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Abstract  
The Arctic environment is projected to be the most affected by rising seawater temperature. 

Polar cod (Boreogadus saida) a key stone species are particularly vulnerable to climate 

change with their restricted thermal tolerance and a slow embryogenesis. Increasing our 

knowledge of polar cod development will help improve our understanding of the impact of 

climate change and a warming Arctic in the future and the impacts this might have on the 

population. This study aimed at characterizing the development of Polar cod from 

fertilisation to 86 days post fertilisation (dpf) at two temperatures within their biological 

tolerance (0 & 3 °C) in order to determine the thermal response during early life histories.  

Adult polar cod were wild caught from Svalbard waters, stripped and artificially fertilised. 

The embryos were distributed among 8 incubators, 4 incubators per temperature (0 & 3 °C). 

The present study found that the larvae incubated at 0 °C experienced less mortality, greater 

hatching success and a larger size at hatch and during early feeding than 3 °C larvae. 

However the larvae had a slower feeding initiation, a lower feeding success and less yolk sac 

at the corresponding developmental ages. Comparatively the larvae incubated at 3 °C 

experienced faster development, greater feeding success and larger yolk reserves at hatch and 

first feeding. However these larvae experienced higher mortality and lower hatching success, 

a smaller hatching size and were less developed at hatch. In regards to the results of this study 

0 °C treatment provided the ideal conditions for survival. However polar cod early life 

development might benefit from a slightly warmer Arctic from faster development leading to 

less time spent as vulnerable larvae and a better predatory avoidance and thus better juvenile 

recruitment. However under accelerated temperatures the temperature optimum may be 

exceeded and larvae will experience significantly negative biological and environmental 

consequences.  
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1. Introduction  

1.1. Climate change and the expected effects of elevated seawater 

temperature 
The Arctic and sub-arctic seas are projected to be the most affected by rising seawater 

temperature and CO2 concentrations (Fransson et al, 2009). The climate is already changing 

rapidly in areas such as the Norwegian Sea, Barents Sea, Iceland and East Greenland Sea. 

Arctic water has a high solubility of CO2 which further enhances impacts of climate change. 

Atlantic waters are increasing in temperature which flow in to the Arctic Ocean accelerating 

the decline in sea ice cover, decreasing buffer capacities and aggravating ocean acidification 

(Igor et al 2010). Ocean warming and acidification threatens fish populations through 

narrowing of embryonic thermal ranges and reducing suitable spawning habitats (Dahlke et 

al, 2018). Average sea surface temperature will potentially rise 3 °C or more by the year 2100 

having profound effects on early life stages of fish inhabiting those surface waters (Llopiz et 

al, 2014). The sea ice cover in the Arctic Ocean previously behaved in a more stable and 

predictable way. During the first half of the 20
th

 century, arctic sea ice would reach 15 

million km
2
 each March retreating 7 million km

2
 each September. The multi-year ice (MYI) 

was thick enough to survive the melt season and in 1970s MYI occupied more than two thirds 

of surface area of the Arctic basin. The remaining one third of the Arctic basin was occupied 

by first year ice (FYI). Since 1979 the seemingly stable Arctic sea ice cover started to change 

considerably (Kwok and N. Untersteiner 2011). Comiso (2002) studied multiyear ice cover 

(MYI) using satellite passive microwave data from 1978 to 2000. Their findings found that 

MYI cover is shown to be declining at a relatively fast rate of 8.9 % per decade. If this 

decline persists, MYI cover will likely disappear within this century. Wang and Overland 

(2012) used climate models to address the question of the extent of sea ice loss. The results 

suggest a nearly Sea ice free Arctic by the 2030s. Laxon et al (2013) using estimates of ice 

volume from cryo sat-2 satellite radar altimeter measurements of sea ice thickness found 

2012 summer ice extent to be the lowest on satellite record. Perovich and Richter-Menge 

(2015) collected data from various sources on 41 sites within the Arctic region, complied to 

investigate the amount of surface and bottom ice melt from 1957 to 2014. They found 

between the periods 2000 to 2014 near the edge of summer ice cover there was enough 

melting to completely melt first year ice and on two occasions completely melt MYI cover in 

the Beaufort Sea. Comiso (2002) concludes that a reduction in ice cover will result in a large 

influx of solar radiation into the Arctic Ocean which will change the characteristics of the 
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water column. There will be an increase wind strength over the water surface reducing 

stratification and encouraging mixing of nutrient rich waters and nutrient replenishment from 

upwelling’s. In turn this will change the productivity and biota of the region increasing 

primary production and consequently increasing zooplankton and fishery production (Arrigo, 

et al, 2008,. Bouchard and Fortier, 2008). The increasing CO2 concentrations and temperature 

of surface waters may increase phytoplankton growth rates however potentially resulting in a 

negative physiological response of the breakdown of phytoplankton enzymatic activity 

(Sobrino et al 2008). A reduction in sea ice will also make the Arctic oceans more accessible 

to human activity such as oil exploration (Comiso 2002). Climate warming and ecosystem 

change will cause range expansion of boreal species into the Arctic regions. This could result 

in an overlap in diet between Arctic native species such as polar cod and advancing 

competing species resulting in potential habitat displacement (Renaud et al 2012). 

It is widely considered that the early ontogeny of fish species is the most temperature 

sensitive stage in development (Laurel et al, 2018). Arctic species such as polar cod have 

adapted to low temperatures and low thermal fluctuations within the natural environment 

through evolution to maintain performance and endurance. This specialisation of a species 

keeps them bound to a strict range of environmental conditions (Speers-Roesch et al, 2018). 

These life history traits are bottlenecks for some species resulting in a reduced ability to adapt 

to rapid environmental changes such as future predictions of climate change (Dahlke et al, 

2018). A slight change or fluctuation of abiotic conditions in the previously stable Arctic 

environment can have great impacts on such species metabolic demands, resulting in high 

energy costs potentially negatively affecting general fitness performance such as growth, 

reproduction, swimming capacity and feeding success (Butler 1992). Temperature is known 

to have significant effects on the rate of development in larvae incubation period and size at 

hatch (Perrichon, et al 2018). This alone can have adverse effects on populations, considering 

the timing of spawning and subsequent hatching has likely evolved to provide a favourable 

feeding environment for larvae. Such as the early spring plankton bloom in the marginal ice-

zone (Graham 1995). Higher ocean temperatures result in faster growth and earlier hatching 

and a faster absorption of the vitelline reserves (Perrichon, et al 2018), until the optimal 

temperature is exceeded. A warmer climate may lead to changes in polar cod phenotypic 

traits including earlier maturation, smaller size, increased investment in reproduction at early 

age, and in sum a reduced fecundity (Nahrgang 2014).  
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1.2. Polar cod   
Polar cod (Boreogadus saida) is an abundant Arctic fish species, found in diverse arctic and 

subarctic habitats ranging from brackish to fully marine waters (Bouchard, et al 2011) coastal 

and offshore waters (Nahrgang 2014), both pelagic and benthic habitats during the juvenile 

and adult stages (Gradinger and Bluhm 2004). Polar cod are an important element of a strong 

bottom up controlled ice-associated food web (Gradinger and Bluhm 2004), they are 

considered an important energy rich resource for many marine birds and mammals in the 

Arctic ecosystem (Christiansen 2012). Welch et al (1992) found that Polar cod channel up to 

75 % of energy flow from zooplankton to higher trophic levels. The early life stages of Polar 

cod have low thermal tolerance with upper thermal limits of 3 to 3.5 °C and a declining 

hatching success above 2 °C (Laurel et al 2018). Young polar cod are often observed within 

cracks and brine channels of sea ice (Gradinger and Bluhm 2004) which is a successful way 

of avoiding predation from below and above the ice (Lønne and Gulliksen 1989). Peak 

hatching occurs in April and May but extends from January to July (Bouchard et al, 2017). 

They spawn large transparent pelagic eggs (Graham 1995) which develop under the ice 

(Bouchard 2015). Age 0 ice associated juvenile polar cod develop in the top 100 m surface 

layer over the spring and summer (Lønne and Gulliksen 1989). By early fall they descend to 

intermediate depths to join the deep adult population at temperatures below 0 °C (Bouchard 

et al, 2017). Age 2+ polar cod are mostly mesopelagic forming dense aggregations within a 

deep embayment and along the shelf slope (Bouchard et al, 2017). Understanding the thermal 

sensitivity of eggs and larval stages is one way of assessing their likelihood of survival with a 

changing climate. Polar cod have large eggs with larger lipid reserves which give large larvae 

at hatch. This corresponds with the longer development time of the embryos in order to 

ensure survival to onset of feeding (Laurel et al 2018). A larger pre-winter size is an 

important survival advantage; higher temperatures will improve growth and thus survival of 

larvae during winter (Bouchard et al 2017). Summer hatchers experience higher temperature, 

have more food and grow faster which will help them reach adult size in a shorter period of 

time. This reduces the time spent most vulnerable to predation compared to winter hatchers 

who have a longer growing season (Fortier et al 2006). Polar cod live closely to the surface 

sea ice during their most vulnerable early life stages, their lives are largely connected to and 

affected by the condition of the ice which is receding and thinning with increasing 

temperatures. Declining sea-ice extent and thickness may alter community dynamics and 

structure, a change in abundance of Polar cod may have damaging effects on the Arctic 

marine ecosystem (Bouchard 2017). Polar cod abundance has been found reduced in the 
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southern ranges of its distribution, the Barents Sea, due to the rising water temperatures 

(Eriksen et al, 2015). 

To better understand how further temperature changes may affect Polar cod chances of 

survival we must first acquire the in-depth knowledge of their early life development. These 

findings will act as a baseline study and will be used as a direct comparison for future 

temperature dependent experiments (as well as toxicology) and help us to determine what 

climate change may mean for this species. 

 

1.2. Objectives  
This study characterizes the embryogenesis of Polar cod (Boreogadus saida) while 

comparing two temperatures 0 & 3 °C. The larvae were compared both over chronological 

time and over corresponding development stage. The reference temperature 0 °C represents 

the preferred temperature (Dahlke et al. 2018) of polar cod embryos and 3 °C represents a 

thermal stress temperature relative to a climate change scenario (Dahlke et al. 2018, Lind et 

al. 2018).  

We hypothesized that increased sea water temperatures will affect the development and 

survival of polar cod early life stages.  

We predict that larvae of 3 °C will experience a higher mortality induced by thermal stress 

and develop faster resulting in an earlier hatch with a smaller hatching size compared to 0 °C 

larvae. It is expected to find correlations between particular developmental stages and peaks 

in mortality expressing particular vulnerable developmental stages over time.   

This study will help improve our understanding of the impact of a changing Arctic and 

surrounding oceans related to future climate change predictions and what this might mean for 

Polar cod and how this might alter the Arctic ecosystem. 
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2. Method  
 

2.1. Ethical statement 
All work was performed according to and within the regulations enforced by the Norwegian 

Animal welfare authorities and no specific permissions were required. The R/V Helmer 

Hanssen is owned by UiT, The Arctic University of Norway, which has all the necessary 

authorization from the Norwegian Fisheries Directorate to use a bottom trawl to collect fish 

for scientific purposes. The experiment was approved by the Norwegian Animal welfare 

authorities (ID14192). 

2.2. Sampling Area and broodstock maintenance 
The sampling area was focused on the Arctic and Atlantic waters from North and Southeast 

of Hinlopen and trawls were taken at two stations; N1 (80° 19´N, 15° 37´E) and B1 (78° 

55´N, 23° 40´E) on November 20th 2017. Bottom trawls (6 total) were taken. The Campelen 

1800 shrimp trawl was fitted with a live fish lift to insure a more fish friendly trawling 

experience. Trawls were 20 minutes in duration and taken between 170-200m depth (at 

bottom). The B1 station where all polar cod used for experimentation were collected can be 

classified as Arctic water with reduced salinity and cold temperatures (-1 °C at bottom and at 

surface). When received on deck, trawls were roughly sorted for polar cod which were 

immediately placed into four flow through seawater tanks (ca. 2500 L) strapped on the 

starboard side of the trawl deck. These tanks were secured and fitted with lids to prevent 

losing fish during ship movement. Seawater temperature was ambient and varied from -1 °C 

at the capture location to 7 °C as the ship neared Tromsø. Roughly 1500 live polar cod were 

transferred to the biological station in Kårvika, Norway from the pier using an aerated trailer 

with 2 °C seawater. Upon arrival fish were transferred to a 3000 L holding tank at 2.3 °C and 

natural light at 69°N, feed daily with Calanus (Calanus AS) and treated daily with Halamid 

solution.  

2.3. Experimental set up 
Firstly 8 (4 per temperature of 0 & 3 °C) conical shaped incubators (25 L) were filled with 

natural UV treated and filtered (60 µm) sea water 33 PSU from the fjord. The water was 

brought to the correct temperatures, 0 and 3 °C, and checked regularly with thermometers. 

Hobo loggers were placed in randomly selected tanks and recorded light and temperature 

every 30 minutes, starting logging the day before the fertilisation occurred. The water flow 
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was controlled and maintained at 25L/hr. Air stones ensured a 90% oxygen saturation at 

minimum.  

A preliminary test was carried out the day before stripping and fertilisation of the eggs and 

milt in order to confirm if the brood stock were ready to spawn. In this preliminary test 4 

females were selected, the fish were anaesthetised in a finquel bath. 3 of the 4 individuals 

spawned within one minute of being placed in the solution, 1 of which without any pressure 

applied to the abdomen. This confirmed that the brood stock were ready for stripping. 

2.3.1. Rearing system, Stripping and in vitro fertilization 

On 28/01/2018 49 mature females (18.8±0.2 cm and 45.9±2.0 g) and 21 mature males 

(16.7±0.5 cm and 34.9±4.0 g) were sedated with MS222 (50 mg.L-1) and gently stripped 

between the hours of 10:30-13:00. The eggs of each female (20ml) were placed in two 

separate 10ml sterile and dry tubes, which were labelled and placed on ice. The fecundities of 

the spawning females varied depending on fish size, it was observed the larger fish had a 

larger swollen abdomen and greater spawning capacity. Age of the sample fish ranged from 

2-4 years.  The egg quality was carefully checked during and after the stripping process to 

ensure the samples quality and health, the samples were discarded if in too little quantity, 

discoloured or with blood. All care was taken to avoid the samples coming in contact with 

water. The eggs seemed homogenous in size within and between females. 21 males were 

stripped of the milt using the same process but not of the same quantity. The eggs of the 49 

females were mixed at a ratio 1:1 and split for in vitro fertilisation at 0 and 3 °C respectively. 

Milt from the 21 males were mixed at a ratio 1:1 similarly to the females and split equally 

between the two fertilisation temperatures. A total of 490 mL of eggs per temperature were 

distributed to two glass bowls maintained in an ice water bath (0 °C group) and in water 

equilibrated to 3 °C respectively. Milt (7mL) was added simultaneously over both bowls 

under time control at 14:30 and gently mixed for 10 minutes. Activation of the sperm and 

fertilization started with the addition of 2L of seawater stabilized to 0 and 3 °C respectively. 

After the 10 minutes of mixing, the excess of sperm was rinsed with seawater adjusted to the 

respective temperature groups. Potentially fertilised eggs (28 mL) were evenly distributed in 

each of the 8 incubators using 2 ml spoons, yielding approximately 8000 eggs per incubator. 

The extra eggs and milt were frozen at 20 °C. Polar cod embryos were raised under a 0:24h 

light/dark photoperiod cycle during four weeks and then the number of hours of light per day 

increases gradually to simulate polar light cycle at 80°N. 
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2.4. Mortality protocol 
Egg mortality was recorded on a 24hour basis, until all individuals within an incubator had 

either died or hatched. Eggs were assumed dead or dying if they were no longer buoyant and 

had sunk to the bottom of the incubator. First the aeration in the incubators were removed and 

left for 10 minutes to allow dead eggs to sink to the bottom. The valves on the bottom of the 

incubators were opened slowly releasing 1L of water collected in to a labelled beaker. All 

samples were taken within an hour. The aeration was replaced straight after the samples were 

collected. The samples were stored on ice. A sieve was used to rinse the eggs with seawater; 

they were then transferred to a petri dish with a pipette where they could be counted 

accurately using a counter. Eggs were also photographed using the same camera settings for 

all. The same protocol was done for mortality of larvae. 

2.5. Total hatching success protocol 
The hatching success rate was evaluated daily from first hatch to 80 % hatch. To determine 

the proportion of hatched larvae to eggs duplicate water samples were taken of each incubator 

corresponding to about 1% of the well mixed water column using a plastic pipe which has 

approximately the same length as the incubator, 5cm in diameter and holds a volume of ca. 

200 mL. The pipe was inserted in the water column straight down and all the way to the 

bottom, suction was applied to pull the sample out the incubator and in to a labelled beaker 

with the volume of  200 mL. Good aeration within the incubators was important to ensure the 

larvae and eggs were evenly distributed in the water column so each sample collected 

contained a representative proportion of embryos and larvae. The eggs and larvae were rinsed 

on to a sieve and transferred in to Bogorov counting chambers, using counters the eggs and 

larvae were counted separately and recorded to estimate the percentage of hatching per day. 

After counting the eggs and larvae were placed back in to the correct incubators. The total 

hatching success was calculated from the total embryo mortality counts by end hatch per 

incubator. The total amount of dead eggs was subtracted from the assumed total amount of 

fertilised eggs (8000) per incubator. This was divided by the total mortality and multiplied by 

100 to get the percentage of hatched larvae. Equation = 8000 - total dead eggs % total dead 

eggs x 100. The assumed start number of 8000 was based on the count of a subsample.  

2.6. Feeding protocol 
Larvae from both treatments were fed 3 million rotifers (provided by NOFIMA) twice a day 

at densities 7.5 rotifer per mL, mixed with Nannochloropsis (Nanno 3600, Reed Mari 

culture). Artemia spp. Nauplii (Micro Artemia Cysts, Ocean nutrition) was given at densities 
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of 2 prey per mL. Rotifer introduction to larvae of 3 °C treatment started at 35 dpf, Artemia 

spp. nauplii were first introduced to the larvae at 47 dpf and both rotifers and Artemia were 

fed simultaneously for 11 days. From 69 dpf a mix of enriched (INVE Selco S.presso) and 

newly hatched Artemia nauplii were given, Artemia nauplii were enriched to ensure high 

nutritional value. Rotifer introduction to larvae of 0 °C treatment started 57 dpf (while 

hatching continued), Artemia nauplii were introduced 60 dpf and both rotifers and Artemia 

were fed simultaneously until 68 dpf then only Artemia was continued.   

2.7. Biological sampling  

2.7.1. Larval feeding success  

To determine and follow feeding success both temperatures were sampled two times at 

different ages 3°C – days 52 and 68 and 0°C – days 76 and 86. The percentage increase of 

feeding success was calculated using these selected days which represent corresponding 

development age of both temperatures in order to cross analyse the difference between 

feeding success percentage increase depending on temperature. The samples were taken 1 

hour after feeding to give the larvae time to ingest the prey using the same method as size at 

hatch. Feeding success using the images was determined through observation based on 

absence or presence of food in the larvae’s gastrointestinal tract (Figure 1).  

2.7.2. Developmental imaging techniques  

Post fertilisation images were taken once every 24 hours in order to highlight key stages in 

development with comparisons between the two temperatures (3 & 0 °C). The frequency of 

photographing 3 °C embryos decreased around 50 dpf when yolk sac utilisation is 100% and 

events within development occur less often. Between 4-8 Specimens were collected from the 

incubators via pipette, placed on a slide or in a petri dish, images of specimens were captured 

using a 5MP microscope camera, leica MC 170HD and leica application suite software 

(LasV46) under a lecia M205 C stereo microscope. The specimens were then euthanized with 

an overdose of buffered tricaine methanesulfonate.  

Some challenges were encountered during the photographing of the early life history of Polar 

cod. The translucent nature of the egg made it difficult at times to photograph the 

development of the embryo due to light reflection and shine. The formation of the 

blastodermal cap becomes heavy and faces downwards, showing the yolk side up, making it 

very difficult to study and photograph detail of the development stage. Water droplets or 

small air bubbles compromise the image quality. If there was too much water the larvae 
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would move too rapidly for sufficient photography and the eggs may move due to buoyancy. 

Larvae being fragile can become damaged easily by potential mechanic damage from pipette 

tips and from the heat of the microscope lighting. Water was removed to avoid larvae 

movement but then the larvae were more likely to deform and die.  

2.7.3. Larval length and yolk sac measurements and image analysis 

To determine larval length increase over time as a comparison between temperature at the 

same development age four days were selected per temperature 0 °C – days 50, 66, 76 and 86 

and 3°C – days 28, 39, 52 and 68. Using the same method as for the hatching rate protocol 

using the plastic pipe to sample the water column larvae were collected from all incubators. 

Once euthanized with MS-222, 58 larvae were selected at random over the 4 incubators for 

both temperatures for each of the four selected days and photographed using the 5MP 

microscope camera, leica MC 170 HD and leica application suite software (Las V 4.6) under 

a lecia M 205 C stereo microscope. From the images the larvae length (mm) and yolk sac size  

was measured using the open source software image J. Yolk sac size was measured from two 

days per temperature, 0 °C – days 50 and 66 and 3 °C – days 28 and 39. The scale in image J 

was set using the analyse option and the straight line to measure the scale bar on the opened 

image, the scale bar was changed depending on magnification used on the image. Body 

length measurements were made to the nearest 0.1 mm (Figure 1). The standard length of the 

larvae was measured from the back of the head and the start of the neck (excluding the nose 

and the skull) to the tip of the tail (excluding the fin folds) using the segmented line in image 

J (Figure 1). Yolk sac area was measured using the oblong circle in image J. Also 

observations of feeding success were recorded. 

 

 

 

 

 

 

 

 

Figure 1 Larvae length measurement and feeding success analyses. 
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2.8. Statistical analysis  
All experimental data was analysed in R studio. Graphs were generated with the free package 

ggplot. All data is presented as mean value with standard error of the mean. Normality of 

residuals for all data was tested using the aid of visual assessments such as qqplots, box plots 

and kurtosis, as well as the Shapiro-Wilk test. For normally distributed variables a T-test was 

performed to compare the temperate treatments. If assumptions of normality and 

homoscedasticity were not met a Mann-Whitney U test was performed. 

Larvae from both temperatures were compared based on similar developmental stages, newly 

hatched larvae corresponded to 50 dpf (0°C) and 28 dpf (3 °C), yolk sac larvae corresponded 

to 66 dpf (0 °C) and 39 dpf (3 °C), feeding stage larvae corresponded to 76 dpf (0 °C) and 52 

dpf (3 °C) and pre-flexion stage larvae corresponded to 86 dpf (0 °C) and 68 dpf (3 °C).  
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3. Results  
External developmental features and effects of temperature were identified over the course of 

the 86 day experiment at two temperatures (0 and 3 °C) observations of the embryo and 

larval stages are represented in figures 2, 3 & 4. 

3.1 Embryo development and morphological landmarks 
 

 

Figure 2 (A-H). Sampled polar cod embryos, photographed using 5MP microscope camera. 

Embryonic development incubated at 0 & 3 °C. The development is given in degree days; (dpf) days 

post fertilisation. Points of interest are illustrated in the images. A: 0 °C shows early cleavage 24 hour 

after fertilisation, 8 cell stage,; 3 °C shows early cleavage 24 hour after fertilisation, 16 cell stage with 

4x4 array of blastomeres; B: 0 °C 64 cell division with 3 regular tiers of blastomeres; 3 °C 128 cell 

division; C: 0 °C early morula; 3 °C mid morula stage; D: 0 °C start of Gastrulation stage; 3 °C start 

of gastrulation stage; E: 0 & 3 °C shield stage; F: 0 & 3 °C bud stage; G: 0 & 3 °C segmentation 

stage;   H: 0 & 3 °C first hatch. 
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Polar cod embryos reared at the reference temperature (0 °C) began early cleavage right after 

in vitro fertilization and reached the 8 cell stage within 24 hours (Fig 2. A, 0 °C) and the 64 

cell stage was reached 48 hours post fertilisation (Fig 2. B, 0 °C). In the early morula stage 9-

10 cleavages had occurred and the blastodisc consists of a solid ball of 500 cells which was 

reached at 4 dpf (Fig 2. C, 0 & 3 °C). Gastrulation began 8 dpf, this is when the cell ball 

spreads laterally and the cells of the blastodisc began a migration over and around the yolk 

towards the vegetal pole (Fig 2. D, 0 °C). The shield stage was reached 14 dpf (Fig 2. E, 0 

°C) during this time epiboly tissues began to differentiate within the shield and the migration 

of cells completed the envelopment of the yolk. Shortly after the shield stage 100 % epiboly 

is reached along with the closure of the blastopore, this marks the Bud stage which was 

reached at 18 dpf (Fig 2. F, 0 °C). At the segmentation stage (26 dpf) the embryos body 

length had grown just beyond the yolk sac, the eyes had some pigmentation and slight body 

movements were observed (Fig 2. G, 0 °C) and a few days later the heartbeat could be seen. 

By 34 dpf the embryos fin fold and pectoral fin buds were visible, the eyes had strong 

pigmentation and the embryos were active within the egg. At the time of first hatch (43 dpf) 

the tail of the embryos had grown one and a half times the egg circumference (Fig 2. H, 0 

°C). Hatching success reached 50 % at 52 dpf and 80 % at 60 dpf, in total the hatching event 

took 17 days.  

Embryos incubated at 3 °C exhibited significantly faster development and very short hatching 

event duration compared to 0 °C embryos. During the early cleavage stage 3 °C embryo 

blastomere divisions occurred faster than that of the 0 °C embryos (Fig 2. A-B, 3 °C). 

Gastrulation was reached two days earlier (Fig 2. D, 3 °C), the shield stage occurred 4 days 

before (Fig1. E, 3 °C) and the bud stage was reached 6 days before 0 °C embryos (Fig 2. F, 3 

°C). Soon after the segmentation stage the embryos first movements could be seen (19 dpf), 

which was 6 days faster than 0 °C embryos, visible body segmentation and fin development 

could also be seen at this time for embryos of 3 °C treatment (Fig 2. G, 3 °C). The embryos 

(3 °C) heart beat could be seen at 22 dpf, with strong pigmentation around the eyes. First 

hatch occurred 28 dpf, 15 days earlier than 0 °C embryos (Fig1. H, 3 °C), the total hatching 

event duration of embryos in 3 °C treatment lasted 3 days. 
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3.1.1. Larvae development  

 

 

 

 

 

 

 
Figure 3 (A-F) Sampled polar cod larvae, photographed using 5MP microscope camera. Larvae 

development of Boreogadus saida incubated at 0 & 3 °C. The images show the development stages in 

degree day’s dpf (days post fertilisation). Points of interest are illustrated in the images. A: 0 °C 43 

dpf first hatching seen, shows a newly hatched larvae, 3 °C 28 dpf first hatching seen, shows newly 

hatched larvae; B: 0 & 3 °C first introduction of rotifers, 0°C hatching is still not complete; C: 0 & 3 

°C open mouth stage; D: 0 & 3 °C first introduction of artemia; E: 0 & 3 °C segmented gut stage; F: 

represents a direct comparison between the two temperatures towards the end of the experiment at 71 

dpf. 

Polar cod reared at the reference temperature (0 °C) hatched with a straight digestive tract 

underdeveloped and non-functioning with no differentiation between the sections of the gut 

(Fig 3. A 0 °C). First introduction of rotifers occurred 57 dpf (Fig 3. B 0 °C), the larvae that 

hatched during this time, towards the end of the hatching event, did so with an open mouth 

and with some yolk remaining (Fig 3. C, 0 °C). Many developing features could be seen such 

as the liver, body pigmentation, otoliths, lower jaw formation, golden eye stage, fins, gill 
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slits, intestine and a steady heartbeat. During this time observations of the unhatched embryos 

indicated that there was a restriction of space impacting on healthy growth resulting in spine 

curvature and deformation. First introduction of Artemia occurred 60 dpf, same time as 80 % 

hatch and first observed feeding (Fig 3. D 0 °C). The segmented gut stage was reached 70 dpf 

(Fig 3. E 0 °C) and by this time exogenous feeding had been commenced for 10 days. The 

larvae were relatively homogenous in size and still had large fin folds at 71 dpf (Fig 3. F 0 

°C).   

The larvae of 3 °C treatment hatched (28 dpf) with underdeveloped organs, a large yolk sac, 

simple intestinal tract, and no gills and were less developed compared to 0 °C larvae at hatch 

(Fig 3. A 0 & 3 °C) Embryos reared at 3 °C had a smaller average larval length at first hatch 

of 4.5 mm compared to 5.1 mm (0 °C) and a larger average yolk size of 1.6 m² compared to 

1.0 m² (0 °C). Larvae first introduction of rotifers was 35 dpf (Fig 3. B 3 °C), the larvae had 

jaw movements and open mouth at 38 dpf (Fig 3 C 3 °C). First introduction of Artemia and 

first exogenous feeding was 43 dpf, at this time the larvae have developed eye pigmentation, 

an extended jaw, and gill formation and there was little yolk remaining (Fig 3. D 3 °C). The 

differentiation of the digestive tract can be observed 35 dpf (3 °C) and 48pdf (0 °C) 5 days 

after 80% hatch for both temperatures. It is possible to see the fore gut, the mid gut and the 

hind gut 37 dpf (3 °C) and 51 dpf (0 °C) similarly for both temperatures. Larvae from both 

temperatures initiate first feeding 4-5 days after the mouth first opened. Segmented gut stage 

is reached 57 dpf in 3 °C larvae (Fig 3. E 3 °C) and exogenous feeding had been commenced 

for 14 days which is 4 days longer than 0 °C larvae. As a comparison of chronological time 

the larvae of both temperatures are represented at 71 dpf in Figure 3 (Fig 3. F 0 & 3 °C). 

During this time the larvae of 3 °C appeared more developed than 0 °C and are more active 

aided with long pectoral fins and the fin rudiments could be clearly seen at the tip of the tail. 

Also defining sections of the brain started to become apparent, the stomach was positioned 

above the intestine and the gills were protruding from the side of the neck (3 °C). The larvae 

(3 °C) had almost no fin folds at this time whereas 0 °C larvae have large fin folds around the 

body (Figure 3, F 0 & 3 °C).  
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3.2. Time line of early life history events  
 

 

 

 

 

 

 

 

 

Figure 4 shows a time line of the embryo and larval development of polar cod from fertilization to 86 

dpf as a comparison in chronological time between 3 & 0 °C. The figure shows the development 

stages in degree day’s dpf (days post fertilisation). 

Visible morphological events were rapid during early development at both temperatures. 

Development occurred faster at 3 °C for all stages and the intervals between morphological 

events were shorter compared to 0 °C. There was a pause in the visible morphological 

development between the hatching gland stage and the hind gut formation stage for both 

temperatures, during this time the hatching event occurred and the yolk sac larvae stage 

begins. Throughout the entire experiment 0 °C larvae were behind 3 °C larvae in 

development, the largest difference was at 80 % hatch when 0 °C larvae were 30 days slower 

in development however these larvae were able to catch up in development towards the end 

of the experiment leaving a smaller difference of 10 days at 73 dpf (Figure 4).  
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3.3. Mortality 

 

Figure 5 Cumulative mortality ( mean percentage with standard error  bars) of polar cod embryos and 

larvae from four replicate incubators per temperature (3 & 0 °C) (A.C.P.M) over 86 days. The two 

linear regressions were tested for coefficients and then a paired sample t-test was applied to establish 

a pair wise difference. The two regressions were significantly different with p-value <.0001. 

Both temperatures experienced a high mortality increase directly after fertilisation in the first 

11 days of development from early cleavage to shield stage, then the mortality stabilises at 

±25 %. At around 22 dpf the larvae of 3 °C treatment experienced a spike in mortality this 

marks the heart beat and pigmentation stage. Both treatments after the start of the hatching 

event experienced a steady increase of mortality until the end of the experiment. Larvae of 

both treatments experienced a slight increase in mortality at the onset of feeding although not 

significant (Figure 5). The cumulative mortality at 86 dpf was 47.0 % (0 °C) and 71.9 % (3 

°C) representing a difference of 24.9 % between the two temperatures with a p-value <.0001. 

Larvae of 3 °C experienced a significant higher mortality rate compared to 0 °C larvae. 

3.4. Total hatching success  
The mean hatching success in percentage with standard deviation was higher in 0 °C (69.3 ± 

4.0 %) compared to 3 °C (68.2 ± 6.2 %). First hatch occurred 43 dpf (0 °C) and lasted 17 

days and 28dpf (3 °C) and lasted 3 days. Mann whitney U test was used to test the hatching 
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success data for significance between the temperature treatments, a P-value of 0.001 

concludes that there is a significant difference in hatching success between the two 

temperatures.  

3.5. Larval length measurements   

 

Figure 6 shows larval growth over time with larval length (mm) and measurements of 58 randomly 

selected larvae from four selected days for each temperature (3 & 0 °C). 28 dpf (3 °C) and 50 dpf (0 

°C) represent newly hatched larvae. 39 dpf (3 °C) and 66 dpf (0 °C) represent yolk sac larvae. 52 dpf 

(3 °C) and 76 dpf (0 °C) represent feeding stage larvae. 68 dpf (3 °C) and 86 dpf (0 °C) represent pre-

flexion stage larvae. Plot represent the median (Bar), 25–75 % percentiles (box), non-outlier range 

(whisker), outliers (circle), the symbol * (asterisk) indicate significant differences, (*p < 0.05, **p < 

0.01, ***p < 0.001) between treatments.  

There are significant differences in larval body length induced by rearing temperature at all 

stages. During newly hatched larvae, yolk sac larvae and feeding stage larvae the average 

body length was longer in 0 °C larvae compared to 3 °C larvae (p <0.001). Interestingly at 

pre-flexion stage there was a slightly larger average body length in 3 °C larvae compared to 0 

°C larvae (p <0.05). From the newly hatched stage to pre-flexion stage the total larval length 

grew 31.3 % (0 °C) and 57.7 % (3 °C), therefore larvae incubated at 3 °C had a greater 

growth compared to the larvae incubated at 0 °C. Newly hatched larvae average length 
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measurements were 5.3 mm (0 °C) and 4.7 mm (3 °C). At the yolk sac stage 0 °C larvae 

average length ranged from 6 mm to 7.5 mm whereas 3 °C larvae had a much larger variation 

in length from 3 mm to 9.2 mm. Larvae growth (0 °C) slowed between the yolk sac stage (66 

dpf) and feeding stage (76 dpf) during the time of 100 % yolk sac utilisation (70 dpf) and the 

average length reduced slightly at pre-flexion stage (86 dpf). The average length for 3 °C 

larvae reduced between yolk sac stage (39 dpf) and feeding stage (52 dpf) during the time of 

100 % yolk sac utilisation (50 dpf) and the length increased again by pre-flexion stage (68 

dpf) and the larvae had a slightly larger length compared to 0 °C. During all stages (from 

newly hatched larvae to pre-flexion stage) larvae incubated at 3 °C treatment had a leaner 

body when compared to the corresponding development ages of 0 °C larvae (Figure 6). When 

comparing chronological time between temperatures 3 °C larvae were slightly greater in 

average length than 0 °C larvae. Newly hatched larvae 50 dpf (0 °C) average larval length 

was 5.3 mm and the corresponding feeding stage larvae 52 dpf (3 °C) average larval length 

was 5.8 mm. Yolk sac stage 66 dpf (0 °C) average larval length was 6.7 mm and the 

corresponding Pre-flexion stage 68 dpf (3 °C) average larval length was 7 mm.  
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3.6. Feeding success   
 

 

Figure 7. Feeding success of 58 randomly selected larvae of two days for each temperature (3 & 0 

°C). 52 dpf (3 °C) and 76 dpf (0 °C) represent feeding stage larvae and 68 dpf (3 °C) and 86 dpf (0 

°C) represent pre-flexion stage larvae. Histogram represents the feeding larvae percentage of the mean 

of four incubators, standard deviation (error bars). The symbol * (asterisk) indicate significant 

differences, (*p < 0.05, **p < 0.01, ***p < 0.001) between treatments. 

Larvae incubated at 0 °C showed a lower feeding success compared to 3 °C in both stages 

and had a feeding success percentage decrease of 25 % from feeding stage to pre-flexion 

stage. Larvae incubated at 3 °C experienced a 50 % feeding success increase between feeding 

stage and pre-flexion stage. We can conclude that there is a significant difference between 

feeding success of both stages, feeding stage larvae had a p-value 0.02 and pre-flexion stage 

larvae had a p-value <0.001 (Figure 7). 
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3.7. Yolk sac size  
 

 

Figure 8 Yolk sac depletion over time, yolk sac area measured in (m2). 58 randomly selected larvae 

were measured over two days for each temperature (3 & 0 °C). 28 dpf (3 °C) and 50 dpf (0 °C) 

represent newly hatched larvae and 39 dpf (3 °C) and 66 dpf (0 °C) represent yolk sac larvae. The plot 

represents the median (Bar), 25–75% percentiles (box), non-outlier range (whisker), outliers (circle). 

The symbol * (asterisk) indicate significant differences (*p < 0.05, **p < 0.01, ***p < 0.001) between 

treatments. 

Larvae incubated at 0 °C had less yolk sac than 3 °C larvae at both stages. From newly 

hatched larvae to yolk sac larvae stage, larvae incubated at 0 °C showed 75 % decrease in 

yolk sac size, whereas larvae incubated at 3 °C showed a 12.5 % decrease in yolk sac size 

from newly hatched larvae to yolk sac larvae stage. There are significant differences in yolk 

sac depletion induced by rearing temperature. Newly hatched larvae and yolk sac larvae stage 

both had a p-value <0.001 (Figure 8).   
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4. Discussion  
The present study investigated the effects of two temperatures (0 & 3 °C) within the thermal 

tolerance of polar cod during early life. Significant differences in survival, hatching success, 

feeding success and yolk sac size were observed. Sakurai et al (1998) identified the ideal 

temperature range of 0.5 to 3 °C of which had the highest polar cod embryonic survival rates 

of 65 %. Dahlke, et al (2018) found that when Polar cod embryos were placed under 4.5 °C 

they showed increased mortality from severe heat stress. In the present study, mortality was 

significantly lower for 0 °C treatment (42 % mortality) compared to 3 °C treatment (72 % 

mortality) (Figure 4). Larvae of both temperatures experienced a similar trend in mortality 

although larvae of 3 °C treatment had more peaks in mortality compared to larvae of 0 °C 

treatment. Post fertilisation both temperatures showed a rapid increase in mortality in the first 

11-12 days of development from early cleavage to shield stage, similar results were found by 

Thompson (1981) and Rombough (1996). Suggesting that regardless of temperature this is a 

highly vulnerable and sensitive period in early development. From the start of the hatching 

event until the end of the experiment, both treatments experienced an increase in mortality, 

although larvae of 3 °C treatment experience a more intense increase and larvae of 0 °C 

treatment experience a more steady increase in mortality. A study by Bonnett (1939) also 

found a sharp increase in Atlantic cod egg mortality as hatching approached at all 

temperatures used in the experiment with higher mortality at higher temperatures. In this 

study there was also a slight increase in mortality for both treatments during the initiation of 

early feeding although not significant (Figure 4). Other studies have conflicting results 

regarding the effects of temperature on mortality. Increasing temperatures within the species 

thermal tolerance had been found to have no direct influence on survival (Gracia-Lóo´pez, et 

al 2004,. Rankin and Sponaugle 2011). However on the contrary some studies have found the 

relationship between temperature and daily mortality rates of fish eggs and larvae to be 

highly correlated (Houde 1989., Fossum 1988) and survival prior to hatching has been found 

significantly compromised at higher temperatures (Gagliano et al 2007). In spite of this, 

mortality rates of fish eggs and larvae regardless of temperature are generally high (Fossum 

1988), conclusively a study by Dann (1981) found that only 2 % of spawned North Sea Cod 

eggs survived to produce larvae. Despite the importance of understanding the causes of 

mortality during the egg phase to studies of recruitment of egg production very little is known 

about the processes of which may influence it (Bunn et al 2000). 
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In the present study hatching success was higher for larvae in the 0 °C treatment (69.3 ± 4.0 

%) compared to larvae of 3 °C treatment (68.2 ± 6.2 %). A study by Laurell (2018) found that 

the hatch success of Polar cod embryos quickly declined above 2 °C. Larvae of both 

temperatures hatched as transparent larvae with larval fin folds, simple intestinal tract, and 

with eye pigmentation. However larvae of 3 °C hatched earlier, with a larger yolk sac, no 

gills and more underdeveloped compared to 0 °C larvae leaving the larvae unable to swim 

and thus highly vulnerable to predation and more exposed to external pollutants. The 

hatching period duration was shorter at the higher temperature which was also found by 

Gracia-Lo´pez et al (2004). Towards the end of the (0 °C) hatching event some embryos were 

clearly restricted for space and consequently started to develop a deformed spine and even if 

hatching did occur at this stage it seemed unlikely the larvae would survive. Low temperature 

might partially inhibit the action of the hatching enzyme (Tay and Garside 1975) which might 

explain why the embryos of 0 °C treatment had a longer hatching event and why some did 

not hatch at all. In the present study 50 % hatch occurred at 52 dpf (0 °C) and at 29 dpf (3 

°C), similar results have been found by Sakurai et al (1998) where 50 % hatch occurred at 75 

dpf at -1.0 °C, 44 dpf at 1.5 °C and 35 dpf at 3 °C. In this study 0 °C treatment can be 

identified as the optimal temperature for best performance of larvae regarding lower mortality 

and a higher hatching success.  

It is well known that temperature influences larval size at hatch, although size can be 

influenced by yolk conversion efficiency (Gracia-Lo´pez, et al 2004), and yolk utilization 

efficiency can be influenced by temperature. Larvae incubated at 0 °C showed on average a 

longer length at newly hatched larvae, yolk sac larvae and feeding larvae stage when 

compared to 3 °C larvae of the same development age. Larvae of 0 °C treatment were also 

observed to be more active at hatch compared to 3 °C larvae at hatch. Thus larvae incubated 

at 0 °C would potentially have an advantage at first hatch which is a highly vulnerable stage 

(Fortier et al 2006) from a stronger swimming capacity enabling larvae better able to avoid 

predation, as well as an advantage at early feeding stage to establish a better prey capture 

from a less lean and a longer body length (Ninness et al 2006). However over chronological 

time the average length was slightly greater for larvae incubated at 3 °C (Figure 6), 

suggesting that temperature had relatively little effect on larval average length between 0 & 3 

°C but rather higher temperatures resulted in a greater development speed and larval stage 

duration declined rapidly as temperature increased. Larvae reared at 3 °C reached the onset of 

preflexion stage after 50 dpf compared to 70 dpf for 0 °C larvae. Growing faster is an 



 
 

26 | P a g e  
 

advantage as to reduce the time spent as vulnerable larvae and mortality has been found to 

decrease with increased larval size and development age (Mc Gurk 1984). Although studies 

have found that larval length can reduce with increasing temperatures (Tay and Garside 

1975), larvae kept at higher temperatures have a higher metabolic demand which requires 

more energy for sustaining its necessary functions and growth can be affected if food is 

limited (Buckley 2004, Barrionuevo and Burggren 1999, and Schirone and Gross 1968). 

Additionally, Kunz (2018) found that under temperatures above 0 °C polar cod experienced 

an elevated metabolic rate, with a reduced maximum swimming capacity, which under future 

predictions of warming ocean temperatures may directly impair polar cod foraging success 

and escape response to predators and reducing the species competitive strength. Therefore, 

temperature has many trade-offs, a faster development can reduce the time spent as 

vulnerable larvae, larger size can aid in feeding success and predatory avoidance however if 

the temperature optimum is exceeded the larvae will experience a higher metabolism and 

energy deficiency if unable to consume sufficient amounts of food.  

The onset of feeding is a critical and sensitive time point. Larvae incubated at 0 °C showed a 

lower feeding success compared to 3 °C larvae. Higher temperature has been found to 

decrease the time to reach the point at which feeding is initiated (Jordaan and Kling, 2003).  

Bouchard (2011) found that polar cod embryos developing in colder strictly marine 

environments hatched later and experienced a poor first-feeding success. Michaud et al 

(1996) also found that in the Northeast Water, the swimming activity and the feeding success 

of recently hatched polar cod larvae decreased with decreasing temperature in the range +4 to 

–1.8 °C. Aronovich et al (1975) noted that Polar cod incubated at 1.5 °C can survive without 

food 14-16 days after hatching without affecting the percentage of larvae capable of 

establishing feeding, however a starvation period of 20 days after hatching proved critical, 

and feeding should not start later than 17-20 days post hatch at 3-4 °C. Feeding success of 

larvae might also be influenced by the amount of time between the hatching event and the 

introduction to an external food source from establishing feeding behaviour (Wallace and 

Aasjord 1984). Larvae incubated at 0 °C were exposed to exogenous food source 3 days 

before total hatch and before first feeding was observed. There was a total of 17 days from 

first hatch (43 dpf, first hatchers) to first observed feeding (60 dpf, last hatchers). Larvae 

incubated at 3 °C were exposed to exogenous food source 5 days after total hatch and for 8 

days before first feeding was observed. This is a total of 15 days from first hatch to first 

feeding. This earlier contact with food at the 3 °C treatment may have influenced feeding 
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behaviour and thereafter improved food consumption resulting in a better feeding success 

(Wallace and Aasjord 1984). The lower feeding success of 0 °C larvae might be a 

consequence from a shorter introduction to an exogenous food source allowing little time for 

the larvae to develop the necessary skills for prey capture and consumption before the point 

of no return (Wallace and Aasjord 1984).  

Polar cod rely on an endogenous energy source for a prolonged duration. In the present study 

complete yolk utilisation of larvae incubated at 0 °C occurred at 70 dpf, 10 days after 80 % 

hatch and first exogenous feeding. Larvae incubated at 3 °C completely utilised the yolk 

reserves 50 dpf, 20 days after 80 % hatch and 7 days after first exogenous feeding (Figure 8). 

Ojanguren et al (1991) found that increasing temperature accelerated developmental rates and 

increase metabolic demand in Atlantic salmon which may be the cause of a faster yolk 

absorption (Blaxter, 1992), however higher temperature also increase larval activity which 

can reduce the yolk utilisation efficiency as more of the yolk energy is spent on the additional 

activity rather than growth (Peterson and Martin-Robichaud,1995). The growth of the larval 

length slowed down in 0 °C treatment between the yolk sac larvae stage (66dpf) and feeding 

stage (76dpf) during this time 100 % yolk sac utilisation occurred (70 dpf) and the average 

larval length reduced slightly at the pre-flexion stage (86dpf). The average length of larvae 

incubated at 3 °C reduced between yolk sac larvae stage (39dpf) and feeding stage (52dpf) 

during the time of 100 % yolk sac utilisation (50 dpf). It then increases again by pre-flexion 

stage (68dpf) (Figure 6). A study by Heming (1988) helps to explain these results, they found 

that towards the end of the yolk sac stage, yolk absorption efficiency reduces and then 

becomes negative resulting in the reabsorption of larval tissue mass which supports the 

findings in the present study. Larger yolk reserves during the early larval period is 

advantageous and larvae with larger yolk reserves tend to exhibit diurnal feeding pattern 

which reduces the chance of predation (Blaxter and Hempel 1963). Yolk re-absorption 

occurred more slowly in 0 °C larvae and there was a slightly longer duration from first 

feeding and complete yolk utilisation of 3 days compared to 3 °C. This cold water species 

rate of digestion is slow especially in the first days of feeding, which means food density 

needed is low (Aronovich et al 1975). However in a warming arctic in suboptimal 

temperatures metabolic demands will change and larvae will have to search and capture more 

prey, thus exposing themselves to a higher potential for predation (Skiftesvik 1992). 

Therefore larvae of lower temperatures have an advantage and it could be concluded that the 

0 °C treatment was the preferred temperature regarding yolk utilisation in the present study. 
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Ecological consequences of sea ice decline 

If the sea ice continues to decline polar cod will experience a decrease in suitable spawning 

habitats, nursery grounds (Dahlke et al 2018) and feeding habitat for early life stages and 

there will be a loss of protection by Sea ice from predation for spawning adults (Christiansen 

2017). The use of model projections and simulations of climate change have shown that by 

2100 unrestricted ocean warming and acidification will cause a substantial decline in polar 

cod egg survival from decreasing embryonic tolerance (Dahlke et al 2018). Although an 

earlier ice break up and more frequent winter polynyas could improve juvenile recruitment by 

increasing survival of earlier hatchers from faster development and growth and improved 

feeding success from the light necessary for prey perception and capture (Fortier et al 1996), 

in order to reach larger pre-winter size before the fall migration (Bouchard and Fortier 2008., 

Bouchard et al 2017). However species recruitment success depends on a combination of 

complex environmental factors, of which will alter due to climate change and future 

predictions of polar cod disturbance in connectivity and increase risk of adjective losses, and 

recruitment failure (Dahlke et al 2018). Bouchard (2015) explains the theory that an earlier 

hatching season of polar cod is desired through selection pressures dictated by the need to 

reach a maximum pre-winter size to reduce chances of predation and increase survival to 

adulthood. Not giving importance to the mismatch theory for first feeding larvae to coincide 

with the maximum abundance of their prey. Climate change can affect biological production 

and food web structure in the Arctic Ocean through the warming of the upper water layer and 

increased stratification due to surface sea ice melt (Carmack 2011). Stratification constrains 

the flux of nutrients in to the euphotic zone which can reduce primary production in a nitrate 

limited system (Carmack 2004,. Lee et al 2012) which in turn selects for smaller less energy 

satisfying pelagic algae (Li et al 2009). A reduction in sea ice will cause a loss of habitat for 

sea ice algae and sub ice phytoplankton which together were found to account for 57 % of the 

annual primary production in the central arctic ocean from July to August in 1994 (Gosselin 

et al 1997). Alternatively sea ice retreat beyond the shelf break increases the potential for 

upwelling which brings high nutrients in to the Beaufort shelf (Carmack and chapman 2003). 

Also there may be an increase in primary production due to increased solar radiation from 

less ice covered waters (Falk-petersen et al 2006,. Wassmann et al 2011). The timing of the 

phytoplankton bloom is critical for copepod survival which in turn provides food for polar 

cod. It is difficult to predict if primary production will increase or decrease under ice retreat 

conditions, and will depend on regional conditions (Carmack 2011). Furthermore prolonged 

ice free seasons in the arctic may displace the larger lipid rich copepods such as C.glacialis 
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and C.hyperboreus by the smaller less lipid rich copepods C.finmarchicus and Pseudocalanus 

spp and create a shift in the current zooplankton availability (Falardeau et al 2014). A study 

by Falardeau et al (2014) found that Polar cod strongly selected larger calanus spp, with a 

shift in zooplankton availability Polar cod will acquire less energy which will affect their 

growth efficiency for a large pre-winter size. In a warmer Arctic polar cod is threatened with 

the advancement of boreal species with potential dietary competition predation and habitat 

displacement. Atlantic Cod and haddock have expanded distributions northwards all year 

round in the Barents Sea (Johansen et al 2013), this implies increased predation pressures on 

small arctic fish species such as polar cod (Fossheim 2015,. Renaud et al 2012). Current 

research has found an extensive dietary overlap between polar cod and capelin in the Barents 

Sea where both rely primarily on copepods such as C. hyperboreus and C. glacialis, this 

supports the potential for interspecific competition between these species (McNicholl et al 

2016). Little dietary overlap was seen in Atlantic sand lance which was found to focus on 

selecting smaller prey (Falardeau et al 2014) and a study by Renaud et al (2012) found little 

dietary overlap between Atlantic cod and Haddock with Polar cod during the larval stages. 

However Capelin, Atlantic sand lance, Atlantic cod and Haddock during their early life 

stages may have higher foraging capability should zooplankton assemblages shift towards 

smaller prey taxa under a warming climate. However Polar cod are well adapted to low 

temperatures and are able to convert food to energy more efficiently which could give an 

additional advantage over advancing Atlantic species (Kunz 2018). Arctic warming and sea-

ice loss will also facilitate invasions by new pathogens and disease it may also influence 

ecological dynamics indirectly through effects on movement, population mixing, and 

pathogen transmission (Post et al 2013). 

Warmer Sea temperatures may benefit polar cod in the near future until temperatures exceed 

optimal thermal limits and cause adverse effects on the development and survival of polar 

cod during early life stages. It is important to identify vulnerable life stages and habitat needs 

of highly specialised and sensitive species such as polar cod and to look at polar cod response 

to environmental stress and resilience to climate change as this is crucial for predicting the 

future abundance and distribution of a species. The response time to a changing environment 

is unlikely equal to the speed of current and future predictions of climate change, increasing 

the risk of extinction (Kristensen et al 2018). Other major challenges in the near future 

include addressing pressures arising from anthropogenic use of arctic coastal and near-shore 
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areas as Sea ice diminishes (Wassmann et al 2011), such as commercial extraction of fish 

species having an impact on top/down processes (parson 1992). 

5. Conclusion  
  

This experiment was designed to investigate temperature effects on early life history of polar 

cod by using two temperature treatments, 0 °C represents reference temperature and 3 °C 

represents predictions of future ocean warming and climate change to investigate how this 

will affect polar cod survival and population recruitment. 

Results of this study have shown that temperature had a significant effect on the speed of 

development, aiding polar cod larvae of 3 °C treatment to reach a less vulnerable larval stage 

more quickly. There was also a greater feeding success for 3 °C larvae compared to the larvae 

of 0 °C treatment. However the results of this study showed that higher temperature led to 

higher mortality and lower hatching success. Larvae of 3 °C had an earlier temperature 

induced hatching event, hatching smaller and less developed than 0 °C. In the field the early 

hatching larvae would become exposed to environmental pollutants and ambient changes at a 

more underdeveloped and vulnerable stage no longer protected in the chorion. This study 

identified vulnerable developmental stages of mortality regardless of temperature although 

this was not as pronounced in the developmental stages as previously expected. Considering 

the larvae had similar length during the same larval sampling days it could be concluded that 

temperature has little effect on larval length over chronological time. With all of this in 

consideration it remains difficult to determine whether elevated temperatures will or will not 

benefit polar cod larvae. 

This study gave insights into polar cod sensitivity during early life development, the results 

highlighted that polar cod larvae within their biological temperature tolerance are capable of 

withstanding and surviving slightly increasing temperatures and that there are both pros and 

cons during early life stages within both temperatures. It also emphasises that our study was 

only a small look into the effect of temperature on polar cod. Therefore it would be beneficial 

to follow polar cod development to adulthood and reproduction potential to observe and 

analyse long term effects of elevated temperatures. In regards to a warmer ice free arctic and 

consequently a greater degree of light penetration to surface waters it would be of interest and 

importance for future research to assess polar cod larvae under elevated temperatures 
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combined with the effects of light stimuli on behaviour and activity looking closely at feeding 

behaviour and predatory avoidance.  

These findings may suggest that the relationship between temperature and growth rate, 

mortality, hatching success, feeding success and yolk sac utilisation is complex. Regarding 

the fact that there is no simple answer to how temperature increase will impact the 

development and survival of larval early life stages in the natural environment. Additional 

investigation is needed in this field of study to gain more insight of the direct and indirect 

consequences of temperature on embryo and larval development which as a whole is a 

complex system of many contributing factors. 

6. References 
 

Aronovich TM, Doroshev SI, Spectorova IV, Makhotin Vniro UM. (1975). Egg incubation 

and larval rearing of navaga (Eleginus navaga), Polar cod (Boreogadus saida lepechin) and 

Arctic flounder (llopsetta glacialis) in the laboratory. Aquaculture 6 233.242.   

Arrigo, K.R., van Dijken, G.L., and Bushinsky, S, (2008). Primary production in the Southern 

Ocean, 1997-2006. J. Geophys. Res. Oceans 113, 27. 

Barrionuevo W.R. and Burggren W.W. (1999).  O2 consumption and heart rate in developing 

zebrafish (Danio rerio): influence of temperature and ambient O2. Department of Biological 

Sciences, 76203-5220.   

Blaxter, J.H.S. (1992). The effect of temperature on larval fishes. Netherlands Journal of 

Zoology 42: 336–357. 

 

Blaxter, J. H. S., and Hempel, G. (1963). The influence of egg size on herring larvae (Clupea 

harengus L.). J . Cons., Cons. Znt. ExpLor. Mer 28,211-240. 

 

Bonnett D.D, (1939). Mortality of the Cod egg in relation to temperature. Bulletin of the 

marine biology laboratory. Woods hole, 76. 

 

Bouchard, C., Fortier, L. (2011). Circum-arctic comparison of the hatching season of polar 

cod Boreogadus saida: A test of the freshwater winter refuge hypothesis. Prog. Oceanogr, 

j.pocean. 2011.02.008 

 

Bouchard, C,  Fortier, L, (2008). Effects of polynyas on the hatching season, early growth 

and survival of polar cod Boreogadus saida in the Laptev Sea. Mar. Ecol. Progr. Ser. 355, 

247–256. 

Bouchard C, Geoffroy M, LeBlanc M, Majewski A. (2017), Climate warming enhances polar 

cod recruitment, at least transiently. Elsevier Ltd 156, 121-129. 



 
 

32 | P a g e  
 

Bouchard C, Thorrold S.R, Fortier L, (2015). Spatial segregation, dispersion and migration in 

early stages of polar cod Boreogadus saida revealed by otolith chemistry. Mar Biol 162:855–

868  

 

Buckley L.J, Caldarone E.M and Lough R.G (2004). Optimum temperature and food-limited 

growth of larval Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) on 

Georges Bank Fish. Oceanogr. 13:2, 134–140,  

Bunn N.A, Fox C.J, Webb T, (2000). A literature review of studies on fish egg mortality: 

implications for the estimates of spawning stock biomass by the annual egg production 

method. Centre for environment fisheries and aquaculture science. Sci. ser, tech. rep., 

CEFAS, Lowestoft (111) 37pp. 

Butler, P. J., Day, N. and Namba, K. (1992). Interactive effects of seasonal temperature and 

low pH on resting oxygen uptake and swimming performance of adult brown trout Salmo 

trutta. J. Exp. Biol. 165, 195-212. 

Carmack, E., Chapman, D.C., (2003). Wind-driven shelf/basin exchange on an Arctic 

shelf: the joint roles of ice cover extent and shelf-break bathymetry. Geophys. 

Res. Lett. 30 (14). doi:10.1029/2003GL017526. 

Carmack, E.C., Macdonald, R.W., Jasper, S., (2004). Phytoplankton productivity on the 

Canadian Shelf of the Beaufort Sea. Mar. Ecol. Prog. Ser. 277, 37–50. 

Carmack E, McLaughlin F, (2011). Towards recognition of physical and geochemical change 

in Subarctic and Arctic Seas. j.pocean. doi:10.1016/ 

 

Christiansen J.S, (2017). No future for Euro-Arctic ocean fishes? Mar. Ecol. Prog. Ser. 575, 

217–227. 

Christiansen JS, Hop H, Nilssen EM, Joensen J (2012) Trophic ecology of sympatric Arctic 

gadoids, Arctogadus glacialis (Peters, 1872) and Boreogadus saida (Lepechin, 1774), in NE 

Greenland. Polar Biol 35: 1247–1257. 

Comiso J.C (2002). A rapidly declining perennial sea ice cover in the Arctic. Geophysical 

research letters, 29. 20. 

Dann N, (1981). Comparison of estimates of egg production of the southern bight cod stock 

from plankton surveys and market statistics. Rapp. P-V. Reun. Cons. Int. explor. Mer, 172: 

39-57. 

Dahlke FT, Butzin M, Nahrgang J, Puvanendran V, Mortensen A, Portner HO, Storch D. 

(2018) Northern cod species face spawning habitat losses if global warming exceeds 1.5 °C. 

Sci adv 4 (11) eaas8821.  

Eriksen E, Ingvaldsen R.B, Nedreaas K, Prozorkevich D, (2015). The effect of recent 

warming on polar cod and beaked redfish juveniles in the Barents Sea. Regional Studies in 

Marine Science 2, 105–112 

 

Falardeau M, Robert D, and Fortier, (2014). Could the planktonic stages of polar cod and 

Pacific sand lance compete for food in the warming Beaufort Sea? Journal of Marine Science 

71(7), 1956–1965:10.1093 



 
 

33 | P a g e  
 

Falk-Petersen, S., Timofeev, S., Pavlov, V., and Sargent, J. R. (2006). Climate variability and 

the effect on arctic food chains. The role of Calanus. In Arctic-Alpine Ecosystems and People 

in a Changing Environment. Springer 147–166. 

Fortier L, Gilbert M, Ponton D, Ingram RG, Robineau B, Legendre L (1996) Impact of 

freshwater on a subarctic coastal ecosystem under seasonal sea ice (southeastern Hudson 

Bay, Canada). III. Feeding success of marine fish larvae. J Mar Syst 7:251–265 

Fortier L, Sirois P, Michaud J, Barber D, (2006). Survival of Arctic cod larvae (Boreogadus 

saida) in relation to sea ice and temperature in the Northeast Water Polynya (Greenland Sea). 

Can J Fish Aquat Sci 63:1608–1616 

Fossum P, (1988). A tentative method to estimate mortality in the egg and early first larval 

stage with special reference to cod (Gadus morhua L). FiskDir. Skr. Ser. Havundes, 18: 329-

345. 

Fossheim M, Primicerio R, Johannesen E, Ingvaldsen R.B, Aschan M.M, Dolgov A.V. 

(2015). Recent warming leads to a rapid borealization of fish communities in the Arctic. 

Nature climate change, N Climate 2647: 10.1038 

Fransson A, Chierici M, Nojiri Y, (2009). New insights into the spatial variability of the 

surface water carbon dioxide in varying sea ice conditions in the Arctic. Ocean Continental 

Shelf Research 29, 1317–1328 

Gagliano M, McCormick MI, Meekan MG, (2007). Temperature-induced shifts in selective 

pressure at a critical developmental transition. Oecologia 152:219–225.  

 

Gosselin M, Levasseur M, Patricia A, Rita A, Booth H, Booth B. (1997), New measurements 

of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Res. Part II Top. 

Stud. Oceanogr. 44, 1623–1644. 

Gracia-Lo´pez V, Kiewek-Martı´nez M and Maldonado-Garcı´a M, (2004). Effects of 

temperature and salinity on artificially reproduced eggs and larvae of the leopard grouper 

Mycteroperca rosacea. Aquaculture 237, 485–498  

Gradinger RR, Bluhm BA, (2004). In situ observations on the distribution and behaviour of 

amphipods and Arctic cod (Boreogadus saida) under the sea ice of the High Arctic Basin. 

Polar Biol 27:595–603 

Graham M, Hop H, (1995). Aspects of Reproduction and Larval Biology of Arctic Cod 

(Boreogadus saida) ARCTIC. 48. 2, 130–135 

HEMING T.A and Buddington R, (1988) Yolk absorption in embryonic and larval fishes. 

Fish physiology XIA  

 

Houde, E.D (1989). Comparative Growth, Mortality, and Energetics of Marine Fish Larvae: 

Temperature and Implied Latitudinal Effects. Fishery bulletin 87, 3 

 

Igor V P et al (2010) Arctic Ocean Warming Contributes to Reduced Polar Ice Cap. Journal 

of Physical Oceanography 40, 12, 2743-2756. 

 



 
 

34 | P a g e  
 

Johansen G.O Johannesen E, Michalsen, K., Aglen, A. & Fotland, A, (2013). Seasonal 

variation in geographic distribution of North East Arctic (NEA) codsurvey coverage in a 

warmer Barents Sea. Mar. Biol. Res. 9, 908919. 

Jordaan A and Kling LJ, (2003) Determining the optimal temperature range for Atlantic cod 

(Gadus morhua) during early life. Institute of Marine Research, 82-7461-059-8 

 

Kristensen TN, Ketola T, Kronholm I, (2018). Adaptation to environmental stress at different 

timescales. Ann. N.Y. Acad. Sci. ISSN 007-8923.  

Kunz KL, Claireaux G, Portner HO, Knust R, Mark FC, (2018). Aerobic capacities and 

swimming performance of polar cod (Boreogadus saida) under ocean acidification and 

warming conditions. The company of biologists Ltd 221:10.1242 

Kwok, R., and N. Untersteiner, (2011). The thinning of Arctic sea ice. Phys Today 64, 36–41. 

Laurel BJ, Copeman LA, Spencer M, Lseri P. (2018) Comparative effects of temperature on 

rates of development and survival of eggs and yolk-sac larvae of Arctic Cod (Boreogadus 

saida) and Walleye Pollock (Gadus chalcogrammus). ICES journal of marine science, 

doi:10.1093/icesjms/fsy042 

Laxon SW et al. (2013) CryoSat-2 estimates of Arctic sea ice thickness and volume. 

Geophys. Res. Lett. 40, 732–737.  

Lee S.H et al (2012). Phytoplankton productivity in newly opened waters of the Western 

Arctic Ocean. Deep Sea Res Stud. Oceanogr. 81–84, 18–27  

Li, W.K.W., McLaughlin, F.A., Lovejoy, C., Carmack, E.C., (2009). Smallest algae thrive as 

the Arctic Ocean freshens. Science 326 (5952), 539. 

Lind S, Ingvaldsen R.B, Furevik T, (2018). Arctic warming hotspot in the northern Barents 

Sea linked to declining sea-ice import. Nature Climate Change, 634 8, 634–639  

Llpoiz JK, Cowen RK, Hauff MJ et al, (2014). Early life history of fisheries oceanography: 

new question in a changing world. Oceanography 27 (4):26-41  

Lønne OJ, Gulliksen B, (1989). Size, age and diet of polar cod, Boreogadus 

saida (Lepechin 1773), in ice covered waters. Polar Biol 9:187–191 

Mc Gurk M.D, (1984). Effects of delayed feeding and temperature on the age of irreversible 

starvation and on the rates of growth and mortality of Pacific herring larvae. Marine Biology 

84:13-26 

 

McNicholl D.G, Walkusz1 W,  Davoren G.K, Majewski1 A.R,  Reist1 J.D, (2016),  Dietary 

characteristics of co-occurring polar cod (Boreogadus saida) and capelin (Mallotus villosus) 

in the Canadian Arctic. Polar Biol 39:1099–1108  

 

Michaud J, Fortier L, Rowe P, Ramseier R (1996) Feeding success and survivorship of Arctic 

cod larvae, Boreogadus saida, in the Northeast Water polynya (Greenland Sea). Fish 

Oceanogr 5:120–135 

https://www.sciencedirect.com/science/article/pii/S0967064511001780
https://www.sciencedirect.com/science/article/pii/S0967064511001780


 
 

35 | P a g e  
 

Nahrgang J, Varpe O, Korshunova E, Murzina S, et al. (2014) Gender specific reproductive 

strategies of an Arctic key species (Boreogadus saida) and implications of climate change. 

PLoS ONE 9(5): e98452.  

Ninness M.M, Stevens E.D, Wright P.A. (2006), Removal of the chorion before hatching 

results in increased movement and accelerated growth in rainbow trout (Oncorhynchus 

mykiss) embryos. The Journal of Experimental Biology 209, 1874-1882. 

 

Ojanguren A.F, Reyes-Gavila F.G, Rodri Guez R, (1991). Effects of temperature on growth 

and efficiency of yolk utilisation in eggs and pre-feeding larval stages of Atlantic salmon. 

Aquaculture International 7: 81–87 

Parsons, T.R., (1992). The removal of marine predators by fisheries and the impact of trophic 

structure. Mar. Pollut. Bull. 25 (1–4), 51–53. 

Perrichon P, Manger EM, Pasparakis C, Stielglitz JD, Benetti DD, Grosell M, Burggren WW. 

(2018) Combined effects of elevated temperature and deepwater horizon oil exposure on the 

cardiac performance of larval mahi-mahi, Coryphaena hippurus. PLoS ONE 13(10): 

e0203949. 

Perovich DK, Richter-Menge JA. (2015) Regional variability in sea ice melt in a changing 

Arctic.Phil. Trans. R. Soc. A 373: 20140165.  

Peterson, R.H. and Martin-Robichaud, D.J. (1995). Yolk utilization by Atlantic salmon 

(Salmo salar L.) alevins in response to temperature and substrate. Aquacultural 

Engineering 14: 85–99. 

Post E. et al. (2013) Ecological consequences of sea ice decline. Science 341, 519–524.  

 

Renaud,P., Berge, J.,Varpe, Ø., Lønne,O.,Nahrgang, J., Ottesen, C., and Hallanger, I. (2012). 

Is the poleward expansion by Atlantic cod and haddock threatening native polar cod, 

Boreogadus saida? Polar Biology, 35: 401–412. 

Sakurai Y, Ishii K, Nakatani T, Yamaguchi H, Anma G, Jin M. (1998), Reproductive 

characteristics and effects of temperature and salinity on the development and survival of 

eggs and larvae of Arctic cod, (Boregadus saida). Faculty of fisheries, 041-8611.  

Schirone, R. C, Gross L. (1968). Effect of temperature on early embryological development 

of the zebra fish, Brachydanio rerio. J. Exp. Zool. 169: 43–52,  

Skiftesvik A.B. (1992). Changes in behaviour at onset of exogenous feeding in marine fish 

larvae. Can. J. Fish. Aquat. Sci. 49: 1570-1572. 

Sobrino, C., Ward, M.L., and Neale, P.J. (2008). Acclimation to elevated carbon dioxide and 

ultraviolet radiation in the diatom Thalassiosira pseudonana: effects on growth, 

photosynthesis, and spectral sensitivity of photoinhibition. Limnol. Oceanogr. 53, 494–505. 

Speers-Roesch B, Norin T, Driedzic WR, (2018). The benefit of being still: energy savings 

during winter dormancy in fish come from inactivity and the cold, not from metabolic rate 

depression. Proc. R. Soc. B 285: 20181593. 

 



 
 

36 | P a g e  
 

TAY,K . L., and E. T. GARSIDE (1975). Some embryogenic responses of mummichog, 

Fundulus hereroclitus (L.) (Cyprinodontidae), to continuous incubation in various 

combinations of temperature and salinity. Can. J. Zool. 53: 920-933. 

 

Thompson B.M and Riley J.D, (1981). Egg and larval development studies in the North Sea 

cod (Gadus morhua L). Rapp. P-V. Reun. Cons. Int. Explor, Mer, 178: 553-559. 

 

Rankin TL, Sponaugle S (2011) Temperature Influences Selective Mortality during the Early 

Life Stages of a Coral Reef Fish. PLoS ONE 6(5): e16814. 

 

Rombough P.J, (1996). The effects of temperature on embryonic and larval development. 

Cambridge university press pp. 172-223 

 

Wallace, J. C., and Aasjord, D, (1984). The initial feeding of Arctic charr (Sahelinus alpinus) 

alevins at different temperatures and under different feeding regimes. Aquaculture 38, 19-33. 

 

Wassmann P, Duarte C.M, Agusti S, Sejr M.K, (2011). Footprints of climate change in the 

Arctic marine Ecosystem Glob. Change Biol. 17, 1235–1249  

 

Wang, M. Y., and Overland, J. E. (2012). A sea ice free summer Arctic within 30 years: an 

update from CMIP5 models. Geophysical Research Letters, 39: L18501. 

 

Welch, H. E., Bergmann, M. A., Siferd, T.D., Martin, K. A., Curtis, M. F., Crawford, R. E., 

Conover, R. J., et al. (1992). Energy flow through the marine ecosystem of the Lancaster 

Sound region, Arctic Canada. Arctic, 45: 343–357. 

 

 

 

 

 

 

 

 
 


