
Power-law scaling of uncorrelated plasma bursts

A. Theodorsen1, O. E. Garcia1, M. Rypdal2

1 Department of Physics and Technology, UiT - The Arctic University of Norway, Tromsoe,

Norway
2 Department of Mathematics and Statistics, UiT - The Arctic University of Norway, Tromsoe,

Norway

Self-organized criticality (SOC) is a well-known paradigm for explaining power law proba-

bility distributions and frequency spectra in astrophysical, space and laboratory plasmas [1, 2].

Some examples are presented in Figs. 1 and 2. By contrast, in the scrape-off layer (SOL) of

magnetically confined fusion plasmas and other turbulent systems, probability distributions with

exponential tails and Lorentzian frequency spectra are observed, see Figs. 3 and 4 [3, 4]. These

observations are well explained by a stochastic model consisting of a superposition of expo-

nential pulses, arriving according to a stationary Poisson process, called the filtered Poisson

process (FPP) [3, 4]. Connections between SOC and the FPP were made as early as one of

the original SOC publications [5], where power-law distributed event durations and power-law

frequency spectra were explained based on viewing a SOC time series as a sequence of uncor-

related pulses.

In this contribution, we investigate power-law behavior in the FPP. By allowing pulse du-

rations, pulse decay or pulse amplitudes to follow a power-law, different power-law scalings

emerge in the power spectral density and in the distributions of process amplitude, avalanche

durations and avalanche sizes. The findings are applied to example time series from a tokamak

SOL.

Figure 1: Solar flare

energy distribution [1].

Figure 2: Power spec-

tra of solar wind [6].
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Figure 3: Power spec-

tra from the SOL [7].

The black dashed line

gives the standard FPP.
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Figure 4: Probability

densities from the

SOL [7]. The black

dashed line gives the

standard FPP.



The filtered Poisson process

The filtered Poisson process (FPP) is given by

Φ(t) =
K

∑
k=0

(T )Akφ

(
t− tk

τk

)
, (1)

where Φ is defined on t ∈ [0,T ]. The pulse amplitudes are denoted by Ak, the pulse shape is φ ,

the number of pulses in [0,T ] is given by K(T ), tk denotes pulse arrival times and τk denotes

pulse duration times. The pulse shape is normalized to
∫

∞

−∞
φ(θ)dθ = 1. All random variables

are assumed independent, and K(T ) is Poisson distributed with intensity 〈K〉= T/τw.

We denote the special case of degenerately distributed duration times, exponentially decaying

pulse shape and exponentially distributed amplitudes by the standard FPP. For 〈τ〉/τw → 0,

there is practically no pulse overlap and each pulse can be considered separately. This is called

the intermittent limit. For 〈τ〉/τw→∞, infinitely many pulses arrive in the decay time of a single

pulse. As long as all distributions have finite moments the normalized FPP Φ̃= (Φ−〈Φ〉)/Φrms

approaches a normally distributed process. This is therefore the normal limit.

Power-law scaling in the FPP

We investigate power-law behavior in the following statistical properties:

• Process amplitude probability distribution function, pΦ(Φ).

• Power spectral density, ΩΦ(ω).

• Probability distribution of time above the mean value (avalanche duration), p4T (4T ).

• Probability distribution of integral above mean value (avalanche size), pS(S).

Separately considering the cases of power-law distributed pulse duration times, power-law

pulse decay and power-law distributed pulse amplitudes gives the following table. For deriva-

tions and further explanations, see [8].

Standard pτ(τ)∼ τ−α φ(θ)∼ θ−α pA(A)∼ A−α

regime 1 < α < 3 0 < α < 1

pΦ(Φ)∼Φ−s None None None Present

ΩΦ(ω)∼ ω−β None β = 3−α β = 2(1−α) None

Intermittent, p4T (4T )∼4T−ν None ν = α None None

Normal, p4T (4T )∼4T−ν
ν = 3/2 ν = α/2+1 ν = α +3/2 ν = 3/2

Intermittent, pS(S)∼ S−χ None χ = α None χ = α

Normal, pS(S)∼ S−χ χ = 4/3 χ = 4/(4−α) χ = 4/(3−2α) χ = 4/3



100 101

Φ̃−min(Φ̃)

10−6

10−5

10−4

10−3

10−2

10−1

100

1
−

C
D
F
Φ̃
[Φ̃

−
m
in
(Φ̃

)]
I1

I2

(a) Ion saturation current survival func-

tion.
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(b) Ion saturation current power spec-

tral density.
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(c) Survival function of avalanche dura-

tions.
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(d) Survival function of avalanche sizes.

Figure 5: Example time series from the tokamak scrape-off layer.

Example: Ion saturation current in the tokamak scrape-off layer

Here, we consider example time seres of the ion saturation current from the SOL of a toka-

mak. The ion saturation current time series have been detrended by removing a running mean

and dividing by a running standard deviation. In Fig. 5, the statistical properties of the signals is

presented. It is seen that only the power spectral density displays power-law behavior, indicat-

ing the presence of pulses decaying as a power law. To investigate this, we generate synthetic

realizations of the FPP with power-law pulses with α = 1/2 and an exponential cutoff at 35µs.

The results, which are consistent with the experimental time series, is presented in Fig. 6.

Conclusions and future work

In conclusion, different assumptions in the inputs lead to different, separable scalings in the

FPP. We found no evidence of duration time distributions or power-law amplitudes in example

time series, while the FPP with power-law pulses was consistent with the example time series. In

the future, we seek to extend the results to non-Poisson arrival times and to avalanche duration

and size distributions for intermediate intermittency. This will be completed by an investigation

of canonical SOC systems.
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(a) Ion saturation current survival

function.
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(c) Survival function of avalanche du-

rations.
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Figure 6: Example time series from the tokamak scrape-off layer. The green line gives the

realization of the FPP.
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