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Abstract: In this study, the northern cold-water marine diatom Porosira glacialis was cultivated in a pilot-scale 8 

mass cultivation system at 5 different temperatures (-2 to 12 °C), in order to evaluate temperature-dependent 9 

growth rate (in vitro Chl a), lipid content (Folch’s method) and fatty acid (FA) composition (GC-MS) in the 10 

exponential growth phase. We found that P. glacialis has a wide temperature range, with maximum growth at 11 

12 °C and positive growth even at sub-zero water temperatures. The lipid content was inversely correlated with 12 

temperature, peaking at 33.4 ± 4.0% at 2 °C, and was highly desaturated independently of temperature; PUFA 13 

content varied from 71.50 ± 0.88% at 12 °C to 82 ± 0.64% at -2 °C. EPA was the main FA at all temperatures 14 

(31.0 ± 0.7 – 40.4 ± 1.2% of total FAs).  15 

Keywords: Diatom; lipid; desaturation; psychrophilic. 16 

1. Introduction 17 

Microalgae are the main primary producers of the world’s aquatic environments. Present in all habitats 18 

containing water, they display high physiological, chemical and morphological diversity, and are the fastest 19 

growing photoautotrophic organisms on the planet. Diatoms are the largest group of microalgae with an 20 

estimated 100,000 species worldwide [1]. They are the dominant primary producers in temperate & cold areas 21 

[2]. While their structural lipochemistry is similar to that of green algae and higher plants, they are 22 

distinguished by their ability to synthesize highly unsaturated fatty acids of more than 18 carbons [3], such as 23 

EPA and DHA to serve as structural components in membranes or as precursors for metabolites, which regulate 24 

biological functions [4]. Generally referred to as long-chained polyunsaturated fatty acids (LC-PUFAs), these 25 

fatty acids are in high-demand by aquatic and terrestrial animals and are preserved as they pass through the 26 
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food chain [5, 6]. In humans, studies have demonstrated the positive health-effects of LC-PUFA intake [7-9], 27 

and different agencies recommend an intake of approximately 500 mg EPA+DHA day-1 [10].  28 

 29 

Many studies have investigated diatom lipid allocation as a function of temperature. As a general rule, there is 30 

an inverse relationship between temperature and degree of desaturation [11-18], as the main functions of 31 

fatty acids is to regulate membrane fluidity in response to changing temperatures. However, as species are 32 

inherently different in their environmental adaptations, environmental effects on fatty acid allocation must be 33 

explored for each species independently. In later years, much of the research on diatom lipids has moved from 34 

an ecological focus to an industrial one, seeking to uncover oleaginous species with potential for production of 35 

biodiesels and/or valuable PUFAs [19-22]. These studies regularly focus on batch cultivated warm-water strains 36 

of small Chlorophyta and Cyanophyta species with low iodine values. There is very little research on 37 

psychrophilic diatoms cultivated in very cold environments, or the technology required to perform large scale 38 

industrial cultivations in areas with pronounced seasons. Nevertheless, studies from polar regions have 39 

revealed highly unsaturated fatty acid compositions in diatom-dominated microalgal communities [23-26], 40 

making them excellent candidates for LC-PUFA production.  41 

 42 

Today, our main sources of EPA and DHA are marine fish, of which approximately 1 million tonnes of fish oil are 43 

produced annually. Of these, the aquaculture sector uses about 75% [27]. The annual capture of wild fish has, 44 

however, stagnated between 80 and 100 million tonnes in the last 30 years, while the aquaculture production 45 

has grown from near negligibility to contributing more than 40% of the world’s total fish production in 2014. 46 

This has had obvious implications for the composition of aquaculture feed; In 2013, Norwegian salmon 47 

producers were substituting up to 82% of the fish meal and 89% of the fish oil normally used in feed with 48 

terrestrial products [28]. Although this has no apparent negative effect for the growth of the salmon, it reduces 49 

the nutritional value for consumers by lowering the amount of n-3 LC PUFAs in the fillet [29, 30], and requires 50 

large areas of arable land that otherwise could be utilized for human food. Diatoms have an immense potential 51 

as feed for the salmon industry [31, 32], and could be the substitute for conventional sources if competitive 52 

large-scale production of LC-PUFA rich species can be achieved. Naturally, a potential salmon feed from 53 

diatoms should resemble (or improve upon) the nutrient content of the fish which it is meant to replace, and 54 

we believe the simplest way to achieve this is to harvest the diatom in the exponential growth phase. In this 55 
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study, a large cold-water centric diatom, Porosira glacialis, was cultivated in a nutrient replete environment at 56 

5 different temperatures (-2, 2, 4, 8 and 12 °C), in order to investigate the effect of temperature on the growth 57 

rate, total lipid and fatty acid composition during the exponential growth phase.  58 

2. Materials and Methods  59 

2.1 Chemicals 60 

All chemicals were obtained from Sigma Aldrich (Sigma Aldrich, St. Louis, Mo, USA) unless otherwise stated. 61 

Guillard’s F2 Marine water enrichment solution (50x) was used for cell cultivation. Ethanol (96%) and 10% 62 

hydrochloric acid (Merck KgaA, 64271 Darmstadt, Germany) were used in Chlorophyll a (Chl a) extractions and 63 

quantification. Dichloromethane (99.9%), methanol (99.8%), sodium chloride (Merck KgaA) and sulfuric acid 64 

(95-97%) were used in lipid extractions and fatty acid derivation prior to GC-MS analysis.  65 

Hexane (99%) pro analysis was used to dissolve the fatty acid methyl esters (FAMEs) before GC-MS analysis. 66 

Standards of the fatty acids 10:0, 12:0, 14:0, 16:0, 16:1n-7, 18:0, 18:1n-9, 18:1n-12, 18:2n-6, 18:3n-3, 20:0, 67 

20:1n-9, 20:3n-6, 20:4n-6, 20:5n-3, 22:1n-9, 22:6n-3 and 24:1n-9 with purity >99% were purchased from Sigma 68 

Aldrich, while standards of the fatty acids 16:2n-4, 16:3n-3, 18:4n-3 with purity >98% were purchased from LGC 69 

Standards (Teddington, UK). The internal standards used for quantification were 14-methylhexadecanoic acid 70 

and 19-methylarachidic acid (>99%, Sigma Aldrich). 71 

 72 

2.2 Species 73 

The monoculture of Porosira glacialis used in this experiment was originally isolated from a sediment sample 74 

collected in the Barents Sea (N 76° 27.54’, E 033° 03.54’) during a 2014 cruise and identified using light 75 

microscopy and the diatom key from Tomas [33]. 76 

 77 

2.3 Cultivation & Harvesting 78 

All cultures were cultivated in filtered seawater (32 PSU) added 4 mL L-1  Guillard’s F2 Marine water enrichment 79 

solution (50x) and 12.32 µM sodium metasilicate nonahydrate (≥98%). To ensure sufficient CO2 supply, all 80 

cultures were mixed by aeration (2-3 L min-1) for the entirety of the experiment. To obtain samples cultivated 81 

at 2, 4, 8 and 12 °C, monocultures of P. glacialis were cultivated in 100 L clear plexiglass columns, placed in a 82 

light- and temperature-controlled room set to each temperature consecutively, beginning with 12 °C, then 8, 4 83 
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and 2 °C, respectively. The cultures received 14 hours of daylight per day using three North Light LED-strips (12 84 

V) placed at regular intervals around the column, at a scalar irradiance of ca. 66 μmol m-2 s-1.  To obtain a 85 

sample cultivated at -2 °C, a 600 L plexiglass column was placed outside during February of 2016, using two LED 86 

work lights to achieve comparable irradiance conditions (measured each day). A larger volume was necessary 87 

to prevent sudden changes in the culture temperature as a result of the large variations in ambient air 88 

temperature during this time of year. The temperature was maintained by leading warm water (60 °C) through 89 

a silicone tube wrapped around the base of the column whenever necessary. All cultures’ growth was 90 

monitored daily, both by cell-counts in 2 mL Nunc-chambers (Nunc A/S, Roskilde, Denmark) and by in vitro Chl 91 

a - extraction and quantification using the method described by Holm-Hansen and Riemann [34], using ethanol 92 

instead of methanol as the extractant. In vitro Chl a was used as a proxy for biomass.  It is well known that Chl 93 

a may vary with cultivation conditions, especially irradiance, and the culture’s growth phase. In the present 94 

experiment this error is assumed to be of minor importance, as we applied the same species throughout the 95 

experiment, and the cultures were never allowed to exit the exponential growth phase. Experiments prior to 96 

the present one also examined correlations between Chl a and cell concentrations, and this yielded the 97 

following results: Pearson r=0.67 at p<0.05, Min=39 μg Chl a L-1 and Max 886 μg Chl a L-1, n=594. The in vitro 98 

Chl a measurements were used to calculate growth rates, visually represented both as the daily change of Chl 99 

a, and as doublings day-1 (μ) calculated from the increase in Chl a from the formula: 100 

 101 

     μ = (Log2(tx) – Log2(t0))/x,     (1) 102 

        103 

Where t equals the Chl a content and x equals the total number of days for each cultivation. 104 

  105 

At each designated cultivation temperature, the photobioreactor was initiated with 20 L of stock culture and 106 

diluted every 1-2 days (determined by the cell counts; the culture density was never diluted below 1 million 107 

cells L-1 and never allowed to surpass 4 million cells L-1) and harvested after 3-4 days of exponential growth at 108 

100 L volume. The harvesting was performed by passing 80 L of culture through a plankton net (Sefar Nytal®), 109 

and collecting the biomass with a rubber spatula in 50 mL Falcon® tubes, which were subsequently placed in 110 

the freezer at -80 °C. The remaining 20 L of culture in the plexiglass-column was used as the new stock culture 111 
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for the next cultivation temperature. With this set-up, the culture was given a minimum of 72 hours to adapt to 112 

each temperature.  113 

 114 

2.4 Lipid extraction & derivatization  115 

The extraction procedure was adapted from Folch, Lees [35], using dichlormethane:methanol as the extractant 116 

[36]. Briefly, samples were freeze-dried and divided into triplicates of approximately 100 mg in 15 mL 117 

centrifuge tubes (Falcon). Each tube was added 2 mL dichloromethane:methanol (2:1 v/v) and 2 mL 5% (w/v) 118 

NaCl in MiliQ water. The tubes were gently shaken for 30 seconds by hand and then centrifuged for 4 minutes 119 

at 2000 G (Heraus Multifuge 1S-R, Germany). Following centrifugation, the organic phase was transferred to a 120 

pre-weighed and marked dram glass. The extraction procedure was repeated twice for each sample in order to 121 

increase the yield. Following extraction, the organic phase was evaporated under nitrogen and the total lipid 122 

was determined gravimetrically, as percentage of ash-free dry weight (AFDW). Due to lack of material, AFDW-123 

calculations were based on samples from the same species harvested in the exponential growth phase, 124 

determined by combustion in a muffle furnace (AFDW = 46.04 ± 0.33% of dry weight, n=3). Finally, the 125 

extracted lipids were dissolved in dichloromethane:methanol (2:1 v/v) to a concentration of 10 mg mL-1 and 126 

esterified using a method adapted from Stoffel, Chu [37] using sulfuric acid as the catalyst:  127 

Triplicate dissolved extracts from each cultivation temperature (3 x 100 µL) was transferred to a test tube 128 

(Duran®) and added 100 µL internal standard (0.1 mg mL-1) and 800 µL dichloromethane. The samples were 129 

then added 2 mL 10% H2SO4 (v/v) in methanol and placed at 100 °C for 1 hour, before 3 mL hexane and 3 mL 130 

5% (w/v) NaCl in MiliQ-water was added and the mixture shaken thoroughly. The resulting organic phase 131 

containing the fatty acid methyl esters (FAMEs) was transferred to and evaporated in GC-MS tubes (Waters 132 

TruView ™ LCMS Certified Vials), before being redissolved in 500 µL of hexane. 133 

 134 

2.5 GC-MS 135 

The method used here was originally described in Artamonova et al. [38]. The GC-MS analyses were performed 136 

on a Waters Quattro Premier GC (Waters, Milford, MA, USA) equipped with a 30-meter-long fused silica Restek 137 

FameWax 0.25 mm column with 0.25 µm film thickness. The injector temperature was set to 250 °C, the 138 

injection was in splitless mode and He 6.0 (Aga, Oslo, Norway) was used as carrier gas with a 1.0 mL min-1 139 
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constant flow. One µl of the sample was injected, and the initial temperature on the column was 50 °C. The 140 

initial temperature was maintained for 3 minutes, and then increased by 2 °C per minute until the final 141 

temperature of 250 °C was reached. The final temperature was maintained for 10 minutes and the total 142 

runtime was 113 minutes. The GC-MS interface was kept at 250 °C, and the mass spectrometer was equipped 143 

with an EI ionization source operated at 70 eV. The MS source temperature was 210 °C and the trap current 144 

was 200 µA. The MS was run in full scan mode scanning m/z 150-400 with a scan time of 0.5 seconds. Each 145 

replicate was injected thrice, so that the final results are averages of 9 individual measurements for each 146 

cultivation temperature (triplicates measured three times each).  147 

The quantification was based on relative peak area between the different analytes and the two internal 148 

standards. The choice of internal standard was based on retention time, and the FAs 10:0, 12:0, 14:0, 16:0, 149 

16:1, 16:2, 16:3, 16:4, 18:0 and 18:1 were quantified with 14-methylhexadecanoic acid as internal standard, 150 

while the remaining longer chained FAs were quantified with 19-methylarichidic acid as internal standard. 151 

Standard curves were set up in the concentration range 10 - 1000 ng mL-1. The quantification of 16:4 was based 152 

on the standard curve for 16:3 and gives an approximate value (while the relative amount between different 153 

samples is correct), as it was not possible to find a commercial supplier of 16:4 during the project period. The 154 

method does not distinguish between the position of the double bonds in mono-, di-, tri- and tetraenes where 155 

there is more than one possible configuration, e.g. 18:1n-9 will not be separated from 18:1n-12. All standards 156 

for the standard curve and the algae samples went through the same derivatization method to obtain FAMEs 157 

before analysis. 158 

 159 

2.6 Statistical analyses 160 

All data was presented as means and their standard deviations, either in tables or as figures with error bars 161 

representing one standard deviation. All data groups were subjected to normality tests (Shapiro Wilk). 162 

Normally distributed data was analysed with ANOVA, while data not normally distributed was analysed with a 163 

Mann-Whitney test, and post hoc Tukey’s or Game-Howell tests, according to the error variance determined by 164 

a Levene’s test,. Groups were determined homogenous at a significance level of >0.05. All analyses were 165 

performed using IBM SPSS v24 (SPSS Inc., Chicago, IL, USA). 166 

 167 
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3. Results 168 

3.1 Growth rate & total lipid 169 

The algal culture displayed positive growth at all temperatures, and temperature had a significant effect on the 170 

total lipid content, see Table 1 for growth rates and lipid content, and Figure 1 for the daily increase in Chl a. A 171 

Levene’s test revealed high error variance between all groups of Chl a-measurements (p=0.013). The highest 172 

average growth rate was measured at 12 °C (0.41 μ), but this measurement was not statistically different from 173 

the growth rates at 2, 4 and 8 °C (p=0.46, 0.652, 0.221, respectively). The lowest growth rate was measured at -174 

2 °C (0.17 μ). The biomass measurements at -2 °C was influenced by water freezing; ice formation in the 175 

bioreactor trapped cells, resulting in an apparent reduction of biomass on day 1 and 2 (see Figure 1). On day 3, 176 

however, the culture was thoroughly mixed and the sample collected for Chl a measurement left to thaw 177 

before being filtered, thereby revealing the true average growth from day 0-3. The highest lipid content was 178 

measured in the algae cultivated at 2 °C (33.4%), but this measurement was not statistically different from the 179 

total lipid in algae cultivated at -2 °C (28.4%). The lowest lipid content was measured in the algae cultivated at 180 

12 °C (19.5%), but this measurement was not significantly different from 8 °C (22.0%) or 4 °C (22.8%). 181 

 182 

Table 1: Growth rates and total lipid content (arithmetic mean ± SD, n=3) for Porosira glacialis (P.g.) at each cultivation 183 
temperature. The growth rate was calculated from the increase in chlorophyll a (Chl a) from the start of cultivation to the 184 
point of harvest, while total lipids were measured from samples taken at the time of harvest. 185 

Temperature (°C) -2 2 4 8 12 

Growth rate (μ) 0.17 ± 0.01 0.36 ± 0.07 0.34 ± 0.01 0.33 ± 0.04 0.41 ± 0.07 

Lipid content     
(% of AFDW) 28.4 ± 1.3 33.4 ± 4.0 22.8 ± 1.8 22.0 ± 1.1 19.5 ± 1.5 

 186 

 187 
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Figure 1: In vitro chlorophyll a (Chl a) daily increase at each cultivation temperature. Data 
shown is the mean ± SD, n=3. SDs are represented by T-bars. 
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3.2 Desaturation 216 

Temperature had an effect on the degree of fatty acid desaturation. Table 2 lists the relative amounts and 217 

standard deviation of all fatty acids measured. A total of 14 fatty acids were detected in the cultured diatom at 218 

all temperatures.  219 

 220 

Table 2: Relative fatty acid content of Porosira glacialis (P.g.) at all treatment temperatures. Data shown are averages of 221 

replicates ±  SD, n=3. TR=Trace values. 222 

14:0 3.7 ± 0.2 4.4 ± 0.2 5.7 ± 0.3 7.3 ± 0.2 7.8 ± 0.4 
16:0 5.3 ± 0.1 7.3 ± 0.3 8.0 ± 0.2 7.2 ± 0.3 7.4 ± 0.2 
16:1 8.7 ± 0.4 12.8 ± 0.4 10.3 ± 0.3 11.6 ± 0.2 11.6 ± 0.3 
16:2 2.09 ± 0.07 2.7 ± 0.1 2.68 ± 0.08 3.97 ± 0.05 4.7 ± 0.2 
16:3 8.6 ± 0.2 8.3 ± 0.3 16.5 ± 0.4 19.8 ± 0.2 16.3 ± 0.4 
16:4 14.4 ± 0.4 14.8 ± 0.5 10.5 ± 0.3 4.9 ± 0.2 4.8 ± 0.1 
18:0 0.23 ± 0.02 0.69 ± 0.09 0.90 ± 0.07 0.7 ± 0.1 0.95 ± 0.07 
18:1 0.18 ± 0.01 0.25 ± 0.02 0.44 ± 0.09 0.40 ± 0.03 0.39 ± 0.02 
18:2 0.25 ± 0.01 0.13 ± 0.01 0.09 ± 0.01 0.26 ± 0.01 0.31 ± 0.01 
18:3 1.18 ± 0.05 1.8 ± 0.1 1.83 ± 0.05 1.65 ± 0.04 1.75 ± 0.06 
18:4 10.1 ± 0.4 9.6 ± 0.4 6.5 ± 0.3 5.3 ± 0.2 3.9 ± 0.2 
20:5 40.4 ± 1.2 32.6 ± 1.2 31.4 ±0.9 31.0 ± 0.7 33.8 ± 0.9 
22:6 4.9 ± 0.3 4.5 ± 0.3 4.9 ± 0.2 5.5 ± 0.3 6.0 ± 0.4 
24:0 TR 0.24 ± 0.05 0.31 ± 0.04 0.33 ± 0.09 0.4 ± 0.1 

Temperature 
(°C) -2 2 4 8 12 

 223 

Trends among individual fatty acids were observed; The amount of 14:0, 16:2 and 16:3 approximately halved 224 

from 12 to -2 °C. 14:0 decreased in increments as the temperature decreased (all changes were statistically 225 

significant). 16:2 decreased gradually, but more strongly at the transition from 8 to 4 °C, while for 16:3 the 226 

decrease was sudden during the transition from 4 to 2 °C. DHA (22:6) was also more abundant at 8 and 12 °C 227 

compared to the lower temperatures (p<0.05). 228 

From 12 to 2 °C, 16:4 and 18:4 increased by 208% and 148%, respectively. At -2 °C, results were similar to 229 

those found at 2 °C and did not display the same increasing trend. For 16:4, the increase occurred between 8 230 

and 2 °C, forming three significantly different subgroups; -2 and 2 °C (14.4-14.8%), 4 °C (10.5%), and 8 and 12 231 

°C (4.9-4.8%). For 18:4, the decrease occurred in increments with increasing temperature (all measurements 232 

were statistically significant). The relative EPA content was highest in the algae cultivated at -2 °C (40.4%), 233 
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Figure 2: Trends among saturated (SFA, a), 
monounsaturated (MUFA, b) and polyunsaturated 
fatty acids (PUFA, c). Data shown is the mean ± SD, 
n=9. T-bars represent the SD for each sample. 
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while all other measurements fluctuated between 31.0-33.8%. The 234 

relative contents of EPA at 2 and 12 °C were not statistically different 235 

(p>0.05). 236 

 237 

3.3 SFA, MUFA & PUFA 238 

Total values of, and trends among saturated (SFA), monounsaturated 239 

(MUFA) and polyunsaturated (PUFA) fatty acids are displayed in figure 2. 240 

The SFA content (Figure 2a) was lowest in the algae cultivated at -2 °C 241 

(10.43% of total FAs), and highest at 12 °C (16.48%). The SFA contents 242 

were statistically significant at all temperatures with the exception of 243 

4 and 8 °C (p=0.061). 244 

The MUFA content (Figure 2b), dominated by 16:1, was lowest in the 245 

algae cultivated at -2 °C (8.84%) and highest at 2 °C (13.31%).  All 246 

MUFA contents were statistically significant at all temperatures apart 247 

from 8 and 12 °C (p=0.995). 248 

The PUFA content (Figure 2c) was lowest in the algae cultivated at 12 249 

°C (71.50%), and highest at -2 °C (82.0%). From -2 to 2 °C, the PUFA 250 

content was reduced by almost 8 percentage points, caused almost 251 

exclusively by the change observed in EPA. Two statistically similar 252 

groups were observed; 12 & 8 °C (p=0.71) and 4 & 0 °C (p=1.0). 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 
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4. Discussion 261 

4.1 Temperature and growth 262 

The algal culture displayed positive growth at all temperatures during the course of the experiment. The 263 

growth rates in table 1 showed highest and lowest growth at 12 and -2 °C, respectively, a result that follows 264 

the consensus of phytoplankton in general: Within a temperature range, diatom growth rates increase with 265 

temperature toward the species’ optimum growth temperature [39-41]. A Tukey’s test, however, revealed no 266 

statistical difference between growth rates at all temperatures other than -2 °C, indicating that from 2-12 °C 267 

the growth rate was independent of temperature. While this observation could be influenced by the large 268 

variation observed in the error variance of the measured growth rates, previous studies on cold-water diatom 269 

strains using comparable light regimes have also found that lowering temperatures within a species’ natural 270 

temperature range do not necessarily slow growth: Teoh, Phang [12] found that the optimum cultivation 271 

temperature for an Antarctic strain of Navicula sp. was 4 °C (μ≈0.35), with growth slowing drastically already at 272 

6 °C. They did not try to cultivate at lower temperatures. Boelen, van Dijk [42] cultivated an Antarctic strain of 273 

Chaetoceros brevis and found higher growth rates at 3 °C compared to 7 °C (μ=0.47 and 0.41, respectively). In 274 

these studies, the differences in the growth rates were more pronounced than in our data, indicating that P. 275 

glacialis has a wider temperature range than both Navicula sp. and C. brevis, with a potential for yearlong 276 

cultivation in areas with pronounced seasons.  277 

 278 

4.2 Temperature and lipids 279 

The total lipid content was highest (p<0.05) in the samples harvested at the lowest temperatures. Other 280 

studies have found ambiguous effects of temperature on lipid content on diatoms [14, 15, 43], implying that 281 

responses to temperature are species specific and do not follow general trends. For the strain of P. glacialis 282 

studied here, the total lipid content was inversely correlated with cultivation temperature. The lipid content 283 

reported here is comparable to or higher than those found in other cultivated cold-water diatoms [12], but 284 

lower than those often reported for temperate and warm water cultivations [43, 44]. However, it is important 285 

to keep in mind that this strain of P. glacialis was harvested while still in the exponential growth phase, while 286 

lipid accumulation as observed in other studies is a result of the algae entering the stationary phase. The high 287 

lipid content often observed in such batch cultures comes at the expense of FA chain length and desaturation 288 
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[45] and protein content [46]. This has the unfortunate effect of reducing the versatility of the feed, as it would 289 

resemble those of terrestrial products such as soy- or rapeseed in FA composition, instead of offering a 290 

complete substitute for fish oil. 291 

  292 

4.3 Desaturation 293 

The degree of desaturation was also inversely correlated with temperature (see Figure 2), with SFAs increasing 294 

and PUFAs decreasing with temperature. Although the inverse correlation of PUFAs with temperature is 295 

strongly exaggerated by the large EPA content in the sample cultivated at -2 °C, the composition of the FA 296 

fraction did change notably with temperature: At both -2 and 2 °C, the five most abundant fatty acids were 297 

20:5, 16:4, 18:4, 16:3 and 16:1. At 8 and 12 °C, the five most abundant fatty acids were 20:5, 16:3, 16:1, 16:0 298 

and 14:0. At all temperatures, the five most abundant fatty acids constituted more than 75% of the total fatty 299 

acids. While this clearly shows that increasing the temperature increases saturation, it should be noted that the 300 

PUFA fraction dominated the fatty acids at all temperatures, constituting 71.49% of total FAs even at 12 °C. 301 

Furthermore, EPA was not observed to decrease with temperature from 2 to 12 °C, indicating that P. glacialis 302 

depends heavily on functional EPA during the growth phase, independently of temperature. These findings 303 

correlate well with a study by Gillan et al. [47], in which Stauroneis amphioxys was cultivated at 3 and 20 °C; 304 

while the ratio of the most desaturated fatty acids (16:4, 18:4, 20:5 and 22:6) to their equivalents with one less 305 

double bond was higher at 3 °C, there was no difference in the total amounts of PUFAs at the two growth 306 

temperatures.  307 

 308 

Interestingly, the amount of 22:6 increased with temperature from -2 to 12 °C (4.9% at -2 °C to 6.0% at 12 °C, 309 

p<0,05), a result that is in direct opposition with other findings on diatoms [16, 48]. With a minimum content of 310 

36.3% EPA+DHA at 4 °C, and a maximum content of 45.3% at -2 °C, this diatom contains far more LC-PUFA 311 

compared to most other autotrophic species of microalgae suggested for mass production [49]. Although the 312 

PUFA content was highest at -2 °C, the low growth rate observed and the increased difficulty associated with 313 

cultivation at this temperature reduces the potential for industrial production of PUFAs. However, by displaying 314 

growth at sub-zero temperatures, this strain represents an exciting potential for production of cold-adapted 315 

bioactive molecules for e.g. the pharmaceutical industry. In comparison, both 2 °C and 12 °C displayed the 316 
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highest growth rates, as well as high contents of EPA. Although there was some variation in the composition of 317 

the other PUFAs, the total PUFA content only varied by 2.92 percentage points from 2 to 12 °C. Based on these 318 

data, a high-quality feed especially rich in EPA can be produced at a large range of temperatures. Whether or 319 

not this production is economically feasible requires increased knowledge of the potential production and the 320 

associated costs in a large-scale production, which goes beyond the scope of this study. Therefore, future 321 

research should focus on optimizing growth or lipid content in an economically feasible manner, for example 322 

through increasing the relative concentration of CO2 by addition of flue gas to the culture medium.  While it 323 

would also have been interesting to investigate the growth and fatty acid composition of P. glacialis at higher 324 

temperatures, this specific strain has not been capable of maintaining growth at temperatures above 15 °C for 325 

a significant amount of time, also when temperatures have been gradually increased from lower temperatures. 326 

 327 

4.4 Conclusion 328 

To conclude, P. glacialis is a potential species for mass cultivation of diatoms. Its broad temperature range is 329 

well adapted for cultivation in cold areas with pronounced seasons and allows for yearlong cultivation at 330 

ambient sea-temperatures. The fatty acid composition was predominantly polyunsaturated, with EPA as the 331 

most abundant fatty acid at all temperatures. This makes P. glacialis an excellent source of marine fatty acids 332 

as a substitute for the conventional fish oil used in aquaculture feed, or as ingredients in other high-value 333 

products. 334 
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