
pVD - Personal Video Distribution

Fei Su, John Markus Bjørndalen, Phuong Hoai Ha, Otto J. Anshus
Department of Computer Science

University of Tromsø, Norway
fei.su@uit.no, jmb@cs.uit.no, phuong@cs.uit.no, otto@cs.uit.no

Abstract—A user has several personal computers, including
mobile phones, tablets, and laptops, and needs to watch live
camera feeds from and videos stored at any of these computers
at one or more of the others. Industry solutions designed for
many users, computers, and videos can be complicated and slow
to apply. The user must typically rely on a third party service
or at least log in. The Personal Video Distribution (pVD) system
supports sending and viewing live and stored videos between
any of a single user’s computers, and allows for a smooth hand-
over of play back between computers. The system avoids any
third parties, and relies only on the user’s personal computers.
We present the architecture, design and implementation of the
pVD prototype. The architecture is comprised of functionality
for sending videos, subscribing to videos, and maintaining the
video play-back state. The design has a local side sending and
viewing videos, and a global side coordinating the switching
and distribution of videos, and maintaining subscriptions and
video state. The prototype is primarily done in Python. A set
of experiments was conducted to document the performance of
the prototype. The results show that pVD global side has low
CPU usage, and supports a handful of simultaneous exchanges
of videos on a wireless network.

Keywords—Personal Video Distribution; Video Playback; Mo-
bile Video Streaming; Video Hand-off.

I. INTRODUCTION

Users today use multiple personal computers, including
both mobile devices and larger displays. Many of these com-
puters will have cameras that can be used to produce live video
streams, and will have significant storage for videos. Live
video from a camera connected to a computer can easily be
watched on the same computer. This is also the case for videos
stored on the computer. However, it is more cumbersome to do
a smooth hand-over and watch video produced and stored at
one of the user’s computers at the others. It is also cumbersome
to locate a video across computers because there is not a shared
video name space. Consequently, videos at different computers
can have the same name.

Existing industry approaches typically rely on a third party
to let a user watch cameras and videos across computers. At
the minimum, a log in to a subscription service is needed.
As well as being dependent upon third party computers, an
external network giving access to the Internet is also needed
even when all video producing and consuming computers are
local, say, at a user’s home. This increases the probability for
failures as well as cost and bandwidth usage.

Security and privacy are also issues users are concerned
about when relying on third party services to store and service
data [1], [2]. In [3] it is documented that people are more
concerned about the privacy on mobile phones than laptops.

pVD

Video
Streams

pVD

Computers
(Devices)

User A

User B

pVD

User C

Fig. 1. The idea of the personal Video Distribution (pVD).

We report on the architecture, design and implementation
of the Personal Video Distribution (pVD) prototype, allowing
computers belonging to a single user to subscribe to cameras
and videos from each other, see Figure 1. The system allows
the live video from any camera to be viewed at any computer.
When a stored video is played back or stored on one of the
computers, it can be picked up by any of the computers.
Play-back can be started from where in the video the user
last stopped watching it. The pVD system does not rely on a
third party service at all, using only a user’s computers. When
all computers are inside the same domain, say, at home, no
Internet access is needed.

The usage model assumes that a user has physical access
to all the computers. To watch, say, a smart phone’s camera on
a tablet, the user starts the pVD smart phone app and selects
the camera as a video source. The app then starts streaming
the video to the pVD system. On the tablet, the user starts
the pVD app, inputs the smart phone’s name and name of the
live video, and a subscription is sent to the pVD system. The
pVD app on the tablet now waits for videos to arrive according
to the subscriptions. The pVD system matches incoming video
streams with subscriptions, and streams the video to the tablet.
While a single video can easily be streamed in and out of
some smart phones and tablets, streaming of multiple videos
are more easily supported using more powerful computers such

as laptops and PCs.

The prototype is presently functional for a single user
with multiple computers. We intend to extend the prototype to
support multiple users on a single pVD system, e.g. a family,
in the future. We briefly describe how multiple users with
separate pVD systems can share cameras and videos without
relying on a third party service.

Our contribution is to document a flexible and simple
way to switch videos between a single user’s computers by
using only these computers, and without relying on a third
party (cloud) service at all. We document how to do this
through the architecture, design and implementation of an
actual working prototype, and its performance characteristics.
Several experiments have been conducted to measure how fast
the pVD system responds to subscription requests, the CPU
utilization of the part of the pVD system used by all the
computers, and how pVD scales when the number of videos
and computers increase.

II. RELATED LITERATURE

There are many existing live video streaming services.
PPStream [4] and PPTV [5] are systems for video distribution
over the Internet using a combination of client/server and peer-
to-peer approaches for distribution of videos. They maintain
the state of a user on the user’s computer, including which
videos the user watched and where the user stopped the play-
back of a video. The user can later start a video from where it
was stopped. Contrary to pVD, these systems are large-scale
sharing many videos between many users, and rely on every
user having Internet access. In pVD, a computer also has the
complete video so no peer-to-peer collaboration is needed. This
reduces the complexity of the system.

YouTube is the world largest video sharing website from
where people can upload, view and share videos. Live stream-
ing is possible through services such as YouTube Live Stream-
ing Events and Google+Hangouts. These systems are storing
and sharing many videos between many users, while pVD
shares just a few videos between a single user’s computers.
Users are dependent upon YouTube and Google as third parties
outside of the users’ control.

LiveCast [6] and Qik [7] enable live video streaming
from users’ mobile and other devices to any users or friends
connected to the web. LiveCast is large scale with many
users. It is feature rich, and meant to be used across Internet.
Users are not dependent upon a third-party except their own
organization or company. Qik is also on a large scale, enabling
sharing between many users. The user must rely on Qik as a
third party and store videos with Qik.

The Digital Living Network Alliance (DLNA) [9] uses
Universal Plug and Play (UPnP) [8] for media management
and media sharing between devices. Windows, Mac, Linux
and Android also use the UPnP protocol to enable media
sharing between devices. DLNA systems typically apply a
media server and media players. In contrast, in pVD every
computer is both a media server and a media player.

Apple AirPlay allows limited wireless streaming between
Apple computers. The computers must be on the same subnet.
While a video stream stored locally on one computer can be

sent to another local computer, all computers must log into
and interact with a third party, an Apple iTunes account.

A mobile live video learning system used for large-scale
learning is described in [10]. Students can either attend a
course in person or watch live and stored video streams
sent from a server to mobile devices. The system does not
maintain a user’s video state to let play back resume at another
computer.

Tele-TASK [11] is a tool for recording lectures and what
happened at the presenter’s computer, including presentation
slides and software demonstrations. Users with mobile devices
can watch the lectures everywhere.

CloudPP [12] is a Cloud-Based P2P Live Video Streaming
Platform. It uses third-party cloud servers to construct a video
delivery platform.

LiveShift [13] streams both live and stored videos. Live
videos are streamed through a P2P network and peers store
received videos for future playback. A user can view a stored
video without local recording, and jump over boring parts to
catch up the live video.

Eunsam Kim et al. [14], proposed an on-demand TV
service architecture for a networked personal video recorder.
This design reduces interactive operation response time and
saves network bandwidth. The architecture includes origin
servers, cache servers and Networked PVRs. The system serves
both live videos and stored videos for playback.

Mobicast [15] is a mobile live video streaming system.
Multiple users stream the same event from their devices. The
streams can be stitched together, or the stream that has a best
viewing angle is selected to provide a better collective viewing
effect to viewers. If two users stream the same view, one of the
streams can be stopped and later resumed to conserve battery
power on the mobile device.

The systems mentioned above share to a large extent some
characteristics. They are typically making a client dependent
upon a third party outside of the client’s control. They are
intended for very many clients. We expect them to be rather
complicated because they need P2P and other approaches to
maintain good performance when the numbers of clients grow.
While they all allow a user to playback videos, these videos
are in most cases not meant to be on the user’s computers. The
ability to switch a live camera feed between a user’s computers
is only available in a few of the systems.

A significant characteristic of pVD is that a single user’s
computers subscribe to video streams from each other. Mul-
tiple subscriptions can be set up. However, a producer of
a stream and the streams subscribers does not have to be
running at the same time. When a stream starts streaming it
can be picked up, and when no subscribers are running, the
stream will go to the pVD system where it is buffered until
a subscriber becomes present. pVD can also do hand-over of
video streams between computers, letting a video start playing
again from where it was stopped at another computer. The state
of all videos are stored at and handled by the pVD global side
server, and not by the pVD local side computers.

Receive
Videos

Receive
Subscriptions

Receive
States

Stream Videos to Subscribers

Outgoing
Video(s)

Subscribe
Video(s)

Save
State(s)

Incoming Video(s)
Playback

Video
Handler

Subscription
Handler

State
Handler

Fig. 2. The architecture of pVD.

III. ARCHITECTURE

The architecture, shown in Figure 2, comprises functional-
ity for handling in- and outgoing videos between a single user’s
computers. A subscription model for videos is used. To display
a camera feed or a video at a computer, it must subscribe to
the video. pVD allows a computer to send subscriptions to it.
pVD will receive all subscriptions and use them to manage the
switching of between computers.

A central part of the architecture is the distribution of live
and stored videos to individual computers according to the
subscriptions and the state of the videos. The functionality
defined by the architecture includes streaming of outgoing
videos, receiving incoming videos, buffering of video streams,
and playback of videos.

The functionality of hand-over of videos between com-
puters lets a computer save current video play back state,
including where in the video play back is at, with pVD. When
the video is streamed to a new computer the state information
is used to let a user continue watching the video on the new
computer from where it left off at the other computer.

The architecture allows two users to provide videos from
and to each other’s computers. User A will call user B through
some channel (say, telephone or chat) and gets the address
(present prototype uses the IP address) to the global side
pVD of user B (call it pVD B). User A will indicate this
address when starting a subscription to a video on one of user
B’s computers. The subscription handler of pVD A uses the
address to contact pVD B and registers the subscription with
itself as the receiver. When user B starts streaming a video,
pVD B will look at its subscription data and send the stream
onwards to pVD A. In turn, pVD A will forward the video in
a normal fashion to user A’s computer.

Local Side

Live Video
Buffer

Cache
Subscriptions

Cache
States

HTTP
Server

HTTP
Client

Get
State(s)

View Subscribed
Live Video(s)

Save
State(s)

Stream Live
Video(s)

Subscribe
Live Video(s)

Receive Client
Requests

Send
Video

Send
Video

1 2

Global Side

Live Video
Buffer

1 2

Recv
Video

Recv
Video

Push Push Push Pull

Push

Video
Files

Fig. 3. The design of pVD.

To aid privacy, a user must from the user interface of the
computer with the video explicitly acknowledge the streaming
of the video to another user’s computer each time a streaming
is started.

IV. DESIGN AND IMPLEMENTATION

The design of the system is shown in Figure 3. The system
is separated into a local and a global side. The local side
executes on each device. It comprises a user interface that
sends requests to start and stop subscriptions, starts play-back
of incoming live and stored videos from other computers,
streams outgoing live video from cameras and sends stored
videos. It also keeps track of the necessary state for handing
over videos between computers.

The global side executes on one of the user’s computers,
typically a PC or laptop, with the necessary resources to serve
or communicate with the other devices (bandwidth, enough
storage and memory). It is assumed to be always on and
accessible to the other computers.

The local side pushes videos, subscriptions and state data
to the global side. The global side receives incoming videos
and data, and pushes out video streams to computers with
subscriptions. The global side manages information about
subscriptions and the state of live and stored videos.

The local side is concurrent to the degree supported by
the operating system running on the computer. Some smart
phone operating systems may limit the concurrency possible.
The global side is designed as a concurrent system executing
on a general-purpose operating system. This is done to make
it simpler and more flexible, and to be able to benefit with
regards to performance from multiple cores.

Each frame in of a live video includes the sending computer
ID, video ID, frame counter, and a time stamp for when the
frame was captured. A subscription message indicates the user
ID, computer ID of the viewer, and video ID. There are three
state related messages to save, get and remove where (frame
number) in a given video a specific user and computer is at.

Video files are served by a HTTP server at the global
side. The system was implemented using Python and Python
OpenCV. It runs on Linux and Mac OS X.

V. EVALUATION

To characterize the performance of pVD, a set of experi-
ments was conducted using ten computers. All computers were
2011-2012 Mac Minis at 2.7 GHz, 8 GB of memory, and
connected by wire to the same 1 Gbit/sec Ethernet switch.
Six computers were used to represent a user’s computers
having videos and cameras. These executed the local side.
One computer was used to run the global side pVD. Three
computers were used to represent local side viewers that
subscribed to the produced video streams.

We measured the subscribe round-trip latency: the time it
took from the local pVD sent a request to start a subscription
until it was received and processed by the global side pVD
and an acknowledgement was received back at the local pVD.
To measure the subscribe round-trip latency, the subscribing
computer records the time when it requests a subscription, and
the time when an acknowledgement arrives, and calculates the
delay. We increased the number of computers from one to
six. Each computer sent one or ten subscription requests. The
subscription experiment uses TCP/IP as the transport protocol.

We measured the video end-to-end latency: the delay from
something happens in front of the camera at one computer
until it is visible on the display at a subscribing computer.
To measure the video end-to-end latency, we set up one local
pVD computer with a camera capturing a user, and another
local pVD computer subscribing to the camera and displaying
the camera output onto a display. We arranged the user and
the display such that a high frame rate video camera could
record both on the same video. We recorded several videos of
the user and the display. We then counted frames to see how
many frames it took from the user initiated a movement until
the movement became visible at the display.

We measured resource usage of the global pVD computer
and the participating local pVD computers. Using the Python
psutil module [16], we measured the CPU utilization at the
global pVD computer, and the incoming and outgoing network
traffic for both it and each of the other computers.

Videos were represented by point clouds from two Mi-
crosoft Kinect cameras per local pVD computer. These were
sent using UDP messages, resulting in about 13.5 Mbits/sec per
camera, or about 26.7 Mbits/sec of data from each local pVD
computer. This is equivalent to about four HD videos (4 to 8
Mbits/sec) from each computer to the global pVD computer.
In the results, we report the number of HD stream equivalents.

To simulate local pVD viewers, we used 3 Mac Minis as
viewers, with each viewer receiving a copy of every stream
sent to the global pVD computer. We gradually increased the
number of camera computers from two to six, increasing the

0	

1	

2	

3	

4	

5	

6	

7	

0	 1	 2	 3	 4	 5	 6	 7	

D
el
ay
	 (m

s)
	

Number	 of	 computers	

Subscribe	 Roundtrip	 Latency	

Computer	 sends	 one	
subscrip8on	 request	
(wireless)	

Computer	 sends	 ten	
subscrip8on	 requests	
(wireless)	

Computer	 sends	 one	
subscrip8on	 request	
(wired)	

Computer	 sends	 ten	
subscrip8on	 requests	
(wired)	

Fig. 4. Subscribe roundtrip latency on wireless and wired network. There is
one subscriber per local pVD computer. Each subscriber sends one request in
the first experiment and ten requests in the second experiment.

2	 X	
4	 videos	

4	 X	
4	 videos	

6	 X	
4	 videos	

8	 videos	

16	 videos	

24	 videos	

32	 videos	

72	 videos	

16	 videos	

24	 videos	

16	 videos	

48	 videos	

96	 videos	

0	

100	

200	

300	

400	

500	

600	

700	

2	 computers	 send	 to	 pVD	 global,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 computer	 receives	 from	 it.	

4	 computers	 send	 to	 pVD	 global,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2	 computers	 receive	 from	 it.	

6	 computers	 send	 to	 pVD	 global,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3	 computers	 receive	 from	 it.	

Ba
nd

w
id
th
	 (M

bi
ts
/s
ec
)	

Network	 Bandwidth	 Usage	 (wired)	

Outgoing	 each	 sending	 computer	

Incoming	 pVD	 global	

Outgoing	 pVD	 global	

Incoming	 each	 receiving	 computer	

Accumulated	 bandwidth	 on	 pVD	 global	

Fig. 5. Incoming and outgoing network bandwidth using wired connection.

4	 videos	
2	 X	

4	 videos	
2	 X	

4	 videos	

8	 videos	 8	 videos	

16	 videos	

8	 videos	
8	 videos	

16	 videos	

24	 videos	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

1	 computer	 sends	 to	 pVD	 global,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 computer	 receives	 from	 it.	

2	 computers	 send	 to	 pVD	 global,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 computer	 receives	 from	 it.	

2	 computers	 send	 to	 pVD	 global,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2	 computers	 receive	 from	 it.	

Ba
nd

w
id
th
	 (M

bi
ts
/s
ec
)	

Network	 Bandwidth	 Usage	 (wireless)	

Outgoing	 each	 sending	 computer	

Incoming	 pVD	 global	

Outgoing	 pVD	 global	

Incoming	 each	 receiving	 computer	

Accumulated	 bandwidth	 on	 pVD	 global	

Fig. 6. Incoming and outgoing network bandwidth using wireless connection.

number of video streams to the global pVD computer and the
number of outgoing streams from the global pVD computer.

Figure 4 shows the subscribe round-trip latency. The round-
trip latency is about 315 microseconds for one computer with
one subscription request, and about 380 microseconds for
six computers with ten subscription requests each. This is
an insignificant increase. We conclude that the subscription

mechanism in the global pVD scales well with the number of
computers and videos we expect a user to have.

The video end-to-end latency was between 90-125 ms. The
variation in latency comes from several factors, including the
distributed architecture of the prototype, the projector frame
rate (120 fps), the video camera frame rate (240 fps), and that
the Kinect (30 fps) can add 30 ms to the latency. We conclude
that the video end-to-end latency is low enough to allow for
interactive use.

In a study of latency [17], a 100 ms delay was noticeable by
humans, but found acceptable. More than 200 ms delay made
interaction uncomfortable. The sum of the subscribe message
latency and the end-to-end latency is less than 200 ms. While
at the borderline, the pVD system is able to stream live video
events with latencies making it useful for interaction.

Figure 5 shows the network bandwidth usage at the com-
puters involved and the number of HD stream equivalents in
each experiment. With two local pVD computers, the global
pVD receives four HD streams (26.7 Mbits/sec) from each
computer resulting in a total of eight HD streams (53.4
Mbits/sec) on the network simultaneously. The local pVD
viewer computer receives all of the eight video streams from
the pVD global computer, resulting in a max load of sixteen
HD videos in flight simultaneously on pVD global.

With six computers streaming to pVD global, we increased
the number of pVD viewers to three. All of the viewers sub-
scribe to every stream, so the global pVD sends out three times
the incoming bandwidth (72 HD streams at 480 Mbits/sec).
The total number of videos in flight simultaneously is 96
on pVD global. This pushes the system beyond an expected
normal usage, but we have not observed any significant packet
loss.

In summary, the accumulated bandwidth on pVD global
with two senders and one viewer is 107 Mbits/sec, with four
senders and two viewers is 320 Mbits/sec, and with six senders
and three viewers is 645 Mbits/sec.

The CPU utilization on pVD global increases from 3.88 to
12.26% when it receives 8 to 24 videos and simultaneously
sends 8 to 72 videos.

On a Gigabit network, the system can support in total 96
streams in the experiment. The CPU utilization is also less than
15% in this case. This is much more than the normal usage.
We conclude that the results show the pVD global computer
can easily be supported on even a low-end computer, and still
have resources (like CPU or bandwidth) available for other
applications and systems.

To characterize the impact a wireless network has upon
pVD, we configured a system where the pVD global computer
is connected by a wired 1 Gbit/sec Ethernet to an Apple
Airport Extreme 802.11n (4th Generation) WiFi access point,
and where the other computers use the WiFi network.

Figure 4 shows the subscribe roundtrip latency. The round-
trip latency is about 1.7 ms for one computer with one
subscription request, and about 5.7 ms for six computers with
ten subscription requests each. The video end-to-end latency
was between 90-125 ms.

For the wireless configuration, figure 6 shows the network
bandwidth usage and the number of HD stream equivalents
in each experiment. With two computers streaming to and
one computer receiving from the pVD global computer, eight
videos were sent to and fully received at the receiving
computer. The accumulated bandwidth at pVD global com-
puter was 107 Mbits/sec. The receiving computer received
53.4Mbit/sec. When a second receiver was added, for a to-
tal of two receivers, each received only 44Mbit/sec instead
of 53.4Mbit/sec. We believe the reduced bandwidth can be
removed by a more modern wireless network with better
performance and resistance to interference from other nearby
wireless networks. However, the experiment shows that it is
possible to wirelessly stream at least eight HD videos to the
pVD global computer and to wirelessly receive at least eight
HD videos from the pVD global computer.

VI. DISCUSSION

pVD is based around a manual approach to controlling
both video switching and privacy. A user must have access
to all computers serving and consuming the videos. A user
interacts directly with the pVD user interface on the sending
and receiving computers. A user is the glue to bind together
computers. When videos are sent between users a sending
user must manually accept a one-time streaming of a video
to another user. The sending user can at any time halt the
streaming. This provides for some control of the privacy for
the sending user. To strengthen the privacy we could have
added techniques like time-outs for video streams, halting
them automatically when the time-out occurs. However, this
adds complexity, and we wanted to keep the pVD system as
rudimentary as we could within reasons. The pVD system
overall uses a simple and robust approach customized for a
single user with a handful of computers. However, it does not
extend and scale to many computers and to many users, and
was not meant to do so.

pVD can do hand-over of video streams between com-
puters, letting a video start playing again from where it was
stopped at another computer. The state of all videos are stored
at and handled by the pVD global side server, and not by the
pVD local side computers. Because pVD is meant for a single
user with just a handful of computers, there are no performance
issues in doing this centralized. It also aids in doing hand-over
of videos between computers by having the state of the videos
at one place. However, if the pVD global looses state about
the videos, the user must recreate it. We don’t expect this to
be an issue because of the usage domain with just a single
user and a handful of computers.

The approach to share live and stored videos between
multiple users will not scale to many users. It is intended to
let a few users share live and stored videos in a case-by-case
fashion. Users need to talk to each other to exchange enough
information to connect. This can be automated and made more
efficient, but we wanted to keep it basic and simple, and to
involve the users in the sharing to reduce unintended sharing.
While the multiple user approach demands users interaction,
we still believe it is useful for simple ad hoc interaction and
sharing between family and friends.

We have deliberately used a Gigabit wired Ethernet for
some of the experiments where the goal was to measure the

performance behavior of the pVD global. A typical usage
scenario is to have the pVD global computer connected by
wire to a wireless access point and has a user’s computers
share videos with each other through a wireless network. A
single 8 Mbits/sec HD video stream will in this set-up at the
worst consume about 16 Mbits/sec of the wireless network.
Wireless networks typically range from 54 Mbits/sec to 300
Mbits/sec. A wireless network should in practice be able to
support a pVD configuration with a handful of computers and
video streams. For the intended usage domain this is enough.
Emerging wireless networks like the 802.11ac technology
[18] can achieve 1300 Mbps and should together with future
computers allow for even better performance for pVD.

VII. CONCLUSIONS

In this paper, we present a personal video distribution
system for simple ad hoc sharing of live (camera) and stored
video streams between a single user’s computer.

The pVD system uses subscriptions to bind together a video
and camera on one computer with the other computers. The
user must have physical access to each computer to set up
a subscription, and to start the streaming and receiving of a
video. When a sender and a receiver run simultaneously, videos
will start to flow according to the subscriptions. The system
saves video state and allows the user to continue watching a
video on another device, picking up from the same position in
the video.

The system avoids issues with relying on third parties and
access rights by being designed for very small scale and to
be run only on a user’s personal computers. The system can
also be kept simple from not having to scale to support a large
number of videos, computers and users.

The bandwidth is not a critical issue for the pVD prototype
system and the system does not occupy too much system
resources, like CPU. When all computers are on a Gigabit
wired network, the system can support many simultaneous
streams using a standard PC desktop for the pVD global side.
The system also supports a handful of simultaneous streams
on a wireless network. The system responses fast enough to
user’s requests and the latency for streaming live events will
be noticed, but accepted by the user.

ACKNOWLEDGMENT

Many thanks to the technical staff at the department. This
work was funded in part by the Norwegian Research Coun-

cil, projects 187828, 159936/V30, 155550/420, and Tromsø
Research Foundation (Tromsø Forskningsstiftelse).

REFERENCES

[1] S. M. Habib, S. Ries, and M. Muhlhauser, “Cloud computing landscape
and research challenges regarding trust and reputation,” in Ubiquitous
Intelligence & Computing and 7th International Conference on Au-
tonomic & Trusted Computing (UIC/ATC), 2010 7th International
Conference on. IEEE, 2010, pp. 410–415.

[2] I. Ion, N. Sachdeva, P. Kumaraguru, and S. Čapkun, “Home is safer
than the cloud!: privacy concerns for consumer cloud storage,” in
Proceedings of the Seventh Symposium on Usable Privacy and Security.
ACM, 2011, p. 13.

[3] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user
confidence in smartphone security and privacy,” in Proceedings of the
Eighth Symposium on Usable Privacy and Security. ACM, 2012, p. 1.

[4] [Online]. Available: http://www.pps.tv/
[5] [Online]. Available: http://www.pptv.com/
[6] [Online]. Available: http://www.livecast.com/
[7] [Online]. Available: http://qik.com/
[8] [Online]. Available: http://www.upnp.org/
[9] [Online]. Available: http://www.dlna.org/

[10] C. Ullrich, R. Shen, R. Tong, and X. Tan, “A mobile live video learning
system for large-scale learning—system design and evaluation,” Learn-
ing Technologies, IEEE Transactions on, vol. 3, no. 1, pp. 6–17, 2010.

[11] K. Wolf, S. Linckels, and C. Meinel, “Teleteaching anywhere solution
kit(tele-task) goes mobile,” in User Services Conference: Proceedings
of the 35 th annual ACM SIGUCCS conference on User services, vol. 7,
no. 10, 2007, pp. 366–371.

[12] H.-Y. Chang, Y.-Y. Shih, and Y.-W. Lin, “Cloudpp: A novel cloud-
based p2p live video streaming platform with svc technology,” in
Computing Technology and Information Management (ICCM), 2012 8th
International Conference on, vol. 1. IEEE, 2012, pp. 64–68.

[13] F. V. Hecht, T. Bocek, R. G. Clegg, R. Landa, D. Hausheer, and
B. Stiller, “Liveshift: Mesh-pull live and time-shifted p2p video stream-
ing,” in Local Computer Networks (LCN), 2011 IEEE 36th Conference
on. IEEE, 2011, pp. 315–323.

[14] E. Kim and C. Lee, “An on-demand tv service architecture for net-
worked home appliances,” Communications Magazine, IEEE, vol. 46,
no. 12, pp. 56–63, 2008.

[15] A. Kaheel, M. El-Saban, M. Refaat, and M. Ezz, “Mobicast: a system
for collaborative event casting using mobile phones,” in Proceedings of
the 8th International Conference on Mobile and Ubiquitous Multimedia.
ACM, 2009, p. 7.

[16] [Online]. Available: http://code.google.com/p/psutil/
[17] A. Pavlovych and W. Stuerzlinger, “Target following performance in

the presence of latency, jitter, and signal dropouts,” in Proceedings of
Graphics Interface 2011. Canadian Human-Computer Communica-
tions Society, 2011, pp. 33–40.

[18] [Online]. Available: http://www.apple.com/airport-extreme/

