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a b s t r a c t 

Radial profiles of the ion saturation current and its fluctuation statistics are presented from probe mea- 

surements in L-mode, neutral beam heated plasmas at the outboard mid-plane region of KSTAR. The re- 

sults are consistent with the familiar two-layer structure, seen elsewhere in tokamak L-mode discharges, 

with a steep near-SOL profile and a broad far-SOL profile. The profile scale length in the far-SOL increases 

drastically with line-averaged density, thereby enhancing plasma interactions with the main chamber 

walls. Time series from the far-SOL region are characterised by large-amplitude bursts attributed to the 

radial motion of blob-like plasma filaments. Analysis of a data time series of several seconds duration 

under stationary plasma conditions reveals the statistical properties of these fluctuations, including the 

rate of level crossings and the average duration of periods spent above a given threshold level. This is 

shown to be in excellent agreement with predictions of a stochastic model, giving novel predictions of 

plasma–wall interactions due to transient transport events. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

The boundary region of magnetically confined plasmas is gen-

erally in an inherently fluctuating state. Single point measure-

ments of the plasma density reveal frequent occurrence of large-

amplitude bursts and relative fluctuation levels of order unity

[1,2] . These fluctuations, seen in the scrape-off layer (SOL) of all

tokamaks, are attributed to radial motion of blob-like filamentary

structures through the SOL, leading to broad profiles and enhanced

levels of plasma interactions with the main chamber walls that

may be an issue for next generation magnetic confinement experi-

ments [3–10] . 

Measurements from a number of tokamak experiments have

demonstrated that as the line-averaged plasma density increases,

the radial particle density profile in the SOL becomes broader and

plasma–wall interactions increase [6–19] . The particle density pro-

file typically exhibits a two-layer structure. Close to the separatrix,

in the so-called near-SOL, it has a steep exponential decay and

moderate fluctuation levels. Beyond this region, in the so-called

far-SOL, the profile has an exponential decay with a much longer
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cale length and a fluctuation level of order unity [7–13] . As the

ischarge density limit is approached, the profile in the far-SOL be-

omes broader and the break point moves radially inwards such

hat the far-SOL profile effectively extends all the way to the mag-

etic separatrix or even inside it [11–15] . 

The first part of this contribution augments the tokamak SOL

rofile database by presenting in Section 3 a summary of the first

OL profile measurements on the Korean Superconducting Toka-

ak Advanced Research (KSTAR), obtained at the outboard mid-

lane of lower single null diverted, L-mode discharges [20,21] . The

esults presented here are consistent with measurements on many

ther devices, in particular the increase of the far-SOL profile scale

ength with increasing line-averaged density. Moreover, the rela-

ive fluctuation level and the skewness and flatness moments are

hown to vary weakly with radial position and line-averaged den-

ity in the far-SOL, suggesting the same kind of robustness of fluc-

uations found for many other devices [9–15] . 

A novel stochastic model has been proposed in order to de-

cribe intermittent fluctuations in the SOL, based on a super-

osition of uncorrelated pulses with an exponential pulse shape

f constant duration and exponentially distributed pulse ampli-

udes [22–31] . Under some simplifying assumptions, this model

redicts an exponential radial profile and thus elucidates the phys-
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

http://dx.doi.org/10.1016/j.nme.2016.11.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/nme
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nme.2016.11.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:odd.erik.garcia@uit.no
http://dx.doi.org/10.1016/j.nme.2016.11.008
http://creativecommons.org/licenses/by-nc-nd/4.0/


O.E. Garcia et al. / Nuclear Materials and Energy 12 (2017) 36–43 37 

i  

t  

a

 

p  

t  

p  

m  

d  

o  

o  

r  

p  

t  

i  

b  

d  

[

 

g  

f  

r  

b  

o  

p  

t  

a  

a

2

 

s  

m  

m  

T  

r  

h  

i  

i  

w  

d  

F  

l  

f

 

t  

r  

s  

t  

a  

h  

b  

w  

c  

f  

[

 

p  

s  

n  

s  

i  

i  

p  

i  

Fig. 1. Poloidal cross-section of KSTAR with magnetic flux surfaces calculated from 

the magnetic equilibrium reconstruction of shot 13072. The reciprocating probe en- 

ters the SOL at the outboard mid-plane. 

Table 1 

KSTAR density scan experiments giving 

the shot number, Greenwald fraction of 

the line-averaged density, and the plot 

marker and color used in the following 

presentation of the results. 

Shot number n e /n G Plot marker 

13094 0 .55 

13097 0 .44 

13095 0 .34 

13092 0 .25 

13084 0 .22 
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cal mechanisms underlying broad radial profiles and large fluctua-

ion levels in the SOL [29] . The stochastic model and its predictions

re presented in Section 4 . 

To contribute further to the understanding of the statistical

roperties of plasma fluctuations in the SOL and to contribute

o the cross-machine scaling of this turbulence, a dedicated ex-

eriment was performed on KSTAR with a reciprocating Lang-

uir dwelled at a fixed position in the far-SOL during an entire

ischarge. This yielded high frequency turbulence measurements

ver a period of 5.5 seconds, several factors longer than previ-

usly obtained on other tokamaks. The resulting ion saturation cur-

ent time series of unprecedented duration is analysed and com-

ared with a similar investigation of a realisation of the stochas-

ic model with additional noise in Section 5 . Excellent agreement

s found between the two time series, including large-amplitude

urst events and an analysis of level crossings and the average

uration of time intervals spent above a given threshold level

29–33] . 

A discussion of the results, the conclusions and an outlook are

iven in Section 6 . The KSTAR measurements presented here give

urther evidence for universality of fluctuations in the boundary

egion of magnetically confined plasmas. These are here shown to

e described by a novel stochastic model. This includes the rate

f level crossing and excess times, which are crucial for threshold

henomena like plasma–wall interactions. The stochastic model

hus has the potential to provide all relevant distributions as far

s the pulse duration and the lowest order moments can be reli-

bly predicted for fusion plasmas. 

. Experimental setup 

Results are presented from reciprocating Langmuir probe mea-

urements in lower single null, deuterium fuelled L-mode plas-

as in KSTAR [20,21] . This superconducting, full carbon wall toka-

ak has a minor radius of 0.5 m and a major radius of 1.9 m.

he experimental measurements were made with a plasma cur-

ent of 0.6 MA, axial toroidal magnetic field of 2 T, neutral beam

eating power of 1 MW and electron cyclotron resonance heat-

ng of 0.3 MW. For these parameters, the disruptive density limit

s at n e /n G ≈ 0 . 6 , corresponding to complete divertor detachment,

here n e is the line-averaged density and n G is the Greenwald

ensity [34] . A poloidal cross-section of KSTAR is presented in

ig. 1 , which also shows magnetic flux surfaces based on an equi-

ibrium reconstruction for one of the discharges analysed in the

ollowing. 

A fast reciprocating Langmuir probe assembly moves through

he SOL region at the outboard mid-plane, measuring the ion satu-

ation current with a sampling rate of 2 MHz. Only probe data from

tationary phases of the plasma discharges are analysed, which

ypically have a duration of 8 s. Measurements influenced by probe

rcing have been carefully eliminated from the probe data analysed

ere. A scan in line-averaged density up to the disruptive limit has

een performed. Table 1 gives the KSTAR shot number, the Green-

ald fraction of the line-averaged density and the plot marker and

olor used for the following presentation of the results. Further in-

ormation about the probe system can be found in Refs [20] . and

21] . 

For each shot, the probe head moves through the outboard mid-

lane SOL plasma up to a distance of 2.5 cm from the magnetic

eparatrix (for most discharges the near-SOL region is therefore

ot sampled). Typically, two reciprocations are made per discharge,

eparated by several seconds. In the resulting time series of the

on saturation current, hysteresis is observed between the ingo-

ng and outgoing profiles. This is likely due to perturbation of the

lasma by the probe assembly. For this reason, only data for the

nward probe motion and from one reciprocation for each plasma
ischarge is used for the following analysis. A parabolic function is

tted for the probe position versus time. Based on this, the data

ime series is divided into sub-records corresponding to 0.5 cm ra-

ial movement of the probe, giving of the order of 10 4 or more

ata elements per bin. This has been found as the best compromise

etween spatial resolution and convergence of estimators for the

owest order statistical moments. From the resulting sub-records

f typically 5 ms duration, the sample mean, standard deviation,

kewness and flatness moments are readily calculated. The results

rom the density scan experiments are presented in Section 3 . 
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Fig. 2. Time series of the ion saturation current fluctuations showing frequent oc- 

currence of large-amplitude bursts. 

Fig. 3. Radial profiles of the ion saturation current for various line-averaged den- 

sities normalised to the value at the innermost position at r = r sep + 2 . 5 cm . See 

Table 1 for the densities appropriate to each symbol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Radial profiles of the relative fluctuation level in the ion saturation current 

for various line-averaged particle densities. 

Fig. 5. Radial profiles of the sample skewness for the ion saturation current for 

various line-averaged particle densities. 

Fig. 6. Radial profiles of the sample flatness for the ion saturation current for vari- 

ous line-averaged particle densities. 
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In order to further investigate the statistical properties of large-

amplitude fluctuations in the ion saturation current, a special ex-

periment was performed with the probe maintained at a fixed

position in the SOL throughout the entire discharge. The line-

averaged density for this shot was n e /n G = 0 . 3 , while all other pa-

rameters were the same as for the density scan described above

(see Fig. 1 for the magnetic equilibrium). The probe was placed

3.6 cm from the separatrix and 3.0 cm in front of the limiter struc-

tures. The resulting time series of the ion saturation current un-

der stationary plasma conditions has an unprecedented duration

of 5.5 s. A short part of this time series is presented in Fig. 2 . Here

and in the following, the rescaled ion saturation current signal is

defined by ˜ J = (J − J ) /J rms , where J and J rms are the sample mean

and root mean square values, respectively. The raw data presented

in Fig. 2 show the frequent occurrence of large-amplitude bursts,

which are typically observed in the boundary region of magnet-

ically confined plasmas. In Section 5 the statistical properties of

these fluctuations are investigated in detail. 

3. SOL profiles 

The radial profiles of the ion saturation current are presented in

Fig. 3 for the various line-averaged densities. An exponential func-

tion has been fitted to each profile, giving an estimate of the pro-

file scale length in the far-SOL region and its variation with the

line-averaged density. Each profile in Fig. 3 is normalized to the

value of the profile at a distance of 2.5 cm from the estimated mag-

netic separatrix location. The familiar profile broadening with in-

creasing line-averaged density is clearly observed. In the far-SOL,

the scale length more than doubles from 3.4 cm at n e /n = 0 . 22
G 
o 8.6 cm at n e /n G = 0 . 55 . At the highest line-averaged density, the

on saturation current profile is broad and well described by a sin-

le exponential function over the entire SOL measurement region,

imilar to what has been observed in many other experiments [6–

9] . 

The radial profiles of the relative fluctuation level for the vari-

us line-averaged densities are presented in Fig. 4 . Here it is clearly

een that the fluctuation level lies at approximately 35% through-

ut the SOL measurement region for all line-averaged densities in-

estigated. The sample skewness moments presented in Fig. 5 are

arger than unity over most of the SOL. Similarly, the sample flat-

ess moments in Fig. 6 are significantly larger than three for most

ine-averaged densities and radial positions, which is the flatness

alue for a normally distributed random variable [27–30] . Due to
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Fig. 7. Time series of the ion saturation current fluctuations at 2.5 cm from the 

separatrix for the highest (top), intermediate (middle) and lowest (bottom) line- 

averaged densities. 
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Fig. 8. Scatter plot of flatness versus skewness moments for the reciprocating probe 

data in the KSTAR density scan. 
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he short duration of the time series, there is significant scatter of

he data points for the higher order moments [27,29] . 

It should, however, be noted that for the measurement point

losest to the separatrix, the skewness and flatness moments are

lightly larger for the highest line-averaged density, which has a

road profile across the entire SOL measurement region. This is

onsistent with the raw ion saturation current time series shown

n Fig. 7 for the lowest, intermediate and highest line-averaged

ensities. Here it is clearly seen that the signal is more intermit-

ent and dominated by large-amplitude bursts for the highest line-

veraged density. 

These results demonstrate that the plasma in the SOL of KSTAR

s in an inherently fluctuating state with positively skewed and

attened fluctuation amplitudes. Based on similar results from

ther devices, these fluctuations are attributed to the radial motion

f blob-like plasma filaments. The mean profile becomes broader

ith increasing line-averaged density, thereby enhancing plasma

nteractions with the main chamber walls. The plasma–surface in-

eractions depend on the rate of level crossings and the duration

f intervals where the signal exceeds some threshold level. Before

iscussing these properties of the fluctuations, a stochastic model

ill first be described in the following section. 

. Stochastic modelling 

Previous measurements in tokamak SOL plasma have shown

hat large-amplitude plasma fluctuations have on average an ex-

onential wave-form with constant duration, exponentially dis-

ributed amplitudes, and appear in accordance with a Poisson pro-

ess [22–26] . This provides evidence for a stochastic model of the

uctuations as a super-position of uncorrelated pulses [27–31] , 

K (t) = 

K(T ) ∑ 

k =1 

A k ϕ(t − t k ) , (1)

here ϕ( t ) is the pulse shape, A k is the amplitude and t k the ar-

ival time for the pulse labelled k . It is assumed that the number of

ulses K ( T ) occurring during a time interval of duration T is Poisson

istributed and that the pulse arrival times t k are uniformly dis-

ributed on the interval (0, T ). From this it follows that the waiting

imes are exponentially distributed with the average waiting time

iven by τw 

[28–30] . In the following, an exponential pulse shape

ill be considered, 

(t) = �
(

t 

τd 

)
exp 

(
− t 

τd 

)
, (2) 

here � is the unit step function and the pulse duration τd is

aken to be the same for all pulses. For this stochastic process, the
ntermittency parameter γ = τd /τw 

determines the degree of pulse

verlap and it can be shown that the probability density function

PDF) approaches a normal distribution in the limit of large γ , in-

ependent of the amplitude distribution and pulse shape [28,29] . 

For the particular case of an exponential pulse shape and expo-

entially distributed pulse amplitudes, the stationary PDF for the

andom variable �K ( t ) is a Gamma distribution with the shape pa-

ameter given by γ [28,29] . The mean value and variance of the

ignal are given by γ < A > and γ < A > 

2 , respectively, where < A >

s mean pulse amplitude, and there is a parabolic relationship be-

ween the skewness and flatness moments given by F = 3 + 3 S 2 / 2 .

 scatter plot of the sample flatness versus skewness moments for

he KSTAR density scan experiments discussed in the previous sec-

ion is presented in Fig. 8 . The parabolic relation is clearly a good

escription of these measurement data. 

For exponential pulse shapes with duration τd , the auto-

orrelation function for the random variable is readily calcu-

ated as R �(τ ) = 〈 �(t)�(t − τ ) 〉 = 〈 �〉 2 + �2 
rms exp (−τ/τd ) . This

llows the pulse duration time τd to be estimated for a syn-

hetic data time series or experimental measurements. Further-

ore, the stochastic model described above allows the rate of

hreshold crossings X �(�) , the average duration 〈� T 〉 of time in-

ervals where the process exceeds some prescribed threshold level,

nd how these change with the intermittency parameter γ , to be

omputed analytically [29,30] . 

Measurements of fluctuations in the SOL of tokamak plasmas

ave demonstrated that there is additional noise on top of the

arge-amplitude bursts that is not captured by the process given by

q. (1) [23,24] . The effect of this additional noise can be described

hrough a stochastic differential equation on the form [31] 

d 

d �K 

d t 
+ �K = 

K ∑ 

k =1 

A k δ
(

t − t k 
τd 

)
+ σ

(
2 

τd 

)1 / 2 

ξ (t) , (3)

here ξ ( t ) is a standard white noise process. The solution of this

quation can be written as �K = �K + σY, where the Ornstein–

hlenbeck process Y ( t ) is normally distributed with vanishing

ean and unit standard deviation. The process described by

q. (3) has the same exponential decay response for the stochastic

oise forcing ξ ( t ) as for the Poisson point process �K ( t ) described

y Eq. (1) . It should be noted that additional noise allows the sig-

al to have negative values, as opposed to the process described

y Eq. (1) . 

The auto-correlation function for the process �K ( t ) is the same

s for �K ( t ), while the stationary PDF for �K is the convolution

f a Gamma and a normal distribution [31] . Comparing this dis-

ribution to simulations of the process or experimental measure-

ent data provides an estimate of the intermittency parameter γ
nd the noise ratio ε = σ 2 / �2 

rms as fit parameters. This distribu-

ion has recently been shown to give an excellent description of
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Fig. 9. Auto-correlation function for the ion saturation current (full blue line), the 

synthetic data (dotted black line) and the best fit of a modified exponential function 

to the measurement data (dashed green line). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Probability density function for the ion saturation current (full blue line), 

the best fit of a Gamma distribution (green dashed line) and the best fit of the 

convolution of a Gamma and a normal distribution (dash–dotted red line). (For in- 

terpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 11. Conditionally averaged wave-forms with peak amplitudes larger than 2.5 

times the rms value for the ion saturation current (full blue line), the synthetic 

data (dotted black line) and the best fit of a double-exponential pulse shape to 

the measurement data (dashed green line). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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plasma fluctuations in the SOL of Alcator C-Mod [24] . Closed an-

alytical expressions for the level crossing rate and average excess

times in the case of additional noise have not yet been derived. 

5. Fluctuation statistics 

In this section, predictions of the stochastic model given by

Eq. (3) are compared with probe measurements on KSTAR. In or-

der to critically assess the underlying assumptions and predictions

of the model, a simulation of the stochastic process has been cal-

culated using model parameters estimated from the long data time

series from the probe dwell experiment discussed in Section 2 . Re-

sults are presented from an identical analysis of the measurement

and synthetic data time series. In the following plots, a full blue

line represents results from analysis of the KSTAR ion saturation

current time series, a dotted black line is the result of a similar

analysis of the synthetic data, and a dashed green line is the best

fit of using an analytical function to be specified. 

The ion saturation current signal shown in Fig. 2 is clearly

dominated by the frequent appearance of large-amplitude bursts,

which are generally characterised by an asymmetric wave-form

with a fast rise and slower decay. It should be noted that the

peak amplitudes of the ion saturation current bursts are typi-

cally several times the rms value. The auto-correlation function

for the ion saturation current signal and the synthetic data are

presented in Fig. 9 . The latter has the exponential decay pre-

dicted by the model. However, the auto-correlation function for the

measurement data does not decay to zero and is in Fig. 9 fitted

by the modified exponential function R ˜ J (τ ) = C + (1 − C) R ˜ �
(τ ) ,

where R ˜ �
(τ ) = exp (−τ/τd ) . This is clearly an excellent fit to the

data and gives a correlation time of τd = 30 μs, which is used as

an input parameter for the model simulation. 

The PDF for the ion saturation current signal is presented in

Fig. 10 . Also shown in this figure is the best fit of a Gamma dis-

tribution, giving γ = 2 . 4 , and the best fit of the prediction of the

stochastic model with additional noise, which is a convolution of

a Gamma and a normal distribution. The latter provides an esti-

mate for the model parameters, which in this case are given by

γ = 1 . 7 and ε = 0 . 11 . The sample skewness and flatness moments

for the ion saturation current time series are 1.3 and 6.1, respec-

tively, in agreement with expectations from the stochastic model,

which give 1.3 and 5.9, respectively. These values are also consis-

tent with those found for the density scan experiments reported in

Section 3 . It should be noted that the distribution function covers

more than four decades in probability, which is a result of the long

data time series available here. 
The saturation current PDF is positively skewed and flattened

nd has an exponential tail towards large values, reflecting the

requent appearance of large-amplitude bursts in the time series.

n order to reveal the statistical properties of these fluctuations, a

tandard conditional averaging technique is utilised [35–37] . Events

hen the ion saturation current is above a specified amplitude

hreshold value are recorded. The algorithm searches the signal for

he largest amplitude events, and records conditional sub-records

entred around the time of peak amplitude whenever the ampli-

ude condition is satisfied. These sub-records are then averaged

ver all events to give conditionally averaged wave-forms associ-

ted with large-amplitude events in the signal. Overlap of condi-

ional sub-records are avoided in order to ensure statistical inde-

endence of the events. 

In Fig. 11 the conditionally averaged wave-form for the ion

aturation current is presented for peak fluctuation amplitudes

arger than 2.5 times the root mean square value and a condi-

ional window duration of 200 μs. This resulted in a total of 7471

on-overlapping events for this long data time series. The satura-

ion current wave-form has an asymmetric shape with a fast rise

nd slower decay, as is also apparent in the raw data presented

n Fig. 2 . The average wave-form is well described by a double-

xponential pulse shape with a rise time of 11 μs and fall time

f 19 μs, giving a duration time of 30 μs, in agreement with the

orrelation analysis presented above. While the underlying pulses

or the synthetic data have a sharp rise, the conditionally aver-

ged wave-form has a finite rise time due to pulse overlap. The
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Fig. 12. Conditionally averaged burst wave-forms for the ion saturation current sig- 

nal with peak amplitudes in units of the rms value given by the range indicated in 

the legend. 

Fig. 13. Probability distribution function for burst amplitudes with peak values 

larger than 2.5 times the rms level for the ion saturation current (blue circles), the 

synthetic data (black diamonds), and an exponential fit to the measurement data 

(dashed green line). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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Fig. 14. Probability distribution function for waiting times between large-amplitude 

events with peak values larger than 2.5 times the rms level for the ion saturation 

current (blue circles), the synthetic data (black diamonds) and an exponential fit to 

the measurement data (dashed green line). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. Rate of level crossings for the ion saturation current (full blue line), syn- 

thetic data (dotted black line) and predictions from the stochastic model without 

additive noise (dashed green line). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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e  
ifference in the shape of the conditional wave-forms for the mea-

urement and synthetic data is therefore as expected. Note that the

eak amplitudes are in perfect agreement. 

Restricting the peak amplitude of conditional events in the ion

aturation current signal to be within a range of 2–4, 4–6, 6–8

nd 8–10 times the rms value, the appropriately scaled conditional

ave-forms, shown in Fig. 12 , reveal that the average burst shapes

nd durations do not depend on the burst amplitude and are again

ell described by a double-exponential wave-form. This gives fur-

her support for the assumptions underlying the stochastic model

resented in Section 4 . 

For conditional burst events, the peak amplitudes after the sig-

al crosses a certain threshold level are also recorded. Fig. 13

hows the distribution of these peak amplitudes for ion saturation

urrent and synthetic data fluctuations larger than 2.5 times the

ms level. This is clearly well described by a truncated exponential

istribution, as might be expected from the exponential tail in the

istribution function for the full signal presented in Fig. 10 . The

ean value of the fitted exponential distribution is 3.6, consistent

ith the peak amplitude of the conditionally averaged ion satura-

ion current wave-form shown in Fig. 11 . There is good agreement

or the amplitude distribution between the measurement and syn-

hetic data. 

From the occurrence times of large-amplitude events in the ion

aturation current signal, the waiting times between them is also

alculated. As shown in Fig. 14 , for peak amplitudes larger than 2.5

imes the rms value, the waiting time distribution is well described

y an exponential function over three orders of magnitude on the

rdinate. The mean value of the waiting times based on this fit is
.8 ms. Such an exponential distribution of waiting times is in ac-

ordance with a Poisson process, suggesting that large-amplitude

uctuations in the far-SOL are uncorrelated. A similar analysis of

he synthetic data also reveals exponentially distributed waiting

imes, but the average waiting time is slightly shorter than for the

easurement data. The reason for this has yet to be clarified. 

For a time series of duration T , the number of up-crossings over

he level ˜ J is denoted by X( ̃  J ) . The normalised rate of such level

rossings is presented in Fig. 15 for both the measurement and

ynthetic data time series. This is compared to an analytical pre-

iction for the stochastic model described by Eq. (1) [29,30] . The

umber of up-crossings of the 2 . 5 J rms -level is 18,298 for the ion

aturation current time series. As expected, the rate of level cross-

ngs is largest around the mean value of the signal. The analytical

odel under-estimates the rate of level crossings for low thresh-

ld levels, which is obviously due to the additional noise in the

easurement and synthetic data time series. However, the tail be-

aviour for large threshold levels compares favourably with the an-

lytical expression. For all threshold levels, there is excellent agree-

ent between the measurements and the synthetic data. 

For the stationary stochastic process described by Eq. (1) it is

ossible to calculate analytically both the number of up-crossings

nd the total time spent above a given threshold level, the lat-

er given by the complementary cumulative distribution function.

he ratio of these gives the average duration 〈� T 〉 of time inter-

als spent above the threshold level [29,30] . In Fig. 16 this the-

retical prediction is compared to direct computations of the av-

rage excess times for the measurement and synthetic data time
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Fig. 16. Average excess times for the ion saturation current (full blue line), syn- 

thetic data (dotted black line) and predictions from the stochastic model without 

additive noise (dashed green line). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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series. Since both the distribution function and level crossing rate

are well described by the model realisation, the excellent agree-

ment between measurement and synthetic data in Fig. 16 comes

as no surprise. As for the level crossing rate, the analytical model

without additive noise fails to accurately describe average excess

times for low threshold levels. For large threshold levels, the av-

erage duration of excess times is slightly smaller than the pulse

duration τd and decreases gradually with the threshold level. 

6. Discussion and conclusions 

Langmuir probe measurements at the outboard mid-plane re-

gion of KSTAR have revealed results that are consistent with ob-

servations in many other devices. The SOL generally exhibits a

two-layer structure: a near-SOL with a steep profile and moder-

ate fluctuation level near the separatrix, and a flatter profile with

larger fluctuations outside this in the so-called far-SOL. As the line-

averaged plasma density increases, the profile scale length in the

far-SOL increases and the break point between the near- and far-

SOL regions moves radially inwards. This substantially enhances

plasma interactions with the main chamber walls. 

The large profile scale length and fluctuation level in the far-

SOL region is generally attributed to the radial motion of blob-like

plasma filaments. The stochastic model outlined in Section 4 pre-

dicts an exponential radial profile for a super-position of propagat-

ing pulses with constant size and velocity [29] , 

〈 �〉 (r) = 

τd 

τw 

〈 A 〉 exp 

(
− r 

V ⊥ τ‖ 

)
, (4)

where the parallel transit time is estimated by the ratio of the

magnetic connection length L ‖ and the sound speed C s , τ‖ = L ‖ /C s .

Since the connection length and electron temperature typically re-

main constant in the far-SOL, this suggests that the increase in

the profile scale length is due to faster blob-like plasma filaments.

However, the average density in the SOL may also increase due to

higher pulse amplitudes < A > and stronger pulse overlap. 

The far-SOL in KSTAR is characterised by large relative fluctua-

tion levels and positively skewed and flattened fluctuations. Simi-

lar to observations on several other tokamaks, these moments vary

little with radial position and line-averaged density [10–13] . This

suggests that while the fluctuations are strongly intermittent, they

have universal properties. These properties have been explored by

a novel experiment on KSTAR in which the probe was dwelled in

the far-SOL during an entire discharge in order to obtain a time

series of the ion saturation current under stationary plasma con-

ditions of unprecedented duration. It is found that large-amplitude

bursts on average have an exponential wave-form with exponen-
ially distributed burst amplitudes and waiting times. Moreover,

he burst shape and duration does not depend on the burst am-

litude, similar to previous results from Alcator C-Mod and TCV

22–26] . 

These are exactly the assumptions underlying a recently pro-

osed stochastic model for the intermittent plasma fluctuations

escribed as a super-position of uncorrelated pulses [28–30] . Con-

istent with predictions of this model, the auto-correlation func-

ion for the ion saturation current time series is found to be ex-

onential, the PDF is given by a Gamma distribution and there is

 parabolic relation between the skewness and flatness moments.

y adding random noise to this process, an identical analysis of

 model simulation and the measured ion saturation current are

n excellent agreement, demonstrating that the stochastic process

eproduces all the salient statistical properties of the plasma fluc-

uations. 

Based on the stochastic model, novel predictions have been

iven for the rate of level crossings and the average duration of

ime intervals spent above a specified threshold level [29,30] . By

dding random noise, a realisation of the process have been shown

o give predictions of these quantities that are in excellent agree-

ent with the experimental measurements. Provided the fluctu-

tion statistics have universal properties, an experimental deter-

ination of the correlation time and the lowest order statistical

oments are thus sufficient in order to predict the distribution

f fluctuation amplitudes, level crossing rates and excess times in

he vicinity of the main chamber walls. These quantities are par-

icularly relevant for plasma–surface interaction processes such as

puttering and melting, which are threshold phenomena. 
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