 (2nd 

axis) in 2017 which corresponds to the area where Bryozoa, S. spirorbis, and Styela rustica, and Grantia 

sp. are (Figure 12).  

In summary, three groups of functionally similar taxa were identified, a decrease in size and longevity, 

and small increase in mobility, grazing and deposit feeding, and colonial life habit was observed in the 

community trait expression following the clearing. Dispersal and development showed no clear trend, 

whereas the functional identity displayed a directional change throughout the study. 
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Figure 12 (top). Correspondence analysis of traits and dominant taxa. Figure 13a-b. Community weighted mean 

of traits over time on 1st and 2nd CA axis of figure 11. 
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4 Discussion 
The present study investigates recolonization and succession in a coastal hard-bottom benthic 

community in Smeerenburgfjorden, Svalbard. Spanning nearly four decades, this study 

confirms observations of slow rates of recolonization in polar benthic ecosystems (Barnes and 

Conlan, 2007, Beuchel and Gulliksen, 2008, Dunton et al., 1982, Konar, 2013) and table below. 

Single taxa showed different return rates and fluctuating abundance and cover throughout the 

time-series. The cleared substrate was covered by living organisms comparable to the control 

area ten years after the manipulation, whereas the convergence of the two transects’ community 

compositions appeared to take more than two decades. Early colonists included sessile 

hydrozoans and mobile grazers Tonicella spp. and Margarites spp., whereas ascidians, sponges, 

barnacles, and the bivalve Hiatella arctica were slow colonists. In addition, a regime shift 

occurred, resulting in an abrupt increase in macroalgae, bryozoans, and spirorbid polychaetes 

around year 2000, supporting observations from the control transect and a similar study in 

Kongsfjorden (Kortsch et al., 2012). Decrease in size and longevity traits of the community 

were observed following the clearance, whereas mobility, grazing, and deposit feeding 

increased to some degree, while dispersal and development traits did not show any trend. The 

results of both taxonomic and traits analysis suggest that recolonization at the study site depends 

on a standing stock of organisms, representative of the local population. 

 

4.1 Recolonization patterns 

4.1.1 Recolonization patterns on the taxon level 
All recorded taxa are common to hard-bottom habitats in Svalbard (Hop et al., 2002, Kortsch 

et al., 2012, Laudien and Orchard, 2012, Palerud et al., 2004) and organisms identified in the 

manipulated transect were also present in the control transect, thereby representative of the 

local community. The time-series can be divided into three markedly different periods. The first 

period (1980-1990) was characterized by recolonization processes in the cleared transect, while 

the community in the control transect corresponds to the “Balanus” community described from 

Kongsfjorden after the most dominant structuring invertebrate taxa of that community 

(Voronkov et al., 2016). This period was followed by a “Developed” community stage (1990-

2000), dominated by sponges and ascidians, where after the community transitioned to a 

“Branched bryozoan” community in 2000 and has remained as such since. 
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Hydrozoans were among the most conspicuous pioneers to appear in the first years following 

the manipulation. This class increased rapidly in cover after the manipulation and covered a 

larger area in the cleared transect than to the control when the algae/hydrozoan assemblage was 

included and could be associated with an underlying colonization process. Hydroids are fast-

growers but poor competitors and are easily overgrown (Meyer et al., 2017). They are identified 

as early-colonizers in Arctic hard-bottom ecosystems following a perturbation (Dunton et al., 

1982, Konar, 2007, Meyer et al., 2017), and are also recognized as early sessile colonizers in 

Antarctica and NE Greenland after ice-scour events (Gutt et al., 1996). 

Motile grazers such as Tonicella spp. and Margarites spp. (in low numbers) were quick to 

invade after the substrate was cleared. They are common in Arctic hard-bottom habitats where 

they feed on small recruits of algae, hydrozoans, and bryozoans that grow on rocks and are 

known to immigrate areas after a perturbation (Beuchel and Gulliksen, 2008). Invertebrate 

grazing is an important process known to drive community structure and colonization in 

temperate hard-bottom (Aguilera and Navarrete, 2007, Johnson et al., 2011), but has not been 

extensively investigated in polar regions (Konar, 2013). It could explain the slow rate of 

colonization found in this study since grazers feed on newly established recruits, although this 

assumption was not confirmed in a study of the Boulder Patch in the Beaufort Sea. In that study, 

the author found that grazing did not have a significant effect on recolonization of cleared 

boulders where grazers were excluded, compared to uncaged and cage control boulders (Konar, 

2007). This single observation, however, may not necessarily apply to all hard-bottom regions 

in the Arctic, since differences in sedimentation, inclination and type of substrate, geographic 

position, local and regional processes are likely to influence the observed patterns in ecological 

interactions, such as grazing. 

Red crustose coralline algae and shrimps were also present in the early stages of recolonization 

in the cleared transect but categorizing them as pioneers would be misleading. Coralline red 

algae are considered late-succession taxa as they are slow-growing superior competitors (Meyer 

et al., 2017), but were found to rapidly recolonize the cleared transect in the present study. This 

may be an artifact of incomplete clearing in the scraping treatment, leaving small patches of 

remaining red crustose algae capable of quickly regaining high coverage through vegetative 

growth. An analogous observation was made in another recolonization study from the Boulder 

Patch, where red coralline algae in three years almost doubled in cover on boulders where they 

had not been completely removed (Dunton et al., 1982). Natantia also appeared in the early 

stages of recolonization in the present study, likely to feed on the newly settled recruits of 
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hydrozoans (Birkely and Gulliksen, 2003), but the high mobility of this group restricts making 

general assumptions on their opportunistic behavior. 

The second period (Figure 5) characterized by Porifera and Ascidia. These taxa were slow to 

regain cover and abundance following the clearing and are characterized as strong competitors 

and late succession groups (Meyer et al., 2017). Sponges of the genus Haliclona are slow-

growing and can live to over 20 years of age (Teixidó et al., 2011). They displayed a slow, 

stable incline in cover during the recolonization period, converging with the area of the control 

transect ten years after the initiation of the study. Styelidae showed a trend similar to Haliclona 

spp., with a very slow recovery in the cleared areas, only reaching pre-treatment numbers after 

35 years and convergence with the control after 26 years. The control transect did however start 

out with ~100 individuals per square meter more than in the cleared transect and this difference 

persisted with up to 200 individuals throughout the two first decades. This might be associated 

with their patchy, gregarious behavior, given that the tadpole larvae appear to prefer to settle 

next to or on the parent (Gulliksen and Svensen, 2004), an observation that was also evident in 

the images. This aggregated behavior might explain the slow recovery since the individual 

ascidians would likely not disperse far from the parent. Halocynthia pyriformis also recovered 

slowly, with the abundance in the cleared transect merging with the control transect in year 

2000, potentially due to poor competitive abilities. The pattern for Botryllus spp. differed in 

that the cover highly fluctuated which could be associated with the cycles of growth and 

senescence in the short-lived zooids of this genus (Chadwick-Furman and Weissman, 1995). 

Another explanation could be the patchy distribution of this genus which may be linked with 

the larvae favoring settlement close to the parent (Grosberg, 1987), this apply to all ascidians 

in the present study. Sponges and ascidians were slow to recolonize, one common characteristic 

in these groups are the limited dispersal capacity (see Table 2). This is in line with a recruitment 

study on settlement plates submerged for one year at different depths in three Svalbard fjords, 

here they found no recruitment of sponges and ascidians and suggested limited dispersal 

capacity as a proximate reason (Meyer et al., 2017). In the present study, they appeared to 

colonize from the edges of the images (pers. obs.) which may be attributed their short dispersal 

distance and/or vegetative growth. Vegetative encroachment by organisms from the margins of 

an area was suggested as the primary means of recovery after a disturbance (Bulleri, 2005). 

Hiatella arctica and Balanus balanus were interestingly also among the late colonizers contrary 

to other hard-bottom colonization studies from Jan Mayen, Svalbard, and the Beaufort Sea 

(Gulliksen et al., 1980, Konar, 2007, Meyer et al., 2017). The late occurrence of these species 
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can be explained by the slow growth and high longevity (Gulliksen and Svensen, 2004, Sejr et 

al., 2004). Another possible explanation is that they were present in the early successional 

stages but had not reached a measurable size in the images (see also method discussion). 

Spirorbis spirorbis was essentially absent in both control and transect areas prior to the 

macroalgae expansion in year 2000. This is contrary to other studies which have found spirorbid 

worms to be amongst the first colonizers in polar areas (Barnes, 2017, Barnes and Conlan, 2007, 

Konar, 2007). In the present study, they only occurred in very small numbers in both control 

and cleared transects prior to the regime shift, where after they increased greatly. S. spirorbis 

grew almost exclusively on the foliose macroalgae, suggesting a facilitation association 

between the macroalgae and S. spirorbis. This last period characterized by a regime shift in the 

community structure lasted from year 2000 until the end of the time-series and will be discussed 

in section 4.1.3.  

The present results from the analysis of single taxa over time demonstrated the high interannual 

variability in abundance and cover of many taxa, and some of these did not converge with the 

control taxa, as illustrated in the difference plots in the result section. 

Table 3.Recolonization studies, recovery time, early- and late colonists 

Location Habitat 

type 

Type of 

disturbance 

Recovery 

rate 

Early 

colonizers 

Late 

colonists 

Reference 

Smeerenburgfjorden Vertical 

hard bottom 

wall  

Clearing of 

substrate 

10-24 years Hydrozoans, 

Tonicella 

spp., 

Margarites 

sp. 

Sponges, 

ascidians, 

barnacles 

This study 

Kongsfjorden, 

Svalbard 

Horizontal 

hard-bottom 

(15m) 

Clearing of 

substrate 

10-13 years Tonicella 

spp., 

Margarites 

sp., urchins 

Sea 

anemones, 

Porifera 

(Beuchel and 

Gulliksen, 

2008) 

Boulder Patch, 

Beaufort Sea 

Small 

boulders (6-

7m) 

Clearing of 

substrate 

>7 years Barnacles, 

spirorbids 

 (Konar, 2007, 

Konar, 2013) 

South Africa Intertidal 

hard-bottom 

Clearing of 

substrate 

3 years   (Dye, 1998) 

Ascension Island, 

North Atlantic 

 Settlement 

plates 

 Spirorbidae, 

ascidians 

 (Barnes, 

2017) 

SE England Soft-bottom Dredging 7yr (low 

intensity site) 

>11yr (high 

intensity site) 

NA NA (Hussin et al., 

2012) 

Cornwallis Island, 

Barrow Strait 

Soft-bottom 

(12-24m) 

Ice-scour 10-14 years 

(estimate) 

Capitellid, 

dorvilleid, 

hesionid, 

phyllodocid, 

and spionid 

polychaetes, 

cumaceans, 

ophiuroids, 

juvenile 

bivalves 

Bivalves, 

cirratulid, 

paranoid, 

pholoid and 

ampharetid 

polychaetes, 

Cingula spp., 

ostracod and 

tanaid 

crustaceans 

(Conlan and 

Kvitek, 2005) 

NE Hongkong Soft-bottom 

(0.1-1m) 

Defaunation <15 months Polychaetes, 

gastropods 

 (Lu and Wu, 

2000) 
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4.1.2 Ecosystem succession 
Determining when a dynamic community is fully recovered has been defined differently in the 

past. In a recent review, more than twenty different definitions of ecosystems recovery were 

identified, illustrating the lack of consensus in the scientific community (Duarte et al., 2015). 

Recovery is regularly referred to as a return to a “normal” state, but this state is often not known, 

or natural fluctuations may mask this “baseline” state (Lotze et al., 2011). Referring to the 

objectives of this study, I will use recovery as convergence of the cleared community structure 

with that of the control community. 

The available bare substrate (i.e. stone, scraped surface) in this study was covered by living 

organisms to a numerically comparable degree to the control transect after ten years (Figure 6), 

but over 80% of the surface was covered by living organisms already after four years. This was 

primarily driven by the regrowth of crustose coralline algae and is faster compared to a study 

in the Beaufort Sea where only 2% of the available substrate was colonized four years after 

boulders were cleared of substrate (Konar, 2007). Nevertheless, plenty of bare substrate was 

available for recruitment in the present study and this suggests low and/or sporadic recruitment. 

Recruitment is suggested to occur slowly in the Arctic (Meyer et al., 2017), and this could 

explain why the cleared community of the present study took so long to recover. Another, 

earlier recolonization study from the Boulder Patch in the Beaufort Sea also showed a slow 

return rate, with 50-70% of the available substrata remaining bare after 4 years (Dunton et al., 

1982). These authors suggested temporal variability in composition and abundance of larvae 

and spores, predation, herbivory, competition, and growth rates of settlers to govern the slow 

return. Styrofoam floats at the same site showed different recolonization pattern on the other 

hand, being covered by organisms after 12 months. Smothering and grazing can inhibit 

successful settlement of larvae and spores, so the lack of sedimentation and grazing were the 

proposed drivers causing the faster recolonization on the Styrofoam floats (Dunton et al., 1982). 

Sedimentation can be excluded as a mechanism inhibiting recolonization in the present study, 

given the vertical nature of the substratum and periodically strong current at the site, and the 

availability of bed rock makes competition for space seem unlikely. Predation and herbivory 

cannot be excluded since grazers were observed in the early stages of recolonization, but further 

studies investigating their influence are needed to establish whether they may have such a 

strong influence. Sporadic recruitment seems plausible to influence the observed pattern and 

relates to the traits of the local community. Many other ecological interactions and 

environmental pressures are likely to influence the slow rate of recolonization but discussing 

them all is beyond the scope of this study. 
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In contrast to the pure regrowth of organisms on the bare rock, results from the multivariate 

analysis suggested a much longer recovery time (~24 years) required for the composition of the 

cleared and control communities to converge (Figure 7). Large interannual variability was 

evident in the cleared community throughout the first two decades, in contrast to the less 

variable structure of the control community, an observation also made in a recolonization study 

from South Africa (Dye, 1998). The interannual variability in the present study may indicate a 

reorganization in the cleared community structure associated with an ongoing recolonization 

process. This larger variability could also be a result of external forcing acting differently on 

the less resilient community of the cleared areas and keeping benthos at an intermediate 

successional stage, though evidence for a “climax” stage is difficult to obtain in dynamic system 

with constant external forcing. Climate variability has been linked to altered benthic community 

structure in Smeerenburgfjorden (Kortsch et al., 2012) and in Kongsfjorden (Beuchel et al., 

2006). In Kongsfjorden, changes in the North Atlantic Oscillation (NAO) index were associated 

with 45% of the observed variability in the benthic community structure (Beuchel et al., 2006). 

Such a strong correlation between NAO and the community structure was not observed in 

Smeerenburgfjorden (Kortsch, 2010). This difference could be related to the lower inflow of 

Atlantic water over the shallow sills in Smeerenburgfjorden, compared to Kongsfjorden which 

has no sill (Svendsen et al., 2002). This reduced inflow might also have led to slower 

recruitment in Smeerenburgfjorden, since Atlantic water influenced fjords in Svalbard appear 

to have faster recruitment compared to Arctic water influenced fjords (Meyer et al., 2017). 

Smeerenburgfjorden is strictly speaking not influenced by Arctic water but given its more 

northern location and the presence of sills, it may be considered more “Arctic-like” than the 

open Kongsfjorden. 

Polar near-shore habitats are suggested to be some of the most disturbed habitats globally, due 

to the frequency of ice-scours, storm events, and the high seasonality in environmental 

conditions (Barnes, 1999). According to the intermediate disturbance hypothesis (IDH), 

communities are anticipated to display the highest diversity at intermediate disturbance regimes 

by allowing pioneers and superior competitors to co-exist (Connell, 1978). It would thus be 

intuitive to expect that these Arctic coastal ecosystems are well-adapted to disturbances by 

housing a mosaic local community with pioneers and superior competitors co-existing, and 

capable of a relatively fast recovery. This was not the case in the present study, where available 

space remained unoccupied for a decade. While the disturbance history of the time series site 

is not recorded, the study site and its vicinity showed no sign of ice-scour in the images nor in 
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situ (pers. dive obs.) and the site at 15 m seems to be below the depths directly impacted by ice 

in Svalbard. This observation suggests that the community may in fact not be disturbance-

adapted, which is supported by the local community being highly dominated by superior 

competitors, with few pioneers. This interpretation is supported by results from a microbial 

manipulation study where diversity did not increase at the local scale if the community was 

skewed towards high competitors, whereas IDH was supported at a higher spatial scale 

(Cadotte, 2007). Facilitation in the traditional sense where pioneers modify the environment 

thereby facilitating the establishment of late-colonizers (Connell and Slatyer, 1977) did not 

seem to be significant in the present study given the modest presence of pioneers. The tolerance 

model could however be applied to the current system, since it appears that the later colonists 

are neither facilitated nor inhibited by pioneers, they rather seem to show this slow 

recolonization as a result of their life-histories (Connell and Slatyer, 1977). 

4.1.3 Regime shift 
Results from this study found evidence of a regime shift and support the findings of a previous 

study from Smeerenburgfjorden and Kongsfjorden (Kortsch et al., 2012). The climate-driven 

regime shift was characterized by an abrupt increase in macroalgae cover with a subsequent 

reorganization of the invertebrate community (Kortsch et al., 2012). As ecosystem engineers, 

macroalgae affect both the structure and function of ecosystems, most notably by providing 

habitat, food, shelter from predation, ameliorating waves action and currents (Paar et al., 2016), 

as well as altering light regime (Bartsch et al. 2016). Many sessile and mobile taxa are 

associated with macroalgae (Hop et al., 2002) and in the present study, bryozoans and spirorbid 

polychaetes were found to increase in cover and abundance in conjunction with the increase in 

macroalgae cover.  

The macroalgae expansion was suggested to be triggered by an increase in light availability 

caused by the prolonged ice-free season (Kortsch et al., 2012) as elaborated in a recent 

modelling study of the same location (Scherrer, 2015). The sudden increase of Desmarestia 

spp. cover in 1984 in the cleared transect of this study corroborates this finding. This year was 

unusually warm in Svalbard, which caused a higher number of ice-free days (Kortsch et al., 

2012), increasing the annual light availability that in turn could have promoted the observed 

growth of Desmarestia spp. This event suggests that the absence of extensive foliose 

macroalgae cover prior to year 2000 was not a result of competitive exclusion by crustose 

coralline algae. If this had been the case, then the removal of corallines with the manipulation 

in 1980 in the present study would have led to an increase in the cover of foliose macroalgae. 
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The 1984 algal occurrence also shows that foliose macroalgae have been present throughout 

the studied time-period, but that conditions presumably did not favor extensive growth until the 

late nineties.  

Another explanation of the sudden increase in macroalgae cover is a general upward shift of 

macroalgae belts in coastal Svalbard waters as recently reported from Kongsfjorden (Bartsch 

et al., 2016). This process is also suggested to be climate warming-induced due to reduced light 

availability caused by increased turbidity from melting glaciers and river run-off  (Bartsch et 

al., 2016, Weslawski et al., 2010). Several observations in the present study could support this 

observation. First, the dominant macroalgae species in this study is the Arctic/cold-temperate 

red algae Phycodrys rubens. This is a common understory species from 15-30m depth (Hop et 

al., 2012), it is shade-adapted and does not tolerate high UV exposure (Hop et al., 2002). The 

present study site at 15 m is at the upper limit of P. rubens, given the maximum density at 

present is at ~8 m, I suggest that deteriorated light regime has allowed this shade-adapted 

species to persist at such shallow depth.  

 

4.2 Ecosystem function 
The functioning of the ecosystem following the clearing was explored with a traits analysis. 

Nine traits representing different ecosystem functions (Degen et al., 2018) were chosen to 

explore the recolonization process of the benthic community. Size, longevity, mobility, feeding 

habit, and sociability showed a trend in the recolonization stage, whereas the remaining traits 

did not show any clear pattern. The multivariate analysis showed gradual transition in the 

function of the community, but the traits only explained 35% of the species composition, 

thereby limiting the scope for broad generalizations. 

4.2.1 Single-traits in the recolonization stage 
Following the perturbation, a reduction in the adult size and longevity of the organisms 

inhabiting the community was observed. Size has been characterized as one of the most vital 

traits in ecosystem functioning (Weigel et al., 2016), affecting physiology, trophic strategies 

and ecological interactions (Degen et al., 2018). Large animals are more vulnerable to 

mechanical disturbance, leaving small, and sometimes early life-stage organisms dominating 

in the recovering system (Norkko et al., 2013). In this study, removing large, slow-growing 

organisms with indeterminate growth affected the traits structure of the community, since these 

will require longer time to recover than smaller organisms with fast growth. Related to 
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decreasing size, longevity displayed an increase in short-lived – and often smaller - organisms 

in conjunction with a reduction in long-lived ones. Organisms in a disturbed habitat is often 

characterized by short life span and high turnover rate, and longevity is considered a response 

trait since it determine how a given organism responds to a disturbance or a change in the 

environment (Degen et al., 2018). Pioneer species are often characterized by r-strategy life 

history traits such as rapid growth and short life-span (Newell et al., 1998), so a rise in 

ephemeral taxa in the years following the disturbance could suggest that pioneers colonized the 

area. Slow growth and high longevity are characteristic for many polar animals (Barnes and 

Conlan, 2007, Beuchel and Gulliksen, 2008, Degen et al., 2018), which plausibly explains the 

long recolonization process compared to lower latitudes. High longevity promotes local 

competitive abilities of sessile organisms but often involves a trade-off between colonization 

and competition (Potthoff et al., 2006). This trade-off was evident in the present study, which 

showed that long-lived competitively superior taxa were slow to recolonize, in line with the 

results of a similar recolonization study in Kongsfjorden (Beuchel and Gulliksen, 2008). 

Mobility of the invertebrate community increased slightly in the first years following the 

manipulation. Species living in disturbed environments may comprise of small mobile 

opportunists capable of taking advantage of newly released resources (Newell et al., 1998). The 

increase in mobility in the present study is consistent with the observation of mobile taxa 

appearing in the early successional stages since they are able to move freely around the substrate 

and are not limited to disperse by early mobile life stages or by rafting (Jackson, 1986). This 

mobility may, however, also allow the animals to leave the area before the image is taken, so 

their estimate might be biased and could explain the low signal. 

Feeding habit shifted with surface-deposit feeding, grazing, and predation increasing 

moderately after the manipulation in 1980. This is in line with the hypothesis that grazers appear 

in the early stages of recolonization to feed on newly established recruits. Grazing can be an 

important factor driving recolonization patterns (Beuchel and Gulliksen, 2008), and the grazers 

may attract predators which in turn feed on them, explaining the increase in predation. 

Filter/suspension feeding was still the dominant feeding habit by large, which is not uncommon 

for hard substrate communities in Svalbard (Hop et al., 2002) and vertical walls in general 

(Laudien and Orchard, 2012). 

Colonial lifeforms dominated the study area throughout the time-series. This strategy was 

expressed even further after the clearing. Colonial invertebrates are common inhabitants in 
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shallow marine areas and constitute a great component of marine biodiversity (Hughes, 2005), 

so their contribution to the functioning of these ecosystems is expected to be substantial. This 

trait is associated with many other traits such as longevity, larval dispersal, reproduction, and 

development mode, size (indefinite growth), mobility, and feeding habit (Strathmann, 1990). A 

characteristic of colonial organisms is the capability of vegetative growth of modules (Edwards 

and Stachowicz, 2010), and the results of this study indicate that invertebrates capable of this 

type of growth dominated the community even further following the perturbation. 

Recolonization of colonial animals occur primarily through recruitment of sexually reproduced 

larvae and propagules and through vegetative encroachment from the margins of study area 

(Bulleri, 2005, Konar, 2013). This later process is likely the dominant form of colonization by 

sessile, colonial invertebrates in the present study as they appeared to grow in to the cleared 

area from the surrounding untouched areas (pers. obs.). 

Larval dispersal and development traits did not show any clear trends during the recolonization 

stage, contrary to a priori expectations of early recruits possessing broad dispersal capacities, 

i.e. long dispersal distance and planktotrophic larvae. These expectations stem from literature 

on early successional and colonizing taxa (Horn, 1974, Wangensteen et al., 2016), suggesting 

that opportunists generally displaying long-distance dispersal of larvae dominate in early 

successional stages (Wangensteen et al., 2016). Long dispersal capacities are interestingly not 

always the dominant trait in the most common polar taxa, many of which are characterized by 

short pelagic or benthic dispersal and lecithotrophic larvae or direct development (Barnes and 

Conlan, 2007). Such a strategy is supposedly expressed to reduce dispersal distance and 

undesirable conditions that would arise for planktotrophic larvae due to the large seasonal 

variations in food availability in polar regions (Potthoff et al., 2006). This idea, known as 

Thorson’s rule, has been the prevailing paradigm for decades and could explain the low 

presence of taxa with planktotrophic larvae in this study, though the emergence of polar taxa 

that do not follow this rule has recently questioned its generality (Barnes and Conlan, 2007). 

There are several evolutionary consequences of a decreased larval period which could explain 

the predominance of this trait in the present community: more regular recruitment, less irregular 

year classes, decreased dispersal away from favorable habitats, and adaptions to local 

conditions (Strathmann, 1990). Explanations of the lack of a trend in larval dispersal and 

development traits after the clearing could again support the above notion that recolonization 

in the present study is mostly driven by nearby local populations rather than long-distance 

disperser. A modelling study in a high disturbance regime in Antarctica indicated that a long 
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pelagic larval phase was in fact not needed for a pioneer species to persist regionally (Potthoff 

et al., 2006). This appear to apply for the community of the present study, as a long pelagic 

larval phase would otherwise have been selected for.  

These results suggest that the early recolonization depended on the standing stock of the local 

population (which was supported in the taxonomic analysis) of medium-sized short-lived 

organisms. Mobility, grazing, and deposit feeding also increased to some degree, though sessile 

life style and filter feeding were still dominant traits in the community. 

4.2.2 Succession of functional identity 
A directional change in the functional identity was evident throughout the timeseries. This 

indicate that the functioning of the invertebrate community was altered in a generally consistent 

direction through all three time periods. It was not, however, a particularly strong signal, as 

illustrated by the small area in the CA plot where this change was manifested along with the 

modest explanatory power of the correspondence analysis. This could be an artifact of 

displaying numerous taxa’s many traits in just two dimensions, the generally low taxonomic 

resolution, or simply just illustrate the heterogeneity of the dataset. Nevertheless, a clear trend 

was demonstrated, suggesting a functionally dynamic system.  

 

4.3 Methodological constraints and suggestions for future 
solutions 

The results of the present study support findings from an identical study in Kongsfjorden 

(Beuchel and Gulliksen, 2008), suggesting that they can be carefully generalized as a trend 

typical of the fjords of NW Svalbard, and potentially be considered a replicate to the 

Kongsfjorden study. The study design at both these localities is such that the treatment and 

control plots are spatially autocorrelated, and so are the individual quadrats of each plot. The 

latter are not interspersed so there are no independent replicates in the study. This challenge 

was overcome by pooling the five quadrats into one area (transect) which gave rise to another 

issue, namely having only a single sample for the control and one for the cleared area each year. 

This limits broad generalizations on the findings of this study, since they merely provide a trend 

from a small connected area, but the unique and valuable nature of this time series outweighs 

these issues by far. In addition, the site was only visited once a year and not at the exact same 

time, thereby providing only a snapshot in time and not considering the variability in abundance 

and cover of the organisms over the course of a year. This possible variability might only apply 
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for mobile and annual taxa but given that most Arctic biota are long-lived and that sessile 

organisms dominated in the present study, I would argue that this seasonality only played a 

minor role. Lastly, the autocorrelation in time results in consecutive years being more similar. 

It is unfortunately not likely that sampling could be expanded to occur biannually in the near 

future, due to the costs and logistics of conducting such expeditions but establishing another 

monitoring site is not necessarily associated with much additional costs once the site has been 

chosen and set up. Obtaining the photographs does not take a long time in itself so adding 

another site nearby would in the long run provide the benefit of replication with little additional 

costs. Another interesting, but a little more extensive suggestion to future studies would be to 

perform the clearing of substrate manipulation again and compare the rate and process of 

recolonization of present times to the results from the 1980s. Another suggestion is to re-design 

the experimental set-up with interspace between the manipulated and control areas, as well as 

between the quadrats. 

Photographic sampling provides the best option when considering multiple aspects, compared 

to other sampling methods. Dredging and trawling may provide identification to higher 

taxonomic levels but does not allow a quantitative repeated sampling of a site, grabs and box 

corer sampling cannot be applied on hard-bottom substrates, whereas SCUBA diving-based in 

situ observations may yield high taxonomic resolution, but are time consuming and require 

divers with extensive taxonomic knowledge (Beisiegel et al., 2017). Benthic imagery does 

however have some shortcomings which includes a generally low taxonomic resolution of the 

identification, underestimation of small and cryptic taxa may as a result of the variable 

resolution of the images, and a two-dimensional representation of a three-dimensional habitat. 

These main shortcomings were ameliorated by collecting physical samples in the vicinity of 

the site, providing a more solid taxonomic identification. 

The occasional large differences between the abundance/cover of single taxa in the control and 

cleared transects might have been magnified as an artefact of bias since three different people 

analyzed the images. A possible solution would be to have all three analyze a subsample of the 

same images and calibrate from these results. Given the extensive training I received from the 

other analyzers, it is more likely that these differences where in fact biological and/or 

ecological. 
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A very important methodological difference distinguishing the present study from the similar 

study in Kongsfjorden (Beuchel and Gulliksen, 2008, Beuchel et al., 2006) is the calculation of 

different community layers. In that study, three different community layers were calculated to 

adjust for the top-down view of the camera resulting in foliose macroalgae and large solitary 

organisms “over-shading” small solitary animals and encrusting colonial organisms (Beuchel 

et al., 2010). This method was not applied in the present study for several reasons. First, the 

cover of foliose macroalgae is smaller in Smeerenburgfjorden compared to that of 

Kongsfjorden therefore the shading effect is not as extensive. Second, a multivariate graphical 

comparison yielded no substantial difference between the “layered” and “unlayered” 

community structure. Third, avoiding unnecessary assumptions of the shaded part of the 

community and potential overestimation of small taxa reduces the risk of bias and sampling 

artifacts. 

The high occurrence of colonial organisms in benthic samples complicates the use of abundance 

data and many ecological indices based on counts (Voronkov et al., 2013). One could either 

investigate solitary and colonial organisms separately or attempt to combine the two datasets 

to achieve an analysis of the entire community. The latter has commonly been performed with 

multivariate tools based on Bray-Curtis dissimilarity (Beuchel and Gulliksen, 2008, Kortsch et 

al., 2012), but the use of this measure has recently been criticized since it confounds the “size” 

(overall measure, i.e. abundance/cover) and “shape” (relative composition) of the different 

components in a community (Greenacre, 2017). Since the “size” of the community was assessed 

in univariate space and based on discussion with Prof. M. Greenacre (pers. com.), I chose to 

examine the relative community structure by weighting the abundance and cover data sets 

differently to get a similar total inertia and perform a correspondence analysis.  

Lack of trait information on Arctic benthos resulted in much information being gathered from 

lower latitudes. This inherently assumes that organisms do not show any adaptions or plasticity 

in trait expression related to a latitudinal or environmental gradient, which may not always be 

the case (Degen et al., 2018). The relatively low taxonomic resolution achieved from the 

photographic sampling might also have influenced the trait analysis as well as the use of cover 

as will have underestimated the effect of small organisms. 

 



 

Page 39 of 50 

4.4 Conclusions and outlook  
Results from this study add valuable baseline information on the structure and function of 

Arctic hard-bottom ecosystems, important knowledge in a time of rapidly changing Arctic 

environments. Here, evidence of slow recolonization and recovery rates was found in an Arctic 

nearshore hard-bottom community after a disturbance, supporting observations from previous 

studies. Cleared substrate was covered by living organisms comparable to the control area after 

ten years, whereas the community composition of the cleared areas converged with the control 

after 24 years. Colonists were representative of the local community, comprised of strong 

competitors and few pioneers, indicating a low disturbance habitat despite the high interannual 

variability in the community structure. The tolerance model of succession seems applicable for 

the given community, suggesting succession was primarily driven by life-history traits of the 

local species such as slow growth and high longevity.  

Modifications of the physical environment in the Arctic caused by anthropogenic climate 

change will alter ecological interactions, promote species invasions, and increase human 

activities in the region. Large coastal areas of available hard-bottom habitats are expected to 

open up for colonization in Arctic fjordic regions such as those in Svalbard, the Canadian Arctic 

Archipelago and Greenland as glaciers retreat. Another significant implication of Arctic 

warming is the rapidly decreasing sea ice, presently resulting in a giant light experiment as the 

number of ice-free days and areas available to new settling biota are increased. Both changes 

will cause dramatic shifts in macroalgae-dominated benthic ecosystems, as illustrated in this 

and other studies, and will have repercussions for higher trophic levels utilizing coastal habitat. 

These developments highlight the need for research such as the present study on the processes 

of succession at previously ice-influenced hard-bottom coasts. 

Future studies should attempt to identify ecological drivers of the interannual variability in 

community structure in hard-bottom communities. Here, I strongly recommend increased 

environmental sampling effort in Smeerenburgfjorden in particular, in conjunction with the 

ongoing photographic sampling since only coarse satellite data from the West Spitsbergen 

Current outside the fjord appear readily available. I also suggest establishing other sampling 

sites within the fjord and at multiple depths, perhaps even implementing a new clearance-of-

substrate manipulation. Expanding the study to comparative sites in Greenland and Franz Josef 

Land could further illuminate the generality of the findings to a pan-Arctic scale. The 

importance and uniqueness of this and other time-series cannot be overemphasized and the 
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valuable information in contains may provide the foundation for monitoring, management, and 

conservation programs of Arctic ecosystems. 
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Appendix – taxonomic list 
 Taxonomic level Identified taxa Colonial/solitary 

 Rhodophyta   

  Genus Lithothamnium spp. (crustose coralline algae) Colonial 

  Genus Hildenbrandia sp. Colonial 

  Class Rhodophyta indet. Colonial 

  Species Callophyllis cristata Colonial 

  Species Polysiphonia arctica Colonial 

  Species Phycodrys rubens Colonial 

  Species Turnerella pennyi Colonial 

  Genus Ptilota sp. Colonial 

 Ochrophyta   

  Class Phaeophyceae indet. Colonial 

  Species Sacchoriza dermatodea Colonial 

  Species Desmarestia aculeata Colonial 

  Species Desmarestia viridis Colonial 

 Porifera   

  Phylum Porifera indet. Colonial 

  Genus Haliclona spp. Colonial 

  Genus Grantia sp. Colonial 

 Cnidaria   

  Class Hydrozoa Colonial 

  Order Actiniaria Solitary 

 Annelida   

  Species Spirorbis spirorbis Solitary 

  Class Polychaeta indet Solitary 

  Family Polynoidae  Solitary 

  Class Calcareous polychaete Solitary 

  Family Sabellidae Solitary 

 Arthropoda   

 Crustacea   

  Species Balanus balanus Solitary 

Unaccepted suborder Natantia Solitary 

  Genus Hyas spp. Solitary 

  Infraorder Brachyura Solitary 

  Genus Pagurus spp. Solitary 

 Pycnogonida     

  Genus Nymphon sp. Solitary 

 Mollusca     

  Species Hiatella arctica Solitary 

  Genus Tonicella spp. Solitary 

  Class Gastropoda indet. Solitary 

  Genus Margarites spp. Solitary 

  Species Chlamys islandica Solitary 

       

  Phylum Bryozoa  Colonial  

 Echinodermata   

  Genus Henricia sp. Solitary 

  Species Ophiopholis aculeata Solitary 

  Species Strongylocentrotus droebachiensis Solitary 

  Genus Ophiura spp. Solitary 

  Genus Pteraster spp. Solitary 

 Chordata     

  Species Dendrodoa aggregata Solitary 

  Genus Styela spp. Solitary 

  Species Halocynthia pyriformis Solitary 

  Genus Botryllus spp. Colonial 

  Species Boltenia echinata Solitary 

  Species Didemnum albidum Colonial 

  Class Ascidiacea indet Solitary 

 Assemblages     

   Algae/Hydrozoa Colonial 

   Algae/Bryozoa Colonial 

   Hydrozoa/Bryozoa Colonial 

   Algae/Hydrozoa/turf Colonial 

   Algae/Hydrozoa/Bryozoa Colonial 
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Appendix 2 - Traits 
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