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Summary paragraph 16 

Alarming global-scale declines of birds numbers are occurring under changing climate1 and 17 

species belonging to alpine and arctic tundra are particularly affected2,3. Increased nest predation 18 

appears to be involved4, but the mechanisms linking predation to climate change remain to be 19 

shown. Here we test the prediction from food web theory that increased primary productivity 20 

(greening of tundra) in a warming arctic leads to higher nest predation risk in tundra ecosystems. 21 

Exploiting landscape-scale, spatial heterogeneity in primary productivity across alpine tundra 22 

ecotones supplied with experimental nests in sub-arctic Scandinavia, we found that predation risk 23 

indeed increased with primary productivity. The productivity-predation risk relationship was 24 

independent of simultaneous effects of rodent population dynamics and vegetation cover at nest 25 

sites. Predation risk also increased steeply with altitude, implying that species at the high-altitude 26 

end of alpine tundra ecotones are particularly vulnerable. Our study contributes to an improved 27 

understanding of how climate change may affect arctic-alpine ecosystems and threaten endemic 28 

biodiversity through a trophic cascade.                   29 

 30 
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Main Text  31 

Biota belonging to the globe’s coldest biomes – alpine and arctic tundra – are expected to be 32 

disproportionally exposed to global warming3,5. Indeed, declines in abundance and distribution 33 

ranges of arctic-alpine bird species have been reported1,2,6-9. Although, these declines are 34 

consistent with recent climate change, the ecological mechanisms involved are mostly unknown. 35 

Unravelling such mechanisms will yield improved predictive models of future changes as well as 36 

better basis for implementing effective management actions10,11.    37 

Birds are often subjected to strong food web interactions, of which predation has pervasive 38 

impacts on population dynamics and extinction risk12. Eggs and nestlings are bird life stages 39 

particularly vulnerable to predation13. Hence, factors determining nest predation have been the 40 

targets of a large number of studies. Yet, how climate change may affect nest predation has been 41 

claimed to be a remaining frontier14.  42 

Alpine and arctic birds place their nests on the ground, sometimes in tundra landscapes with 43 

sparse vegetation cover. Hence, their nests can be expected to be particularly vulnerable to 44 

predation since they are often very exposed (i.e. visible because of little cover) and easily 45 

accessible to predator species that are present. Alpine and arctic tundra are also the biomes where 46 

climate warming is most profound3,5 and a critical question is how this influence nest predation 47 

risk. A new study has shown that nest predation in arctic waders has increased steeply concurrent 48 

with recent climate warming4, but without providing evidence for the ecological mechanisms that 49 

may be involved. The most fundamental response of tundra ecosystems to climate warming is 50 

increased plant biomass – the tundra is greening15,16. While increased vegetation cover could 51 

yield lower exposure of bird nests to predators13, food web theory predicts that increased primary 52 

productivity in tundra will render species at intermediate trophic levels (such as many ground 53 

nesting birds) more suppressed by predation17. In particular, generalist consumers (omnivores 54 

like corvids and foxes) that feed on a variety of food items from several trophic levels, including 55 

bird nests, are expected to become more abundant as primary productivity increases. While this 56 

expectation is derived from general food web theory, consumers in tundra ecosystem may be 57 

particularity sensitive to a warming-induced increase in primary productivity, because primary 58 

productivity is initially low and temperature limited in cold regions.       59 
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Here we test the prediction that higher landscape-scale primary productivity is associated with 60 

higher nest predation risk within an 11 000 km2 region at 70-71oN in Scandinavia (Fig. 1). The 61 

study region is located in the transition between north-boreal forest and sub-arctic tundra. Like 62 

large tracts of the circumpolar high north3,16,18, the region has been subjected to a spatially 63 

heterogeneous greening9 and ground nesting tundra birds such as ptarmigans have been declining 64 

over the last decades7,8.  The boreal-arctic transition zone is also expected to be particularly prone 65 

to invasions by boreal predators in a warming climate, because of its close proximity to forest 66 

ecosystems8.  67 

We selected 9 replicate landscape areas (average area size=13.3km2) with three levels of 68 

greenness (i.e. primary productivity) as assessed by the maximum Enhanced Vegetation Index 69 

(max EVI). Within each landscape area, we distributed 20 experimental nests along two 70 

altitudinal transects (Fig. 1). Each transect spanned an ecotone (i.e. an altitude gradient) starting 71 

just above the tree-line in relatively lush low-alpine shrub tundra and ending in more sparsely 72 

vegetated middle-alpine tundra. This ecotone design was employed because bird species 73 

associated with different alpine vegetation zones in other geographic regions have exhibited 74 

contrasting population declines2,6 and because this ecotone also constitute a spatial gradient in 75 

primary productivity and vegetation cover. We deployed experimental nests according to a much-76 

used standard that provides a measure of relative predation risk19. The experimental nests were 77 

exposed for 14 days during the local birds’ breeding season of the years 2010-2014. This 5-year 78 

period encompassed all phases of the multi-annual rodent population cycle known to strongly 79 

influence nest predation risk through the alternative prey mechanism20. We expected the 80 

predation risk to peak in the crash phase of the rodent cycle, because predators that have become 81 

numerous based on abundant rodent prey in the peak phase (predator numerical response) switch 82 

to alternative prey (e.g. bird nests) in the crash phase when rodent prey has become scarce 83 

(predator functional response). Overall, predator functional and numerical responses should yield 84 

a predation risk cycle that mirrors the rodent cycle with one-year time lag20.    85 

Predation risk among the 900 experimental nests exhibited profound temporal and spatial 86 

variation (Fig. 2). A GLMM model that included the following four additive fixed effects 87 

adequately accounted for this variation: Primary productivity (max EVI) at the landscape-level 88 

(see Fig. 1), altitude (i.e. elevation in meters above the alpine tree-line) and vegetation cover at 89 
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nest sites, and year (i.e. the phase of the rodent cycle). In accordance with the prediction, the 90 

predation risk increased with landscape-scale primary productivity (max EVI) (Fig. 2a). 91 

Landscape areas with the highest productivity level had 72% higher predation risk (odds ratio: 92 

2.44, 95% CI [1.25, 4.77]) than landscapes with the lowest productivity level. The largest 93 

contrast was between the lowest and intermediate max EVI-levels (Fig. 2a), while the contrast 94 

between the highest and the intermediate levels was not significant (Supplementary Table 2). 95 

However, as a model with max EVI as a linear, continuous predictor variable appeared to predict 96 

predation risk about equally well (Fig. 2a, Supplementary Table 3), the evidence for a non-linear 97 

effect is not strong. Within the ecotone transects the predation risk increased linearly with altitude 98 

(Fig. 2b); an increase of 100 m yielded 43% higher predation risk (odds ratio: 1.91, 95% CI 99 

[1.32, 2.81]). Moreover, nests with very little vegetation cover had 112% higher predation risk 100 

(odds ratio: 3.26, 95% CI [1.35, 8.69]) than nests that were almost totally concealed by the 101 

ground vegetation. The largest contrast was between the lowest and the intermediate cover levels 102 

(Fig. 2c). As expected, altitude and vegetation cover were negatively correlated (Spearman r = -103 

0.30), but only moderately, owing to much small-scale patchiness in vegetation cover. A model 104 

without cover included yielded an even stronger effect of altitude (odds ratio: 2.48, 95% CI [1.71, 105 

3.72]). Finally, predation risk peaked in the crash year 2012 of the 4-year rodent cycle (Fig. 2d) 106 

when it was 495% higher (odds ratio: 11.08, 95% CI [5.11, 26.68]) than in the preceding rodent 107 

pre-peak year 2010 and 46% higher than the following pre-peak year in 2014 (odds ratio: 1.92, 108 

95% CI [1.07, 3.50]). 109 

We were able to attribute 54% of predation events to either mammals or birds based on marks left 110 

on a plasticine egg in the experimental nest. The majority (80%) of these events with known 111 

predator type were due to bird predation (beak marks), but there were no apparent trends in this 112 

proportion in space or time.  113 

The difference in nest predation risk between landscape areas with contrasting primary 114 

productivity, located some tens of kilometers apart in our sub-arctic study region, was of similar 115 

magnitude to those previously found across major latitudinal, bio-climatic tundra zones several 116 

thousand kilometers apart in the Canadian Arctic19. The Canadian study also used experimental 117 

nests with quail eggs, but did not measure primary productivity or control for the strong impact of 118 

the rodent cycle21. Thus, our study provides a more direct test of the prediction from food web 119 
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theory17,22; i.e. that a negative impact of increased primary productivity on intermediate trophic 120 

level in the food web (that includes ground nesting birds) is mediated through enhanced 121 

predation.  122 

While the effect of primary productivity and nest site vegetation cover was according to the 123 

prediction, the enhanced predation risk with increasing altitude is intriguing. The altitude effect 124 

was strong even when nest site vegetation cover was corrected for in the GLMM model. This 125 

indicates that the increased predation pressure with altitude did not result from increased nest 126 

visibility. A mechanism that may underlie the altitude effect is a constant proportional spillover 127 

of mobile predators (e.g. corvids) from the more productive (low-altitude) onto the less 128 

productive (high-altitude) sections of the tundra landscape22, causing an increasing predator-prey 129 

ratio with increasing altitude. Such risk gradients resulting from shifting victim-enemy ratios 130 

have been demonstrated for other organisms (e.g. insects)23. In our case an altitudinal risk 131 

gradient imply that bird species associated with high-altitude alpine vegetation zones may be 132 

particularly vulnerable to climatic warming, a prediction that seems to be consistent with bird 133 

population trends from other alpine regions6.  134 

As expected, the predation risk peaked in the crash year (2012) of the regional-scale, 4-year 135 

rodent cycle.  However, predation risk estimates did not quite exhibit the expected symmetrical, 136 

one-year lagged cycle relative to the rodent dynamics20, since the predation risk in the rodent pre-137 

peak year 2014 did not drop to the low level of the pre-peak year 2012. Accordingly, the link 138 

between the population dynamics of ptarmigan and the rodent cycle appear presently weaker than 139 

it was four to five decades ago24. Increased availability of food sources such as carrion from 140 

ungulate populations25, may have caused a decoupling from the rodent cycle due to omnivore 141 

nest predators. Inter-annual variation and long-term changes in population density and breeding 142 

phenology within the community of ground nesting birds may also have disturbed the match 143 

between the rodent cycle and nest predation risk.         144 

Like previous studies, we have resorted to time-for-space substitution17 and experimental prey 145 

items26 for inferring that tundra ecosystems in a warming climate may become subjected to a 146 

trophic cascade that yields increased predation pressures on endemic biodiversity. Indeed, 147 

although our 5-year study is relatively long-term - especially in context of nest predation studies14 148 

- it is nevertheless too short to simultaneously study temporal trends in climate, vegetation 149 
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productivity and predation. However, food web theory22 predicts predation to increase with 150 

primary productivity regardless of whether the productivity increases across space or time. 151 

Moreover, when we infer that nest predation risk is enhanced when primary production increases 152 

in tundra ecosystems, we also borrow support from analogous empirical findings from other 153 

ecosystems, where primary productivity has been boosted because of human land use. In 154 

particular, experimental nests in forest ecosystems have higher predation rates when the forest is 155 

encroached by more productive agricultural fields27, 28. Finally, generalist predators originally 156 

belonging to boreal ecosystems are presently increasing in the high north3,5,25. In our study 157 

region, omnivorous corvids (Corvus spp.) numerically dominate the predator guild across the 158 

focal alpine ecotone29 and are major predators of tundra bird nests30. New studies and 159 

technologies are much needed to reveal how different predator species are responding to a 160 

greening tundra and how this affects bird species with different nesting habitats and life history 161 

strategies.      162 

Increased productivity (greening) is a fundamental tundra ecosystem response to global warming 163 

likely to have cascading impacts in terms of changed trophic interactions in the food web3,5. By 164 

here substantiating empirically the prediction from food web theory, that arctic greening leads to 165 

increased predation pressures on vulnerable prey species, our study contributes to an improved 166 

understanding of how climate change may affect arctic ecosystems through a trophic cascade. 167 

Unravelling such changed interactions in tundra food webs may also be helpful for biodiversity 168 

conservations under climate change11. While the ongoing greening of the Arctic may be 169 

impossible to counteract by means of local management, actions made to halt the increase of 170 

generalist predators may nevertheless be a management option to preserve alpine-arctic birds in a 171 

warming climate. Indeed, such actions are currently implemented in northern Fennoscandia to 172 

safeguard the critically endangered population of lesser white-fronted goose (Anser erythropus)31.  173 
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 293 

Fig. 1. Study design. Map of the study region in northern Scandinavia (middle inset map) with 294 

the location of the 9 landscape areas (white dots). The right inset map exemplify how the 2 295 

altitudinal ecotone transects were placed within each landscape area, where black dots are the 10 296 

nest sites per transects. The altitudes (meters above sea level) are given for lowest and highest 297 

sites, while the shapes around each transect denote the buffer zones over which max EVI was 298 

estimated for each landscape area. The degree of greenness is proportional to max EVI according 299 

to the color scale bar inset. Cross-hatched areas denote sub-alpine mountain birch forest.  300 

301 
  302 
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Fig. 2. Estimated nest predation risk per 14-days exposure periods. Risk estimates are 303 

functions of (a) max EVI both modelled as a three-level categorical variable (black dots and 304 

lines) and as a continuous predictor (broken gray line), (b) altitude (meters) above the alpine tree-305 

line, (c) three ordinal levels of vegetation cover and (d) year and the phases of the rodent 306 

population cycle. Error bars denote 95% confidence intervals for the fixed effects, while small 307 

gray dots are random effects from the GLMM. The multi-annual rodent density cycle is shown as 308 

a grey stippled curve in panel d.  309 

  310 

311 
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Methods 312 

Field work 313 

Two altitudinal ecotone transects within each of 9 landscape areas (Fig. 1) were established with 314 

a minimum distance of 2 kilometers between the transects in order to reduce the chance of 315 

predation from the same predator individuals. The starting point of each transect was just above 316 

the tree-line of the subalpine mountain birch (Betula pubescens) forest, which ranged about 50 – 317 

350 meter above sea level among the landscape areas. From the starting point 10 experimental 318 

nest-sites were placed at fixed 200 meter distance intervals (Fig. 1), generally upslope so as to 319 

span the low-alpine to the middle-alpine vegetation zone within each transect. Typically, the low- 320 

alpine zone is characterized by continuous vegetation with erect shrubs (e.g. Betula nana), while 321 

in the middle-alpine zone the vegetation is more discontinuous with prostrate vascular plants and 322 

increasing dominance of cryptogams32. At each nest site, we made an experimental nest similar to 323 

nests of ptarmigan (Lagopus spp.) and waders (Charadriinae) by scraping a small bowl in the 324 

ground by hand. Two eggs - one quail (Coturnix sp.) egg and one plasticine egg made to mimic a 325 

quail egg - were placed in the nest. Quail eggs have similar coloration to the eggs of ground 326 

nesting tundra birds (Supplementary Fig. 1). We used mixture of colored plasticine to create 327 

similar plasticine eggs. The purpose of the plasticine eggs was to acquire predator identity from 328 

bite marks33. They were attached to the ground by a steel wire to hinder removal by the predators. 329 

A small tape mark was placed at a fixed distance (10 meters) and angle from the nest to aid the 330 

recovery of the nests. We used rubber gloves to minimize human scent that could attract 331 

predators using olfactory cues. Predation on such experimental nests has been found to correlate 332 

with real bird nests in tundra habitats34, meaning that they are indicative of spatial and temporal 333 

variation in relative predation risk. However, care should be taken not to extrapolate predation 334 

rates on experimental nests to absolute predation rate on real nests. In particular, it is likely that 335 

the eggs of experimental nests without incubating birds are more exposed than natural nests, and 336 

thus more subjected to predators using vision (i.e. birds).    337 

The amount of ground vegetation that could conceal the eggs was scored on a three-level ordinal 338 

scale for each nest; 1: the eggs were fully visible from above, 2: some branches of vascular plants 339 

intercepted the view of the eggs and 3: most of the eggs were concealed by vegetation cover (see 340 

Supplementary Fig. 1). Also, natural bird nests in tundra habitats may vary much with respect to 341 
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vegetation cover both between and within species35.  We also measured the maximum height of 342 

the vascular plants within a triangular sampling frame with sides of 40 cm centered on the nest. 343 

These height measurements were strongly correlated with the ordinal vegetation level score (see 344 

Supplementary Fig. 2). We used the ordinal scores as three levels of a categorical vegetation 345 

cover predictor in the statistical analyses as to facilitate more robust statistical estimation of 346 

putative interaction effects (see ”Statistical analyses”). Small-scale patchiness of vegetation both 347 

in the low- and middle-alpine vegetation zones, owing to mosaics of ridges and snow beds, 348 

rendered the correlation between relative altitude and vegetation cover at the nest sites to be only 349 

moderately negative (r=-0.3). This indicates that we were able to obtain relatively unbiased 350 

estimates of the independent effects of primary productivity (at the landscape level), and altitude 351 

and vegetation cover (at the nest site level).           352 

The experimental nests were deployed during the week 23-30 June each year, which is within the 353 

incubation period for ground nesting tundra birds in the study region35. All nests were recovered 354 

14 days after deployment. This exposure period is shorter than the typical incubation periods for 355 

ptarmigan and waders in tundra (range:18-24 days35). On the other hand, experimental nests 356 

without incubating birds are probably overall more exposed than natural nests and we expected 357 

the shorter exposure time to compensate for this.  Nests where at least one egg was missing 358 

without any remaining signs or evidently eaten at the site (egg shells remaining), were recorded 359 

as predation events. The identity of predators was determined as bird and mammal when marks 360 

from beaks or teeth, respectively, were left on the plasticine eggs. 361 

Small rodents (voles and lemmings) had a distinct 4-year population cycle with strong inter-362 

specific and spatial synchrony across the study region31,36,37. In order to determine the phases of 363 

the rodent cycle during the 5-year study period we used data from the trapping program described 364 

in ref. 36 conducted near the landscape areas in Varanger, Nordkinn and Ifjord (see Fig. 1). The 365 

rodent population trajectory shown in Figure 2d is presented as number of snap-trapped rodents 366 

per 100 trap-nights in summer.  367 

 368 

Landscape area primary productivity 369 
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We used MODIS Enhanced Vegetation Index (EVI) as a measure of vegetation productivity at 370 

the spatial scale of the 9 landscape areas included in this study. Both NDVI and EVI are suitable 371 

proxies for vegetation productivity, but the advantages of EVI include a lower sensitivity to 372 

viewing angle variations and a smoother, more symmetrical seasonal profile with a narrower 373 

peak greenness period38. The landscape scale was chosen as previous studies have shown that 374 

nest predators typically are wide ranging and that landscape level characteristics are often 375 

important predictors of predation rate39-41. The most abundant nest predators in sub-arctic tundra  376 

– red fox (Vulpes vulpes) and raven (Corvus corax) – have home ranges that most often exceed 377 

the size of the landscape areas (>20km2) in this study42,43. Moreover, we focused on the inter-378 

annual variation in site productivity (rather than within season variation) and selected temporal 379 

and spatial resolution of the MODIS data expected to provide estimates that most robustly 380 

reflected the difference in primary productivity among the landscape areas. Therefore, we chose 381 

the MOD13Q1 product44, which is a temporally coarse 16-day composite product with a pixel 382 

size of 250 m. We extracted EVI data for the four 16-day periods covering the peak of the 383 

growing season (day 177, 193, 209 and 225, representing late June – mid August) for the years 384 

2010 – 2014. MODIS VI products are supplied with two measures of data quality, the Pixel 385 

Reliability index (PR), which is a simplified 5-level ranking of overall pixel quality, and the 386 

Vegetation Index Quality (VI QA). We used both these indices to judge the quality of the data on 387 

a pixel level. We initially kept all pixels with a PR value of either 0 (=‘Good data – use with 388 

confidence’) or 1 (=‘Marginal data – useful but look at other QA’). Since it was clear from visual 389 

inspection of the data that some pixels with PR=1 contained erroneous values, we further 390 

examined the VI QA, and kept only those pixels, which were in the best VI QA category (“VI 391 

produced with good quality”). For each remaining pixel we calculated annual growing season 392 

maximum EVI as the max EVI over the four 16-day periods. To obtain annual estimates of site 393 

productivity for each of the 9 landscape areas, we used all pixels located within a 500 meter 394 

buffer around the experimental nest sites within the landscapes (Fig. 1), and calculated the 395 

average maximum EVI over all pixels within each landscape. We used estimates based average 396 

max EVI over both buffer zones per landscape area (Fig. 1) because this yields estimates less 397 

affected by local noise (measurement errors) than estimates based on smaller spatial scales and 398 

subsets of pixels (i.e. transects within landscapes).  399 

 400 
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Statistical analyses 401 

We analysed the data using Generalized Linear Mixed-effects Models (GLMM) with a logit-link 402 

function applied to the binomial response variable that recorded predation events or non-events 403 

per experimental nests. The predictions from this model are thus probabilities of predation (i.e. 404 

predation risk). Fixed effects included in this model was landscape-scale primary productivity 405 

(max EVI), relative altitude in the ecotone transects, nest vegetation cover and year. The max 406 

EVI values per landscape area and year formed three non-overlapping groups with the following 407 

averages and ranges of values: 0.37 [0.33, 0.38], 0.42 [0.40, 0.44], 0.48 [0.46, 0.54]. To better 408 

facilitate tests of interaction terms and identification of possible non-linear effects, the 409 

productivity predictor was modelled as a categorical variable with three nominal levels based on 410 

the clusters of max EVI values. The means for the three max EVI were evenly spaced on a linear 411 

scale and this facilitated the identification of possible non-linear effects based on estimates of 412 

contrasts (see legend to Supplementary Table 2). Because the alpine tree-line was situated at 413 

different altitudes across the study region (Fig. 1), we used relative altitude as a continuous 414 

variable measured as the altitude difference (meters) between the lowest nest site adjacent to the 415 

tree-line and the focal nest site in each transect. Year (2010-2014) and vegetation cover (ordinal 416 

levels: 1, 2 and 3) was modelled as categorical variables. GLMMs were fitted using nest site 417 

nested within transects nested within landscape as random effects45, thus taking into account the 418 

repeated censuses within nest sites, transects and landscapes. GLMMs were fitted using the lme4 419 

package in the software R (3.4.0)46.  420 

Model selection started from four pre-defined candidate models47. In addition to 421 

considering the main baseline model containing only additive effects of the four predictors 422 

(which all were statistically significant), we also considered three additional models that included 423 

biologically meaningful interaction terms (see footnotes to Supplementary Table 1): One with 424 

altitude*max EVI, one with year*max EVI and one with year*altitude. Log-Likelihood ratio tests 425 

and AIC-values were used to compare candidate models and to identify the most parsimonious 426 

model (see Supplementary Table 1). Logit-scale parameters estimates (slope parameters and 427 

contrasts) and associated test statistics from the most parsimonious model are provided in 428 

Supplementary Table 2, while odds ratios with 95% confidence intervals are presented in the 429 

main text. Predation risk estimates on a probability scale for all levels and full ranges of the 430 
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predictor variables are presented in Fig. 2. We also compared a model with max EVI taken as 431 

continuous, linear predictor against the best model with the same predictor taken as a categorical 432 

variable (see above). This comparison was made based a Log-Likelihood test and AIC-values for 433 

the two models (Supplementary Table 3). As a second check of non-linear effect of max EVI we 434 

tested both the contrast (i.e. difference) between Max EVI levels 2 and 1 and between levels 3 435 

and 2 (see caption to Supplementary Table 2).   436 

The GLMMs were fitted using the Laplace approximation45 and the "bobyqa" optimizer in 437 

the package lme4. The models were checked for constant variance of the residuals, presence of 438 

outliers and approximate normality of the random effects. We also checked for potential 439 

collinearity/confounding between predictors of which only altitude and vegetation cover were 440 

moderately confounded (Spearman r = -0.30). Finally, we estimated pseudo-R2 values for the the 441 

most parsimonious GLMM model based on the function r.squaredGLMM in the MuMIn package 442 

in the software R48. Pseudo-R2 values both for the fixed effects only (marginal model) and fixed 443 

and random effects combined (full model), as well as for the two computation methods 444 

(“theoretical” and “delta”) provided by the R-package, are given in Supplementary Table 2.   445 

About one-half of the predation events (46%) could not be attributed to either mammals 446 

or birds because the plasticine eggs was removed or did not have clear marks. This combined 447 

with the fact that 80% of the events with known predator type were due to birds, yielded predator 448 

identity data that were unsuitable for GLMM analyses. To explore whether there were significant 449 

patterns in the proportions of events with known predator type, the data were aggregated into a 450 

set of two-dimensional cross-tables; i.e. one for each of the main predictor variable max EVI, 451 

altitude, vegetation cover and year. The altitudes were binned on three ordinal classes per transect 452 

for this table. The cross-tables were subjected to binomial goodness of fit tests; i.e. assessing 453 

whether there were significant deviances from constant proportions across the levels of each 454 

predictor variable.                      455 

 456 

Data availability 457 

The data that support the findings of this study are available from the corresponding author upon 458 

request.  459 

 460 

Code availability:  461 
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The R code used to analyze the data are available from the corresponding author upon request.  462 
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