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Abstract 

Research over the last few decades has extended our understanding of nicotinamide adenine 

dinucleotide (NAD) from a vital redox carrier to an important signalling molecule that is involved in 

the regulation of a multitude of fundamental cellular processes. This includes DNA repair, cell cycle 



regulation, gene expression and calcium signalling, in which NAD is a substrate for several families of 

regulatory proteins, such as sirtuins and ADP-ribosyltransferases. At the molecular level, NAD-

dependent signalling events differ from hydride transfer by cleavage of the dinucleotide into an ADP-

ribosyl moiety and nicotinamide. Therefore, non-redox functions of NAD require continuous 

biosynthesis of the dinucleotide. Maintenance of cellular NAD levels is mainly achieved by 

nicotinamide salvage, yet a variety of other precursors can be used to sustain cellular NAD levels via 

different biosynthetic routes. 

Biosynthesis and consumption of NAD are compartmentalised at the subcellular level, and currently 

little is known about the generation and role of some of these subcellular NAD pools. Impaired 

biosynthesis or increased NAD consumption are deleterious and associated with ageing and several 

pathologies. Insults to neurons lead to depletion of axonal NAD and rapid degeneration, partial 

rescue can be achieved pharmacologically by administration of specific NAD precursors. Restoring 

NAD levels by stimulating biosynthesis or through supplementation with precursors also produces 

beneficial therapeutic effects in several disease models. In this review, we will briefly discuss the 

most recent achievements and the challenges ahead in this diverse research field. 

Introduction 

NAD is an important redox carrier mediating hydride transfer in oxido-reductive metabolic pathways, 

including the citric acid cycle, amino acid catabolism, β-oxidation of fatty acids and the urea cycle. In 

addition to its role as a redox carrier, NAD is an important signalling molecule involved in many vital 

cellular processes. For example, sirtuins are a class of NAD-dependent protein deacylases that display 

catalytic activity on a broad range of substrates (1) and regulate important processes such as cell 

cycle progression, circadian rhythm, genome stability, transcription, ageing, mitochondrial biogenesis 

and apoptosis (2,3). Sirtuin-mediated deacylation is coupled with cleavage of NAD into nicotinamide 

(Nam) and ADP-ribose (ADPR). The most common case is the deacetylation of proteins, where the 

leaving acetyl moiety is transferred onto ADPR, thereby forming O-acetyl-ADP-ribose (4) (Figure 1). 

Of the NAD-dependent protein modifications, ADP-ribosylation was discovered first (5). In the 

reaction, one (mono-ADP-ribosylation) or several (poly-ADP-ribosylation) ADPR moieties from NAD 

are transferred onto acceptor proteins, releasing Nam (Figure 1). Two families of enzymes are 

responsible for ADP-ribosylation: diphtheria toxin-like ADP-ribosyltransferases (referred to as ARTDs 

or PARPs) and clostridial toxin-like ADP-ribosyltransferase (ARTCs) (6). ADP-ribosylation is tightly 

regulated and, like most other post-translational modifications, reversible. The cleavage of poly-ADP-

ribose is largely performed by poly-ADP-ribose glycohydrolase (PARG), which cleaves the O-glycosidic 

bonds within polymers. However, PARG cannot remove the terminal ADPR moiety or reverse mono-



ADP-ribosylation, which instead is eliminated by enzymes such as ADP-ribosyl-acceptor hydrolase 1 

(ARH1) and Terminal ADP-Ribose Protein Glycohydrolase 1 (TARG1) (7,8). ADP-ribosylation plays a 

role in innate immunity, DNA repair, transcription, cell cycle progression, energy metabolism, cell-cell 

interaction and a plethora of other processes (9,10). 

In addition to its role in protein post-translational modifications NAD(P) is a precursor of nicotinic 

acid adenine dinucleotide phosphate (NAADP), cyclic ADP-ribose (cADPR) and ADPR, which are key 

regulators of calcium-signalling and synthesised by the multifunctional ADP-ribosyl cyclase CD38 and 

its homolog CD157 (Figure 1) (11,12). NAADP and cADPR stimulate release of calcium from 

endogenous stores, whereas ADPR triggers entry of calcium from the extracellular space (11,13-15). 

Maintenance of NAD-dependent signalling processes where NAD is cleaved hinges on a constant 

resupply of the dinucleotide. 

Metabolism of NAD in humans 

Under basal conditions, NAD-dependent protein deacetylation and ADP-ribosylation account for two 

thirds of net NAD consumption. The half-life of NAD in vivo varies between 15 min to 15 hours 

depending on the tissue, highlighting the importance of continuous re-synthesis of the dinucleotide 

(16). NAD is generated from dietary precursors or recycled from NAD degradation products. The 

precursors, collectively known as vitamin B3, are Nam and nicotinic acid (NA) as well as the 

nucleosides nicotinamide riboside (NR) and nicotinic acid riboside (NAR) (17,18). Additionally, 

quinolinic acid (QA), a product generated from tryptophan catabolism in the kynurenine pathway, is 

utilised to generate NAD de novo (Figure 1) (19).  

In mammals, the most prominent pathway of NAD synthesis is the salvage pathway in which Nam, a 

by-product of both NAD dependent deacylation and ADP-ribosylation, is recycled to regenerate NAD. 

Nam is converted to nicotinamide mononucleotide (NMN) by nicotinamide 

phosphoribosyltransferase (NamPRT). NMN is also produced when NR is phosphorylated by 

nicotinamide riboside kinase (NRK). In the final step of NAD biosynthesis, NMN is adenylylated by 

nicotinamide mononucleotide adenylyltransferase (NMNAT) to form NAD (20,21). In the Preiss-

Handler pathway, nicotinic acid adenine dinucleotide (NAMN) is synthesised from NA by nicotinic 

acid phosphoribosyltransferase (NAPRT), NAMN is also generated when NAR is phosphorylated by 

NRK. The subsequent reaction catalysed by NMNAT yields nicotinic acid adenine dinucleotide 

(NAAD), which is then amidated to NAD by NAD synthetase (NADS) (22,23). De novo synthesis of NAD 

includes the conversion of QA to NAMN by quinolinic acid phosphoribosyltransferase (QAPRT) which 

is then further used in the Preiss-Handler pathway (Figure 1) (19). Recently it has been demonstrated 

that NR and NAR generated by dephosphorylation of the corresponding mononucleotides can be 



secreted from cells, suggesting that different cell types can help maintain each other’s NAD pools 

(24). NAD biosynthesis and NAD dependent signalling reactions are both compartmentalized in the 

eukaryotic cell, a fact that raises topological questions that remain unanswered. 

Compartmentalisation of NAD biosynthesis and metabolism 

NAD-dependent metabolic pathways predominate in the mitochondria and cytosol, which, along 

with the nucleus, are also the major compartments with non-redox functions of this dinucleotide. 

Basal cellular NAD consumption was reported to depend particularly on nuclear poly-ADP-

ribosylation by PARPs/ARTDs 1/2 and on sirtuins 1/2-mediated protein deacetylation in the nucleus 

and the cytosol (16). Mitochondria contain three sirtuin isoforms (Figure 2), of which SIRT3 is the 

major protein deacetylase (25), whereas SIRT5 preferentially removes the acyl-groups of 

succinylated, malonylated and glutarylated proteins (26,27). SIRT4 is a bifunctional enzyme catalyzing 

both mono-ADP-ribosylation (28) and protein deacylation (29,30). As demonstrated for the 

mitochondrial Pyruvate dehydrogenase complex (PDC), the deacylation activity of SIRT4 is most 

efficient on lipolylated and biotinylated proteins (29,30). 

A biosensor system based on immunodetection of poly-ADP-ribose (PAR) as readout allowed for 

indirect visualisation of NAD also in peroxisomes, the endoplasmic reticulum and the Golgi apparatus 

(31). However, the role and importance of these organellar NAD pools remain poorly characterised. 

Since biological membranes are impermeable for pyridine nucleotides, the presence of NAD in 

various subcellular compartments raises the question of how these individual pools are generated 

and maintained, and whether they are segregated or exchangeable. 

The human genome harbours three genes encoding NMNAT isozymes, that differ in catalytic 

properties, oligomerisation state and subcellular localisation, namely, to the nucleus (NMNAT1) 

(32,33), the cytosolic face of the Golgi (NMNAT2) (34,35) and the mitochondria (NMNAT3) (Figure 2) 

(33). This distinct subcellular distribution overlaps with the localisation of major NAD consuming 

pathways. However, it differs from the nuclear-cytosolic localisation common to all other NAD 

biosynthetic enzymes (36). Moreover, with the exception of the two NRK isozymes, all other enzymes 

of NAD biosynthesis are encoded by single genes. 

The subcellular location of NMNAT3 intuitively suggests that this isozyme is responsible for the 

synthesis of NAD in mitochondria, yet a mechanism for the supply of the substrate NMN into this 

organelle is elusive. The apparent absence of a pathway for autonomous NMN biosynthesis in 

mitochondria (37) was suggested to be bypassed by import of the mononucleotide from the cytosol 

(36), but a mitochondrial carrier for NMN awaits identification. Several recent studies challenge a 



vital role of NMNAT3. For example, Nmnat3-/- mice are viable and the absence of an NMNAT3 

appears to affect metabolic functions rather in the cytosol than in mitochondria (38). NAD levels in 

skeletal muscle, which are elevated in transgenic Nmnat3 mice (39), are hardly affected in Nmnat3-/- 

mice (40). These findings suggest alternative mechanisms to compensate for the lack of NMNAT3. A 

mitochondrial carrier for NAD has been identified in yeast (41) and plants (42), and studies 

performed using isotopically labelled precursors (37) and a genetically encoded fluorescent NAD 

biosensor (43) provided supporting evidence for mitochondrial import of NAD, which may be 

generated by NMNAT2 in the cytosol (Figure 2). In humans, direct import of NAD through a biological 

membrane has so far only been suggested for peroxisomes. SLC25A17, a member of the solute 

carrier family of membrane transport proteins was shown to be able to carry NAD into reconstituted 

liposomes, indicating that it is a peroxisomal NAD carrier (44). The identity of a human mitochondrial 

NAD transporter remains unknown. 

Embryonic lethality of both NMNAT1-/- (45) and NMNAT2-/- (46) mice implies important non-

redundant roles for these two isozymes in the nucleus and the cytosol, and recent reports challenge 

the hypothesis that the nuclear membrane does not provide a diffusion barrier for pyridine 

nucleotides. For instance, studies performed with a fluorescent NAD biosensor indicated that the 

selective downregulation of cytosolic NMNAT2 does not affect the nuclear NAD pool (43). Using the 

same experimental tool, Ryu et al. suggested a distinct segregation of these two NAD pools related to 

a biological function. They demonstrated that the PARP1-dependent activation of genes involved in 

adipocyte differentiation is regulated by restricting NMN availability for nuclear NAD biosynthesis by 

NMNAT1 through stimulation of cytosolic NMNAT2 expression (47). 

The role of NAD metabolism in maintaining axonal integrity 

NAD metabolism has emerged as a key regulator of axonal degeneration. In injured axons, ATP loss 

and morphological degeneration are preceded by rapid NAD depletion (48,49). The seminal discovery 

of the mouse mutant Wallerian degeneration slow (Wlds), whose peripheral nerves remain intact for 

14 days following axotomy (Figure 3), led to the realisation that axonal degeneration is a regulated 

process. The underlying mutation for the expression of the Wlds protein in these mice consists of a 85 

kb- tandem triplication on chromosome 4 which leads to the generation of a chimeric protein 

composed of the 70 N-terminal residues from the ubiquitin ligase Ufd2a and full length NMNAT1 

(50). 

The protective mechanism of the Wlds protein is not fully understood. In neurons, Wlds 

predominantly localises to the nucleus where it activates SIRT1, leading to changes in gene 

expression (51). However, a small proportion of Wlds is found in axons and the presence and activity 



of this axonal pool affords protection against degeneration (52). Furthermore, the neuroprotective 

properties of a recombinant NMNAT1 fused to an axonal targeting peptide (53), along with the 

finding that NAD depletion triggers axonal degeneration (54), provided supporting evidence that the 

key to axonal protection is the NMNAT1 activity by the WldS protein. 

Recent work has established NMNAT2 as a critical factor for maintaining axonal integrity. In neurons, 

NMNAT2 is subject to continuous anterograde transport necessitated by the short half-life of the 

enzyme. Blocking this transport triggers Wallerian degeneration (Figure 3) (55,56). Due to the 

protective effect of Wlds in several disease models (57-59), the expression level of NMNAT2 has been 

proposed to play a role in several neurodegenerative disorders. Indeed, reduced levels of NMNAT2 

have been linked to decreased cognitive function in humans and taupathy in mice (60,61). However, 

the role of NMNAT2 in these conditions is not understood. 

The mechanisms underlying axonal degeneration downstream of NMNAT2 are currently debated and 

two different models have been proposed (Figure 3). The first model suggests maintenance of axonal 

NAD to be essential for survival, yet both in vitro and in vivo studies performed with CD38-/- and 

PARP-/- models excluded a contribution of these NAD-consuming enzymes in axonal degeneration 

(54). Recently, SARM1 (sterile alpha and Toll/interleukin-1 receptor motif containing 1) was identified 

as a central executioner of the axon degeneration pathway which is essential for NAD depletion in 

injured neurons (62,63). In Sarm1-/- mice, axonal degeneration is delayed by several weeks following 

injury. In addition, these mice display improved outcomes after the induction of peripheral 

neuropathy and traumatic brain injury (62,64,65). Mechanistically, SARM1-mediated NAD depletion 

was revealed by the discovery of the SARM1 TIR domain as a member of an ancient class of NAD 

glycohydrolases (66,67). SARM1 NAD glycohydrolase activity is driven by dimerisation of its TIR 

domain, and forced dimerisation induces catastrophic NAD depletion in the absence of injury (54).  

The second model proposes that the loss of NMNAT2 in injured axons leads to the accumulation of 

neurotoxic levels of NMN. In line with this model, axon degeneration can be stalled by inhibiting 

NamPRT while NAD levels are maintained by NAR supplementation (68,69). A transgenic mouse 

model overexpressing E. coli NMN deamidase provided further support for this model. The degree of 

axonal protection in these transgenic mice was similar to those observed in WldS or Sarm1-/- mice and 

explained by the conversion of NMN to NAMN (70). However, the concept of NMN as a neurotoxic 

agent does not agree with the finding that increasing NamPRT expression is neuroprotective (71). 

Sustaining NAD levels by pharmacological agents  



Depletion of NAD is not only associated with neurodegeneration but also other pathologies including 

metabolic disorders (72,73), heart diseases (74,75), muscle atrophy (76) and renal dysfunction (77). 

Moreover, NAD levels decline with age in multiple tissues of rodents (73,78-80) and humans (81,82). 

NAD depletion is governed by two principle mechanisms - decreased NAD biosynthesis and increased 

NAD consumption (Figure 4). 

A striking example of the deleterious physiological consequences of deficient NAD biosynthesis is 

pellagra, a B3 hypovitaminosis resulting from insufficient supply of dietary NAD precursors (83). NAD 

depletion can also be caused by reduced or impaired activity of NAD biosynthetic enzymes. For 

instance, NamPRT levels decrease with age (73,84) and are affected in different models of heart 

failure (74,75). Impaired QAPRT function was shown to predispose kidneys to acute injury owing to 

suppression of de novo NAD biosynthesis and renal NAD depletion (77). 

DNA repair deficiencies implicated in neurodegenerative disorders such as xeroderma pigmentosum, 

ataxia-telangiectasia and Cockayne syndrome are linked to chronic PARP1 activation and increased 

NAD consumption (85-87). PARP1-mediated NAD depletion has also been associated with ageing due 

to the combined effect of reduced efficiency of the DNA repair machinery and increased levels of 

reactive oxygen species leading to recurring DNA lesions (78,80). Furthermore, a considerable NAD 

decline in multiple tissues in aged mice has been linked to CD38 over-activation (88) or results  from 

SARM1 activation in response to nerve injury, as outlined in the previous chapter (66). 

Many studies using in vivo models that were aimed at boosting NAD levels either pharmacologically 

or by supplementation with NAD precursors, have established promising therapeutic concepts for 

age-related diseases (Figure 4). Pharmacological inhibition of PARP1 (89-91) or CD38 (92,93) was 

shown to elevate NAD concentrations in several tissues. However, since these enzymes control many 

important signalling pathways, any pharmacological manipulation of them needs to be conducted 

with caution. For NAD biosynthesis enzymes, a pharmacological activator has been identified only for 

NamPRT. The increase in cellular NAD levels in the presence of the neuroprotective aminopropyl 

carbazole agent P7C3 could be attributed to the stimulation of the activity of this enzyme (94). 

The concept of boosting NAD levels by dietary supplementation of NAD precursors dates back to 

1937, when Conrad Elvehjem demonstrated that both Nam and NA can prevent canine pellagra (83). 

Dietary Nam or NA also efficiently increase the NAD content in multiple tissues of rodents (95). Nam 

supplementation was shown to reduce oxidative stress and inflammation in mouse models (96) and 

to prevent hepatosteatosis (96), acute kidney injury (77) and glaucoma (97). However, there are 

limitations to the use of these dietary NAD precursors. The severe flushing induced by NA results 



from activation of the G-protein-coupled receptor GPR109A (98), whereas high doses of Nam can 

inhibit NAD-dependent enzymes (e.g. sirtuins and PARPs). 

During the last few years, a number of excellent studies have demonstrated that the 

supplementation with alternative NAD precursors, NR and NMN, considerably increases NAD levels 

and restores various physiological functions that are deteriorating in pathological conditions or 

during ageing. For example, both NR and NMN improve glucose metabolism and protect against 

obesity and type 2 diabetes (72,73,99). Furthermore, these compounds induce mitochondrial 

biogenesis (79,100-102), improve muscle (76,79,99), neural (86,103-105) and various other functions 

(for an extensive review see (106)). Dietary supplementation of NR has been associated with a slight 

lifespan extension in mice (107) and an increase in NAD levels in blood cells in humans (108,109). 

Importantly and in contrast to NA, NR is well-tolerated in humans (109). 

Pathological consequences of NAD depletion in tissues may be caused by a wide variety of molecular 

alterations ranging from failure of energy metabolism to dysfunctions of NAD-dependent signalling 

processes. Therefore, it is difficult to identify the exact molecular mechanisms that lead to the 

restoration of the physiological functions following NAD boosting therapies. Nevertheless, a growing 

body of evidence suggests that one of the universal mechanisms for the beneficial health effects of 

NAD replenishment is activation of Sirtuins (51,73,79,86,90,102,106). 

Conclusions and perspectives 

The importance of the regulatory roles of NAD has been firmly established in several excellent 

studies. While impressive progress has been made regarding the mechanisms of NAD-dependent 

signalling, some critical questions remain unanswered. For example, NAD demand and turnover vary 

greatly between tissues and cell types, and, as a consequence, biosynthesis of the dinucleotide needs 

to be fine-tuned. However, little is known about the regulation of NAD biosynthesis and its interplay 

with signalling pathways. Moreover, cellular NAD biosynthesis and consumption are 

compartmentalised in the cell, but how these organellar NAD pools are established and maintained is 

not fully understood. Mitochondria are of particular interest because they represent an important 

hub of NAD dependent signalling and probably contain the largest intracellular NAD pool. How this 

pool is sustained is debated and both autonomous biosynthesis and import of the dinucleotide have 

been proposed. 

Impaired biosynthesis and increased NAD consumption are associated with ageing and different 

pathologies such as degeneration of axons in injured neurons. Understanding the exact mechanism 

underlying the role of NAD and NMN in axonal degeneration will lead to new therapeutic concepts to 



support nerve regeneration. Increasing NAD biosynthesis by providing precursors may also be a 

promising therapeutic approach for other pathological states including type 2 diabetes, obesity, 

metabolic disorders and heart disease. Unfortunately, in the majority of the studies establishing 

these beneficial effects only one precursor was used, therefore it is impossible to judge the relative 

efficiencies of the different agents or their advantages and possible disadvantages. Moreover, the 

dosages used in the different studies were most often in a rather narrow range. Thereby, an 

important task for future research would be to establish the most efficient NAD precursor 

supplementation scheme and the determination of optimal dosages. 

Finally, the discovery of SARM1 as a NADase and its striking role in axon degeneration has added an 

unexpected aspect in the understanding of NAD homeostasis. Given that another NADase, CD38, 

plays a critical role in age-dependent NAD decline, it appears that NADases may have a much more 

severe impact on the NAD metabolome as so far appreciated. Therefore, these enzymes represent 

attractive targets for the maintenance of physiological NAD levels. 
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Figure legends 

Figure 1. Metabolism of NAD in humans. NAD biosynthesis requires two major steps, the first 

comprises mononucleotide formation of NMN or NAMN catalysed by phosphoribosyltransferases 

(PRTs) specific for nicotinamide (Nam), nicotinic acid (NA) or quinolinic acid (QA) and by nicotinamide 

riboside kinases (NRKs) phosphorylating both nicotinamide riboside (NR) and nicotinic acid riboside 

(NAR). The second step is dinucleotide generation via condensation of NMN/NAMN with the AMP 

moiety of ATP by nicotinamide mononucleotide adenylyltransferases (NMNATs). Mononucleotide 

precursors are collectively referred to as vitamin B3 except for QA which is a product of tryptophan 

catabolism. NAD formation from NAMN requires amidation of nicotinic acid adenine dinucleotide 

(NAAD) by NAD synthetase (NADS). Phosphorylation of NAD by NAD kinase (NADK) leads to 

generation of NADP. NAD and NADP partake in redox reactions, where they are reversibly reduced to 

NADH and NADPH. NAD is consumed by mono- and poly-ADP-ribosylation catalysed by members of 

the PARP/ARTD family of proteins, by sirtuin mediated protein deacylation leading to the release of 

O-acylated-ADP-ribose (OAADPR) and by synthesis of the calcium releasing second messengers cyclic 

ADP-ribose (cADPR), ADP-ribose (ADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). 

Release of nicotinamide is common to all NAD-consuming processes, and nicotinamide salvage 

through NamPRT therefore constitutes the most important NAD biosynthetic route. 

Figure 2. Compartmentalisation of NAD metabolism and biosynthesis. All NAD biosynthetic 

enzymes involved in the formation of the pyridine mononucleotides NMN and NAMN display 

nuclear-cytosolic localisation (exemplified for NamPRT), whereas three isozymes of NMNAT localise 

to the nucleus (NMNAT1), the mitochondria (NMNAT3) and the Golgi apparatus facing towards the 

cytosol (NMNAT2). Localisation of major NAD consuming reactions carried out by, for instance, 

members of the Sirtuin and PARP family of proteins overlaps with those found for NMNATs. The role 

of NMNAT3 in mitochondrial NAD biosynthesis is elusive. For NMNAT3-dependent mitochondrial 

NAD biosynthesis, the apparent absence of mitochondrial NMN producing enzymes requires the 

presence of a hitherto unknown NMN transporter. An NMNAT3-independent route for mitochondrial 

NAD demands for the existence of a hitherto unidentified NAD carrier. Evidence for NAD transport 

across a biological membrane has so far been provided only for peroxisomes. Pyridine nucleotides 

are supposed to be freely exchangeable between the nucleus and the cytosol, however, substrate 

competition between nuclear NMNAT1 and cytosolic NMNAT2 may regulate NAD availability in these 

two compartments. 

Figure 3. The role of NAD metabolism in maintaining axonal integrity. (A) In healthy neurons, 

NMNAT2 is transported to the distal nerve ends and maintains NAD levels. (B) Upon axotomy, 

NMNAT2 is rapidly degraded. The subsequent loss of axonal integrity is currently explained by two 

models: According to the first model, induction of SARM1 NAD glycohydrolase activity leads to 

catastrophic NAD depletion, whereas the second model suggests NMN accumulation to be 

neurotoxic. Supporting evidence for these models has been provided by the following observations: 

Degeneration of injured axons is delayed by (C) expression of Wlds encoding a mutant protein 

composed of full length NMNAT1 fused to an N-terminal portion of the ubiquitin ligase Ufd2a, (D) 

knockout of Sarm1, (E) heterologous expression of E. coli NMN deamidase, and (F) supplying nerve 

cells with a combination of the NamPRT inhibitor FK866 and NAR, an NAD precursor that is not 

dependent on NamPRT activity. 



Figure 4. Sustaining NAD levels by pharmacological agents. Tissue NAD levels decrease with ageing 

and under various pathological conditions. NAD depletion can be the result of decreased NAD 

biosynthesis, dietary deficiency of NAD precursors, inhibition of NAD biosynthetic enzymes, and 

chronic activation of NAD+ consuming enzymes (e.g. PARP1, CD38 and SARM1). Several concepts 

have been developed aimed at sustaining NAD levels using pharmacological agents. These include 

inhibitors of NAD-consuming enzymes PARP1 and CD38, activators of NAD biosynthetic enzymes such 

as NamPRT, as well as supplementation with NAD precursors (e.g. NA, NAM, NR or NMN). 

Stimulation of sirtuin activity by NAD replenishment is one of the universal mechanisms responsible 

for the beneficial health effects  
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