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Abstract 

The aim of this study is to identify the environmental impact of drill cuttings (DC) released 

around three wells drilled in 1992, 2000 and 2012 in the SW Barents Sea. Foraminiferal 

assemblages are studied in cores taken along transects <250m from wells. Well E-1992 shows 

no impact of DC on foraminifera indicating that low amounts of released DC limit 

environmental impact. Impact at wells G-2000 and S-2012, is confined to <30m, and 

attributable to smothering of fauna, resulting in low foraminiferal density. We therefore argue 

that previous monitoring studies, mainly focusing on samples collected >250m from 

wellheads, might not capture the full impact of DC. In well G-2000, a recovery layer indicates 

partial recovery 15 years after DC releases. In well S-2012, no recovery is observed, 3 years 

after release. Released DC did not result in faunal composition changes. 
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Highlights: 

 Environmental impact of drill cuttings around wells in Barents Sea are investigated

 The environmental impact is confined to <30m from the wellhead

 Main impact on foraminifera is attributed to smothering of fauna

 No changes in foraminiferal faunal composition due to drill cuttings are observed

 Partial environmental recovery is observed 15 years after release
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1. Introduction

In recent decades, the Barents Sea (Fig.1) has experienced a fast growth in exploration 

drilling activities, which is expected to continue in the coming years. Opening of new areas 

for petroleum exploration drilling can result in enhanced environmental pressure on the 

marine environment, which might result into changes in sediment quality and ecosystem 

structure (e.g. Aagaard-Sørensen et al., 2018; Breuer et al., 2004; Davies et al., 1984; Jorissen 

et al., 2009; Junttila et al., 2018). Changes in ecosystem structure will affect the types of 

organisms dominating the marine environment, which in turn can affect the potential for 

marine bio-resources (e.g. fishing industry). In-depth knowledge on the long-term 

environmental effect of exploration drilling in the Arctic region is therefore of great 

relevance.  

One particular concern in exploration drilling are drill cuttings, which are discharged to the 

sea floor environment during the drilling process. Drill cuttings is a general term used to 

describe the mixture of drilling mud (fluids and solids), rock fragments, sediments, and 

specialty chemicals including heavy metals and PAHs (Breuer et al., 2004). Drill cutting 

release is nowadays subjected to strict requirements, especially in the Barents Sea area (Knol, 

2011). The release of oil based drill cuttings, containing high amounts of toxic chemicals 

(Knol, 2011), was allowed during the 1980’s until the ban on release of oil based drill cuttings 

in 1993 (NPD, 2017). The release of oil based drill cuttings has resulted in high 

concentrations of heavy metals and PAHs into the marine environment (Breuer et al., 2004; 

Davies et al., 1984). In 1997, the Norwegian government set a goal of zero discharge of oil 

and environmentally hazardous substances for the entire Norwegian Continental Shelf (White 

Paper No.58; Ministry of Environment 1997). Stricter requirements were set in 2003 for the 

northern part of the Norwegian Continental Shelf, i.e. the Barents Sea and Lofoten region. 

According to these regulations, only drill cuttings from the top hole can be released when no 

hazardous substances are used in areas unlikely to experience environmental damage (Storting 

White paper No.38; Ministry of Petroleum and Energy 2004). These regulations were 

moderated in 2011 to zero discharge of hazardous substances (Storting White Paper No.10; 

Ministry of Environment 2011).  

In this study, we investigate the environmental impact of released drill cuttings around three 

wells in the SW Barents Sea. These three wells were drilled in 1992, 2000 and 2012. The 

wells were thus drilled under different discharge regulations, i.e. before ban on oil-based drill 

cuttings (well from 1992), after ban on oil-based drill cuttings (well from 2000), zero-



4 

discharge of hazardous substances (well from 2012). Sediment cores were collected at each 

well along downstream transects, at ca.5, 30, 60, 125 and 250 m from the well (see chapter 

3.1 Sample collection). This is in closer proximity than traditional monitoring studies in the 

Barents Sea, where samples mainly have been collected > 250 m from the wellhead (Renaud 

et al., 2008). 

The environmental impact of drill cuttings is investigated by changes in foraminiferal fauna 

composition around the wells. Benthic foraminifera are unicellular organisms (size: 45-1000 

µm) living in the upper layers of the seafloor (Murray, 2006). Foraminifera are widely used as 

indicators for climatic and environmental changes. They are considered ideal for 

(bio)monitoring purposes, as they have a high sensitivity to environmental change. They 

respond quickly to both natural and anthropogenic alterations due to their short reproductive 

cycle (Murray, 2006). An advantage of benthic foraminifera is that their shells fossilize in the 

sedimentary record. By studying living and fossilized foraminiferal assemblages in sediment 

cores, it is possible to go back in time and reconstruct past environmental conditions. This 

includes environmental impact of contaminants (Aagaard-Sørensen et al., 2018; Dijkstra et 

al., 2017b; Hess et al., 2013), reconstruction of environmental baselines in already impacted 

areas (Dijkstra et al., 2017a; Dolven et al., 2013), and monitoring of ecosystem recovery after 

environmental pressure has diminished (e.g. Aagaard-Sørensen et al., 2018; Berg, 2017; 

Polovodova Asteman et al., 2015).  

Previous studies showed that the main effect of drill cuttings on foraminifera is smothering by 

drill cutting material, resulting in a rapid drop in foraminiferal density (e.g. Aagaard-Sørensen 

et al., in review; Aagaard-Sørensen et al., 2018; Berg, 2017; Hess et al., 2013). Elevated 

sediment heavy metal concentrations are another factor that might influence foraminiferal 

faunal composition (e.g. Berg, 2017; Dijkstra et al., 2017b; Jorissen et al., 2009). 

2. Study area

The Barents Sea is a shallow shelf sea with maximum water depths around 450 m. The 

studied wells are all located within the glacially eroded Ingøydjupet trough (300-400 meters 

below sea level (m.b.s.l)). The study area is surrounded by the shallow banks Tromsøflaket 

and Nordkappbanken (200-300 m.b.s.l), and the deeper Bjørnøyrenna trough (300-450 

m.b.s.l.) (Fig. 1). Ingøydjupet is known to be an area for accumulation of sediments (Jensen et 

al., 2009; Junttila et al., 2014). 

Two main water masses prevail in the study area: Atlantic water and Coastal water (Fig. 1). 

Coastal water (> 2
o
C, < 34.7 psu ) (Loeng, 1991) is transported northwards along the
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Norwegian coast by a shallow surface current. Atlantic water is characterized by higher 

salinities and temperatures (>3 
o
C; >35 psu) (Loeng, 1991). Atlantic water follows the 

Norwegian continental shelf and enters the Barents Sea around Bjørnøyrenna. From there it 

reaches Tromsøflaket and Ingøydjupet due to the prevailing SW winds (Ingvaldsen et al., 

2004). 

2.1 Facts on studied wells 

Three wells are studied. A summary related to the drilling activity is given below. Information 

was gathered from the Norwegian Petroleum Directorate Fact Pages (NPD, 2017). 

 Well E-1992 (7122/4-1). Drilling operator: Esso Exploration and Production Norway A/S.

The exploration well was drilled between 13th of November 1991 and 13th of January

1992 to 3015 m in the Snadd formation of the Late Triassic. Water based drill fluid with

(bentonite) gel and KCl polymer was used.

 Well G-2000 (7122/7-1). Drilling operator: Norsk Agip AS. The exploration well was

drilled between 16
th

 of September and 5
th

 of October 2000 to 1524 m depth in the Tubåen

formation of the Early Jurassic. Water based drill fluid, with bentonite, XC polymer and

PAC was used.

 Well S-2012 (7220/10-1). Drilling operator: Eni Norway AS. The exploration well was

drilled between 13th of August and 16th of October 2012 to 2405 m depth in the Snadd

formation of the Late Triassic. Water based drilling fluid was used.

3. Material and Methods

3.1 Sample collection 

In September 2015, 50 cm long push cores (PC) with a diameter of 8 cm were retrieved with a 

remotely operated underwater vehicle (ROV) on board the supply vessel AHTS Njord Viking. 

The PCs were collected along a downstream transect at distances of 5m (well E-1992), 8m 

(well S-2012) or 10 m (well G-2000) from the wellhead. In addition, cores were collected at 

30, 60, 125 and 250 m from the wellhead (Fig. 1, Table 1). All cores were retrieved at ca. 350 

m water depth. At each station, two cores (core A and B) were obtained within half a meter 

from each other (Table 1). The cores from well E-1992 and S-2012 were subsampled and 

immediately at a 1 cm resolution down to 20 cm core depth, and subsequently frozen. Cores 

from well G-2000 were frozen completely immediately after retrieval. They were defrosted 

and subsampled at the UiT laboratories in 2017. Samples of core A were analysed for 

foraminiferal assemblages (see 3.2), in addition to grain size distribution. Samples of core B 
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were analysed for heavy metal content and total organic carbon content. Physical parameters 

of well E-1992 and S-2012 were previously published in Junttila et al., (2018). 

Drill cutting impacted sediments are identified based on elevated Ba concentrations compared 

to the baseline concentration of the area (ca. >200 mg/kg), following the approach described 

in Junttila et al., (2018). Based on these identified drill cutting influenced sediment intervals 

samples were selected for foraminiferal assemblage analyses (Table 1). The cores collected 

closest to the well were analyzed completely on a 1 cm interval. For the other stations (30, 60, 

125 and 250) samples were analyzed on a 1 cm interval until 1 cm under the deepest drill 

cutting influenced layer. Samples from below this depth were considered to represent the 

environmental baseline and were analyzed on a lower resolution (see Table 1).  

3.2 Physical parameters 

Physical parameters from Well E-1992 and S-2012 were previously published in Junttila et 

al., 2018.  Analyses of physical parameters of the cores collected at Well G-2000 were 

analysed at the same time and with the same methods as those for Well E-1992 and S-2012. 

The used methodology is summarized below. 

Grain size distribution was determined using a Beckman Coulter LS 13320 laser particle size 

analyzer according to the method described by Xu (2000). Before using the laser particle 

analyzer chemical treatment of the samples was performed to remove carbonates and organic 

material following Dijkstra et al. (2017b).  

Total organic carbon (TOC) content was determined using a Leco CS744 induction furnace. 

Inorganic carbon was removed from the bulk sediment sample prior to measurement.  

Heavy metal analyses were performed following EPA methods 200.7 and 200.8 at the 

certified laboratory Unilab AS, Tromsø. The sediments were analyzed for content of Barium 

(Ba), Mercury (Hg), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Zinc (Zn) and 

Titanium (Ti) using inductively coupled plasma atomic emission spectroscopy (ICP-AES) or 

inductively coupled plasma sector field spectroscopy (ICP-SFMS), depending on the 

concentrations of the metals following Mannvik et al., (2011). Concentrations of Mercury 

(Hg) were measured with atom fluorescence (AFS) following Mannvik et al., (2011). 

3.3 Sample treatment for foraminiferal assemblage analyses 

Live foraminiferal assemblages were studied in the top 5cm of the sediment cores. Samples 

intended for live foraminiferal assemblages were thawed in a rose Bengal ethanol mixture (1 

g/L ethanol 95%), to stain preserved cytoplasm. The samples were placed back in a cooling 
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room (<5°C ) and staining of the samples was allowed for a minimum of two weeks (Lutze 

and Altenbach, 1991).  

Rose Bengal adsorbs to protein in live and/or not yet decomposed cytoplasm. Due to practical 

reasons staining of the samples had to be done after sediment samples were frozen during the 

thawing process (following Aagaard-Sørensen et al., 2018). This is done with the assumption 

that the protein of cytoplasm stays preserved by freezing of the sediment samples. The 

absolute abundance of live foraminifera in the samples should however be interpreted with 

care, in case the cytoplasm was not fully preserved. However, as all samples were frozen 

before staining, all cores would have experienced a similar loss and relative comparisons can 

be made between the number of live fauna in impacted and non-impacted samples.  

The other samples (5-20 cm core depth) were freeze-dried before they were washed over 

meshes with widths of 1 mm, 100 µm and 63 µm. 

3.4 Foraminiferal analyses 

Dead and live faunas were studied in the 100 µm to 1 mm fraction to enable comparison to 

previous studies from the area (Aagaard-Sørensen et al., 2018; Dijkstra et al., 2017a; Dijkstra 

et al., 2013; Dijkstra et al., 2015).  

For the live fauna, only specimens with a bright stain inside more than half of the chambers 

were considered to be living at the time of sampling (de Stigter et al., 1998; de Stigter et al., 

1999). We aimed to identify a minimum of 300 specimens per sample (Schönfeld et al., 

2012). However, due to low foraminiferal density in some samples this number was not 

always reached, especially not for the live assemblages. Statistical studies based on a large 

number of paleo-ecological datasets, demonstrated that a sample size ranging between 25 and 

60 specimens effectively produced the same multivariate result as samples based on a larger 

amount of specimens (Forcino, 2012; Forcino et al., 2015).  

Foraminifera were identified following the generic classification of Loeblich and Tappan 

(1987) and the holotype descriptions in the Ellis and Messina catalogues (Ellis and Messina, 

1940–1978). Nomenclature follows largely the accepted species names published in the 

WoRMS database (Mees et al., 2015). Some species were grouped during identification, see 

Supplementary data A for species lists and taxonomic notes.  

Dead foraminiferal data is presented throughout the article as both relative abundance (%) and 

absolute abundances (# specimens/g bulk dry sediment) (hereafter referred to as #/g). The 

well-known (Dijkstra et al., 2015; Murray, 2006 and references therein) poor down core 

preservation of agglutinated taxa requires consideration when calculating foraminiferal 
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abundance (Harloff and Mackensen, 1997; Mackensen et al., 1990). Hence, abundances of 

agglutinated and calcareous taxa have been calculated separately based on the total number of 

agglutinated and calcareous specimens per sample respectively. Live fauna is presented as 

total live fauna, including benthic and agglutinated species, as preservation is not an issue. 

Foraminiferal density is defined as the calcareous total absolute abundance of a sample, i.e. 

the number of calcareous specimens observed in a sample standardized to gram dry bulk 

sediment. 

Diversity is expressed by the Fisher alpha and dominance (D) indices. These indices were 

calculated using statistical software PAST version 3.06c (Hammer et al., 2001).  

Statistical analyses were performed using the statistical program PAST version 3.06c 

(Hammer et al., 2001). The data was standardized before analyses by log-transformation 

(log(1+X)) to remove the effect of different orders of magnitudes.  

Foraminiferal species were grouped with R-mode hierarchical clustering, using Ward’s 

method and Euclidean distance (Ward, 1963), to identify different associations. Absolute 

abundance, standardized to #/g, was used as input for R-mode clustering. Only species that 

had a relative abundance of >5% in at least one sample were considered (Fishbein and 

Patterson, 1993). Based on the R-mode clustering two associations could be defined (see 

Results). The summed abundance of these two associations was used as input for Q-mode 

hierarchical clustering, using Ward’s method and Euclidian distance, to find similarity 

between the samples of each well. Additionally, non-metric multidimensional scaling 

(NMDS), with Euclidian distance as similarity measure, was performed using the same input 

to visualize the level of similarity of the samples within each well, following the algorithm of 

Taguchi and Oono (2005). Environmental parameters were added to this analysis, however 

not included to the ordination. Ba, fine fractions (< 63 µm) and TOC were used as 

environmental parameters, with Ba acting as an indicator of sediments influenced by drill 

cuttings (Junttila et al., 2018). Fine fraction and TOC were included as natural parameters 

influencing the foraminiferal assemblage (Dijkstra et al., 2013). For well S-2012, Cu was 

additionally added as environmental parameter, as the metal data showed that Cu levels in S8 

were of levels considered to be of levels harmful to the environment (Table2; See discussion 

in Results and Discussion). 

4. Results

4.1 Live foraminiferal fauna 
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In general, the live foraminiferal density decreases with depth. Below results are described as 

the summed abundance of the taxa in the entire top 5cm of the core (Fig.2).  

At well E-1992, the foraminiferal density varies between 3.6 #/g (station 30) and 11.6 #/g 

(station 125). Calcareous specimens are more abundant than agglutinated specimens (Fig 2a) 

are. The number of species varies between 16 (station 5 & 60) and 22 (station 125) and shows 

a similar trend as the Fisher alpha diversity (2.4-4). Dominance varies between 0.13 (station 

60/250) and 0.26 (station 5) (Fig.2b). 

At well G-2000, the foraminiferal density varies between 1.4 #/g (station 60/250) and 4.3 #/g 

(station 125). Calcareous specimens are more abundant than agglutinated specimens (Fig 2a) 

are, with the exception of station G60. The number of species varies between 8 (station 60) 

and 25 (station 5). A similar trend is observed for the Fisher alpha diversity (1.2-4.6). 

Dominance varies between 0.09 (station 5) and 0.3 and is highest in station G60 (Fig.2b). 

At well S-2012, the foraminiferal density varies between 0 #/g (station 5) and 10.2 #/g (station 

125). The foraminiferal density in station S125, is much higher than in the other stations. 

Calcareous specimens are more abundant than agglutinated specimens (Fig 2a) are. The 

number of species varies between 6 and 19 (station 250), with a relatively lower amounts of 

taxa in station S5 and S125. Dominance varies between 0.1 (station 5) and 0.28 and is highest 

in station S125 (Fig.2b). 

Main species (Fig. 2c) present in the live assemblages (> 10% in at least one station) at the 

three wells include: Reophax spp., Trochammina spp., Cassidulina laevigata, Cibicides 

lobatulus, Epistominella nipponica, Melonis barleeanus, Pullenia bulloides and Trifarina 

angulosa (Supplementary data A). Additionally, at well S-2012 >10% abundance of 

Haplophragmoides spp. (station S30), Islandiella spp. (station S5), Millioninella spp. (station 

S30), Pyrgo subglobusum (station S5) and Rosalina spp. (station S5) are found. It should be 

noted that these high relative abundances of the latter species coincides with low amounts of 

living foraminifera.  

4.2 Dead foraminiferal fauna 

Overall, the dead foraminiferal density (#/g) decreases with depth (Fig. 3b, 4b, 5b), this is a 

natural phenomenon observed within the SW Barents Sea (Dijkstra et al., 2017a). 

Agglutinated fauna naturally decreases down core in abundance due to the poor preservation 

of agglutinated species over time and are therefore not included in the results below.  

Main species (Fig. 3c, 4c, 5c) present in the dead assemblages (> 10% in at least one station) 

at the three wells include: Cassidulina neoteretis, Cassidulina reniforme, Elphidium 
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clavatum, Islandiella spp., Nonionellina labradorica, C. laevigata, C. lobatulus, E. nipponica, 

M. barleeanus, P. bulloides and T. angulosa. Islandiella spp. consists mainly of the summed 

abundance of Islandiella norcorssi and Islandiella helenae (Supplementary data A). 

Additionally, other species reach abundances >10 %, i.e. Buccella spp. (G10), Elphidium 

albiumbilicatum (G10), Bulimina marginata (S8), Fissurina spp. (S30), Milliolinella spp. 

(S8) and Quinqueloculina seminulum (S8). However, this is only the case when <100 

specimens were identified.  

We will not describe the down core changes in the foraminiferal assemblage outside the drill 

cutting influenced layers in detail, as they attributable to natural environmental change and 

hence outside the scope of this paper. 

4.2.1 Well E-1992 

Absolute calcareous abundances (#/g) are highest in the top of the cores in each of the stations 

(128-480 #/g). Relatively lowest abundances are observed in E30 and E250, and highest in 

E60. In all cores but E60, intervals of less than 10 specimens per gram are observed, i.e. 7-17 

cm (E5), 6-14 cm (E30), 13-20 cm (E125) and 7-17 cm (E250), of which the corresponding 

interval of E5 is barren for foraminifera (Fig.3b). 

Dominance and diversity are varying between 0 (E5) and 0.37 (E30), and 0 (E5) and 5.72 

(E250) respectively. Dominance is slightly higher in E30 (average 0.21) and E125 (0.18), 

compared to the other stations with average dominance varying between 0.14 and 0.16. 

Diversity is slightly higher in station E125 (average 4.33), compared to the other stations with 

average dominance varying between 2.72 and 3.93 (Fig.3c). 

Overall, C. laevigata, C. lobatulus, E. nipponica, M. barleeanus, P. bulloides and T. angulosa 

dominate the assemblages at this well, both in relative and absolute abundances. In core E5 

and E125, C. reniforme, E. clavatum, Islandiella spp., and N. labradorica have higher relative 

abundances in the bottom part of the cores (Fig.3d). 

4.2.2. Well G-2000 

Absolute calcareous abundances (#/g) are highest in the top of the cores from station G10, 

G30 and G125, whereas in station G60 and G250 values fluctuate around 130 and 115 #/g 

respectively. Overall abundances vary between 0.6 and 237 #/g. Absolute abundances are 

lowest in the 8-20 cm interval of core G10, with abundance below 10 #/g. Above 8 cm core 

depth, abundances are gradually increasing, up to values above 100 #/g in the 0-4 cm core 
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depth interval. In core G125 abundances <10 #/g are observed between 11 and 14 cm core 

depth (Fig.4b). 

Dominance and diversity are varying between 0.10 (G10) and 0.47 (G30), and 1.26 (G10) and 

8.25 (G10) respectively. Dominance is highest in G10 (average 0.22), compared to the other 

stations with average dominance varying between 0.16 and 0.17. Higher dominance (>0.2) 

coincides with intervals of low calcareous absolute abundance described above for core G10 

and G125. Diversity is slightly higher in station G10 (average 4.17) and G.30 (4.04), 

compared to the other stations with average dominance varying between 3.76-3.78. A 

diversity of >6 is only observed in the interval of relatively high absolute abundances (0-4 

cm) in core G10 (Fig.4c). 

For the cores G30-G250, C. laevigata, C. lobatulus, E. nipponica, M. barleeanus, P. bulloides 

and T. angulosa dominate the assemblages, both in relative and absolute abundances. In core 

G10, these species dominate as well in the top of the core, corresponding to the interval of 

high absolute abundances and diversity (0-4 cm). In the lower core intervals relative 

abundances of C. reniforme, E. clavatum, Islandiella spp., and N. labradorica, in addition to 

C. lobatulus are dominating. It should however be noted that foraminiferal density is low in 

these interval and relative abundance are not reliable. Additionally, in G10 intervals of 

foraminifera that looked weathered and polished are observed below 4 cm core depth. 

(Fig.4d) 

4.2.3. Well S-2012 

In cores S30-250, absolute calcareous abundances (#/g) are highest in the top of the cores (22-

851 #/g). In core S8, relative abundances are very low, with values fluctuating between 0 and 

0.55 #/g, with an average of 0.08 #/g. In all cores but S250, intervals with no or <2 #/g are 

observed, i.e. 0-20cm (S8), 12-15 cm (S30), 6-12 cm (S60) and 7-16 cm (S125) (Fig.5b). 

Dominance is varying between 0 and 1 in S8 (average 0.24), and between 0 and 0.3 in the 

other stations (S30-S250). Of these latter stations, dominance is slightly higher in S250 

(average 0.18), compared to the other stations with average dominance varying between 0.11 

and 0.14. Diversity in stations S8 varies between 3.71 and 43.45. The latter high diversity is 

observed in the 4-5 cm interval and only 10 individuals were identified, belonging to 9 

different taxa. In station S30, diversity varies between 0 and 15.43. The latter high diversity is 

observed in the 14-15 cm interval and only 31 individuals were identified, belonging to 17 

different taxa. In the other stations diversity varies between 0 and 6.51. Of these latter 
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stations, diversity is slightly higher in station S250 (average 3.93), compared to the other 

stations with average dominance varying between 2.19-2.78 (Fig.5c). 

Overall, C. laevigata, C. lobatulus, E. nipponica, M. barleeanus, P. bulloides and T. angulosa 

dominate the assemblages, both in relative and absolute abundances in cores S30-250. In core 

S30 and S60, C. reniforme, E. clavatum, Islandiella spp., and N. labradorica have higher 

relative abundances in the bottom part of the cores. The relative abundances of the few 

specimens that are observed in core S8 are considered not to give realistic relative abundances 

(Fig.5d). 

4.3 Physical parameters 

Results of the grain size distributions, heavy metal content and total organic carbon content of 

well S-2012 and E-1992 are described and discussed in Junttila et al., (2018) (Fig. 3E and 

5E). The results for the same parameters of well G-2000 are briefly summarized below.  

Silt (2-63 µm) is the dominating grainsize class in all stations of well G-2000 (average silt 

content 55-65 %), apart from at station G250 (average silt content 43%). In station G250, clay 

(0-2 µm) is the main grain size class (average clay content 48%), while in the other stations, 

the average clay content varies between 9-13%. Average sand content varies between 9 

(G250) and 34 % (G30 & G125) (Fig. 4E). The TOC content of the cores varies between 

0.07-0.4 (G10), 0.2-0.5 (G30), 0.3-0.4 (G60), 0.2-0.3 (G125 & G250) (Fig. 4E). The range in 

concentrations of heavy metals and Ba (Fig. 4A) in well G-2000 is shown in Table 2 and 

Supplementary data B.  

Visual observations during micropaleontological analyses with a microscope show that the 

sediment grains in the lower part (4-20 cm) consist of a large number of foam like particles 

and green particles (Supplementary figure Ia), while in the other cores at the transect (G30-

G250) these type of particles are absent. Sediment from the top 4 cm of core G10 also have 

low amounts of these particles (Supplementary figure Ia).  

4.4 Statistics 

R-mode clustering divided the species into two associations (Fig. 6a). Association I consists 

of M. barleeanus, P. bulloides, T. angulosa, C. lobatulus, C. laevigata and E. nipponica. 

Association II consists of E. albiumbilicatum, N. labradorica, Islandiella spp., Oolina spp., E. 

clavatum, Lagena spp., C. neoteretis and C. reniforme. The ratio between association I and II 

is plotted in Fig. 6b.  
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Q-mode clustering based on the summed absolute abundance of association I and II was 

performed for each of the wells. The Q-mode clustering divides the samples into two groups 

(Suppl. Fig. II). In general, samples clustered in group I correspond to samples with relatively 

high amounts of species from association I, while samples clustered in group II correspond to 

samples with relatively high amounts of species from association II. For Well G-2000 and S-

2012, the NMDS-plot gives clear clusters of samples, while for well E-1992 the analysis gives 

a more scattered pattern. The biplot shows the correlation coefficients between each 

environmental parameter and the NMDS scores. For Well E-1992, the sample scores scatter 

around the biplot. For Well G-2000, samples of group I plot in the same direction as TOC, 

while samples of group II plot towards fine fraction and Ba. In well S-2012, the NMDS scores 

of group II plot towards Cu and Ba, while samples of group I plot partly around fine fraction 

and TOC.  

5. Discussion

5.1 Drill cutting influenced sediment layers 

Samples presented in this paper were collected in 2015. The seafloor environment thus had 

ca. 23 years (Well E-1992), 15 years (Well G-2000) or 3 years (Well S-2012) to recover from 

potential environmental impact of the released drill cuttings.  

At well E-1992, drill cutting influenced layers were 4 to 5 cm thick in core E5 and E30 

respectively. A 6 cm thick layer was observed in core E60, E125 and E250 (Fig. 3a; 

Supplementary figure III) (Junttila et al., 2018). At well G-2000, the entire core G10 shows 

sediments impacted by drill cuttings. In cores G30, G60, G125 and G250 drill cutting 

impacted sediments are confined to the upper 4, 2, 2 and 4 cm respectively (Fig.4a). At well 

S-2012, the entire S8 shows sediments impacted by drill cuttings. In cores S30, S60, S125 and 

S250 drill cutting impacted sediments are confined to the upper 4, 2, 2 and 1 cm respectively 

(Fig.5; Junttila et al., 2018). It should be emphasized that Ba is considered to be non-toxic 

(Neff, 2005). Several laboratory and field studies have shown that the metals associated with 

barite in drilling mud or cuttings piles generally have a low bioavailability to marine animals 

and do not accumulate in the tissues of bottom-living animals (Neff, 2005). 

Copper values in station S8 (0-16 cm core depth) are of concentrations considered to be 

within environmental quality class IV (bad) (Bakke et al., 2010). This  corresponds to values 

considered to be harmful for the environment.  Cadmium values in the top sample (0.5 cm) of 

station S8 are considered to be of environmental quality class III (moderate). All metal 

concentrations in all other stations are considered to be of levels not harmful to the 
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environment (class I). It is therefore unlikely that they have an impact on the foraminiferal 

assemblage.  

5.2 Environmental conditions and natural environmental change 

Environmental preferences of benthic foraminifera and references to literature are 

summarized in Table 3. Cluster analyses divide the foraminiferal species into two 

associations. Association I includes the species M. barleeanus, P. bulloides, C. laevigata and 

E. nipponica. These are mainly of species associated to warm Atlantic or nutrient rich 

conditions (e.g. Altenbach et al., 1999; Hald and Steinsund, 1992; Jennings et al., 2004; 

Mackensen and Hald, 1988; Saher et al., 2012; Sejrup et al., 2004; Steinsund, 1994). 

Additionally T. angulosa and C. lobatulus indicative for sandy sediment conditions and 

relatively higher energy environment are grouped in Association I (e.g. Hald and Steinsund, 

1996; Mackensen et al., 1985; Nyholm, 1961; Steinsund, 1994). The species grouped in 

Association I are species typically found in the present day natural settings of Ingøydjupet 

(Dijkstra et al., 2015) and the southern part of Bjørnøyrenna (Dijkstra et al., 2017a). 

Association II consists of species N. labradorica, Islandiella spp., E. clavatum and C. 

reniforme These are species associated to relatively colder Arctic conditions (e.g. Hald and 

Korsun, 1997; Hald and Steinsund, 1992; Korsun and Hald, 1998; Polyak and Solheim, 1994; 

Sejrup et al., 2004; Smart and Gooday, 1997; Sun et al., 2006; Wilson et al., 2011). Species of 

Association II are typically found in the more northern parts of Bjørnøyrenna and the Barents 

Sea (Dijkstra et al., 2017a). E. clavatum and C. reniforme, are species that are additionally 

associated to stressed environments, either natural anthropogenic (Alve, 1995; Hald and 

Korsun, 1997). These two species have been reported as one of the first species to recolonize 

former barren areas when environmental pressure is reduced (Schafer et al., 1991) and are 

known to be capable of adapting to harsh environments (e.g. Alve, 1999; Corliss, 1985; 

Corliss and Van Weering, 1993; Linke and Lutze, 1993; Wollenburg and Mackensen, 1998).  

Overall, it can be concluded that species grouped in Association I indicate relatively warm, 

food rich Atlantic conditions, found in the present-day southern part of the SW Barents Sea. 

Species grouped in Association II indicate relatively cooler and fresher Arctic-like conditions, 

found in the present-day northern part of the SW Barents Sea. In addition, some of the species 

grouped in Association II have opportunistic characteristics. Presence of these species could 

therefore potentially also be related to harsh conditions during and after drill cutting releases. 
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All cores collected at well E-1992, core G30 and G125 and cores S30 to S250, show 

increased foraminiferal densities in the top part of the cores (Fig.3b-5b). This coincides with 

elevated Ba concentrations (Fig.3-5a). This might give the impression that elevated Ba 

concentrations positively influence foraminiferal abundances. However, increasing densities 

towards present day (i.e. core top) is a well-known phenomenon in the SW Barents Sea (e.g. 

Dijkstra et al., 2017; Dijkstra et al., 2015). It can be attributed to enhanced inflow of Atlantic 

water towards the area creating more favourable conditions for benthic foraminifera and 

hence higher foraminiferal densities. Enhanced inflow of Atlantic water is additionally 

supported by higher relative and absolute abundances of species associated with Atlantic 

conditions, i.e. C. laevigata, E. nipponica, M. barleeanus and P. bulloides (Fig.3-5d). 

Enhanced inflow of Atlantic water into the Barents Sea since 1980 CE is a well-documented 

phenomena (Bengtsson et al., 2004; Ingvaldsen et al., 2002). 

Down core changes in fossil foraminiferal faunal composition outside drill cutting influenced 

sediment layers are interpreted to be attributable to natural environmental and climatic 

changes. 

In cores E5-E125 a shift from relatively high abundances (% and #/g) of cool associated 

species C. reniforme, E. clavatum, Islandiella spp. and N. labradorica (grouped in 

Association II) to higher abundances (% and #/g) of C. laevigata, C. lobatulus, E. nipponica, 

M. barleeanus, P. bulloides and T. angulosa is observed (Fig. 3b). A similar shift is observed 

in cores S30-S125 (Fig. 5). Similar higher abundances of cool associated species followed by 

a shift to Atlantic water associated assemblages, are observed in cores studied in Ingøydjupet 

(Dijkstra et al., 2015) and southern part of Bjørnøyrenna (Dijkstra et al., 2017a). These shifts 

are attributed to the shift from the cool Little Ice Age (LIA) towards the period of Modern 

Warming (MW) (Lamb, 1977). A more detailed discussion of these natural environmental 

changes is beyond the scope of this paper.  

5.3 Environmental impact of drill cuttings 

One well documented effect of released drill cuttings is smothering of in-situ fauna (e.g. 

Aagaard-Sørensen et al., 2018; Cochrane et al., 2019; Dijkstra et al., 2015; Hess et al., 2013). 

Smothering can result in low foraminiferal densities or barren sediment intervals. 

Experimental studies showed a smothering effect on foraminifera when the drill cutting layer 

exceeds 2.4 cm (Hess et al., 2013). Observations of smothering were made in wells located in 

our study area (Well G-2006 and Well T-1987; Fig. 1b) (Aagaard-Sørensen et al., 2018) when 

the drill cutting layer is thicker than 3cm.  
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Low foraminiferal densities in the lower part of core G10, coinciding with high Ba 

concentrations. Ba is considered to be non-toxic and other metal concentrations were not 

elevated within these Ba-rich layers. This suggests that the low foraminiferal densities most 

likely reflect smothering of the in-situ fauna. In addition, the low foraminiferal densities in 

core S8 suggest that the >20 cm drill cutting deposited close to well S-2012 smothered the in-

situ fauna.  

All cores collected at well E-1992, cores G30-G250 and core S30 show drill cutting 

influenced sediment layers of >3cm in thickness (Fig.3-5). Rapid deposition of such thick 

layers of drill cuttings would be expected to smother the foraminiferal fauna (Hess et al., 

2013). However, within these layers lower foraminiferal densities are not observed. We argue 

that this indicates that the initial deposited drill cutting layer was not thick enough (i.e. less 

than 3 cm) to smother the foraminiferal fauna. The prevailing fauna was maintained at the 

coring sites and could bioturbate through the deposited drill-cutting layer. The >3 cm thick 

drill cutting influenced sediments are therefore more likely the result of gradual re-

transportation of Ba-rich sediments from the original drill cutting deposit at the well towards 

the core locations. Similar observation of re-transportation of drill cuttings were made at a 

well located in our study area drilled in 1987 (Well T-1987; Fig. 1b) (Aagaard-Sørensen et al., 

in review; Berg, 2017). Gradual re-transportation of Ba-rich sediments towards the core 

locations is supported by increased Ba values towards the top of the cores (Junttila et al., 

2018). 

It should be noted that other intervals barren for foraminifera or with low foraminiferal 

densities were observed in cores E5, G30-G125 and S30-S125 (Fig. 3-5). These barren 

intervals do not coincide with drill cutting influenced sediments, nor high concentrations of 

other heavy metals  (Junttila et al., 2018 and Table 2/ Supplementary data B). We therefor 

interpret these intervals to have a natural cause. A more detailed discussion of what this 

natural cause might be is beyond the scope of this paper.  

Changes in dominating foraminiferal taxa is another potential impact of released drill cuttings 

and their associated contaminants (Aagaard-Sørensen et al., in review; Aagaard-Sørensen et 

al., 2018; Berg, 2017; Jorissen et al., 2009; Mojtahid et al., 2006).  In our study we only 

observed a faunal changes that coincides with Ba enriched layers in one core, i.e. core G10. 

Other faunal changes observed in the cores were outside drill cutting influenced layers and 

could be attributed to natural causes as briefly discussed above (chapter 5.2). 
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Based on the dead foraminiferal assemblages, core G10 can be divided into two parts. The 

lower part (4-20 cm) of the core is characterized by low densities (#/g; Fig. 4b), while the top 

of the core (0-4 cm core depth) show higher densities. This shift in foraminiferal density is 

accompanied by a shift from high relative abundances of C. reniforme, E. clavatum, 

Islandiella spp., N. labradorica and C. neoteretis to higher relative abundances of C. 

laevigata, E. nipponica, M. barleeanus, P. bulloides and T. angulosa (Fig. 4d). This indicates 

that at 4 cm core depth we observed a shift from species associated with cooler Arctic 

conditions towards species associated to the warmer Atlantic conditions (Dijkstra et al., 

2017a; Dijkstra et al., 2013; Dijkstra et al., 2015; Saher et al., 2012; Sejrup et al., 2004). It 

should be noted that foraminiferal abundances are low (specimens identified per sample 

<100), hence relative abundances should be interpreted with care.  

As the entire core G10 is interpreted to consist of drill cutting impacted layers, the sediments 

captured at the coring site must all have been deposited during or after the release of drill 

cuttings at the well in September/October 2000. The cold and harsh, polar like environmental 

conditions, as suggested by the foraminiferal assemblage, did not prevail in Ingøydjupet 

during this time period (Dijkstra et al., 2015). E. clavatum and C. reniforme are species that 

are additionally associated to stressed environments, either by natural or anthropogenic 

induced stressful conditions (Alve, 1995; Hald and Korsun, 1997). The presence of these 

species could therefore be related to the release of drill cuttings to the area. However, drill 

activities at well G-2000 lasted over the span of ca. only 15 days (NPD, 2017). It is unlikely 

that these species populated the area within this short of a time span. It is therefore more 

likely that the impacted foraminiferal fauna was released together with the drill cuttings. This 

is supported by observations of damaged and polished foraminifera in this interval of the core. 

Similar observations were previously made at a well at the same petroleum field (Aagaard-

Sørensen et al., 2018; Well G-2006; Fig.1b). Low densities in addition to significant higher 

abundances of species of Association II are not observed in the Ba-enriched layers of core 

G30-G250. 

R-mode clustering and NMDS (Suppl. Figure II) confirms the presence of two associations 

down core within the foraminiferal assemblage and their potential environmental 

interpretation. R-mode clustering grouped all samples from the lower part of G10 together in 

group II, while most of the samples from the other cores were grouped together with samples 

from the top 4 cm of core G10 in group I (Fig.6b and Suppl. Figure II). This is confirmed by 

the biplot of the NMDS, in which the group II cluster plots towards the same direction as Ba, 

indicative of drill cutting rich sediments. Additionally, samples with low foraminiferal 
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abundances from cores G30 and G125 are grouped in group II. These samples are however

from intervals not impacted by drill cuttings. We therefore argue that, for well G-2000, 

samples of group II reflects challenging conditions, either anthropogenic (samples of G10) or 

natural (samples of G30 and G125).  

Overall it can be concluded that the environmental impact of the released drill cuttings mainly 

consisted of smothering of foraminiferal fauna. Smothering was only observed in station S8 

(Well S-2012) and G10 (Well G-2000). We therefore conclude that the observed impact of 

drill cutting releases at the wells G-2000 and S-2012 was confined to 30m downstream from 

the wellhead. Traditionally monitoring studies around wells mainly focus on samples 

collected > 250 m from the wellhead (Renaud et al., 2008). These might thus not capture the 

real environmental impact of drill cuttings. 

Changes in foraminiferal assemblages in the cores collected at the transect at well E-1992 

could be attributed to natural environmental change. No negative impact on the foraminiferal 

fauna from the released drill cuttings was observed. This is somewhat surprising as the well 

was drilled in 1992, i.e. before the stricter regulations on the use of oil based drill cuttings 

(NPD, 2017). The lack of environmental impact is opposite to findings at well T-1987 (Fig.1) 

drilled in 1987, where surface sediments <30m from the well show highly elevated heavy 

metal concentrations (Junttila et al., 2018) and impacted foraminiferal assemblages (Aagaard-

Sørensen et al., in review; Berg, 2017). It should be noted that the amount of drill cuttings at 

well E-1992 corresponded to 688 tons, while amounts released at well T-1987 corresponded 

to 3353 tons (Junttila et al., 2018; NPD, 2017). Additionally Ba concentrations at well E-1992 

are up to 40 times lower than in well T-1987. This suggests that the amount of drill cuttings 

released has an impact on the extent of environmental impact as well.  

5.4. Recovery and present day environmental impact 

Live, rose Bengal stained foraminifera(Fig. 2) observed in the top 5cm of the cores reflect the 

present day environmental conditions along the transects. The dominant live taxa observed in 

the stations are comparable to taxa observed in non-impacted areas of Ingøydjupet and the 

surrounding southern part of the Barents Sea (Dijkstra et al., 2013; Saher et al., 2012). This 

indicates that the modern foraminiferal assemblage was not impacted (anymore) by the 

released drill cuttings at the time of sampling.  

Exception is station S8 at well S-2012. Live fauna is absent in the upper 5cm of core S8. This 

indicates that the fauna had not recovered 3 years after the release of drill cuttings. High 
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concentrations of Cu might be an explanation for this (Junttila et al., 2018). High sand content 

(i.e. up to 91%; Fig. 5e; Junttila et al., 2018) and large amounts of particles > 2 mm (0-10 cm 

and 17-20 cm core depth; Junttila et al., 2018) found in station S8 might also have created 

unfavourable conditions for foraminifera to re-establish. Visual inspection of the wellhead 

with an ROV during sample taking showed high amounts of cement around the well (Suppl. 

Fig. Ib).  

For the fossil fauna, we observed an increase in abundance of species grouped in Association 

I in the top part of core G10 at well G-2000, coinciding with decreasing Ba concentrations. 

We therefore interpret the top 4cm of core G10 to reflect a recovery layer that has been 

deposited after the initial release of drill cuttings at well G-2000. A recovery layer is 

supported by the densities of a live fauna corresponding to live faunal densities downstream 

(G30-G250). As core G10 was collected 15 years after release of drill cuttings, a recovery 

layer of 4 cm would imply a sedimentation rate of 2.6 mm/year. This is slightly above the 

(natural) range in sedimentation rates Junttila et al., (2014) calculated for the Ingøydjupet 

trough, i.e. between 1.0 and 2.4 mm/year. This either implies a wider range in natural 

variability of sedimentation rates in the area, or increased input of sediments towards the site 

of core G10, for example as a result of re-transportation of drill cuttings from the wellhead.  

A recovery layer was also confirmed by visual inspection of the samples through a 

microscope. The bottom part of core G10 mainly consisted of foam like and green particles 

(Supplementary figure Ia). These foam like and green particles are only present in very low 

amounts in the top part of the core.  

6. Conclusions

The main aim of this study is to identify the environmental impact of released drill cuttings 

around three wells in the SW Barents Sea. These wells were drilled in 1992 (Well E-1992), 

2000 (Well G-2000) and 2012 (Well S-2012) during which different regulations on discharge 

of environmental hazardous substances were active (Fig.1a and b). Sediment cores (20 cm 

long) are studied along transects down-stream (>5-250 m away) from the wellheads (Fig. 1c). 

Drill cutting influenced sediment layers are identified by elevated Ba concentrations (ca. >200 

mg/kg), as barite (BaSO4) is used as weighing agent during the drilling process. Drill cutting 

influenced sediment layers are found along the entire transect at each of the wells varying in 

thickness of 1 cm up to >20 cm.  
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The main environmental impact of released drill cuttings on the foraminiferal fauna is 

smothering, obstructing bioturbation and resulting in low foraminiferal abundance (Fig. 4b 

and 5b; well G-2000 and S-2012). The released drill cuttings do overall not result in changes 

in foraminiferal species composition (Fig. 3d, 4d and 5d). In well G-2000, we however 

observe a different foraminiferal fauna within the drill cutting deposits (Fig. 4d). These 

species are interpreted to be part of an old fossil fauna, released together with the drill 

cuttings.  

Our findings at well E-1992 suggest that not all drill cuttings released before stricter 

regulations set in place in 1993 have resulted in negative environmental impact. The relatively 

low amounts of drill cuttings released seem to limit the environmental impact.  

Our findings at well G-2000 indicate that the seafloor environment around the well has 

recovered, at least partly, 15 years after the release of drill cuttings. At well S-2012, absence 

of live fauna implies that no recovery of foraminiferal assemblage has occurred, 3 years after 

the release of drill cuttings. 

Overall, it can be concluded that the effect of the released drill cuttings at all wells is confined 

to < 30 m from the wellhead. Traditional monitoring studies around wells mainly focus on 

samples collected > 250 m from the wellhead (Renaud et al., 2008), and might thus not 

capture the real environmental impact of drill cuttings. Increasing Ba concentrations towards 

present are observed in the wells at stations ≥30 m away from the wellhead. This indicates 

that Ba rich sediments are still being re-transported 3, 15 and 23 years after the initial 

releases, yet with no influence on the foraminiferal assemblages.  
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Tables 

Table 1.  

Overview of analysed material 

Location 

(well name) 

Distance 

well (m) Core name 

Analysed 

intervals 

Reference to core 

in text 

Well E-1992 

(7122/4-1) 

250 250-3 

0-8 cm core depth: 1 cm interval 

Thereafter: 10.5, 13.5, 16.5, 19.5cm 

E250 

125 125-1 E125 

60 60-6 E60 

30 30-9 E30 

5 5-10 E5 

Well G-2000 

(7122/7-1) 

250 250-6 

0-6 cm core depth: 1 cm interval 

Thereafter:  7.5, 9.5, 11.5, 13.5, 15.5, 17.5, 

19.5cm 

G250 

125 125-3 G125 

60 60-11 G60 

30 30-5 G30 

10 10-6 entire core : 1 cm interval G10 

Well S-2012 

(7220/10-1) 

250 250-9 0-6 cm core depth: 1 cm interval 

Thereafter:  7.5, 9.5, 11.5, 13.5, 15.5, 17.5, 

19.5cm 

S250 

125 125-3 S125 

60 60-8 
0-14 cm core depth: 1 cm interval 

Thereafter:  15.5, 17.5, 19.5cm 
S60 

30 30-5 entire core : 1 cm interval S30 

8 8-1 entire core : 1 cm interval S8 
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Table 2.  

(A) Metal data of cores collected at well G-2000. See also Supplementary data B 

(B) Environmental quality classes and their corresponding metal concentrations after Bakke et 

al., 2010. 

(A) Range (mg/kg) 

Station Cd Cr Cu Hg Pb Zn Ti Ba 

G10 0,04-0,11 23-44 13-31 0,02-0,11 9-19 19-45 625-3690 2810-8730 

G30 0,02-0,23 26-61 9-29 0,01-0,03 6-11 34-71 467-1330 50-4800 

G60 0,04-0,22 20-144 7-13 0,01-0,02 5-9 29-47 413-757 48-785 

G125 0,02-0,18 21-34 7-10 0,01-0,02 6-9 30-49 492-674 50-636 

G250 0,02 -0,08 19-35 6-15 0,01-0,02 5-9 23-47 378-693 36-552 

(B) Env. classes (Bakke et al., 2010) 

Class Cd Cr Cu Hg Pb Zn 

I <0.25 <70 <35 <0.15 <30 <150 

II 0.25 - 2.6 70 - 560 35 - 51 0.15 - 0.63 30 - 83 150 - 360 

III 2.6 - 15 560 - 5900 51 - 55 0.63 - 0.86 83 - 100 360 - 590 

IV 15 - 140 5900 - 59000 55 - 220 0.86 - 1,6 100 - 720 590 - 4500 

V >140 >59000 >220 >1.6 >720 >4500 
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Table 3. 

Summary of the most common benthic foraminiferal species with associated water mass and 

environmental interpretation 

Ass. Interpretation Species / taxa Environmental 

preferences 
Reference 

I Organic rich 

conditions 

(Atlantic) 

M. barleeanus degraded 

organic matter; 

fine grained 

sediments 

(e.g. Dijkstra et al., 2013; Linke and 

Lutze, 1993; Mackensen et al., 1985) 
P. bulloides 

High energy 

environment 

T. angulosa epifaunal in 

sandy 

sediments; 

high energy 

environment 

(e.g. Hald and Steinsund, 1996; 

Mackensen et al., 1985; Nyholm, 1961; 

Steinsund, 1994) 
C. lobatulus 

Atlantic 

conditions 

(saline & 

warm) 

C. laevigata warm, saline (e.g. Altenbach et al., 1999; Hald and 

Steinsund, 1992; Jennings et al., 2004; 

Mackensen and Hald, 1988; Saher et al., 

2012; Sejrup et al., 2004; Steinsund, 

1994) 

E. nipponica 
warm; pulsed 

food supply 

II 

C. neoteretis 

chilled Atlantic (e.g. Gooday and Lambshead, 1989; 

Jennings et al., 2004; Mackensen and 

Hald, 1988) 

Arctic 

conditions 

(fresh & cool) 
N. labradorica 

cool, Arctic 

Front 

pulsed 

phytodetritus 

(e.g. Hald and Korsun, 1997; Hald and 

Steinsund, 1992; Korsun and Hald, 

1998; Polyak and Solheim, 1994; Sejrup 

et al., 2004; Smart and Gooday, 1997; 

Sun et al., 2006; Wilson et al., 2011) Islandiella spp. cool 

E. clavatum 

low salinity and 

temperature; 

opportunistic 

C. reniforme 

cooled saline 

water; 

opportunistic 
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Figure captions 

Fig. 1 – Study area. (A) Map of the study area in the SW Barents Sea. The arrows indicate 

the main water masses, i.e. Atlantic water (red), Coastal water (green) and Arctic water 

(black). (B) Bathymetric map showing the locations of studied exploration wells (red 

triangles) and locations of other fields in the area (white triangles). Yellow circles indicate 

previous foraminiferal studies around wells in the study area (Well T-1987; Aagaard-

Sørensen et al., in review, Berg et al., 2017, Junttila et al., 2018. Well G-2006; Aagaard-

Sørensen et al., 2018) (C) Sketch showing sampling stations along the sampling transect. 

Fig. 2 – Live assemblage. (A) Density or total absolute abundances (# specimens/gram dry 

sed. weight) of live assemblage (top 5 cm) along sampling transects at well E-1992, G-2000 

and S-2012, separated into total calcareous abundance (calc.; light grey) and total agglutinated 

abundance (aggl.; dark grey). (B) Dominance (black dot; left y-axis) and Fisher alpha 

diversity (cross; right y-axis) of the live assemblage along the sampling transects. (C) Relative 

abundance (black line with dot; left y-axis) and species absolute abundances (grey shading; 

right y-axis) of the most common species along the sampling transect. 

Fig. 3 Well E-1992; Fig. 4 Well G-2000; Fig. 5 Well S-2012 – Dead assemblage. Graphs 

show down core distribution of each of the shown parameters along the sampling transects 

(cores taken 5/8/10m, 30m, 60m, 125m, 250m from well head) (A) Ba-concentrations 

(mg/kg). Drill cutting (DC) influenced layers are indicated by yellow shading (data and 

interpretation well E-1992 and S-2012 from Junttila et al., 2018). (B) Foraminiferal density or 

total absolute abundance (# specimens/g dry sed. weight) of dead assemblage, separated into 

total calcareous abundance (calc.; light grey) and total agglutinated abundance (aggl.; dark 

grey) (C) Dominance (dot; upper x-axis) and Fisher alpha diversity (cross; lower x-axis) of 

the dead assemblage. Black dot indicates samples in which >100 specimens were identified; 

white dots samples in which <100 specimens were identified. (D) Relative abundance (black 

line with dot; upper x-axis) and species absolute abundances (grey shading; lower x-axis) of 

the most common species. Black dot indicates samples in which >100 specimens were 

identified; white dots samples in which <100 specimens were identified. (E) Clay (light grey), 

silt (dark grey), sand (black) and TOC content (red line) of the cores (data Well E-1992 and 

S-2012 from Junttila et al., 2018).  
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Fig. 6 – Down core distribution foraminiferal groups. (A) R-mode clustering of the 

common foraminiferal species; (B) Down core distribution of the summed relative abundance 

of the species of the two associations found with the R-mode clustering for the cores along 

each sampling transect. Down core Ba concentrations (mg/kg) are shown with red. Drill 

cutting (DC) influenced layers indicated with yellow shading.  

Supplementary figures 

Suppl. Fig I. (A) Left: Picture through microscope of 0.1-1 mm fraction of sample from top 

of core G10 (0-4 cm) consisting mainly of natural sediments Right: Picture through 

microscope of 0.1-1 mm fraction of sample from lower part of core G10 (4-20 cm) consisting 

mainly of drill cuttings (foam-like yellowish and green particles). (B) Picture of wellhead of 

well S-2012 taken with ROV shows cement casing around wellhead. Fishes for scale. 

Suppl. Fig. II Clusters. (A) Q-mode clustering of the core samples based on their relative 

abundance of species assigned to association I and II for each of the three wells; (B) 

Clustering of the samples based on non-metric multidimensional scaling. Dark grey shading 

highlights samples assigned by Q-mode clustering to group I, light grey shading highlights 

samples assigned to group II. Different symbols indicate samples from the different cores 

collected at each well (see legend on figure), with sample depth indicated next to it. 

Suppl. Fig III Spreading model. Schematic overview of spreading of the drill cuttings at 

each of the wells. Red indicates drill cutting influenced sediments based on higher Ba 

concentrations. Brown indicates sediments interpreted to be “natural”. Wells E-1992 and S-

2012 after Junttila et al., 2018. 
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