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Gaussian Process Sensitivity Analysis
for Oceanic Chlorophyll Estimation
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Abstract— Gaussian Process Regression (GPR) have experi-
enced tremendous success in biophysical parameter retrieval in
the last years. The GPR provides a full posterior predictive
distribution so one can derive mean and variance predictive
estimates, i.e. point-wise predictions and associated confidence
intervals. GPR typically uses translation invariant covariances
that make the prediction function very flexible and nonlinear.
This, however, makes the relative relevance of the input features
hardly accessible, unlike in linear prediction models. In this
paper, we introduce the Sensitivity Analysis (SA) of the GPR
predictive mean and variance functions to derive feature rankings
and spectral spacings, respectively. The methodology can be used
to uncover knowledge in any kernel-based regression method,
it is fast to compute, and it is expressed in closed-form. The
methodology is evaluated on GPR for global ocean chlorophyll
prediction, revealing the most important spectral bands and their
spectral spacings. We illustrate the (successful) methodology in
several datasets and sensors.

Index Terms— Kernel methods, Gaussian Process Regression
(GPR), Sensitivity Analysis (SA), Oceanic Chlorophyll Prediction

I. INTRODUCTION

Being able to monitor ocean chlorophyll content from
remotely sensed data provides the possibility to monitor the
health status of oceans through the photosynthetic activity [1].
Changes in the photosynthetic activity result in changes in the
chlorophyll fluorescence [2], [3]. Therefore detecting chloro-
phyll fluorescence from space can reveal the distribution of the
marine primary producers, the phytoplankton [4], [5], [6], [7].
This has deep ecological [8] and economical implications'. In
addition, monitoring ocean chlorophyll content also provides
a tool to achieve deeper understanding of the contribution of
CO5, to the climate [9], [10], [11].

In this scenario, ocean chlorophyll estimation from space
requires accurate and fast mapping algorithms. It is standard
practice to use parametric bio-optical models, such as the
OC2 and OC4 models [12], [13]. They, however, assume
explicit relationships between the input reflectance bands and
the chlorophyll content. They are relatively simple (empirical)
nonlinear mapping functions (most of the times simple band
ratios and polynomial functions), and very importantly, the
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model complexity must be controlled based on experience.
In recent years, many alternative algorithms have appeared
using statistical machine learning algorithms for chlorophyll
content estimation from multi- and hyperspectral data. Many
methods have been studied: neural networks [14], support
vector regression [15]-[17], and the relevance vector ma-
chine (RVM) [18]. The recently introduced GPR model has
been shown to outperform other oceanic chlorophyll content
estimation methods [19]. For oceanic chlorophyll content
estimation in remotely sensed data GPR framework has been
successfully applied by [20], [21]. GPR differs from other
machine learning methods not only in its predictive power,
but also in its underlying fundamental principles [22], [23].
The other advantageous property of GPR is that it provides
additional information about the prediction: the predictive
variance. Thus the output of the regression is not only the
estimated chlorophyll content, but also the estimated variance,
which reveals the confidence of the prediction.

Although GPR has shown an excellent predictive perfor-
mance, the information about the relative relevance of the
features being used for regression is lost, since the model is
a non-linear kernel method that defines an implicit (not ac-
cessible) feature mapping. In [24] we presented the sensitivity
analysis (SA) of the mean function in the GPR model and
applied it to three oceanic chlorophyll matchup datasets.

Our contribution in this work is the extension of our method
to the predictive variance function of the GPR model. In ad-
dition, we further exploit the SA for both the predictive mean
and variance function by evaluating their performances on both
controlled examples and new updated global oceanic chloro-
phyll relevant datasets. We compare the methodology with
state-of-art oceanic chlorophyll content estimation models for
the Sea-Viewing Wide Field-of-View Sensor (SeaWIFS), the
MEdium Resolution Imaging Spectrometer (MERIS) and the
NASA operational Moderate Resolution Imaging Spectrora-
diometer onboard AQUA (MODIS-Aqua). Furthermore, we
present our results on sensitivity maps, which are aimed to
show the possibility for applying our method for practical
purposes.

SA reduces to study the variance (uncertainty) of the
predictive function in terms of the uncertainties of the input
features. The family of SA methods is vast and depends on
the number of problem constraints, also known as settings. In
this work, we focus on the particular field of local methods,
which involve taking the partial derivative of model’s output
with respect to input features to assess its impact. Interestingly,
in the case of the GPR model, such gradients can be computed
in closed-form for most of the covariance functions.

Introducing the SA for the GPR mean function for de-
termining feature relevance has the advantage that it’s not
limited to a specific kernel function, such as in the case of the
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Automatic Relevance Determination (ARD), where the length-
scale parameters of the Squared Exponential (SE) kernel are
optimized in order to assign feature relevance [25], [26].
Furthermore, the SA of the GPR variance function, to the best
of our knowledge is the only existing method that can reveal
the spectral spacing of the input space in the GPR model.

In order to gain an intuitive interpretation, we first present
the SA on a controlled example, and then apply it to five global
chlorophyll related datasets from different sensors: SeaBAM,
SeaWIFS, MODIS-Aqua, and two MERIS complementary
datasets. SA can efficiently reveal the most important spectral
bands for chlorophyll content prediction, and the spectral
spacing of the input space globally. In addition, we compare
GPR using only the most relevant spectral bands for regression
with spectral-band-ratio models. We also present sensitiv-
ity maps for both the GPR predictive mean and variance,
which open the possibility to present the distribution of the
most relevant wavelengths on a global scale, and also to
access information about the (spatially resolved) distribution
of the spectral sampling of the inputs. The sensitivity maps
might indicate the detection of the distribution of chlorophyll
fluorescence, thus opening the possibility to monitor ocean
status through a fundamentally different, mathematically solid,
approach.

Finally, we validate the results of the SA of the GPR mean
function on a global scale by producing global chlorophyll
content maps, allowing visual comparison with the actual
measured chlorophyll content maps and predicted chlorophyll
content maps computed with parametric models.

The objective of performing the SA of the GPR model on
oceanic chlorophyll datasets was that GPR has been shown
to have a strong regression capacity in the estimation of
biophysical parameters, therefore the methodology could be
efficiently used in practice for oceanic chlorophyll content
estimation from remotely sensed data. However, the driving
mechanisms of the GPR model hasn’t been fully understood
yet. This is in contrast to parametric models, where the
estimated coefficients (weights) allow the direct interpretation
of the relevance of the spectral bands. Applying the SA to the
GPR mean function for oceanic matchup datasets, revealed the
most important spectral bands in the regression model. This
not only shows that the algorithm performs well and can be
extended to a variety of kernel methods, but also provides a
tool for having a deeper understanding in the optical properties
of the oceans. Furthermore, using the SA of the GPR variance
function for these datasets, results a unique interpretation of
the spectral spacing of the input space. In addition, our aim
by presenting sensitivity maps for the oceanic chlorophyll
content datasets was to show that the SA can be used for
mapping the most relevant bands and their spectral spacing
which might be important when the biophysical and optical
properties of the oceans are in focus. These sensitivity maps
can be used for information retrieval purposes from remotely
sensed data in the very important task of oceanic chlorophyll
content estimation.

The reminder of the paper is organized as follows. Section II
reviews the GPR model, presents the SA and an illustrative toy
example. Section III details the data collection and experimen-
tal setup used in this paper. Section IV gives the experimental
results for estimation of ocean chlorophyll content, comparison
of the GPR (using only those bands which were ranked as

most relevant of the SA) with parametric state-of-art models
for ocean chlorophyll content estimation, sensitivity maps and
validation maps. Finally, Section V concludes the paper and
outlines the further work.

II. SENSITIVITY ANALYSIS IN GAUSSIAN PROCESSES

We first review the standard formulation of the GPR model
briefly, then present the SA of the GPR predictive mean and
variance, and illustrate its performance in a toy example.

A. Regression with Gaussian Processes

Standard regression approximates observations (often re-
ferred to as outputs) {y,}_, as the sum of some unknown
latent function f(x) of the inputs {x, € RP}N_, plus
constant power Gaussian noise, i.e. y, = f(Xp) + €n, €n ~
N (0, 5?). Instead of proposing a parametric form for f(x) and
learning its parameters in order to fit observed data well, GPR
proceeds in a Bayesian, non-parametric way [22], [23]. A zero
mean® Gaussian Process (GP) prior is placed on the latent
function f(x) and a Gaussian prior is used for each latent
noise term e,, f(x) ~ GP(0,ko(x,x’)), where ko(x,x’)
is a covariance function parameterized by 6, and o2 is a
hyperparameter that specifies the noise power. Essentially, a
GP is a stochastic process whose marginals are distributed
as a multivariate Gaussian. In particular, given the priors GP,
samples drawn from f(x) at the set of locations {x,}_;
follow a joint multivariate Gaussian with zero mean and
covariance matrix Kg with [Kg)i; = ko(x;, x;).

If we consider a test location x, with corresponding output
Ys, the GP defines a joint prior distribution between the
observations y = {y,}_, and y..

Collecting available data in D = {x,,yn|n =1,... N}, it
is possible to analytically compute the posterior distribution
over the output y,:

P(Yx|Xs, D) = N (| tips s 0p..) (1)
pore = ke, (Kge +0°L,) "y = ke, )
0Gpe = 07 + ks — kg, (Kp +0°L) ke (3)

= 0% + kyo — ki, AKg,,

where kg, is the covariance between the training vector and
the test point, @ = (Kg + 02I,,) "1y is the weight vector of
the GPR mean, k.. is the covariance between the test point
with itself and A = (Kg + 02L,)"! is the weight matrix of
the GPR variance.

Note that the predictive mean in Eq. (2) pgp. depends on the
observations through the weight vector c, while the confidence
intervals oép* (Eq. (3)) only depend on the inverse of the
regularized covariance function A.

B. Sensitivity Analysis of features from Gaussian Processes

GPR offer some advantages over other regression methods.
Since they yield a full posterior predictive distribution over y.
(Eq. (1)), it is possible to obtain not only mean predictions for
test data, ugps« (Eq. (2)), but also the so-called “error-bars”,
assessing the uncertainty of the mean prediction, o&p, (Eq.

N

n—1- and then

%It is customary to subtract the sample mean to data {y}
to assume a zero mean model.
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(3)). In this work, we focus on extracting knowledge from
trained GPR model. To do so, let us define the sensitivity of

feature j as )
0
%=/(i§>mww, ©

where p(x) is the probability density function over the D-
dimensional input vector x, = [zl,...,2P]T, and ¢(x)
represents either the predictive mean, ugps«, Or variance, O'%P*.
Intuitively, the objective of the sensitivity analysis of features
is to measure the changes of the derivative of the function
¢(x) in the jth direction. In order to avoid the possibility of
cancellation of the terms due to its signs, the derivatives are
squared. Therefore, the resulting sensitivities will be positive
s; > 0 for all bands. The empirical estimate of the sensitivity

for the jth feature can be written as

1 o (0¢(xn)\”
%=NZ(220, )

n=1

where N denotes the number of training samples. Before
calculating the sensitivity, let us define the covariance prior
that we used in this work, the standard isotropic scaled
Gaussian kernel function:

1 (2l — i\ 2
k(Xpm,Xn) = v? exXp ( 3 Z <m)\dn> >7 (6)
d=1
where \; is the length-scale for the dimension d, and v is a
positive scale factor. The hyperparameters of this GP prior are
collectively grouped in 0 = [v, 0, \1,...,Ap].
The resulting empirical estimate of the GPR mean sensitiv-
ity is therefore:

N 2
4 1 Oo(x ))
SJGP* Y (q ™
a N q; oz
_ 1 i (3Z;V_1 apk(xp, Xg) ) 2
N q=1 81‘?1
N , N j j 2
1 ap(xd — xl)
- 2 (3 et
q=1 “p=1 J

and for the GPR variance sensitivity is:

Note that the calculation of the empirical sensitivity is com-
puted in closed-form using only training data points and the
inferred o and A. The SA derived here is inspired by [27]
who however only regarded a support vector machine and
brain research context, and who did not extend the analysis to
variance.

C. Proof of concept

We show the concept of the SA on a synthetic example.
The goal of this experiment is to examine whether the SA of
the GPR mean computed by Eq. (7) function can identify the
relevant feature in the regression process. At the same time,

we compute the SA of the GPR variance function by using
Eq. (8), so that the spacing, ¢, of the input features can be
revealed.

Assume that the input consists of two features, x, =
[z1,22], where xl = Asin(2nt) is the relevant feature,
22 ~ N(0,0?) is irrelevant, and A >> o. The output is the
sum of the two input features, y,, = 2> + x2. Time sampling
is uniform for ¢ < 0 and logarithmically for ¢ > 0. In order to
trace the evolution of the sensitivities as ¢ grows, we compute
si, and s}, by using Eq. (7) and Eq. (8), respectively, for
i = 1,2 through time ¢. Figure 1[top] shows the sensitivities
for the GPR mean (Eq. (7)) for the relevant feature (si) and for
the noise si respectively. It can be observed that the SA could
consistently identify the relevant feature. The sensitivities of
the GPR variance (computed by Eq. (8)) are shown in Fig.
1[bottom]. It can be seen how it correctly captures the change
at t = 0 related to the sampling rate. The SA of the GPR
variance as expected, assigned greater values to the relevant
feature. This example shows how the SA of the GPR can be
used for determining the most relevant features, and to uncover
the sampling rates of the input variables by using Eq. (7) and

Eq. (8), respectively.
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Fig. 1. Evolution of the sensitivities through time of the GPR mean (top)
and variance (bottom) for the relevant (red) and irrelevant (blue) feature.

III. DATA COLLECTION

In this work, we show results of the SA in five chloro-
phyll relevant datasets, acquired by different sensors and thus
different spectral resolutions and complexity [28]: SeaBAM,
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TABLE 1
DESCRIPTIVE STATISTICS OF THE FIVE DATASETS.
[ SeaBAM [ SeaWIFS
Chlorophyll range (mgm—3) 0.019 - 32.787 0.024 - 129.332
Nr. of samples 919 1465
Band (A, (nm)) [ [o2 [ [o?
412 0.0066 [ 0.1374-10~%]0.0036 [0.1001-10—%
443 0.0059 [ 0.0969-10—%10.0038 |0.0625-10—4
490 0.004910.039-10—% [0.0041 [0.0468-10—1
510 0.0032]0.0163-10-%{0.0038 |0.047-10~%
555 0.002 [0.0163-10-%]0.0038 |0.0910-10—%
670 0.001 [0.0178-10~ %
[ MERIS (synthetic) | MERIS (real)
Chlorophyll range (mgm—5) 0.021 - 53.4429 0.017 - 40.23
Nr. of samples 5000 567
Band (\. (nm)) [ [o? [ [o?
413 0.0258 | 0.0006 -1.7594 | 1760.2
443 0.0323 | 0.008 0.0031 [0.0597-10—%
490 0.0476 | 0.0018 0.0042 [0.0624-10—2
510 0.0524 | 0.0022 0.0045 [0.0793-10— %
560 0.0606 | 0.0033 0.0057 |0.1784-10~%
620 0.0285 | 0.0012 0.003 [0.134-10—%
665 0.0222 | 0.0008 0.0022 |0.095-10—%
681 0.0234 | 0.0007 0.0022 |0.0873-10~%
[ MODIS-Aqua
Chlorophyll range (mgm™3) 0.0153 - 25.4985
Nr. of samples 579
Band (Ac (nm)) | o | o2
412 0.0028 0.8138-10—°
443 0.0032 0.4778-10~°
488 0.0036 0.302-10~°
531 0.0037 0.4422-10~°
547 0.0037 0.5556-10—5
667 0.0009 0.1302-10~°
678 0.001 0.1186-10—5

SeaWIFS, MODIS-Aqua, and two complementary MERIS
datasets. (For further details on the SeaBAM and MERIS
(synthetic) datasets we refer to [13], [14], [17], [18] and [19].
The SeaWIFS, MODIS-Aqua and MERIS (real) datasets can
be obtained from the SeaBASS database?.) Table I summarizes
the main parameters of the descriptive statistics of these
datasets, such as the center wavelengths (\.), the mean p and
variance o of each channel, the range of the chlorophyll-a con-
centrations and the total number of samples. Note, that we used
the reflectances measured in Remote sensing reflectance (Rrs)
for chlorophyll content prediction purposes. The SeaBAM
dataset gathers 919 ocean chlorophyll measurements around
the United States and Europe. The matchup dataset consists of
coincident in situ remote sensing reflectance on five channels,
which correspond to some of the SeaWIFS channels and
chlorophyll-a concentration measurements. The bandwidths of
the channels are 20 nm, and they are situated in the range
between 402 nm and 565 nm. The chlorophyll-a concentrations
range between 0.019-32.787 mgm~3. In addition, we applied
the SA of features to three global remote sensing ocean
chlorophyll data, the SeaWIFS, the MODIS-Aqua and the
MERIS dataset [29]. The SeaWIFS dataset covers the spectral
region between 402 nm and 680 nm on six channels. We used
1465 chlorophyll-a measurements with coincident Rrs between
September 1997 and November 2010. Chlorophyll-a concen-

3http://seabass.gsfc.nasa.gov/seabasscgi/search.cgi

trations span a quite wide range, between 0.024 and 129.332
mgm 3. The MODIS-Aqua dataset has seven channels ranging
from 405 nm to 683 nm. The data we used here has 579
measurements between July 2002 and November 2012, where
the chlorophyll-a molecule concentrations are between 0.0153
and 25.4985 mgm~3. Finally, the MERIS dataset has the
same channels as the synthetic MERIS data, consisting of 567
measurements between April 2002 and March 2012, where the
range of the chlorophyll-a concentration is between 0.017 and
40.23 mgm~3. We applied the SA to these global data and
computed sensitivity maps for an extracted area, East-USA.
An additional MERIS dataset is formed by synthetic data,
where 5000 coincident chlorophyll-a concentrations and Rrs
were simulated [17]. The chlorophyll-a concentrations range
between 0.021 and 53.4429 mgm~3. The Rrs were simulated
on eight channels. The channels are placed between 407.5 nm
and 685 nm, with a bandwidth of 10 nm and 7.5 nm. The
means and the variances of the channels show similar values
for all the five datasets. Generally, the means are situated
close to zero and the variances are small. Note, the MERIS
(real) dataset’s mean value of band 1 differs from the rest of
the means. The corresponding variance is large. This might
indicate fault measurement(s) in the dataset at this band.

IV. EXPERIMENTAL RESULTS

Here we present the experimental results on the previous
five different datasets. We first describe the experimental setup,
and then study the provided feature ranking from the GPR
model. Furthermore, we compare GPR, using only those bands
for regression, which were assigned to greatest relevance by
the SA, with commonly applied parametric models. Finally,
we provide spatially explicit SA maps for both the predictive
mean and variance.

A. Experimental setup

We trained five different GPR models for the corresponding
datasets. In all cases, we standardized the input features and
removed the mean of the observed chlorophyll content. We
split the available data randomly into a training set (50%) and
a test (hold-out) set. The hyperparameters 6 were optimized
by maximizing the marginal log-likelihood [22] using the
training set. Results of the best models are shown for the test
set in Table II. We show different quality measures for the
models: bias (mean error, ME), accuracy (root-mean-square
error, RMSE, and mean absolute error, MAE), and goodness
of fit (Pearson’s correlation coefficient, p). It can be noted
that in all cases, the GPR models are accurate and generally
unbiased, so a sensitivity analysis is feasible.

TABLE II
SUMMARY OF THE TEST RESULTS IN THE 5 DATASETS. (The numbers in the
parantheses refer to the most relevant channels which were used as inputs

in the GPR.)
Database ME RMSE MAE p
SeaBAM (2, 4 and 5) +0.0037 0.1493 0.1104 0.9679
SeaWIFS (4, 5 and 6) -0.0887 0.3149 0.2361 0.9236
MODIS-Aqua (4, 5 and 6) +0.0229 0.2461 0.1866 0.9188
MERIS (synthetic) (5, 6, 7 and 8) | 0.004  0.084 0.0232 0.9996
MERIS (real) (5, 6, 7 and 8) <10=7 021 0.1464 0.9261
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B. Sensitivity Analysis of the five datasets

We perform the SA of the GPR mean and variance functions
for all five datasets (results are given in Fig. 2). For the
SeaWIFS dataset the SA of the GPR mean revealed that band
4 (510 nm) is the most sensitive (Fig. 2 [top-left]), which
matches previous results [18], and the accurate bio-optical
model OC4. The second most sensitive band corresponds to
670 nm center wavelength (band 6). This is in good correspon-
dence with the three-band reflectance difference model [30],
where it was shown that adding band 6 is advantageous and
results improved chlorophyll content prediction, especially
when chlorophyll content increases. The inclusion of band 6 is
based on similar principles as using band 5 (555 nm). The SA
assigned the third greatest relevance to band 5, which is com-
monly used in band-ratio models, such as the OC2/0C3/0C4
and the three-band reflectance difference model [31] and [30].
Fig. 2[bottom-left] shows the result of the SA of the variance,
where the most stable spectral band was band 6. Similar results
are obtained in the SeaBAM dataset, where the SA assigned
the greatest importance to bands 5 (555 nm), 4 (510 nm) and
2 (443 nm), see Fig. 2 [top-left]). Again, these results matches
Morel, CalCOFI-2 and Ocean Color (OC) parametric models.
The SA of the variance resulted that band-5 (555 nm) has the
most stable spectral variance (Fig. 2[bottom-left]).

For the MODIS-Aqua dataset, bands 4, 5 and 6 were
found to have the highest sensitivities of the GPR mean
(Fig. 2[top-middle]). These channels correspond to 531 nm,
547 nm and 667 nm, respectively. Band 5 also used in the
OC2 and OC3 parametric models. The position of band 4 on
MODIS-Aqua was selected to improve the detection of the
accessory pigments [32], while band 6 is one of the MODIS-
Aqua channels to detect chlorophyll fluorescence [33], [34].
Nevertheless, the SA of the variance, Fig. 2[bottom-middle],
assigned the lowest sensitivity to channel 6.

For the MERIS dataset, we performed the SA on both
synthetic and real datasets. For the synthetic dataset, the SA
resulted that band 8 (681 nm) has the greatest importance
(Fig. 2[top-right]) with relative low spectral variance (Fig.
2[bottom-right]). This might be the indication of chlorophyll
fluorescence [35], [36], [37]. Channel 7 and 8 were included
on MERIS for the detection of the chlorophyll fluorescence
signal. Being able to detect chlorophyll fluorescence has spe-
cial importance when chlorophyll content mapping in coastal
waters is in focus, since the presence of gelbstoff and sus-
pended matter might mask the water-leaving radiance from
chlorophyll-a, when spectral-band ratios are applied [35].

For the real MERIS dataset, the SA of the GPR mean re-
sulted in that band 5 (560 nm) is the most sensitive (Fig. 2 [top-
right]), also with the highest sensitivity of the GPR variance
(Fig. 2[bottom-right]). This result is in good correspondence
with the OC2/0OC3/0OC4 parametric models. Note, that band
6 (620 nm), 7 (665 nm) and 8 (681 nm) were also found
to have high sensitivities in comparison to the rest of the
channels. Looking at the sensitivities of the variance for these
four channels reveals that band 8 has the lowest sensitivity of
the predictive variance.

Applying the SA of features for the GPR mean for these
global datasets might reveal the most relevant spectral band for
global oceanic chlorophyll prediction. Apart from the synthetic
MERIS dataset, in all cases the most sensitive band fell into

the spectral region between 510 nm and 560 nm. The SA of
the GPR predictive variance opens the possibility to access the
spectral sampling of the channels. This additional information
might help selecting channels for analysis in an automated
way, since channels with high sensitivity of the GPR mean
and low sensitivity of the GPR variance should be preferred.

C. Comparison of methods

We compared the performance of the GPR (using only
the most sensitive bands) with parametric bio-optical mod-
els ( [13], [31] and [38]) in all the five datasets. These
models can be written as it follows [18]: Morel-1 and
CalCOFI 2-band linear are expressed by C = 10%FT®R,
Morel-3 and CalCOFI 2-band cubic interpolators are C' =
10%ta Rta:R*+asB® - and models OC2/0C3/0C4 are de-
scribed by ag + Z?Zl a;logy, RY, where R indicates the
logarithmic ratio between the blue and green wavelengths,
and the a; are the coefficients. Note that the coefficients and
the wavelengths used for determining R are sensor-specific
(and they can be found at NASA’s ocean color web site
http://oceancolor.gsfc.nasa.gov/). Model performances were
evaluated by computing the same measures as in Sec. IV-
A. The goal of this comparison-study was to evaluate the
regression strength of the GPR by using only the most im-
portant spectral bands, and compare them with the commonly
used state-of-art algorithms. Therefore, the measures were
computed by using the available datasets for both training
and testing. We used bootstrapping for accessing model per-
formance. (Note in Table II the prediction strength of the
method was in focus, therefore the available datasets were
randomly divided into training- testing data, as described in
Sec. IV-A.) The results of the models for the five datasets
can be seen in Table III. The measures are the mean values
of 100 bootstrap samples. The distribution of the bootstrap
measures is presented in Fig. 4. The box-plots reveal that the
computed model measures from the bootstrap samples for the
GPR model (indicated by GP in Fig. 4) has a narrow range
(except for the RMSE and MAE in the case of the SeaWIFS
and MODIS-Aqua datasets), low bias and high accuracy.

Applying only the most sensitive bands to the GPR can
outperform other commonly used parametric models, which
indicates the strength of the SA.

Note, that parametric models have been previously com-
pared to machine learning methods, for example in [18], where
no statistically significant difference was found. Furthermore
GPR model using all available features has been shown to
outperform other machine learning methods [25]. The goal of
our comparison study is to show the strength of the SA in the
important task of chlorophyll content estimation from remotely
sensed data. In addition to find the most relevant features for
chlorophyll content estimation, we also examine how the GPR
model using only the most important spectral bands performs
in comparison to the state-of-art algorithms.

We tested the statistical singnificant of model’s difference
by performing a one-way Analyzis of Variance (ANOVA) on
the estimates. We performed the statistical analysis of the bias
and accuracy of the residuals by computing the F-value and
p-value for each cases [39]. Table IV shows the results of the
ANOVA analysis for the five datasets. Significant statistical
differences can be observed for both the bias and accuracy for
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Fig. 3. Using only the most relevant bands in the GPR model for the five datasets. Observed versus predicted chlorophyll (top row) and observed chlorophyll

versus residuals (bottom row).

the SeaBAM, MODIS-Aqua and MERIS (synthetic) dataset.
In the case of the SeaWIFS and MERIS (real) datasets the
statistical analysis couldn’t reveal any difference in the bias
between the GPR with the most relevant bands and the rest
of the models. However, the accuracy shows a great deviation
between the models for these datasets. Figure 3 presents the
scatter plots of the observed versus predicted chlorophyll
values (top row) and the observed chlorophyll versus residuals
(bottom row) of the five datasets. Good linear agreement can
be observed on the observed vs. predicted chlorophyll scatter
plots. The observed chlorophyll vs. residuals scatter plots show
a random scattering around zero with a relative small variance.

D. Sensitivity maps for the predictive mean and variance

We illustrate the performance of the SA by computing
sensitivity maps for the SeaWIFS, MODIS-Aqua and MERIS
dataset. The sensitivity maps were computed by extracting
a coastal area of Eastern USA. Then the SA of the GPR
mean and variance for the measurements in this area were
computed. We chose the k-nearest neighbours for each data
points, performed the SA on the group of these data points
through an iteration process, and picked the most sensitive
band for the GPR mean and the least sensitive for the GPR
variance. Finally, we used these bands to produce sensitive
maps by spatial interpolation. We used natural neighbour inter-
polation [40] for spatial illustration of the SA. Although other
interpolation methods, such as kriging, are also commonly
used, natural neighbor interpolation has been showed to have

0
Observed chlorophyll

50
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Fig. 4. Box-plots of the bootstrap model criteria for the SeaBAM (top row),

SeaWIFS (second row), MODIS-Aqua (third row), MERIS synthetic (fourth

row) and MERIS real (bottom row) datasets. The models for the SeaBAM dataset are indicated by M-1 and M-3 for Morel-1 and Morel-3, and C-linear and
C-cubic for CalCOFI 2-band linear and CalCOFI 2-band cubic, respectively. The Ocean Color models are the OC2, OC3 and OC4 algorithms, and the GPR

model using the most relevant bands is denoted by GP.

a good performance for this type of data as well [41], [42].

Results are shown in Figures 5-7. The left maps show
the positions of the in-situ chlorophyll measurements (red
dots), the second figures illustrate the interpolated measured
chlorophyll values, while the third and right figures show the
sensitivity maps for the GPR predictive mean and variance,
respectively.

The sensitivity maps show that the SA of the GPR mean

assigns higher wavelengths to areas where the chlorophyll
is present. Interestingly, it can be observed that there are
areas with low chlorophyll content (second column) and
corresponding higher wavelengths (third column) (in Fig. 6
middle part). This might indicate the presence of suspended
particulate materials, which tend to result higher values in
the reflectance spectra with increasing concentration [28].
Therefore, computing sensitivity maps in addition to estimated
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Fig. 5. Position of the in-situ chlorophyll measurements marked by red points (left), chlorophyll content map in mgm™—2 (second), sensitivity map of the
GPR mean (third) and variance (right) for the SeaWIFS dataset.
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Fig. 6. Position of the in-situ chlorophyll measurements marked by red points (left), chlorophyll content map in mgm~—3 (second), sensitivity map of the
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TABLE III
MODEL COMPARISON OF THE TEST RESULTS FOR BIO-OPTICAL MODELS
AND GPR FOR ALL DATASETS. THE COMPUTED MODEL MEASURES ARE
THE MEAN VALUES OF 100 BOOTSTRAP-SAMPLES.

\ [ SeaBAM |
Model ME RMSE MAE »p
Morel-1 -0.0289 0.18  0.1404 0.9558
Morel-3 -0.0309 0.1844 0.1432 0.954
CalCOFI 2-band cubic -0.056 0.1791 0.1424 0.9598
CalCOFI 2-band linear +0.0729 0.3209 0.2539 0.9558
Ocean chlorophyll 2, OC2 | -0.075  0.1856 0.1456 0.9593
Ocean chlorophyll 4, OC4 | -0.0835 0.1811 0.1451 0.9652
GPR (2, 4 and 5) <10~16 0.0117 0.0047 1.0000

\ [ SeaWIFS |
Ocean chlorophyll 2, OC2 [-0.376 0.308 0.2312 0.9025
Ocean chlorophyll 3, OC3 | -0.0297 0.3046 0.2269 0.9048
Ocean chlorophyll 4, OC4 | -0.0194 0.2839 0.2129 0.9165
GPR (4, 5 and 6) <10~!4 0.149 0.035 0.9994

| [ MODIS-Aqua |
Ocean chlorophyll 2, OC2[-0.0788 0.3283 0.2319 0.8802
Ocean chlorophyll 3, OC3 | -0.0742 0.3236 0.2328 0.885
GPR (4, 5 and 6) <10~15 0.0345 0.0078 0.9999

\ [ MERIS (synthetic) |
Ocean chlorophyll 2, OC2 [ -0.5397 0.6489 0.5634 0.6799
Ocean chlorophyll 3, OC3 | -0.5606 0.667 0.5813 0.6795
Ocean chlorophyll 4, OC4 | -0.5439 0.6506 0.5653 0.6862
GPR (5, 6, 7 and 8) <10~ 0.0144 0.0073 1.0000

\ [ MERIS (real) |
Ocean chlorophyll 2, OC2[-0.0719 0.3699 0.2715 0.8549
Ocean chlorophyll 3, OC3 | -0.0668 0.3571 0.2654 0.8641
Ocean chlorophyll 4, OC4 | -0.0315 0.3100 0.2311 0.8853
GPR (5, 6, 7 and 8) <10~15 0.0081 0.0022 1.0000

TABLE IV
SUMMARY OF THE STATISTICAL ANALYSIS (ONE-WAY-ANOVA) IN THE 5
DATASETS.

[ [ Bias [ Accuracy |
Database F-value p-value | F-value p-value
SeaBAM 6776 <0.001 | 156.45 <0.001
SeaWIFS 2.38 <0.1 1852  <0.001
MODIS-Aqua 5.12 <0.01 |31.94 <0.001
MERIS (synthetic) | 3243.61 0 444151 0
MERIS (real) 0.99 <0.4 202.93 <0.001

chlorophyll content maps might open the possibility to re-
trieve further information about the constituents of the oceans
through their optical properties. Looking at the chlorophyll
content maps together with the SA of the GPR mean maps
might give an intuition about the connection between the
amount of chlorophyll and the most important wavelengths.
The SA of the GPR mean maps represent the geographical
distribution of the most important wavelengths, while the SA
of the GPR variance maps show how the distribution of the
spectral spacing varies in the same area.

E. Verifying the results of the SA of the GPR mean on the
SeaWIFS dataset

In order to validate the results on a global scale we present
global chlorophyll content maps (Fig. 8) for the SeaWIFS
dataset. The global validation maps for the MODIS-Aqua
and MERIS (real) datasets and the local validation maps
for the SeaWIFS, MODIS-Aqua and MERIS (real) datasets
can be found under Appendix. We use the same procedure
for spatial interpolation as in Section IV-D. Figure 8 shows

-4

Fig. 8. Global in-situ chlorophyll content map (top), predicted chlorophyll
content map for the GPR with the most relevant bands (middle) and predicted
chlorophyll content maps for the OC4 parametric model (bottom) for the
SeaWIFS dataset. The total number of samples is 1465 and the unit of the
chlorophyll content is mgm~—3. The red dots indicate the position of the
measurements (interpolation points).

the results of the in-situ chlorophyll content map (top), the
predicted chlorophyll content map using GPR with the most
relevant bands (middle) and predicted chlorophyll content
map applying a parametric model (bottom). We chose the
parametric model with the lowest RMSE-value (Table III). It
can be observed that the chlorophyll content map of the GPR
with the most relevant bands looks almost identical as the true
chlorophyll content map, while the parametric model seems to
overestimate the predicted values. Thus, the SA of GPR can
be used to determine feature relevance and selection.

Note, the aim of presenting validation maps is to visualize
the strength of the SA rather than to produce accurate global
chlorophyll content maps, which would have been challenging
for these datasets due to the number of samples and the
wide time frame the chlorophyll samples were taken at. Our
focus was to illustrate that using the SA of the GPR mean
function for identifying the most important spectral bands in
the regression process and using only these bands as inputs
for the GPR for chlorophyll content estimation, can compete
with the frequently applied parametric models. Therefore, the
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methodology opens the possibility for practical application
purposes.

V. CONCLUSIONS AND FURTHER WORK

We derived empirical estimates for the sensitivity of the
GPR predictive mean and variance functions. After applying
the SA to a controlled example, we illustrated the performance
of the method on five global datasets. We found that the SA
of the GPR mean assigned the highest sensitivity to bands
in the range between 510 nm and 560 nm. This is in good
correspondence with the reflectance spectra of the chlorophyll.
Bands positioned on higher wavelengths also got ranked as
relevant bands for chlorophyll content prediction. This might
indicate preference for bands associated to chlorophyll fluores-
cence. Being able to monitor chlorophyll fluorescence allows
the possibility to detect changes in photosynthesis, thus to
monitor the health status of oceans. In addition, the detection
of chlorophyll fluorescence might be a useful tool, when other
substances beside chlorophyll are also present. This might be
specially the case for coastal waters. Besides the sensitivity of
the GPR mean we also derived the SA of the GPR variance
for the five global datasets, and uncovered the relevance of
the (spectral) sampling of the bands. Knowing the spectral
distribution of the inputs might allow the deeper understanding
of the underlying biophysics, as well as the design of further
sensors. Furthermore, we compared the performance of the
GPR using only the most sensitive bands for regression with
parametric models. The computed measures revealed the SA
could identify the most important features, and thus using only
these features as inputs to the GPR could outperform other
models.

Finally, we presented the SA of the GPR on sensitivity maps
for a given region. These spatially-explicit maps highlight
the usefulness of the GPR sensitivity analysis to study the
distribution of the most relevant wavelengths and to reveal the
optimality of the spectral sampling density. In addition, we
compared the SA of the GPR mean function for chlorophyll
content prediction on a global scale by computing global
chlorophyll content maps for the actual chlorophyll content,
the GPR model with the most sensitive bands and with
the parametric model of the lowest computed RMSE value.
These global maps confirmed that using the bands which
were assigned to have the greatest relevance to perform GPR
shows good correspondence and spatial comparability. For
future work, we plan to produce sensitivity maps on a time
scale as well, with the aim of detecting changes in oceanic
chlorophyll fluorescence. It does not escape our notice that
the methodology can be used for global sensitivity analysis of
radiative transfer models, as well as to further evaluate current
GPR emulators.

APPENDIX
GLOBAL AND LOCAL VALIDATION MAPS

Figure 9 shows the global validation maps for the MODIS-
Aqua and MERIS (real) datasets. In the case of the MODIS-
Aqua dataset (left column), it seems that both the GPR and
the parametric model results overestimates along the Western
coast of Europe and Africa and underestimates around the
Northern part the Indian ocean. The predicted chlorophyll
contents show good correspondence with the true values along

the coasts of America for both models. Comparing the GPR
and the parametric model with the in-situ chlorophyll content
map for the MERIS real dataset (right column) reveals an
overall overestimation and underestimation in the predicted
chlorophyll contents, respectively. However, the distribution
of the chlorophyll seems to follow the same pattern as the
true chlorophyll content map for both cases. In general, it
can be concluded that the predicted chlorophyll contents are
in good correspondence with the true values. Even though
there might occur over- and underestimates in the predicted
values, using the most sensitive bands to perform GPR for
chlorophyll content prediction on a global scale shows just as
good performance as the parametric model (with the lowest
RMSE value). Therefore, the SA of GPR can be used to
determine feature relevance and selection.

The validation maps were also implemented for the same
area as in Sec. IV-D. Figure 10 shows the results.
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Fig. 9. Global in-situ chlorophyll content maps (top row), predicted chlorophyll content map for the GPR with the most relevant bands (middle row) and
predicted chlorophyll content maps for the OC3 (MODIS-Aqua) and OC4 (MERIS real) parametric model (bottom row) for the MODIS-Aqua (left column)
and MERIS real (right column) datasets. The total number of samples is 579 for the MODIS-Aqua dataset and 567 for MERIS real dataset. The unit of the
chlorophyll content is mgm~—3. The red dots indicate the position of the measurements (interpolation points).
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In-situ chlorophyll map Predicted chlorophyll map (GPR)

Predicted chlorophyll map (parametric model)

Fig. 10. Local in-situ chlorophyll content maps (left column), predicted chlorophyll content map for the GPR with the most relevant bands (middle column)
and predicted chlorophyll content maps for the best parametric model (right column) for the SeaWIFS (top row), MODIS-Aqua (middle row) and MERIS

real (bottom row) datasets. The unit of the chlorophyll content is mgm—3.
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