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Abstract 

In northern Fennoscandian lakes, monophylogenetic lineages of postglacial fishes are radiating into 

several adaptive forms, but the speciation process is still at an incipient stage. The speciation process 

has received increased attention over the years, but the underlying mechanisms and drivers are still 

debated and poorly understood. European whitefish (Coregonus lavaretus [L.]) is the most abundant 

fish species in these lakes and has evolved into several ecomorphs adapted to different trophic niches 

and habitats. Genetic divergence has been observed among these ecomorphs, but the mechanism(s) 

responsible for the ongoing build-up of reproductive isolation has still to be revealed. As these 

systems are young in evolutionary time (<10 kyr), pre- and post-zygotic extrinsic isolation 

mechanisms are thought to be more likely to contribute to the reproductive isolation than intrinsic 

isolation mechanisms. We determined the gonadosomatic index (GSI) of three ecomorphs in two 

replicated lake systems and used GSI as a proxy to investigate the pre-zygotic isolation mechanism, 

allochrony, as a driving factor of divergence in this adaptive radiation of whitefish. We found that 

the three ecomorphs differed in GSI-values within and between lakes, suggesting different spawning 

times of the ecomorphs. We also show that males of one ecomorph had equal onset of maturity as 

another ecomorph, giving novel insights into the ongoing gene flow observed between ecomorphs. 

The result supports allochrony as a driver for the divergence process of whitefish ecomorphs, but 

more evidence is still needed to rule out that the three ecomorphs make use of different spawning 

grounds.  
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Introduction 

Adaptive radiation is the rapid evolutionary divergence of individuals from a common ancestor into 

a variety of adaptive forms (Futuyma 1998) that exploit different ecological niches (Grant & Grant 

2008). Understanding what processes drive and maintain an adaptive radiation is a central question 

in evolutionary ecology. The availability of various ecological opportunities in an ecosystem allows 

for different niches that may favour different behavioural and morphological adaptations. The 

association between a particular morphology and a specific niche is recognized as an important 

factor in adaptive radiation (Schluter 2000), and in fish, this association is often related to foraging 

traits, e.g. head shape and trophic niche (Schluter 1996). These associations can lead to genetic 

divergence and reproductive isolation of different adaptive forms (Rundle & Nosil 2005, Schluter 

2000). Pre-zygotic and post-zygotic isolation are different isolation mechanisms that can result in 

reproductive isolation. Pre-zygotic isolation involves spatial and temporal isolation (e.g., different 

spawning sites and time) and sexual selection (Ritchie 2007, Taylor & Friesen 2017), while post-

zygotic isolation includes ecological inviability (extrinsic), hybrid inviability, and sterility 

(intrinsic) (Coyne & Orr 2004). Despite extensive efforts in understanding why and how 

reproductive isolation accumulates in adaptive radiations, the exact drivers still remain to be 

identified for many species. 

 

Polymorphic populations are commonly found in several freshwater fish species in postglacial 

lakes of the northern hemisphere. The fish species inhabiting these lakes have shown rapid (<10 

kyr), convergent phenotypic divergence and adaptive radiation into multiple ecomorphs (Häkli et al. 

2018, Østbye et al. 2005a, Østbye et al. 2006, Schluter 2000, Taylor 1999). European whitefish 

(Coregonus lavaretus [L.], referred to as whitefish further on) is a widely distributed fish species in 

Europe and is highly abundant in northern Fennoscandia. Here it has diverged from a monophyletic 
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lineage (Østbye et al. 2005a) into distinct ecological morphs through adaptive radiation (Svärdson 

1979, Østbye et al. 2006). Three distinct ecomorphs of whitefish have been described (Kahilainen 

& Østbye 2006, Siwertsson et al. 2010), which show clear differences in niche utilization and 

trophic morphology, e.g. head shape and gill rakers (Amundsen et al. 2004, Harrod et al. 2010, 

Kahilainen & Østbye 2006), and have also been found to differentiate genetically (Præbel et al. 

2013a, Siwertsson et al. 2013). However, the reproductive isolation among the ecomorphs is not 

complete, evidenced by the frequent occurrence of hybrids between the ecomorphs (Bhat et al. 

2014). 

 

The three whitefish ecomorphs are associated to the feeding niches found in three main 

habitats of the lakes; the littoral, pelagic and profundal zones (Kahilainen et al. 2003, Østbye et al. 

2006). The ecomorphs are named according to morphology of gill rakers (Kahilainen & Østbye 

2006). The densely rakered whitefish ecomorph (hereafter DR whitefish) resides mainly in the 

pelagic habitat and is a zooplanktivorous specialist, the large sparsely rakered whitefish (LSR 

whitefish) mainly feeds on benthic macroinvertebrates in the littoral habitat, and the small sparsely 

rakered whitefish (SSR whitefish) is mainly found in the profundal habitat feeding on benthic 

invertebrates (Harrod et al. 2010). In a recent study it was found that initial divergence of the 

ecomorphs into different habitats was a result of the presence of pike (Esox lucius) in the lakes 

(Öhlund et al. unpublished). The presence of pike very likely has caused the whitefish to either 

refuge into new, but less suitable habitats, or maximize growth to reach a safe size. Apart from 

variation in food resources and basal sources of energy in the three principal habitats (Harrod et al. 

2010), they also differ with regard to their thermal conditions (Hayden et al. 2013; Evans et al. 

2014). Thermal stratification of the water column in postglacial lakes means that littoral and pelagic 

habitats undergo large seasonal changes in water temperature from 10-20 °C in the warm summer 
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months and to 0-2 °C in the cold winter months when covered with ice (Hayden et al. 2013), 

whereas the profundal habitat display a cold, but stable, temperature of 2-8 °C, throughout the year. 

 

The isolation mechanism driving the ongoing divergence in adaptive radiation of whitefish 

still has to be identified in these northern systems. This is important in understanding the biological, 

ecological, and genetic mechanisms involved in their adaptive radiation. Studies on whitefish in 

more southern Swedish lakes (Öhlund et al. unpublished, Svärdson 1979) suggested spatial and 

temporal differences in spawning time, but little is known about the exact spawning times and 

places for the different ecomorphs in northern Fennoscandian lakes. Based on field observations in 

Lake Paadar of spawning shoals in shallow water, there were indications of the DR whitefish being 

the first ecomorph to spawn, followed by the LSR whitefish and finally SSR whitefish (K. 

Kahilainen pers. obs. in Kahilainen et al. 2014). A fourth ecomorph, LDR, is also present in lake 

Padaar but it occurs in low abundance and is only present in the Pasvik watercourse, not the Alta 

watercourse where this study was performed. In coregonids, such interspecific variation in 

spawning time are important factors driving reproductive isolation (Bernatchez et al. 2010, Hudson 

et al. 2007, Svärdson 1979). The late spawning time of SSR whitefish may reflect the dark and 

stable cold temperatures in profundal habitats which slows down metabolic processes (Ohlberger et 

al. 2008). Physiological adaptation, such as metabolic and maturation processes, to a particular light 

and thermal regime should differ substantially among the ecomorphs, but so far only niche driven 

and respiration adaptations have been suggested as drivers of phenotypic divergence and 

reproductive isolation in northern post-glacial lakes (Evans et al. 2014, Harrod et al. 2010, Keller & 

Seehausen 2012, Østbye et al. 2006). 
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In this study, we investigated the pre-zygotic isolation mechanism(s) among the three 

whitefish ecomorphs. The challenge of revealing reproduction in these northern systems, compared 

to more southern lakes e.g. in Sweden, Denmark, and the European Alps, is that the spawning takes 

place in late October to December, when the lake ice is too thin to work on, but too thick for 

boating. Based on our own field observations, information from locals, and the presence of hybrids 

between the ecomorphs (Bhat et al. 2014), it seems that all three ecomorphs mainly share the same 

spawning ground(s) in the littoral zone, and with the knowledge of whitefish ecomorphs’ thermal 

niches, we hypothesized that differences in spawning time (allochrony) acts as the main driver of 

reproductive isolation. This differs from the spatial divergence in spawning grounds observed in 

other more southern whitefish systems (Østbye et al. 2005b; Vonlanthen et al. 2009). We sampled 

European whitefish ecomorphs in two replicated northern lakes, as close to their natural spawning 

time as possible, and calculated a gonadosomatic index (GSI) as a measurement of sexual maturity. 

GSI has previously been used to determine sexual maturity, seasonal changes, and reproduction 

timing in fish (e.g. Flores et al. 2015, McQuinn 1989, Valdés et al. 2004). Seasonal changes in GSI 

of female whitefish (of a morph equivalent to the DR morph in this study) in lake Constance, 

Germany, showed that the GSI increased steadily over the summer and autumn until it reached a 

maximum, just before spawning in the winter (Rösch 2000). To our knowledge, no previous study 

has used GSI to investigate allochrony in a polymorphic species, and by comparing sexual 

maturation of the three whitefish ecomorphs, our goal was to infer whether the whitefish ecomorphs 

display differences in spawning time. 

 

Materials and Methods 

Sample collection 
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In October 2016, over a period of seven days, two lakes located in the northern Fennoscandia were 

sampled for European whitefish ecomorphs, Lake Stuorajávri (69°06’N, 22°49’E) and Lake 

Suohpatjávri (68°56’N, 23°05’E). Stuorajávri covers an area of 24 km2 with a maximum depth of 

30 m, and Suohpatjávri covers 2 km2 with a maximum depth of 25 m. The two lakes are 

oligotrophic, harbour six fish species in addition to the whitefish, and have relatively equal 

distribution of shallow and deep areas. Both lakes have three principal habitats: the littoral habitat 

(shore water, close proximity to the bottom, <10 m depth; >1% of light at surface), the profundal 

habitat (close proximity to the bottom, >10 m depth; <1% of light at surface), and the pelagic 

habitat (open water, 0–6 m depths). Three different ecomorphs of whitefish are found in both of 

these lakes: DR, LSR and SSR whitefish (Siwertsson et al. 2013) (Figure 1). Fish sampling was 

performed with standardized gillnets of different mesh sizes, 10, 12.5, 15, 18.5, 22, 26, 35, and 45 

mm. Benthic gillnets (1.5 m high) were used in the littoral and profundal zones, whereas the pelagic 

habitat was sampled using 6-m-high floating nets. A total of 364 whitefish were collected (Table 1). 

For each individual fish, total body weight and gonad weight were determined in the field 

laboratory using a Sartorius BP 310s scale and subsequently used to calculate the gonadosomatic 

index (GSI = [testis or ovary weight / body weight]*100) per individual (Table 1). We further 

recorded the sex (female/male), sexual maturity (immature/mature), and total length for all 

individuals. Figure 1 shows a subsample of gonads for each whitefish ecomorph documented using 

a Nikon D610 camera body mounted with a Nikon 16.0-35.0 mm f/4.0ED lens. A fin tissue sample 

was also collected and stored in 96 % ethanol at -20oC for later genetic analysis.  

 

[Insert Figure 1 near here] 

[Insert Table 1 near here] 
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Ecomorph assignment and discrimination 

A phenotypic analysis of the fish was performed in the field, where each individual was classified 

as DR, LSR or SSR whitefish according to appearance, head and body shape, and a visual 

evaluation of the gill raker morphology (Amundsen et al. 2004, Kahilainen & Østbye 2006). 

Ecomorph assignment was further verified in the laboratory by assessing the first left branchial arch 

under a microscope and counting the number of gill rakers (Table 1). We did not distinguish 

between male and female when counting of gill rakers. 

To assess genetic divergence between the ecomorphs we followed the protocol of Præbel et 

al. (2013b) using a panel of 22 microsatellite markers. The data was screened for scoring errors, 

allele dropouts and null alleles using Micro-Checker 2.2.3 (van Oosterhout et al. 2004). Deviations 

from Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium were tested using exact tests 

(Guo & Thompson 1992) as implemented in GenePop 4.0 (Rousset 2007). Sequential Bonferroni 

corrections (BFC) was used to correct pairwise comparisons for multiple comparisons following 

Rice (1989). Genetic divergence among morphs was estimated using the pairwise.fst function in the 

Adegenet R-package (Jombart 2008), which computes Nei’s estimator of pairwise FST, and tested 

for significance using 1000 permutations. For the genetic divergence analysis, we used both 

immature and mature individuals.  

 

Preliminary analyses and quality control of GSI-maturity data 

For each lake, fish were divided into groups based on ecomorph, sex and sexual maturity (immature 

and mature). Division of sex was necessary because the weight of the gonads differs greatly 

between males and females, and the assessment of sexual maturity was necessary because we only 

were interested in using mature individuals for this study. Individuals that did not fulfil these 

criteria were excluded from the analyses, leaving 168 females and 148 males for the statistical 
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analyses. Gonadosomatic index was calculated and used as a measurement for sexual maturity, i.e. 

the advancement of sexual maturity towards spawning, because all individuals were mature. This 

GSI-maturity functioned as our proxy for differences in spawning time between whitefish 

ecomorphs. This means that the GSI-values are under the assumption that greater GSI-values equals 

a more sexually mature fish, and consequently, has an earlier spawning time, than a fish with a 

lower GSI-value. The GSI-values were transformed using the logarithmic function to more closely 

meet the assumption of linear models and because our dependent variable is a proportion (Baum 

2008). An overview of the number of mature individuals, percentage of maturity and the average 

GSI for each ecomorph in the two lakes is found in Table 1. 

 

Determination of variation in GSI-maturity among whitefish ecomorphs  

For the statistical data analyses of GSI-maturity among ecomorphs we carried out a two-way 

analysis of variance (ANOVA) using R v.1.0.44 (R Core Team 2016). The first step was model 

selection using the MuMin package in R (Bartoń 2017) to find the linear model that best explained 

the differences in maturity of whitefish (log10(GSI)). Using a factorial design of relevant variables, 

we tested 16 different linear models. The additive model of two factors (or independent variables), 

population (ecomorphs) and lake, was the most parsimonious fit according to Akaike’s Information 

Criteria (AIC) statistics for model selection. This model had, for both sexes, the lowest AIC-value 

with the lowest degrees of freedom and most weight to it. Next step was a control of the model to 

check if the data fitted a normal distribution by plotting a Q-Q plot. To detect the presence of 

outliers in our dataset we used the Interquartile Range Rule (IQR). For the males only, the data 

contained nine outliers outside 1,5 x IQR that skewed the distribution and thus needed to be 

removed from the dataset. This left us with 139 males for further analysis. The nine outliers 

removed from the male dataset consisted of 8 individuals with much lower GSI-values, indicating 
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they were wrongly assigned as sexually mature in the field when in fact they were immature. One 

individual had a much higher GSI-value than average, which may be the result of a typo-error 

during the field work. The gonad weight of this particular individual is >50% more than average. 

After the preliminary steps, the ANOVA statistics were performed and finally, post hoc analyses 

using pairwise comparisons of least-squares means for the specified factors in the linear model 

using the estimability and lsmeans packages in R (Lenth 2016a, 2016b). 

Additionally, we caught an unusually low number of SSR whitefish in Lake Suohpatjávri, 

only one mature male in total. This was clearly not enough to do proper statistical analysis, but we 

included the individual anyway because this individual was in fact not an outlier in the model 

control step allowing us to obtain some insight into the GSI-values of male SSR whitefish.  

 

[Insert Table 2 near here] 

 

Results 

Genetic differentiation among whitefish morphs 

The number of alleles at each microsatellite locus ranged from 2 to 21 across populations (Table 

S1). Micro-Checker detected homozygote excess due to possible null alleles in four of 22 tested 

loci: Cocl_lav27 (Stuorajávri, DR whitefish), and BWF1, ClaTet06 and Cocl_lav10 (Stuorajávri, 

SSR whitefish) (Table S1). Although none of the possible null alleles were found in more than one 

population at a time, those four loci were excluded from further analysis. Deviations from HWE 

were indicated in 1 out of 108 tests (0.9%) after sequential Bonferroni corrections, which is less 

than expected by chance (5%). Out of 918 tests, significant linkage disequilibrium was found in 

three (0.3%) loci comparisons after Bonferroni correction. Pairwise FST values between populations 
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were small yet statistically significant, ranging from 0.011 to 0.059, where the smallest genetic 

difference was found between LSR whitefish in different lakes (Table 2). 

 

Field-determined maturity of whitefish morphs 

The abundance of mature individuals differed both between the ecomorphs and lakes (Table 1). 

When individuals of both sexes were combined, we found a pattern that most often the DR 

whitefish had more mature individuals than the LSR whitefish, which again had more mature 

individuals than the SSR whitefish. The only exception being females in Stuorajávri, where 85.2% 

of DR whitefish were mature versus the 94.7% of LSR whitefish (Table 1). Between lakes, there 

was a higher proportion of mature whitefish caught in Stuorajávri than in Suohpatjávri, especially 

for the LSR and SSR whitefish. The DR whitefish appeared to have an equal proportion of mature 

individuals between the lakes.  

 

Variation in GSI-maturity of whitefish ecomorphs 

The two-way ANOVA showed that there are significant differences of the advancement of sexual 

maturity (log10GSI) between the three distinguished whitefish ecomorphs for both sexes (females: 

F2,165=17.359, P<0.001; males: F2,135=9.097, P<0.001). There were also significant differences in 

GSI-maturity for both sexes between the two lakes (females: F1,165=15.293, P<0.001; males: 

F1,135=46.838, P<0.001). For the females, the DR whitefish was significantly more mature than the 

LSR whitefish (P<0.001, R2=0.2186) and the SSR whitefish (P<0.001, R2=0.2186), but the LSR 

whitefish was not significantly more mature than the SSR whitefish (P=0.597, R2=0.2485). For the 

males, there was no difference in maturity between DR whitefish and LSR whitefish (P=0.752, 

R2=0.310), but both the DR whitefish (P<0.001, R2=0.310) and LSR whitefish (P<0.001, 

R2=0.2615) were significantly more mature than the SSR whitefish.  
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For the post hoc analyses, we did pairwise comparisons using least-square means of 

log10(GSI) on the specified factors in the linear model (Figure 2a and 2b). These analyses 

contrasted the advancement of sexual maturity of the whitefish ecomorphs individually from each 

lake. For the female whitefish, the whitefish from Stuorajávri were significantly more mature 

compared with whitefish in Suohpatjávri. Also, for females, the DR whitefish in both lakes were 

more mature compared to the LSR whitefish and SSR whitefish, which in turn were equally mature. 

For the male whitefish, as with the females, the whitefish in Stuorajávri were more mature 

compared with whitefish in Suohpatjávri. Furthermore, the male DR whitefish and LSR whitefish 

were equally mature, whereas they were significantly more mature than SSR whitefish in both 

lakes.  

 

[Insert Figure 2a and 2b near here] 

 

Discussion 

We found statistically significant differences in the advancement of sexual maturity, based on GSI-

values, between the three genetically and morphologically divergent ecomorphs of whitefish. We 

demonstrated that the pelagic DR whitefish were generally further advanced in sexual maturity than 

the littoral LSR whitefish, which in turn were more mature than the profundal SSR whitefish at the 

moment of capture. This pattern was prevalent in both of the sampled post-glacial lakes and for 

both sexes. The pattern was also evident from the morphological appearance of the gonads of the 

ecomorphs, where DR whitefish had far more developed oocytes than the other ecomorphs at the 

moment of capture (Figure 1). However, our results do not permit inference about the temporal 

pattern of gonad development, nor do they provide information about ecological factors that drive 

the maturation. Rösch (2000) investigated, over a five-year period, seasonal changes in GSI of the 
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Blaufelchen whitefish (morph equivalent to the DR morph in this study) in Lake Constance-

Obersee and found that GSI increased from low values in summer to about 24% of the body weight 

immediately before spawning in December. A similar result was obtained for Pollan whitefish in 

Lough Neagh, Ireland (Wilson & Pitcher 1983), suggesting that GSI is a useful measure of sexual 

maturity in Coregonus. The whitefish radiations in Northern Fennoscandia have been shown to be 

driven by ecological opportunity (Siwertsson et al. 2010), where each of the ecomorphs have 

adopted a life-history and specialization to each of the principal lake niches (littoral, pelagic, 

profundal). The DR whitefish feed on pelagic prey, which leads to the smallest body size and 

earliest sexual maturation, the LSR whitefish feed on littoral benthic macroinvertebrates, which 

leads to large size and late sexual maturation, and the SSR whitefish feed on profundal benthic prey 

and grow to intermediate body size and late sexual maturation (Harrod et al. 2010; Hayden et al., 

2013; Kahilainen et al. 2003, 2005; Østbye et al. 2006). Our results of GSI-estimated maturity 

extend the understanding of the general life history characteristics of the ecomorphs by adding a 

likely spawning chronology, similar to what has been observed in the field on a single occasion (K. 

Kahilainen pers. obs. in Kahilainen et al. 2014).  

 

Estimating the advancement of sexual maturity with GSI was based on the assumption that 

GSI-values increase with increasing sexual maturity and earlier spawning time. According to 

Ohlberger’s theory (2013), the temporal spawning segregation (allochrony) develops because 

individuals living in different habitats experience different water temperatures and therefore mature 

at different rates. For whitefish, a discussed mechanism to drive differences in timing of spawning 

activities, and thus differences in sexual maturity between diverging ecomorphs, is the exposure to 

different environmental conditions, e.g. light and temperature regimes (Evans et al. 2014, 

Kahilainen et al. 2014). Adaptation to divergent thermal niches is also likely to be of crucial 
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importance to the relative capacity to assimilate the energy required to reach sexual maturity and 

the development of gonads (Kahilainen et al. 2014). These habitat specific differences reflect what 

the three whitefish ecomorphs in northern postglacial lakes experience, where the DR, LSR, and 

SSR whitefish segregate in the pelagic, littoral and profundal habitats, respectively (Østbye et al. 

2006, Præbel et al. 2013a, Siwertsson et al. 2013, Svärdson 1979). The relative contribution of 

ecological and physical factors on timing of sexual maturity for these whitefish ecomorphs remains 

to be investigated. But, all together, our hypothesis is supported in that the accumulation of genetic 

differences observed between the three whitefish ecomorphs (Østbye et al. 2006, Præbel et al. 

2013a, Siwertsson et al. 2013), is driven by a pre-zygotic extrinsic isolation mechanism, and is best 

explained by differences in spawning time, allochrony. 

 

The lakes, as local entries, also appear to have an influence on sexual maturity as we found 

statistically significant difference of the advancement of sexual maturity between the two lakes. The 

whitefish from Stuorajávri were significantly more advanced in sexual maturity than the whitefish 

from Suohpatjávri. Stuorajávri is larger (24 km2) and a little deeper (max depth of 30 m) compared 

to Suohpatjávri (2.0 km2, 25 m) and may therefore retain an overall warmer annual water 

temperature. Increased environmental temperatures are known to accelerate the physiological rate 

of animals and may induce earlier maturation of the Stuorajávri whitefish. Locals and scientists 

have also observed Stuorajávri whitefish to spawn in October-December (Pers. Com. Rune 

Knudsen) and in Suohpatjávri in November-January (Pers. Com. Eleonor Beck). However, further 

long-term studies are needed to elucidate the relative contribution of light and temperature to the 

extrinsic postzygotic isolation mechanisms in the northern Fennoscandian whitefish radiations to 

confirm these observations.  
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Where, when, and how the whitefish spawn in nature is evidently important for understanding 

the evolution of these radiations. Earlier maturation of male whitefish and their presence on the 

spawning grounds before and after the arrival and spawning of females, have been observed for 

Pollan whitefish in Lough Neagh, Ireland (Dabrowski 1981). We also found, in both lakes, that 

male and female DR and male LSR whitefish displayed a similar state of maturity, while the female 

LSR and male and female SSR whitefish were less mature. This suggests that in these lakes, the 

temporal chronology of reproduction is: DR whitefish, LSR whitefish, and SSR whitefish. Notably, 

we show that the male LSR whitefish is mature at the same time as DR whitefish, suggesting a sex-

specific route for the ongoing gene flow observed between the whitefish ecomorphs in their 

adaptive radiation (Bhat et al. 2014, Häkli et al. 2018, Præbel et al. 2013a, Siwertsson et al. 2013). 

Hybrids between whitefish ecomorphs frequently occur in all northern Fennoscandian lakes, but 

genetic studies have only observed hybridisation between DR-LSR whitefish (Bhat et al. 2014) and 

between LSR-SSR whitefish (Præbel et al. unpublished). A study, using genome-wide coverage of 

SNPs to infer genomic consequences of speciation reversal in whitefish ecomorphs, showed that 

hybridisation between female DR and male LSR is the most likely route of gene flow between the 

whitefish ecomorphs (Bhat 2016). The exact mechanism of this hybridisation is not known and a 

potential explanation could be sneaking behaviour of LSR males, which has been shown in other 

salmonids (e.g., Baxter et al. 1997, Garcia-Vazquez et al. 2001, Redenbach & Taylor 2003). 

However, this behaviour has thus far only been descried for small males and we therefore find it 

most likely to be caused by an overlap in spawning. Collectively, the ongoing gene flow between 

whitefish ecomorphs may be explained by sexually mature male LSR whitefish that spawn with 

mature DR and we propose that male SSR x Female LSR is a possible sex-specific route for gene 

flow between the SSR and LSR whitefish ecomorphs (Figure 2a and 2b). These results also support 
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our hypothesis that the ecomorphs share spawning ground(s), but are reproductively isolated in 

time.  

 

The most pronounced difference in terms of trophic ecology, morphology, and reproductive 

isolation has been found between the SSR and DR whitefish (Harrod et al. 2010, Kahilainen & 

Østbye 2006, Præbel et al. 2013a, Siwertsson et al. 2013). Our results also support these 

observations in both lakes and for both sexes. There was no overlap of GSI-values between the DR 

and SSR ecomorphs indicating that extrinsic pre-zygotic isolation mechanisms are in play, quite 

possibly allochrony, and thus drive the diverging populations. Temporal separation can be 

important in achieving reproductive isolation in incipient ecological speciation (Schluter 2001), 

where intrinsic post-zygotic isolation mechanisms, such as genomic incompatibility, has yet to be 

accumulated between the diverging ecomorphs. A recent study by Johannsson et al. (2017) 

established that spawning window and population age were positively correlated in all ecomorphs 

of a lake. Hence, the older the lake is, the more prevalent divergence is for the whitefish ecomorphs. 

Overall spawning time is therefore increased as an intrinsic isolation mechanism to reduce contact 

and avoid interbreeding. This supports allochrony as a potential main driver for reproductive 

isolation between whitefish ecomorphs. 

 

In conclusion, we found statistically significant differences in maturity between whitefish 

ecomorphs. Overall, the pelagic, zooplanktivorous DR whitefish displayed greater sexual 

advancement than the littoral, benthic feeding LSR whitefish, which again showed greater maturity 

than the profundal, benthic feeding SSR whitefish. This was the general pattern for both lakes, 

despite Stuorajávri showing greater proportion of mature individuals than Suohpatjávri. The 

morphological divergence between the ecomorphs, their adaptation to different thermal niches, and 
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sex-specific routes for gene flow between the ecomorphs, all suggest allochrony as a pre-zygotic 

isolation mechanism that contributes to the adaptive radiation in European whitefish. 
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Table 1 

Overview of the whitefish dataset including average number of gill rakers  SD; number of 

individuals used in FST-calculations; number of mature individuals; average length, weight and 

gonad weight  SD; percentage of maturity; and average GSI for the three ecomorphs in Stuorajávri 

and Suohpatjávri, divided by sex. 
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 FEMALES 

Ecomorph Lake Gill rakers (N) N(FST) § N(mature) Length (mm) Weight (g) Gonad weight (g) %Maturity AverageGSI(g) 

DR Stuorajávri 34.8  2.1 16 23 310  22.75 236  32.48 22.77  5.37 85.2% 9.59  1.34 

Suohpatjávri 39.0  2.5 51 79 237  23.52 89  22.89 5.54  2.53 97.6% 6.35  3.05 

LSR Stuorajávri 24.4  1.6 19 18 342  48.67 317  152.6 31.58  34.51 94.7% 8.05  8.09 

Suohpatjávri 26.5  2.4 27 21 313  40.49 245  117.4 8.83  14.04 63.6% 3.66  4.85 

SSR Stuorajávri 22.0  1.6 26 22 267  42.37 154  101.8 10.28  17.31 75.9% 5.14  4.38 

Suohpatjávri 23.6  3.3 10 5 269  7.92 134  23.93 0.94  0.52 50% 0.71  0.34 

 MALES 

Ecomorph Lake Gill rakers (N)  N(FST) § N(mature)¥ Length (mm) Weight (g) Gonad weight (g) %Maturity AverageGSI(g) 

DR Stuorajávri 34.8  2.1 31 50 317  13.26 241  30.76 3.35  0.90 100% 1.39  0.33 

Suohpatjávri 39.0  2.5 18 27 232  24.65 85.5  27.21 0.83  0.34 100% 0.96  0.15 

LSR Stuorajávri 24.4  1.6 26 26 348  28.46 331  99.81 4.55  2.40 93.1% 1.32  0.29 

Suohpatjávri 26.5  2.4 24 14 296  42.35 207  122 2.47  2.14 67.9% 1.12  0.31 

SSR Stuorajávri 22.0  1.6 25 21 259  32.79 131  53.30 1.32  0.71 85.2% 1.00  0.22 

Suohpatjávri 23.6  3.3 2 1† 356 † 422 † 3.12 † 50%† 0.74 † 

 

Abbreviations: DR = densely rakered whitefish, LSR: large sparsely rakered whitefish, SSR = small sparsely rakered whitefish. 0 

§Both mature and immature individuals were genotyped, but not all individuals. Therefore, the number of individuals can vary from the 1 

number of mature individuals used for the GSI-calculations. 2 

¥Outlier males were removed from the dataset and is therefore not included here. A total of 139 mature males. 3 

†Only one mature male SSR, therefore averages and percentages calculated for this ecomorph is not correct. We kept the values to display 4 

the one male we did include in the study. 5 
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Figure 1 6 

Drawings of the three ecomorphs of European whitefish (Coregonus lavaretus L.) from northern 7 

Norway and their respective gill rakers: (A) DR, densely rakered, (B) LSR, large sparsely rakered, 8 

and (C) SSR, small sparsely rakered ecomorph (line drawings modified from Harrod et al. 2010). 9 

The photos show three examples of female gonads for each ecomorph at the exact same time of 10 

year in Suohpatjávri: DR (mature, mature, immature) LSR (mature, immature, immature) SSR 11 

(mature, immature, immature). The GSI-index values calculated as a measure of sexual maturity, 12 

which account for any size differences between fish, are provided next to the corresponding gonad.  13 

 14 

 15 

Table 2 16 

FST-Table of all genotyped individuals. Below diagonal are pairwise FST-values, above diagonal are 17 

P-values. 18 

 StD StL StS SuD SuL SuS 

StD  0.001 0.001 0.014 0.001 0.001 

StL 0.049  0.005 0.001 0.030 0.001 

StS 0.035 0.016  0.001 0.005 0.008 

SuD 0.012 0.059 0.042  0.001 0.001 

SuL 0.037 0.011 0.017 0.047  0.008 

SuS 0.038 0.020 0.016 0.032 0.014  

Abbreviation of populations are: St (Stuorajávri), Su (Suohpatjávri), D (DR whitefish), L (LSR 19 

whitefish), S (SSR whitefish). Code is a combination of lake and morph name.  20 
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Figure 2a and 2b:  21 

Plots showing the differences in maturity of the whitefish ecomorphs, for both sexes and across two 22 

lakes. This was done using least-square means for the specified factors in the linear model and p-23 

values were adjusted for multiple comparisons by Tukey’s HSD. Boxes indicate the least-square 24 

mean of log10(GSI) and error bars indicate the 95% confidence interval of the least-square mean. 25 

Means sharing a letter have no statistically significant difference at the alpha level 0.05. 26 

 27 

  28 
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Appendix 29 

Table S1 30 

NUMBER OF ALLELES PER POPULATION 

Locus ID Total StD StL StS SuD SuL SuS 

BWF2a 5 3 3 3 4 3 3 

BFRO-018b 3 1 2 1 2 3 2 

ClaTet01c 11 7 6 6 5 9 5 

ClaTet03c 9 4 6 5 8 6 3 

ClaTet09c 13 8 10 9 7 12 6 

ClaTet10c 21 11 12 12 16 17 8 

ClaTet05c 11 5 7 6 3 9 3 

ClaTet12c 17 10 11 9 10 13 6 

ClaTet13c 7 6 6 7 6 6 5 

ClaTet15c 5 4 4 5 4 4 5 

ClaTet17c 15 8 9 7 10 10 4 

ClaTet18c 4 4 2 3 4 2 2 

Cocl-Lav4c 2 2 1 1 1 2 1 

Cocl-Lav6c 4 3 3 2 2 2 2 

Cocl-Lav18d 2 2 2 2 2 2 1 

Cocl_Lav49d 7 2 4 5 6 3 2 

Cocl-Lav52d 13 8 9 9 9 8 7 

C2-157e 5 2 1 2 1 4 1 

Details of microsatellite loci used for estimating genetic differentiation among whitefish 31 

ecomorphs. Total number of alleles in each locus and number of alleles in each locus per 32 

population. Abbreviation of populations are: St (Stuorajávri), Su (Suohpatjávri), D (DR whitefish), 33 

L (LSR whitefish), S (SSR whitefish). Code is a combination of lake and morph name. a(Patton et 34 

al., 1997); b(Susnik et al., 1999);  c(Winkler & Weiss, 2008); d(Rogers et al., 2004); e(Turgeon et al., 35 

1999). 36 
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