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Abstract

Angiodysplasia (AD) is a serious problem among patients older than 50-
60 years that may cause both acute gastrointestinal bleeding and chronic
iron deficiency anemia. Accurate detection and localization of AD lesion for
early-stage diagnostics is important, but most of the small intestine is out
of reach for traditional endoscopy because it can only reach a fraction of the
small intestine. This changed due to the development of wireless capsule
endoscopy, were a capsule is swallowed and records images while it passes
through the whole digestive system for several hours. However, in order to
analyze the large amount of image data, automatic approaches need to be
developed to assist the medical expert during his task.

In this thesis, we look at a deep learning approach to AD detection and focus
specifically on the problem of class imbalance, which arises from the fact that
lesions only occupy a small part of the images, by analyzing how weighting
of the loss function can help address this issue. Balancing the weights of the
foreground and background class in the cost-function was found to be crucial
to achieve good segmentation results.
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Chapter 1

Introduction

1.1 Angiodysplasia disorder in the bowel

Figure 1.1: The gastrointestinal tract1. Total length for humans
about 8.5m.

Disorder in the bowel can arise at any time in life, and one symptom which
gives cause for concern is to have blood in the stool. Patients experiencing
this will normally contact their doctor for a referral of an examination to

1Source: https://sml.snl.no
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a medical expert in order to exclude other serious diseases such as cancer.
Angiodysplasia (AD) occurs when degenerative lesions of previously healthy
blood vessels are formed. They have a cherry red color, form vascular lesions
of 2 to 10 mm in size on the bowel wall and can cause both acute gastroin-
testinal (GI) bleed and/or chronic iron deficiency anemia if left untreated.
The wound usually has a round shape and is shown in Figure 1.2. Not all AD
bleeds and the probability of bleeding depends on the lesion shape and size.
When it increases in size, the risk of bleeding is higher (Vieira, Gonçalves,
Gonçalves, & Lima, 2016).

Figure 1.2: (a) Illustration of AD in small boval. (b) Illustration
of AD in the ascending colon, an arrow indicates the feeding vessel.
Both images are diagnosed by endoscopy (Sami et al., 2014).

1.2 Need for automation

Doctors or the gastroenterologist experts have various examinations available
for the diagnostics of GI bleeding and anemia. Early-stage detection and
accurate localization for AD lesions is essential in early stage diagnostics
(Shvets, Iglovikov, Rakhlin, & Kalinin, 2018). One common approach for
the diagnosis of the GI tract is to perform a screening or examination using
flexible video endoscopy. This means sending a flexible tube into the intestine
for visualization and taking tissue samples from the mucous membranes, see
Figure 1.3. The figure illustrates a typical endoscopic video rack. To perform
examinations, the flexible endoscopy equipment, colonoscope, or gastroscope
(depending on the type of examination) connects to the video rack, and the
camera feed is fed to the video monitor. The endoscope is equipped with
lights, and normally a HD-camera on top of the flexible distal end. The
doctor (endoscopist) controls the video endoscope front movements of the
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visual field by means of the steering wheel with the hand control knobs
(shown by circles in the figure), and the flexible distal end, and takes images
and tissue samples among other things.

The total length of the whole GI tract is about 8.5 meters. The colon sur-
rounds the small intestine like a frame, see Figure 1.1. Until a few years ago,
most of the small intestine was out of reach of endoscopic techniques due
to its length, curvature and several complex loops and standard endoscopes
(such as gastro and colon) could only reach a fraction of the small intestine
(Manno et al., 2012). Nowadays there are other endoscopic approaches that
can be used. One is the wireless capsule endoscopy (WCE).

Figure 1.3: The figure illustrates on the left a typical endoscopic
videorack and illustrates on the right a flexible endoscope and the
steering wheel. The use of image copies is in agreed with Olympus,
https://www.olympus-europa.com.

WCE is a small pill device that is swallowable and is the first-line investi-
gation for the small intestine in the context of obscure GI bleeding (OGIB)
(Vieira et al., 2016). The WCE captures high resolution images during the
passage through the whole digestive system. An image of the pill-capsule
and a typical WCE bowel image is shown in Figure 1.4. However, experi-
ence shows that investigating WCE videos becomes an expensive and time-
consuming procedure. Even for an experienced viewer it can take more than
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an hour to analyse each WCE video (Maieron et al., 2004). On the other
hand, recent studies have shown that the gastroenterologist experts discover
only 69% of AD’s when reading the WCE videos (Vieira et al., 2016).

Figure 1.4: Example of a pill-capsule (right), and a WCE im-
age captured from capsule endoscopy (an angiodysplasia lesion in
the circle). The use of image copies is in agreed with Olympus,
https://www.olympus-europa.com.

1.2.1 Blood Indicator Software

Lesions can be missed due to a variety of reasons, for example a lack of expe-
rience of the gastroenterologist, poor visibility, and size and location of AD,
in particular if they are covered behind mucosal folds. A computer-aided
blood indicator software made by WCE providers (like Given Imaging) can
assist in the decision making process, but the present sensitivity and speci-
ficity values are only 41% and 67%, respectively (Vieira et al., 2016). As
a consequence, there is a real need to improve the analyses of video cap-
sule endoscopy software. One promising direction to achieve this is machine
learning, in particular deep learning.

1.3 Machine learning

Machine learning is a field that resides in the intersection between mathemat-
ics, statistics, and computer science. It is considered to be a subcategory of
the over-ordered concept of artificial intelligence, as machine learning allows
intelligently behaviors to be learned from observing the surrounding environ-
ment through data. The basics of machine learning have been reviewed by
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Figure 1.5: An illustration of a universal machine learning system.

several textbook authors (Shalev-Shwartz & Ben-David, 2014), (Theodoridis
& Koutroumbas, n.d.), and (Nielsen, 2015), and although there are some
variations in formulation and terminology, these authors all succeed in con-
veying the essence of the machine learning field. In particular, machine
learning algorithms or models are designed that can be trained to perform
specific tasks, without them being explicitly programmed with an exact task
in mind. Instead the model learns by being presented with training exam-
ples, also often referred to as training data, and is therefore able to adapt to
a variety of tasks.

In all areas of society, there is a continual state of digitalization, and the gen-
eration and collection of huge amounts of data are a natural consequence and
outcome of this process. The design and use of machine learning is therefore
absolutely necessary as the size of the datasets has long ago exceeded the
possibilities of manual analysis and explicit programming. Inspired by this,
researchers have been designing increasingly complex models to handle the
ever-growing volume of data.

Figure 1.5 shows a simplified overview of a machine learning system. The
data is collected and transferred to the model, which then generates a set of
outputs. The outputs are processed by a cost function or a loss function with
the purpose to quantify the error produced by the system. For supervised
learning (see next section), the training data consists of sequences of input-
output pairs. Each input is labeled with the desired output value, in this way
the system is trained to perform a minimization of the particular loss function
by mapping a given input to the desired output. The output examples are
referred to as ground truth or labels.

One discriminates between supervised and unsupervised learning (Theodoridis
& Koutroumbas, n.d.):
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• In supervised learning, the training data consist of input-output pairs,
and the system is trained to determine the correct output for each
input.

• In unsupervised learning, the training data only consists of input ob-
servations. The training data is therefore referred to be ”un-labeled”.
Due to the lack of output examples, a loss function needs to be designed
that is based only on the underlying structure of the data.

1.4 Deep learning

Deep learning is a subfield of machine learning that has recently found ap-
plication on a large variety of tasks, both supervised (Hinton, Srivastava,
Krizhevsky, Sutskever, & Salakhutdinov, 2012), (Krizhevsky, Sutskever, &
Hinton, 2012), and unsupervised (Xie, Girshick, & Farhadi, 2016), (Kampffmeyer
et al., 2019).

One of the first papers that paved the way towards deep learning as it is
known today, was published by McCulloch and Pitts (Cheng & Titterington,
1994), and proposed a simple computational model that is often referred to as
an artificial neuron. Research on artificial neurons continued to be carried out
throughout the 1960s (Gurney, 1997), but the absence of modern computers
put a damper on their development until the interest in artificial intelligence
increased in the 1980s, when neural networks, a hierarchy of neurons, were
applied for recognition tasks. (Rumelhart, 1986) and (LeCun et al., 1989).
Enabled by the availability of computational resources, large-scale datasets
and new training methods, artificial neural networks, also referred to as deep
learning, started to find widespread adaption in 2012 (LeCun, Bengio, &
Hinton, 2015).

1.4.1 Deep Learning for semantic segmentation

The focus of this thesis is on the task of supervised semantic segmentation,
an important task for scene understanding. The objective of semantic seg-
mentation is to assign each pixel in the image to a given class, in order to
obtain coherent regions and finds application for task such as self-driving cars
(Fernandez-Moral, Martins, Wolf, & Rives, 2018), (Bojarski et al., 2016), and
land cover mapping (Kampffmeyer, Salberg, & Jenssen, 2016). Also in the
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medical imaging domain there has been a huge interest in the semantic pixel-
wise labeling task e.g. (Akbari et al., 2018) proposed polyp segmentation in
colonoscopy images using fully convolutional network, (Bernal, Sánchez, &
Vilarino, 2012) proposed an automatic polyp detection with a polyp ap-
pearance model, and (Ronneberger, Fischer, & Brox, 2015) proposed Con-
volutional networks for biomedical image segmentation using the U-Net, all
examples of deep learning based segmentation methods that obtained state-
of-the-art performance. However, one problem of common deep learning
models for the task of segmentation, especially in the medical domain, where
objects of interests are commonly small compared to the background class,
is class imbalance. In particular, class imbalance can lead the model to pri-
oritize large classes at the cost of small ones (Shvets et al., 2018), (Akbari et
al., 2018), resulting in bad performance for the class of interest.

1.5 Scope

It is important to detect angiodysplasia wounds in the gastrointestinal tract
based on images from video capsule endoscopy, a time-consuming task if
performed manually. There exists therefore a need for an automatic based
approach for accurate detection of AD in order to reduce time and costs.

In previous work deep learning models have been proposed to perform image
segmentation for AD detection and have achieved state-of-the-art perfor-
mance (Shvets et al., 2018), (Vieira et al., 2016), however, a more thorough
analysis of the effect of class-imbalance on the models for AD segmentation is
lacking. Here we seek to asses the problem of imbalanced classes and aim to
analyze the effect of introducing a weighting scheme to alleviate the problem
of class imbalance.

1.6 Structure Of The Thesis

After this introduction, we will proceed to Part 1, which covers relevant
background in Chapters 2, 3 and 4. Part II covers the remaining part of the
thesis and includes the experimental section and the conclusion.

Chapter 2 provides a medical introduction to wireless capsule endoscopy and
angiodysplasia in particular.
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Chapter 3 provides a more through background of the machine learning tech-
niques used in this thesis. We start the discussion from linear classifiers and
the perceptron and discuss how muliple perceptrons can be used to obtain
non-linear classifiers. A detailed explanation of neural networks is provided,
followed by an explanation of convolutional neural networks and a discussion
of how they can be used to address segmentation problems.

Chapter 4 provides a brief discussion of how deep learning has found appli-
cation in the medical domain. Special attention is put on work related to
angiodysplasia segmentation.

Chapter 5 presents the results obtained in this thesis and an analyses of the
weighting scheme as well as additional hyper-parameters.

Chapter 6 presents future work and concludes this thesis.



Part I

Background
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Chapter 2

Endoscopy for Angiodysplasia
detection

This chapter will discuss the use of endoscopic equipment for examination
of the gastrotestinal (GI) tract and provide a brief overview of the relevant
medical background. Video endoscopes are the main tool for detecting vas-
cular lesions such as AD in the GI tract in the general population. In recent
years, there has been a significant improvement in video endoscopy equip-
ment and image resolution. The medical examinations of the GI tract are
increasingly performed using endoscopic equipment. Until a few years ago,
most of the small intestine was out of reach of endoscopic techniques due to
its length, approximately 7 m plus the colon approximately 1.5 m.

2.1 Angiodysplasia

Angiodysplasia (AD) is the most common source of vascular lesion in the GI
tract in the general population. This condition is mostly discovered in pa-
tients that are older than 50 years, but can occur earlier especially for patients
with chronic renal failure (CRF). AD occurs when degenerative lesions of pre-
viously healthy blood vessels are formed. The abnormalities appear usually
as small (< 10mm) bleedings visualized within the mucosa and sub mucosa
layers of the gut (Sami et al., 2014). The condition may be asymptomatic
for the patient or it may cause GI bleeding and or anemia, see Figure 2.1.

In a review, AD was identified among 11.9% of 642 patients that were di-

27
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agnosed with irritable bowel syndrome (IBS) and among 12.1% of patients
without IBS (Akhtar, Shaheen, & Zha, 2006). A systematic review was per-
formed by (Liao, Gao, Xu, & Li, 2010) and included a large number of articles
related to small bowel signs and symptoms published between 2000 and 2008.
A total of 227 studies with a total of 22840 procedures were included. The
review confirms OGIB (Obscure GI bleeding, overt and occult) as the most
common indication (66.0%) and AD as the most common cause (50.0%) of
bleeding in those patients (Liao et al., 2010). Another more recent study,
found that small bowel AD lesions were the most common cause (35%) of
severe life-threatening overt OGIB (Lecleire et al., 2012). AD can affect any
part of the GI tract, and according to (Sami et al., 2014) the colon is the
most frequent site of AD lesion. In western patients, lesions occuring in the
caecum and ascending colon (54-81.9%), while lesions diagnosed in Japanese
patients are more likely to be in the descending colon (41.7%). These find-
ings suggest that local factors may be important to find out how the decease
occurs and develops (pathogenesis) (Sami et al., 2014).

Figure 2.1: Example of angiodysplasia sore image taken by pill-
capsule (Karagiannis et al., 2006).

2.2 Flexible video endoscopy

Video endoscopes are, due to high resolution cameras, the main tool for de-
tecting even the smallest vascular anomalies. In order to diagnose upper GI



2.3. WIRELESS CAPSULE ENDOSCOPY 29

and colon, respectively, standard flexible endoscopy (gastroscope and colono-
scope) are used. One examination means sending a flexible endoscope into
the intestine and take tissue samples from the mucous membranes. Endo-
scopic access in the small intestine is more troublesome and out of the reach
for a standard endoscope, but there are other endoscopic approaches that
can be used.

For examination of the small intestine, alternative approaches intended for
deeper insertion are required (Sami et al., 2014) such as:

• Single Balloon Enteroscope (SBE)

• Doubleballoon enteroscopy (DBE)

• Spiral enteroscopy (SE)

Despite the rapid technological advances, it is still more difficult to take ad-
vantage of the enteroscopy than the upper gastrointestinal endoscopy or the
colonoscopy, due to the length of the small intestine Figure 2.2 shows the
principle of reaching into the small intestine (bowel) with the enteroscope by
inflating and deflating the balloon. The balloon overtube provides deep in-
sertion technique for the enteroscope and a control unit (which is not shown)
inflates the balloon stop the enteroscope from going backwards. For exam-
ple, the SBE endoscopists is able to reach 50-80% of the small intestine, but
there are still parts of the small intestine that are difficult to reach using
deep insertion techniques1. The use of flexible endoscopy and enteroscopy
provides high-resolution image quality as well as excellent maneuverability
and can be used to obtain tissue samples.

2.3 Wireless capsule endoscopy

Standard endoscopes and colonoscopes can only reach a fraction into the
small intestine, however, the use of Wireless Capsule Endoscopy (WCE)
among other techniques has recently enabled endoscopic examination of the
entire small intestine. This is in particular due to significant advances in the
video capsule equipment as well as image resolution. WCE is a small pill

1https://www.olympus-europa.com/medical/en/Products-and-Solutions/Medical-
Specialities/Gastroenterology/
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Figure 2.2: Single balloon enteroscopy. Simplified principles of inser-
tion. https://www.olympus-europa.com/medical/en/Products-and-
Solutions/Medical-Specialities/Gastroenterology/

device that is swallowable and has become the first-line investigation for the
small intestine in the context of OGIB (Vieira et al., 2016). Last generation
WCE can capture approximately 8 hours of video producing more than 60
000 frames during one passage through the whole digestive system.

Since their introduction in 2000, several capsules have appeared on the
marked and there has been a continous development of capsule technology.
A set of typical pill-capsules can be found in Figure 2.3.

These technological advances have made it possible to examine the whole GI
tract and close the diagnostic gap of conventional gastroscopy and colonoscopy
techniques in a non-invasive manner. Studies have shown that the WCE tech-
nique has improved the diagnostic outcomes among a variety of GI conditions
and has given us diagnostic information for a variety of clinically relevant le-
sions in the digestive tract (Nadler & Eliakim, 2014). The WCE modality is
today considered as the gold standard method (Shvets et al., 2018) because
it provides a complete visual overview of the entire digestive system. It is
also likely to be the preferred screening technique in the future, as it is con-
sidered to be safe and without any discomfort to the patient. (Iakovidis &
Koulaouzidis, 2015). WCE is the only medical device that can visualize and
capture images inside the entirely GI tract (Vieira et al., 2016).

The main drawbacks of the WCE is that no direct intervention can be per-
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Figure 2.3: Capsule endoscope pills from several manufacters (Nadler
& Eliakim, 2014).

formed and the poor visibility in the small bowel due to dark intestinal liquid
contents. However, compared to other more invasive modalities, WCE has
shown to achieve equivalent performance for discovering lesions (Vieira et
al., 2016).

Bovel obstruction is one of the most feared complications but the risk of
bowel obstruction is minimal , the retention rate is as low as 1.4% according
to a systematic review (Liao et al., 2010).It may be higher for patients with
underlying pathological complications who must be reviewed by a specialist
before a capsule endoscopy (CE) procedure is decided. (Van de Bruaene,
De Looze, & Hindryckx, 2015).

2.3.1 Pill-capsule

The capsule weighs between 3 and 4 gram and measures about 11 mm (di-
ameter) x 26 mm (length). It includes an optics (lens) with a field of view
from 140 to 170 degree. The light source consists of 4 to 6 white LEDs to
illuminate the digestive tract system. It has a high-resolution miniature cam-
era and sharpness with minimum detection size of 0.07 mm. Two types of
camera chips are used for focusing the image, either a charge-coupled device
(CCD) or a complementary metal oxide semiconductor (CMOS). The cap-
sule camera takes 2-6 images per second and can capture more than 60 000
images during 8 to 13 hours as the capsule moves along the GI tract and the
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images are transmitted via radio signals to an external image receiver (Hosoe
et al., 2016) (Van de Bruaene et al., 2015). The battery allows for more than
12 hours of operation. See Figure 2.4 for a schematic representation of a
pill-capsule.

Figure 2.4: The pill-capsule, a schematic representation. Ref:
www.slideshare.net

2.3.2 Examination

A capsule acquisition kit is worn by the patient during the aqusition. The
kit consists of a single-use wireless video capsule, a belt-style antennas or
a sensor array attached to the patient, and a smart data recorder receiver
attached to the belt. All transmitted images are sent wireless and stored on
the receiver. After the examination, the equipment is handed over to the
doctor who can download all images to a computer for further processing to
find abnormalities in the GI tract (Z. Li et al., 2014).

In order to obtain the best image results, it is important that all equipment is
verified and tested by the medical staff, and that the patient is supervised and
prepared before the examination begins. A brief outline of the CE procedure
is as follows:

• All necessary equipment is verified and tested by the medical staff be-
fore the examination.
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• The patient fasts the last 12 hours before the CE examination in order
to obtain a pure (empty) bowel, which is of great importance to get
a good result. Only the consumption of water is allowed during this
time.

• The patient is equipped with an eight-sensor batch and a sensor-belt
which is attached to the body.

• The capsule is swallowed, followed by a two-hour period of no fluid
intake. Clear liquids may be consumed approximately 2 hours after
capsule ingestion.

• After 4 hours, the fasting can end.

• The location of the pill-capsule in the bowel is tracked, and a 3D model
is generated in order to map a particular image to a specific location
in the body to help locate the lesions.

• After about 8 hours the recording is complete and will be reviewed by
the medical expert.

2.3.3 Analysis

After the WCE examination the images are returned to the doctor, who
downloads them to a computer for further analysis. Without any tool at
hand to assist, it would take a gastroenterologist expert several hours to go
through the image material. However, providers of the WCE usually have
appropriate tools to help physicians by providing for example a suspected
blood indicator (SBI) for a given image. The SBI feature is intended to mark
frames of the video containing blood or red area. However, the detection rate
of AD is small when using SBI (Vieira et al., 2016), and there is therefore a
need for more accurate detection approaches based on machine learning.
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Chapter 3

From linear classifiers towards
deep learning models for image
segmentation

In this chapter, we will provide the background on machine learning and deep
learning that is required to build automatic decision support tools for AD
detection. We will start by providing an explanation of the underlying idea
of supervised learning, that our model builds on, by looking at a simple linear
classifier, namely the perceptron algorithm. We then build on the perceptron
algorithm and discuss how multiple perceptrons can be combined to model
non-linear relationships resulting in a description of multilayer feedforward
neural networks and their training procedure. Further, building on this, the
convolutional neural networks, a deep learning model that commonly finds
application in computer vision tasks, is introduced and an overview of how
such a networks can be used for segmenting images is provided. A method
for dealing with class imbalances in segmentation tasks is also illustrated.

3.1 Fundamentals of supervised machine learn-

ing

In supervised machine learning, the task is to, based on provided input-
output pairs learn a parameterized function or a model that maps a given
datapoint to its given output. The common approach to this is that a loss

35
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function (or cost function) is defined that measures the badness of the model,
meaning how bad our model is at performing the mapping for our data. The
objective of supervised machine learning is to design algorithms that based on
this loss function can optimize or learn the parameters of the model. Given
a trained/learned model, the idea is that new, previously unseen, datapoints
can be mapped using the learned model. Note, it is not guaranteed that a
model that works perfectly on the training data will also work perfectly on
the unseen data and how well a model generalizes to new data depends on
the model as well as the training process. Ways of improving generalization
will be discussed later in this chapter.

3.2 Linear classifier

A perceptron model performs a weighted sum of input patterns [x1, x2, ...xn]
in an n-dimensional room and sends out a binary ”1” if the sum exceeds a
threshold, in the opposite case it outputs a ”0”. These binary responses may
be interpreted as regions in a multidimensional space that are separated by
a straight line or a plane, and for higher dimensional input space separated
by hyperplane.

Figure 3.1: Two-input perceptron equipped with activation output
threshold.

Figure 3.1 illustrates a 2-D example of a perceptron model. Here, the percep-
tron is a computational unit where inputs x1 and x2 are fed and multiplied
by the respective weights ω1 and ω2, represented by circles (also known as
synaptic weight). The underlying concept and principles of the perceptron
will be covered more closely later in this chapter after the following initiating
example. The perceptron model can be illustrated with an example where
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the threshold θ = 1.5, ω1 = 1 and ω2 = 1. The resulting products are added
to give an activation a, and then compared with the threshold value θ, to
provide the output. The binary response (y=0 and y=1) are provided by a
threshold based step function [y = 0] if a < θ and [y = 1] if a > θ.

x1 x2 Activation a Output y Class

0 0 0 0 B
0 1 1 0 B
1 0 1 0 B
1 1 2 1 A

Table 3.1: The input and responses for a two-input perceptron mod-
ule.

Note, that we here make use of a threshold (step function) that decides when
a neuron is activated. This function is commonly referred to as an activation
function, see subsequent Subsection, and will be later replaced by smooth
approximations of the step function in order to keep the function that the
model is learning differentiable. For now

f(x) =

{
1 x > θ
0 x < θ

(3.1)

The decision plane in Figure 3.2 illustrates that the datapoints are correctly
classified to their corresponding classes and separated geometrically by a
decision line.

Rectified linear activation function

The sigmoid activation functions were for a long time the preferred activation
function used for neural networks. However, in order to learn more complex
nonlinear structures in the data, modern deep learning approaches tend to
make use of a large number of layers. In this setting, the sigmoid function
has a drawback and leads to a problem that is commonly referred to as the
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Figure 3.2: Two input patterns with a line between the two classes.

vanishing gradient problem. For details on the vanishing gradient problem,
see the Subsection 3.4.4. One of the key factors to the success for deep neural
networks (DNNs) is the adoption of a new activation function that reduces
the vanishing gradient problem, the Rectified Linear Unit (ReLU) (Nair &
Hinton, 2010). By considering a single value x, the ReLU is defined as

fRelu(x) =

{
x x > θ
0 x ≤ θ

(3.2)

We see that positive values are returned regardless of their size, whereas
negative values become zero. The derivative f ′Relu(x) is

f ′Relu(x) =

{
1 x > θ
0 x ≤ θ

(3.3)

The derivative f ′Relu(x) is always equal to one for positive inputs, this by-
passes the vanishing gradient problem. Note, that when x = 0, the derivative
is not defined because of the discontinuity of f ′Relu(x), which at first sight
appears problematic. However, based on the theory of subgradients it is
possible to compute the subderivative at the point x = 0 as f ′Relu(x) is a
convex function and thereby circumvent the problem. Valid subgradients for
the point lie in range [0,1] and for simplicity 0 is commonly chosen.



3.3. PERCEPTRON 39

3.3 Perceptron

In this section, we will provide a brief but more rigorous description of the
perceptron algorithm starting from its underlying biological motivation until
the Rosenblatt perceptron algorithm.

The perceptron is essentially an algorithm that aims to find a linear decision
plane that separates the data. It is an online classifier in the sense that it
updates the learned model based on single data points and can be updated
continuously until the solution is found. It was initially proposed by Rosen-
blatt in the late 50’s and was mainly intended to model how neurons behave
in a certain way in the brain.

The perceptron is based on the idea of punishment and reward. If the clas-
sifier is correct it is rewarded by performing no update of the decision line,
while the classifier is penalized for incorrect classifications in form of a correc-
tion of the learned model. A finite number of training and label datapoints
enter the algorithm. The algorithm stops when all training data have been
classified correctly.

The Widrow-Hoff or least mean squares (MSE) algorithm was proposed in the
60’s to train the linear classifier. The weights in the Widrow-Hoff algorithm
are updated as follows

ωωω(k) = ωωω(k−1) + ρkxxxk[yk − xxxTkωωω(k−1)] (3.4)

where:

yk and xxxk are the label output and the input training data.
ωωω(k) are the weights at iteration k.
ρk is the learning rate.

The choice of ρk is important for the convergence speed of the algorithm
and is often chosen to be a pre-defined hyperparameter, commonly found via
cross-validation. Widrow-Hoff classifier updates the decision line for each
new datapoint in order to find the weight configuration that minimizes the
sum of squares of the errors. Errors are represented by the difference inside
of the bracket [yk − xxxTkωωω(k−1)] and by assuming that the threshold now is 0,
thus if the argument (xxxTkωωω(k−1))>0, then xxxk belongs to class 1, else xxxk belongs
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to class 2. The Widrow-Hoff algorithm is often referred to as an iterative
process because each new data point xxxk leads to an updated weight vector
ωωω.

In general, when having the loss function and when updating the model by
finding the derivative with respect to the weights. By looking at a single
datapoint at a time, a rough estimation for the MSE-classifier, we have that
the derivative of the cost function in step (k-1) is the expectation E[xxx(y −
xxxωωωT

(k−1))] (Theodoridis & Koutroumbas, n.d.).

The Rosenblatt perceptron algorithm is a little different from Widrow-Hoff
because Rosenblatt included an activation function in his training algorithm
that will change the way we look at the inner-product within the bracket.
Instead of assigning a class just by checking if the argument ωωωTxxx is positive or
negative, here a step function assign xxx to class 1 if fstep(ωωω

Txxx) = 1 and assign
to class 2 if fstep(ωωω

Txxx) = −1 (Theodoridis & Koutroumbas, n.d.). The step
function assigns the feature vector in one of the classes according to the two
possible output value, and thereby brings outputs and labels within the same
domain to [1 and -1 ]. The weight update rule for the Rosenblatt perceptron
algorithm becomes

ωωω(k) = ωωω(k−1) + ρkxxxk[yk − fstep(xxxTkωωω(k−1))] (3.5)

The Rosenblatt classifier does nothing when the algorithm receives a new
training datapoint where xxxk and label yk = 1 because xxxk is on the positive
side of the decision line. The second segment of the algorithm becomes zero
which states that the new solution = old solution. In a similar situation,
Widrow-Hoff would have moved the decision line. This means that if all
future training datapoints are correctly classified the current decision line
will stay fixed and the model will not be updated continuously.

The XOR function

Unfortunately, there are some issues with the simple perceptron algorithm.
A critical analysis of the perceptron algorithm in 1969 by Minsky and Papert,
pointed out that the perceptron can not do nonlinear classification such as
for example the simple logical operation XOR (exclusive or), as one of many
drawbacks with the perceptron (Sathiyabama, 2007). The XOR problem is
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illustrated in Figure 3.3, where the two classes are illustrated with black and
blue data points. Note, the data points can not be separated by a straight
line in this case.

x1 x2 XOR Class

0 0 0 B
0 1 1 A
1 0 1 A
1 1 0 B

Table 3.2: Truth table for the XOR function.

A logical XOR function will always produce 1 output if either of the two
binary input values x1 and x2 is 1, and will 1 produce a 0 output when both
of its inputs are 0 or 1. Table 3.2 gives the analogous truth table for the
XOR operations.

Figure 3.3: Placement of classes A and B for the XOR problem.

In the following section, we will show how a combination of perceptrons can
be used to address this problem and model non-linear structure in data.

3.3.1 Two layers perceptron

One approach to address the XOR problem and to extend the model to more
general nonlinear separable cases is to first project the datapoints into a new
feature space where the datapoints are linear separable and can be separated
by a linear decision line. In order to do this, multiple perceptrons can be
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combined to obtain the final result. Intuitively, what we would like to achieve
can be observed in Figure 3.4, where the data points of the two classes A
and B are separated by two decision lines, g1 and g2, instead of one, where
datapoints that fall in-between the two decision lines are classified to class A
and the remaining points to class B. As hinted at earlier, we can obtain this
by making use of two perceptrons, one modelling the boolean AND function
and one modelling the OR function. Table 3.3 shows the truth table and the
appropriate class position. Note, both of these functions can be represented
by a single linear decision line (a single perceptron).

x1 x2 AND Class OR Class

0 0 0 B 0 B
0 1 0 B 1 A
1 0 0 B 1 A
1 1 1 A 1 A

Table 3.3: Truth-table for the AND and OR functions.

Figure 3.4: Decision lines to solve for the XOR problem (Theodoridis
& Koutroumbas, n.d.).

Following the proposed mapping with help of our two perceptrons, we now
receive a binary output indicating on which side a datapoint lies for each of
the two decision plane. This means that for each datapoint we receive two
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binary input values, here denoted as y1 and y2. From Figure 3.4, we see that
the two data points in the upper right are on the positive side of both the
decision lines g1 and g2 and will therefore map to the point [1,1] in our new
feature space. Similarly, data points that are on the negative side of both
g1 and g2 are mapped to the point [0,0]. Performing this mapping results
in the truth table mapping illustrated in Table 3.4, and the new feature
representation in Figure 3.5. Note, after the transformations the two classes
are now linearly separable in the obtained feature space and can be easily
separated using an additional perceptron, now acting in the obtained feature
space.

x1 x2 y1 y2 2nd phase

0 0 0(-) 0(-) B
0 1 1(+) 0(-) A
1 0 1(+) 0(-) A
1 1 1(+) 1(+) B

Table 3.4: Truth table for the computation of the outputs [y1, y2] in
the second phase.

Figure 3.5: Decision line for y-room (Theodoridis & Koutroumbas,
n.d.).

Figure 3.6 shows a model consisting of the steps in both phases. The two
neurons (nodes), represented by the lines g1 and g2, are from the first layer
which is often referred to as the so-called ”hidden layer”. The single neuron
of the second (output) layer computes the (so-called output). Such a mul-
tilayer network consisting of multiple perceptrons is known as a two layers
perceptron or a two-layer feedforward neural network.
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Figure 3.6: Solving the XOR problem with applying the two-layers
perceptron (Theodoridis & Koutroumbas, n.d.).

3.3.2 Gradient descent

To obtain a low value of the cost (error) function is a goal we want to achieve,
and the derivative of the error function with respect of the ωωω(k−1) stipulates a
position in an iterative process. To iteratively direct along an error function
towards the minima is a process where the gradients of the error function
are estimated, and then used to update the parameters. The update equa-
tion for the Widrow-Hoff, which uses the Euclidean norm for the distance
measurement provides the equation as defined

ωωω(k+1) = ωωωk − ρkxxxk(ωωωkxxxk − yk), (3.6)

where:

ρk is the learning rate.

The ρk plays a vital part on the convergence. If ρk is too small, then the
correction ∆ω is low, and the converge will go very slowly to the optimal
point. If on the other hand, it is too large, the algorithm may oscillate
around the optimal value and not converge. One can improve the decision
line position from step (k) to step (k+1) by adjusting the step length ∆k in
the direction of the gradient to the cost function J(ωωω(k−1)). Hopefully, once
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the parameters are correctly selected, the algorithm converges to a stationary
point of ωωω(k), which can be either a local minimum or a global minimum or a
saddle point, as shown in Figure 3.7. In other words, it converges to a spot on
the curve where the slope is flat, and the gradient becomes zero. Which of the
stationary points the algorithm will converge to depends on the conditions
relative to the fixed points along the graph. Also, the convergence speed
depends on the structure of the cost function (Theodoridis & Koutroumbas,
n.d.).

Figure 3.7: Cost function with local versus global minimum.

A test can confirm if the cost function is at a minimum. The underlying
graph of the cost function is unknown, and there is a risk of being trapped in
a local minimum point that we do not get out of, see Figure 3.7. We can try
again with new start conditions. It might be possible sometimes to have an
extra push to overcome intervening bumps such as between local and global
minimum in the figure. If the system is not performing well, it may be due
to a local minimum (Theodoridis & Koutroumbas, n.d.).

3.4 Feed-forward neural networks

The previous section has shown that a combination of perceptrons are ex-
pressive enough to model non-linear functions, such as the XOR problem.
However, in order to make use of this fact, a learning algorithm is needed
that can learn the weights in the individual perceptrons/neurons of our model
from data. This will be the focus of the following section.

Feed-forward neural networks, or multilayer perceptrons, aim to learn the
parameters in the network by minimizing the error/cost/loss (E), which can
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be represented by the difference between the desired target (the given label)
and the prediction (output) of the network. The output of the network is a
function of the weights and the objective is to find the weight configuration
that minimizes the error. In order to do this, neural networks commonly
make use of gradient-descent based algorithms, such as the one illustrated
in Subsection 3.3.2. The motivation is still the same as for the XOR prob-
lem and the model aims to find a mapping to some feature space (through
multiple transformations) where the data is ideally linearly separable.

Figure 3.8: Feedforward neural networks with one hidden layer and
sigmoid function in the output layer L.

The example network in Figure 3.8 is similar to the feedforward neural net-
work published in Nature by (Rumelhart, 1986). The network has a set of
inputs and one so-called hidden layer. The hidden layer, so-called because we
do not have direct access to neurons outputs, is connected with its neurons
to the inputs and they must develop their values on the input vectors. All
nodes in the hidden layer are connected to a single node in the output layer.
The network output layer corresponds to the two classes of prediction. In
general, the input layer only passes data to the first hidden layer. Between
the input and output layer, we can have one or several hidden layers. The
hidden layers are responsible for transforming the weighted inputs, and apply
the activation function for doing the mapping into representations, where the
output layer can optimally perform the required task. For traditional feed-



3.4. FEED-FORWARD NEURAL NETWORKS 47

forward neural networks this activation function is commonly the sigmoid
function. More detail on the sigmoid function as well as an alternative acti-
vation function that is more commonly used will be discussed in Subsection
3.4.1.

The output layer signals the response of the network to any input and may
have the label vector yyy(i) applied to it during the supervised training part.
In general, this networks can be trained to separate two or more non-linear
classes dependent on the number of neurons in the output layer. We assume a
network with L layers, where the L′th layer is the output layer consisting of kL
neurons, where each neuron is followed by an activation function. Together,
the outputs of the kL neurons will contribute to the sum of error ε(i) for each
data point. With kL neurons in the output layer resulting in

ε(i) =
1

2

kL∑
m=1

eee2m(i) =
1

2

kL∑
m=1

[f((vvvLm(i))− yyym(i)]2 (3.7)

For a binary problem, where the objective is to classify the input into two
classes, the output layer only needs to contain a single node. The function
f(· ) inside the bracket in Equation (3.7), is the nonlinear sigmoid function
that takes the output to one of the classes depending on positive or negative
function argument. The difference between the output of the neural network
f(vLm(i) and the actual label y(i) for a single x(i), given by the ε(i), is the
error from the network. We want that error to be small. Squaring will ensure
errors being positive such that negative and positive errors do not counteract
each other.

Network errors are summed in Equation (3.7) one by one, and the class is
assigned.

Because there are only one neuron in the output layer, Equation (3.7) is
simplified

ε(i) =
1

2
eee2(i) =

1

2
[f(vvvL(i))− yyy(i)]2 (3.8)

The overall error
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J =
N∑
i=1

ε(i) (3.9)

The node in the output layer will do the classifying job. We update the
network for each node by finding the derivative of the cost function based
on the unknown weight wwwL−1 for each node in the hidden layer (L − 1).
The number of weights is the same as the number connections since each
connection has a node and yyyL−1k is the output for the neurons in the (L-1)
layer, with kL−1 nodes. Based on the gradient for the cost function, we use
an iterative Widrow-Hoff update. Thus, the output from the L-neuron, but
before the activation function f(· ) is

vvvLj (i) =

kL−1∑
m=1

wwwL
jkyyy

L−1
k (i) +wwwL

j0 =

kL−1∑
m=0

wwwL
kyyy

L−1
k (i) (3.10)

The number of nodes in the hidden lager is kL−1 and wwwL
k are the weights

between the hidden layer and the output layer, and yyyL−1k (i) are the outputs
from the hidden layer. In the continuation of this derivation, www0 is included
in the sum.

It is wise and necessary not to derivative the actual cost function (J) because
it is the error ε(i) in Equation (3.9) that comes for each of the training
datapoints x(i) we wish to work with. We use the method sum rule in
differentiation, such that when we find one derivative, we sum the derivatives
covering the cost function. By now we use the chain rule of differentiation,
which is

∂

∂wwwL
j

ε(i) =
∂

∂wwwL
j

vvvLj (i)
∂ε(i)

∂vvvLj (i)
(3.11)

The gradients in the network are found by computing the first part of the
expression in Equation (3.11). To find the outputs from the previous (L-
1) we derivative the ε(i) with respect on the weight vector wwwL

j , one output

yL−1k (i) for each node and they are collected in a vector yyyL−1. This new
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vector is expanded with the bias ∂
∂
wwwL

0 = 1 and will contribute to the iterative
Widrow-Hoff update. The vector yyyL−1 develops to input for the node in the
output layer L.

The last derivative part in the expression in Equation (3.11) is the inner
product from layer L, the output node, and before the sigmoid function and
is the derivative of Equation (3.8) describing an error from the output node,
and we denote this error δ2(i), hence

δL(i) = eee2(i)f ′(vvvL(i)) (3.12)

Where f ′ is the derivative of the differentiable sigmoid function in the L
layer). Now we have solved the error problem, along with unknowns for the
node in the L layer, and can go further forward to layer L-1. By applying
the chain rule once more, see Equation (3.11), we will understand that it is
a pattern that makes it work in the same way ahead, we obtain

∂

∂vvvL−1j (i)
ε(i) =

kL−1∑
m=1

∂

∂vvvLm(i)
ε(i)

∂vvvL−1m (i)

∂vvvL−1j (i)
(3.13)

The errors in which the node do in output layer L affects the derivatives
forward in the network and are needed to find error δL−1j (i) in layer L-1. If
there was a layer L-2, thus these errors propagate further in the network for all
nodes in layer L-2. The network can be tested by following the Widrow-Hoff
GD procedure, see the Equation (3.4) (Theodoridis & Koutroumbas, n.d.).
Start by pre-initialize weights and vectors with small random values first,
before the network is presented to training data, and update for each epoch.
In online training, each datapoint will append an update of the network.

That is the basis of neural networks. The f ′(vvvL(i) is the derivative of the
activation function. To summarize, the backpropagation algorithm can be
performed by doing the following steps

1. Initialization: All weights are initialized using a weight initialization
scheme (a procedure for restricting the network by initializing the weights
closer to an ideal configuration).
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2. Forward computations: Compare all inner product vrj (i) and yri (i)

3. Backward computation: Compute δLj (i) and δr<L(i)

4. Update all weights

5. Repeat 2-4 until convergence.

A typical used loss function L for neural networks is the sum of a squared
error loss function

C =
N∑
i=1

ε(i) =
N∑
i=1

kL∑
m=1

e2m(i) =
1

2

N∑
i=1

kL∑
m=1

(ym(i)− ˆym(i))2 (3.14)

3.4.1 Activation function

One convenient choice to approximate the step function is the sigmoid func-
tion in Equation (3.15). This replaces the step function by a continuous
squashing function, so that the output y builds smoothly on the activation
parameter.

f(x) = σ =
1

1 + e−ax
(3.15)

The sigmoid function tends to better approximate the unit-step function for
large positive values of a. It approaches 1 as the activation goes to infinity.
Similarly, it approaches 0 for large negative values of a. Figure 3.9 shows the
sigmoid curve properties with different values of a.

3.4.2 The Softmax function

The softmax activation function is applied to produce the final outputs in
both neural networks and DNNs that perform classification. The softmax
function is an extension of the sigmoid function to multiple classes, and



3.4. FEED-FORWARD NEURAL NETWORKS 51

Figure 3.9: Example of the sigmoid curves for various values of
a, along with the step function in Equation (3.1) (Theodoridis &
Koutroumbas, n.d.).

takes a vector of arbitrary real-valued scores and squashes it to a vector of
values between zero and one that sums to one. This provides a probability
distribution over all the classes in the dataset. In this way, the network with
L layers will assign datapoint into one of k classes. The softmax function is
defined as

ŷk =
exp(vLk )∑
k′ exp(v

L
k′)

, k = 1, 2, ..., k′ (3.16)

where:

L , is the number of layers
k’ ,is the number of classes
vLk ,is the predicted class of the true class L for sample k
vLk′ ,is the predicted class score over k’

3.4.3 Methods making gradient descent faster

Gradient descent that corresponds to the Equation 3.6 incorporates all train-
ing feature or sample (xi, yi) in its weight update. However, an alternative
is an abbreviate stochastic gradient descent method that updates the model
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based on a few randomly chosen training inputs. Updates are computed for
a small set of samples ( ... ) which commonly is referred to as a batch. This
is an inherent averaging process for a small amount batch size of samples
x1, x2. Stochastic gradient descent helps speed up training as not the full
training set has to be processed for each individual update.

The following updated weight ωωωr
j(new) is based on the the randomly chosen

mini-batch

ωωωr
j(new) = ωωωr

j(old)− µ
N∑
i=1

δrj (i)y
r−1(i) (3.17)

where:

ωωω are the weights
µ is the learning rate
δrj (i) is the gradient w.r.t. ωωω
yr−1(i) is the output of the neural network

In addition to stochastic GD the weight update Equation 3.17 is often mod-
ified to also include the weight update of the previous iteration. This in
generally speeds up the convergence and can help to avoid bad local minima
(n shallow networks). Adding the momentum term fraction α of the previ-
ous weight update accelerates the algorithm in the relevant direction. The
weight equation becomes

M ωωωr
j = α M ωωωr

j(old)− µ
N∑
i=1

δrj (i)y
r−1(i) (3.18)

where:

α is referred to as the momentum parameter.

If both weights contribute to updating toward the same direction the (GD)
step size is amplified. Momentum smooths out changes of gradients and
provides stability.
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3.4.4 Vanishing and exploding gradients

Traditionally, training of DNNs has been affected by the vanishing gradient
problem. This problem is mainly related to the fact that gradients in DNNs
trained by the backpropagation algorithm are often affected by the vanishing
gradient phenomenon.

The condition is mainly related to very deep networks where the sigmoid
activation function is applied. The problem refers to the fact that gradients
in deep neural network trends towards zero as the errors are propagated back
through the network. This restricts the learning process and limits the size
that networks can have for end-to-end training.

Figure 3.10: Simple neural network to illustrate why vanishing gra-
dient problem occurs. the network has three hidden layers and one
node in each layer, b1, b2, b3 are the biases.

To understand why the vanishing gradient problem occurs, we consider the
simple network example with three hidden layers in Figure 3.10. From Equa-
tion 3.12 we have for the output layer

δr = e(i)σ′(vr(i) (3.19)

where σ′ is derivative of the sigmoid activation function. By proceeding to
the second last layer we get

δr−1 = er−1(i)σ′(vr−1(i) (3.20)

δr−1 = δrωLσ′(vr−1(i) (3.21)

δr−1 = e(i)ωLσ′(vr(i))σ′(vr−1(i)). (3.22)
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To illustrate how the vanishing problem occurs we proceed further and we
get

δr−2 = e(i)ωLσ′(vr(i))ωL−1σ′(vr−1(i))σ′(vr−2(i)). (3.23)

As gradients propagate further in the network, additional multiplicative
terms of the form σ′(vk(i))ωk per layer are added. In practice, since the
derivative of the sigmoid function reaches a maximum σ′(0) = 1

4
this will

cause the gradients to diminish due to the multiplicative terms as long as
the weight are not large enough to counter the effect. However, as weights
are commonly initialized with small values from a Gaussian centered around
0 weights tend to be small. This is done as large weights are likely to cause
the opposite, the so-called exploding gradient problem. One of the important
factors of DNNs recent success is the development of new activation functions
with the ability to address the vanishing gradient problem, and this is still
an active field of research.

3.5 Addressing the overfitting issue

Deep Neural Network architectures can have millions of parameters allowing
a wide range of training conditions. In the case of classification (super-
vised learning), the parameters are learned based on a labeled training set
(xn, yn). Even if the training details agree well with the available training
data, it might not be valid when exposed for a test dataset, and this can lead
to so-called overfitting. A sufficiently large network might memorize indi-
vidual distinctions of the training data and achieving high accuracy without
discovering the actual underlying distribution of the data that results in poor
performance on the test set. The situation that the trained function perform
well on the training dataset, and most importantly on new situations, is re-
ferred to as generalization requirement. Figure 3.11 displays a typical case
of overfitting, where the training error continues to diminish while the test
error starts increasing.

In order to reduce this undesirable effect and improve the generalization
ability of the trained model, the overall loss function that is optimized tends
to be a combination of a term that measures the goodness of the model on the
training dataset and a term that regularizes the model to a more restricted
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set of solutions. The regularization term is often a function of the model
weights and here denoted as r(w). One such regularization term is the L2
regularization commonly found in neural networks (also referred to as weight
decay), which encourages the sum of squared weight parameters to be small,
thereby encouraging weights to be small. A hyper-parameter (here denoted
as α) is commonly added to control the balance between regularization and
the model loss. This means that the regularized error function C is

C(ω, b) =
N∑
i=1

ε(i) + α · r(ω) (3.24)

where:

ω , is the weight
b , is the bias
ε(i) , is the cost function
α , is the regularization parameter
r(ω) , is the regularization term (weight decay)

Figure 3.11: A representative example of overfitting. DNNs can have
a large number of free parameters that can adapt to particular details
in the training set which can lead to poor generalization performance.
The two curves show the output error as a function of iteration steps.
The training error keeps decreasing during training while the test
error starts increasing.

This form of L2 regularization is also known as the Tikhonov regularization
(Ng, 2004). This means that the cost function becomes
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CL2 =
N∑
i=1

ε(i) +
1

2
α

L∑
l=1

kl∑
k=1

ω2
lk (3.25)

where:

ωlk , refers to the lkth element of the weight vector ωωω
L , is the number of layers
kl ,is the number of units in lth layer

L2- regularization pushes the weights closer to the origin to restrain them
from being too large. Choosing the α parameter is intuitively in favour of
small values for the weights. Large weights will only be permitted if they
considerably improve the first term of the cost function (Nielsen, 2015), but
Hinton (Hinton, 2012) suggested the value 0.0001 for α as a sensible initial
choice. Now computing the the partial derivatives ∂C/∂ω and ∂C/∂b for all
the weights and biases in the network. The partial derivatives of Equation
(3.25) becomes

∂CL2

∂ωjk

=
∂
∑N

i=1 ε(i)

∂ωlk

+ αωlk (3.26)

∂CL2

∂blk
=
∂
∑N

i=1 ε(i)

∂blk
(3.27)

where:

blk ,refers to the lkth element of the bias vector bbb.

From Equations (3.26) and (3.27) The ∂C/∂ω and ∂C/∂b can be calculated
using backpropagation. We see from Equations (3.27) that the partial deriva-
tives with respect to the biases are unchanged, and hence the GD learning
rule for the biases are not changing from the usual rule. The learning rule
for the weights becomes
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ωl
j(k) = ωl

j(k − 1)− µ∂CL2

∂ωl
j

= (1− µα)ωl
j(k − 1)− µ

N∑
i=1

ε(i) (3.28)

Equation (3.28) shows exactly the same as the usual gradient decent learning
rule, except we first multiply the weight ω by a factor 1−µα. The last term
in (3.28) may influence the weights to increase, however, then it will cause a
decrease in the unregularized cost function (Nielsen, 2015). Another popular
technique is the L1 regularization to be derived in a similar way.

In the following section, we will discuss another commonly used regularization
technique in more detail, namely Dropout.

3.5.1 Dropout

Achieving a good performance for the training set, especially in large net-
works with a large number of weights and biases is a trivial task. However,
getting these models to generalize well is another problem. A powerful reg-
ularization method that aims to address this is Dropout.

For each iteration of the training procedure, dropout randomly turns off units
of neurons (and their connections) to prevents neurons from co-adapting, see
Figure 3.12. However, it is not only a technique that prevents overfitting but
also encourages each hidden neuron to learn meaningful features without
relying too much on other hidden neurons in the layers. More precisely,
dropout can be interpreted as a form of ensemble learning, where a small sub-
network is trained at each iteration and all small sub-networks are combined
during the inference phase. Note, this is possible due to the fact that weights
in the small sub-networks overlap (Srivastava, Hinton, Krizhevsky, Sutskever,
& Salakhutdinov, 2014).

During the test phase, dropout is not being used and all the neurons in the
model are active. However, to ensure that the model works as intended, the
weights of the model have to be rescaled. This means that if a given unit
is present with probability p during training then the outgoing weights are
scaled by a factor p. With dropout a significantly better generalization can
be obtained (Srivastava et al., 2014).
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Figure 3.12: Shows the effect of dropout applied on a simple neural
network. During training, dropout produces a thinner net where
connections between subsequent layers are randomly removed.

A modified variant is the inverted dropout1, where scaling is performed dur-
ing training. This has the benefit that the test phase does not have to be
changed and no scaling has to be performed during testing.

3.5.2 Batch normalization

Batch normalization (BN) is another technique commonly found in DNNs
and even though it is commonly thought of as a normalization technique it
can also be interpreted as a specific form of regularization.

Originally, BN was proposed to reduce the effect of internal covariate shift
(Ioffe & Szegedy, 2015). This effect refers to the fact that small changes
in parameters in early layers can get amplified and lead to large changes in
activations in the layers above. This can cause further problems due to the
fact that extreme activations can lead to saturation of neurons, which will
impact the training speed. BN aims to minimize this effect by normalizing the
activation of the hidden neurons so that the distribution of these activations
stay almost constant. This is achieved by adding BN at the various stages
in your architecture.

BN scales the activation for each mini-batch so that the values are centered

1http://cs231n.github.io/neural-networks-2/#reg
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around 0 and have a unit variance. This has shown to dramatically accelerate
training rates and ensures that the distribution of the inputs to the non-
linearities do not get stuck in the saturated regime. Additionally, BN also
reducing the dependence of gradients initial values which allows for much
higher learning rates without the risk of divergence (Ioffe & Szegedy, 2015).

By looking at a mini-batch b of m examples with the values x1...xm where µb

and σb represent the mean and standard deviation within a batch of samples
for each neuron independently, the computation of BN takes the form

x̂i =
xi − µb

σb
(3.29)

where:

x̂i ,is the normalized value of the ith hidden unit.
µb ,is the sample mean of x1...xm.
σ2
b ,is the sample variance of x1...xm.

Just normalizing each input of a layer constrains what the layer can represent.
In (Ioffe & Szegedy, 2015), they solve this by learning for each of the neurons
activations one scale parameters γi and one shift βi, one for the mean and
the other for the variance which in practice allow the model to ”unlearn”
the normalization if it is desirable to achieve better training performance.
These parameters are learned and updated for each hidden layer just like
the weights and biases during training and shift the normalized value of the
inputs. The transformation to yi is

yi = γi x̂i + βi (3.30)

During the inference phase, it is not desirable to estimate the mean and
the variance of a given mini-batch, as outputs of the network should be
deterministic and not dependent on other data points in the mini-batch.
Once the network has been trained, the batch mean and variance in Equation
(3.29) is therefore replaced by a global average over the whole training set
or, more commonly, a running average that is computed during the training.

Another interpretation of BN is the fact that it can be seen as a specific type
of regularization. Namely, during training the activations of each individual
data point will now be dependent on the activations of the other data points
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(as the mean and variance are computed over all points). As mini-batches
are shuffled during training this will lead to a regularization effect and it has
been seen that BN in deep networks shares the same traits of regularization
(Luo, Wang, Shao, & Peng, 2018).

Note, experimental studies have recently shown (Santurkar, Tsipras, Ilyas,
& Madry, 2018) that it is likely that the effectiveness of BN does not come
from the reduction of internal covariate shift, but indeed leads to a smoother
optimization landscape and thereby more stable gradient behavior and faster
training.

3.6 Convolutional neural networks

In Subsection 3.4, the main idea of feed-forward networks is shown. A Con-
volutional Neural Network (CNN) is a particular type of feed-forward neural
network. While multilayer perceptrons make use of matrix multiplications
(each input is weight by an independent weight), convolutional neural net-
works exploit the grid-structure that is inherent in data types such as images,
videos and text. In the following sections we will introduce the essential com-
ponents of CNNs.

3.6.1 Convolution

Convolution is the fundamental operation found in CNNs and is a widely
used mathematical operation that expresses the overlap of two functions w
and x as w is shifted over x. This can be defined as

s(t) = (x ∗ w)(t) =

∫
x(a)w(t− a) da (3.31)

and for the discrete case

s[t] = (x ∗ w)[t] =
∞∑

a=−∞

x[a]w[t− a] . (3.32)

In image processing our signals (or functions) generally are represented in
two dimensions and the discrete convolution in that case is
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s[i, j] = (I ∗K)[i, j] =
∑
n

∑
mI[m,n]K[i−m, j − n] , (3.33)

where:

I is commonly referred to as the input and K as the kernel respectively.

Convolution-based techniques are a standard tool in image processing. A
filter matrix (kernel) is tuned to detect the presence of particular lines in the
image results in the filtered image, as shown in Figure 3.13. Such images
are in the context of CNNs, often referred to as feature maps (Wickstrøm,
Kampffmeyer, & Jenssen, 2018). Figure 3.13 shows an example where a
simple edge detection filter is applied.

An example of an edge detection filter is the well-known 3×3 Sobel operator
filter matrix

 1 2 1
0 0 0
−1 −2 −1



The convolution operation slides the filter over the image one step at a time
and computes the output for the current position as the weighted sum of the
image pixels (that the filter is overlapping) weighted by the corresponding
filter values. This exploits the idea, that a filter which can be used to detect
for example edges in one part of the image can also detect edges in another
part of the image. For instance, exploiting this structure of the image allows
the edge detection filter of size 3×3 above to detect all the edges in the image
by only making use of 9 weight parameters. Note, these weight parameters,
the parameters of the filters, will be learned as part of the training as will be
detailed below. To make this more clear, take for instance a 50× 50 image.
Applying a 3× 3 filter and padding the image with one row/column of zeros
on each side, we will obtain a 50×50 output image that contains all edges. If
we would instead use a fully connected layer to do this, we would have to have
(50× 50)2 weights. This example illustrates why convolutions are preferable
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instead of fully connected layers when processing grid-like structure where
you can assume that identical filters can be applied in different positions of
the image (or video or text) and can be extract information from small local
regions.

Figure 3.13: The original image to the left is convolved with a [3× 3]
edge detection filter resulting in the example image to the right. Im-
ages obtained from Edge Detection CSE (Gonzalez & Woods, 2006)

3.6.2 Convolution layers

In a convolutional layer multiple convolutions are applied to the layer input
in parallel. This means, that given the input the layer might compute the
horizontal edges, the vertical edges, and a smoothed representation based on
three 3x3 filters. The output of these convolutions is then combined (along
the depth dimension) and can be given as the input to another convolution
layer. This means that the network can through a hierarchy of filtering
operations obtain a representation that then can be used to perform a given
task, such as supervised classification. In practice, however, similar to a fully
connected layer, the filter weights are learned during training to find the ideal
filtering operations that allow the network to perform best on a given task.

The size of the filter mask in neural networks is essential to define the con-
nectivity relationship between the neuron weights in subsequent layers. The
property which is called weight sharing means that all neurons of a feature
map share the same weight matrix. Weight sharing reducing the number
of parameters considerably since only one detector (e.g., the edge detector
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filter matrix) needs to be learned by convolution to detect objects all over
the image. Since the same convolutions apply for the entire input image, it
also meets the property of shift-invariance. A further advantage is that the
convolution process does not depend on image size.

These advances allow CNNs reducing the amount of free parameter dramat-
ically. CNNs make more extensive networks easier to train while at the same
time maintaining the robust regularization effect.

3.6.3 Pooling

Pooling layers are a basic and central component of CNN, and often referred
to as down-sampling layers. Typically this pooling operation reduces the
data in the feature space by sub-sequentially down-sample the activations
in small predefined spatial neighborhoods to a single value. Intuitively this
reduces the feature space by mapping neurons within a region onto a single
neuron. Pooling operations also addresses the characteristic of detecting a
shape or a feature independently of where it is in the image, this is often
referred to as translation invariance. The pooling layer merges activation
values and operates upon each feature map separately and creates a new
set of the same number of pooled feature maps each with a reduced spatial
resolution. The total number of feature maps will not be affected by the
merge operation.

Commonly, pooling operates on a 2 × 2 pixel grid or 3 × 3 pixel grid and
reduces it to a single value by a mathematical operation such as the max
or average. One new pixel thereby represents either 4 pixels or 9 pixels in
the previous layer and assuming that the pooling is done without overlapping
grids, it will lead to a reduction by a factor of 2 or 3 in each feature dimension.
An example of pooling is illustrated in Figure 3.14.

Frequently applied pooling methods are max and average-pooling. Stride
refers to the number of pixel-steps between two subsequent pooling grids.
Another more recent method is the stochastic pooling, which serves as a
regularizer method similar to dropout (Zeiler & Fergus, 2013).
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Figure 3.14: This example shows the effect of average and max pool-
ing, and with a stride 2.

3.6.4 Architecture

A typical CNN architecture for classification tasks combines convolutional
layers and pooling layers with fully connected (FC) layers similar to the one
shown in Figure 3.15. After the convolution operations and the pooling, the
fully connected layer aggregates all the information independent of spatial
location and produces a feature vector for each image. This vector is then
the input to the final layer which can be interpreted as a classifier on top of
these extracted feature vectors. Activation functions or non-linearities are
typically applied after the convolution operations. As previously discussed
this activation function tends to be the ReLU function for deep networks
(networks with many layers). In modern architectures, BN or alternative
normalizations are further applied but are assumed to be included in the
convolutional layers in Figure 3.15 for improved clarity (similar to the non-
linearity).

3.6.5 Transpose convolution

Another operation that is commonly found in CNNs for segmentation is the
transpose convolution layers. These layers can be used to learn an upsam-
pling of a representation such as for instance bilinear upsampling, which is a
central part of many segmentation architectures such as the FCN architec-
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Figure 3.15: This example shows a typical illustration of the archi-
tecture of CNN. An alternating mix of convolution layers and pooling
layers, where the pooling layers also incorporates a non-linearity and
normalization stage. After the last pooling layer, the feature maps
proceed through an arbitrary number of fully connected layers fol-
lowed by an output layer that involves a softmax function typically.

ture (Long, Shelhamer, & Darrell, 2015), and the U-Net (Ronneberger et al.,
2015) architecture, which will be discussed in more detail in Sections 3.7.

Transpose convolution is generally easy to implement by reverses the for-
ward and backward passes of convolution. The image resolution improves by
regulating the kernel size, padding, and stride of the operation. Assigning
of a new pixel value is based on the weighted sum of nearby points and the
weights of the kernel. Transpose convolution has the benefit that it can learn
the weights for the up-sampling procedure, thus providing greater flexibility,
but this adds more parameters to the network, which may lead to overfitting.

Transposed convolution is also referred to as deconvolution and fractionally
stride convolution.

3.6.6 Data augmentation

Data augmentation is a technique we can use to reduce overfitting on mod-
els and to incorporate invariances by artificially extending the dataset. To
perform well, a classifier needs a lot of training data such as images to train
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on (Perez & Wang, 2017). We can increase the amount of image training
data by using the information only available in our image training data. A
prevalent practice for augmenting image data is through simple techniques
such as cropping, rotating, and flipping input images. An example of such an
increase in image data is shown in Figure 3.16. Additional moves are color
augmentations and further geometric steps, such as reflecting the image and
changing the color palette of the image. All of the transformations main-
tain affine transformation methods of the original image. Previous work has
demonstrated the success of data augmentation through simple techniques
(Perez & Wang, 2017). However, the enlarged training samples are obtained
from the original training data and they are not statistically independent
and thereby do not have a comparable effect on gathering more real data
(Wickstrøm et al., 2018).

The idea of data augmentation is not new, and in fact, various data aug-
mentation techniques have applied to specific problems. The main methods
fall under the category of data warping, which is an approach that seeks to
directly augment the input data to the model in data space (Perez & Wang,
2017). The idea can be followed back to augmentations performed on the
MNIST set in (Baird, 1992).

3.6.7 He Weight Initialization

Careless and randomly initializing of weights and bias can lead to difficulties,
such as critical-high gradients of input signals. If there are too many out of
bounds weights and biases, it may result in neurons getting saturated, and the
gradients might vanish (Wickstrøm et al., 2018). The basic idea to address
this problem of initialization is to investigate the variance of the responses in
each layer. A response for a convolution layer is expressed as yyyl = WWW lxxxlbbbl ,
where we use l to index a layer, W is a d-by-n matrix, where d is the number
of filters and each row of W represents the weights of a filter. Bias bbb is a
vector, and y is the response at a pixel of the output map (He, Zhang, Ren,
& Sun, 2015).

In (He et al., 2015) it was shown that an acceptable initialization method to
avoid reducing or increasing the magnitudes of input signals exponentially
results in the condition
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Figure 3.16: Shows input tabby cat image plus seven samples of
images using data augmentation procedure. The input image is the
left in the middle row, and the image to the right is the mirrored or
flipped image. The six small images in the first and third rows are
rotated samples from the images in the middle row (Note, disregard
variation on image size) (Long et al., 2015).

1

2
nlV ar[wwwl] = 1 ∀ l. (3.34)

that needs to be met, where l is the index of the current layer and assuming
that weights are initialized with a mean of 0.

where:

nl , refers to the the number of input weights, also referred to as ”fan in”.

From their derivation they obtain the following condition

1

2
nl+1V ar[wwwl+1] = 1 ∀ l. (3.35)
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where:

nl+1, refers to the the number of output weights, also referred to as ”fan out”.

Given that we initialize from a zero-mean Gaussian distribution, this means
that weights have to be initialized with V ar[wwwl] = 2/nl = 2/fan in and
V ar[wwwl+1] = 2/nl+1 = 2/fan out, and also initialize bbb = 0. Note, this
can only be achieved when all layers have the same number of neurons and
in order to make a compromise between the two conditions the average is
commonly chosen such that

V ar[www] =
2

fan in+ fan out
(3.36)

3.7 Segmentation nets

Segmentation can be viewed as a pixel-wise classification task, where each
pixel in the image is assigned to a given class. The first deep learning ap-
proaches to deep learning made use of this fact by employing the idea that
a surrounding patch can be extracted from each pixel and can be used to
classify the center pixel. This rephrases the segmentation task into a set of
classification tasks, where the previously discussed CNNs for classification
can be used. However, there are multiple issues with this naive approach.
Firstly, in order to segment an image with HxW pixels, the task will be split
up into HxW classification problems, leading to HxW forward passes during
the inference phase. This is computationally expensive prohibitive, especially
for large images. Secondly, classifying a patch with respect to its center pixel
can lead to situations where a patch is supposed to get assigned to a specific
class even though the majority (potentially all exept one) pixel belong to an-
other class. The same issue appears for cases where a class boundary is in the
center of the image and a shift of one pixel should lead to a completely differ-
ent classification outcome. Due to this the naive approach usually achieves
sub-par results and has been replaced with more modern approaches recently
that are able to learn a segmentation mask for a given image in an end-to-end
qualified learning procedure. Examples of these models will be the focus of
the following sections.
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3.7.1 Fully convolutional neural networks

The network architecture in Figure 3.17 was presented in 2015 by Jonathan
Long, Evan Shelhamer and Trevor Darrel in the paper ”Fully Convolutional
Networks for Semantic Segmentation” (Long et al., 2015). They presented
the first end-to-end network architecture for pixel-wise prediction. Both
learning and inference are performed for a whole image at a time, not re-
quiring pre-and-post-processing.

Figure 3.17: (Long et al., 2015). A Fully Convolutional Network
(FCN) trains end-to-end by backpropagation. It is able to operate
on an entire image as a whole, providing pixelwise predictions of the
same size as the input image. Training is performed in a supervised
manner by comparing the output predictions of the network with the
ground truth segmentation mask.

A Fully Convolutional Network (FCN) requires densely (pixel-wise) labeled
images for supervision. It operates on the whole image and learns to produce
dense predictions in the form of a probability map. The training is performed
in an end-to-end, pixels-to-pixels prediction manner. A benefit is the ability
to adapt learned representation or weights trained from typical classification
nets, such as LeNet (LeCun et al., 1989), AlexNet (Krizhevsky et al., 2012)
and other subsequent networks in the encoder and only adds a decoding
part that needs to be learned from scratch. This allows the use of networks
that are trained on large classification datasets for weight initialization of the
encoder. This process is commonly referred to as transfer learning and tends
to improve performance for segmentation problems where limited ground
truth images are available (due to the cost and effort required to provide
dense ground truth).
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In order to convert a classification network to an FCN, the fully connected
layers (FC-layer) are replaced with convolutional layers. Note, for a fixed size
image, a convolution that has a filter size that is equivalent to the size of the
feature representation in a given layer can be viewed as (and is equivalent
to) one neuron in a fully connected layer. This means, that adding the same
amount of filters as there are hidden neurons in the fully connected layer will
be equivalent and weights can be used interchangeable. The benefit comes
from the fact that convolutions are independent of image size and the network
can therefore be used to provide predictions for arbitrary-sized images after
the modification. For larger images, unlike for the FC layers that produced
only a single value for each neuron, the convolutional layers will now produce
a representation that has a spatial extend for each filter. This representation
can then be upsampled to the original image size providing pixel-wise labels.
See the transformation in Figure 3.18. In order to perform the upsampling,
one common approach is the use of so-called transpose convolutions (as dis-
cussed in 3.6.5). This method is applied in the FCN architectures (Long et
al., 2015).

Figure 3.18: One can replace fully connected layers by convolutions
to retain spatial information.

While pooling layers improve the field of view and thereby classification ac-
curacy, it partially neglects spatial information. This is a drawback as it
drastically reduces the spatial dimension of the input volume. This limit the
accuracy of the segmentation (Harich, 2016). Typical recognition nets such
as LeNet, AlexNet, and its deeper successors are classical kinds of networks
architectures, designed to recognize visual patterns directly from images and
commonly make use of multiple pooling operations leading to reduced spatial
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dimensions. For example, VGGNet consists of 5 pooling layers of stride 2
(Simonyan & Zisserman, 2014), result in a downgrade by a factor of 32 (25),
and it may lead to inaccurate and coarser segmentation maps. To deal with
this problem up-sampling in combination with so-called skip architecture are
used in FCNs. Learning this network containing skip connections allows
the system to recover the spatial resolution while preserving segmentation
accuracy, see Figure 3.19

Figure 3.19: The figure illustrates the skip architecture nets, com-
bining coarse high layer information with fine low layer information.
To compact, the nets pooling and prediction layers showed as grids,
and intermediate layers shown as vertical lines. The coarsest out-
put is called FCN-32s on the first row and based on pool5 32 up-
sampled predictions only. The second-row net FCN-16s predict finer
details, it combining the final stride 32 layers by a factor of 2 and
the pool4. The third row the FCN-8s variant combines predictions
of stride 32,16, and 8.

Figure 3.19 shows the architecture of the FCN-32s the most basic FCN-
architecture as well as the FCN-16s and FCN-8s architectures that allow
predictions with finer semantic details. The last two mentioned architectures
were adding additional skip connections and thereby incorporating additional
fine grade information at the cost of additional complexity. The first stages
of the network are equivalent for all three structures and are based on the
VGG-16 architecture (Simonyan & Zisserman, 2014), and each stage per-
forms convolution followed by the ReLU (BN in FCN was not discovered at
that point), then it is followed by a 2×2 max-pooling layer with stride equal
to two. This process is repeated several times to produce a set of feature
maps at decreasing resolution (Long et al., 2015).

The primary FCN-32s network output is directly up-sampled by a factor of
32 before passed into a softmax function. However, the 32-pixel stride in the
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final up-sampling layer limits the scale of detail in the final output predic-
tion. Two upgraded FCN-version FCN-16s and FCN-8s address this issue
providing a definite improvement by adding a novel ”skip” architecture that
combines deep, coarse, semantic information with shallow, fine, appearance
information. For instance, FCN-16s provides an extra up-sampling. A link
connects to the earlier layers with finer strides, first with a factor of 2 and
then with a factor of 16. After the features from the coarse representation
have been up-sampled by a factor 2, they are combined with the finer grained
features and the combined representation is then up-sampled to the original
image size. This is an intuitive approach, as it would be hard or impossible
to produce an accurate pixel-wise prediction map for a 512× 512 image only
based on a 7×7 representation without adding higher resolution information
from previous stages in the network. The FCN-8s version provides three up-
sampling steps, two with a factor of 2 and then one final one with a factor
of 8. See Figure 3.19 for details.

3.7.2 U-Net

The U-Net presented by (Ronneberger et al., 2015) was build upon the pre-
vious mentioned FCN architecture (Long et al., 2015). The original FCN
architecture was modified and extended with the aim to operate with very
few training images and nevertheless produce more precise segmentation. It
is obviously a natural architecture to consider in regards to segmentation of
medical images such as endoscopy modalities.

The U-net architecture is shown in Figure 3.20 and contains two paths re-
spectively, on the left side a contracting path, the encoder, and on the right
side an expansive path, the decoder. In the original U-net formation the
structure of the contracting path was set up as a typical CNN (Ronneberger
et al., 2015), (Long et al., 2015). Usual it is a 3×3 convolution followed by a
ReLU and in addition, a 2×2 max-pooling operation with stride 2 for down-
sampling and propagating the maximum activation to the next feature map.
Additionally, it reduces the height and the width of the feature map to the
halves of the previous layer. This results in a gradually spatial contraction.
The standard CNN network of the encoder stops here, and the encoder maps
all features to a single output vector.

Now, the expansion path aims to create a high-resolution segmentation map
in the second part of the architecture. Every step consists of processing the
features with a sequence of 3x3 convolutions followed by an up-sampling of
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Figure 3.20: Architecture of original U-net.

the feature map by a factor 2 in both spatial dimensions using a learned
kernel. In addition, every layer of the expansion path includes a connection
to the corresponding layer of the contracting path to ensure an accurate
recovery of spatial infomation via the skip connection. At the final layer a
1× 1 convolution maps the feature vector into the desired number of output
classes.

3.7.3 SegNet

SegNet is primarily an efficient architecture for pixel-wise semantic segmen-
tation for a spatial understanding of typical road scenes such as buildings,
road, and side-walk (Badrinarayanan,Kendall, &Cipolla,2015). The key
learning module is a two-part encoder-decoder network. SegNet consists of
encoder layers and corresponding decoder layers, followed by a final pixel-
wise classification layer. There are five corresponding encoder and decoder
layers, and hence it expresses a symmetric (but flipped) construction such
that the decoder network is identical to the encoder network. In a given
decoder layer, SegNet uses the max-pooling indices from the corresponding
encoder stage to perform up-sampling, by placing activations into the cor-
responding positions. This produces a sparse feature activation map that is
then processed by convolutional layers to make them dense. This approach,
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removes the need to explicitly learn the up-sampling and instead replaces it
by additional ”normal” convolutional layers. This architecture is shown in
Figure 3.21.

The Encoder network of SegNet involves 13 convolution layers which corre-
spond to the first 13 convolutional layers in the VGG16 network originating
from the object classification (Simonyan & Zisserman, 2014). The fully con-
nected layers of VGG16 are removed, making the SegNet encoder network
significantly smaller with respect to the number of parameters, and thereby
more comfortable to train compared to other recent architectures. Training
weight from large classification datasets can still be used to initialize the
network in a transfer learning manner. All individual encoder in the encoder
network performs convolution with a filter bank to work out a set of feature
maps. This is following by BN and then further by an element-wise tanh non-
linearity ReLU max(0, x). A max-pooling with a 2 × 2 window and stride
2 (non-overlapping window) and sub-sampling by a factor of 2 is applied
to obtain the feature maps. The max-pooling operation will progressively
reduce the spatial size of the feature map and achieve robust translation in-
variance over small spatial shifts in the input image (Badrinarayanan et al.,
2015). Accordingly, several layers of max-pooling and sub-sampling can de-
liver more translation invariance and archive a significant image context for
each pixel in the feature map, but also a progressive loss in spatial resolution
of the feature maps, not beneficial for segmentation where exact boundary
information is vital. Encoders must do a precise mapping of boundary local-
ization before sub-sampling. This involves also memorizing of the locations
of the maximum feature value in each pooling window and for each encoder.

In the encoder, the location of the maximum value (pooling index) of each
of the 2x2 pooling window can be stored using 2 bits (per window) and can
therefore be done very memory efficient. This avoids the need for learn-
ing the upsampling but does not address the loss in resolution caused by the
pooling layer as it lacks the ”skip” connections that include higher-resolution
information that were found in the FCN. The decoding components use the
max-pooling indices to up-sampled the features by placing them in the po-
sition that corresponds to the max-pooling location in the corresponding
encoder. As this step provides sparse representations, the feature maps are
convolved with a trainable decoder filter-bank (a set of convolutional lay-
ers) to make denser feature maps. The last decoder produces a feature map
where the depth dimension corresponds to the number of K classes that the
network needs to distinguish, which is then processed by a softmax layer.
The softmax layer returns a K channel image of probabilities. The predicted
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Figure 3.21: Shows an illustration of the SegNet architecture with
the hierarchy of encoders and decoders. To create a bitmap, each en-
coder carries out dense convolution with a trainable filter bank. The
appropriate decoder up-samples its input feature map(s) using the
transferred pool indices from its encoder. Convolving these sparse
feature maps with a trainable decoder filter bank produces dense fea-
ture maps followed by applying a batch-normalization step of each of
these maps. After the final decoder, the output is fed to a softmax
classifier which produces the final prediction for each pixel indepen-
dently. The predictions can then be combined and displayed as a
segmentation map (Badrinarayanan et al., 2015).

image segmentation then corresponds to the object(s) with maximum like-
lihood at each pixel. In contrast, other decoders in the network produce
feature maps with the same size and channels as their corresponding encoder
inputs (Badrinarayanan et al., 2015).

3.8 Class balancing

A major challenge when training CNNs for semantic segmentation is the
presence of high class-imbalance in the dataset. Datasets are imbalanced
when only a small number of training examples or pixels are represented in at
least one class while other classes make up the majority of samples. In many
classification tasks, the overall accuracy might be satisfactory and adequate,
but class imbalance often represents an issue of ignoring small classes at the
expense of the larger classes. When only considering the goal of archiving
overall accuracy in a segmentation setting, small classes cover only a small
area of an image and get less prioritized by the Net model in an effort to
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achieve the overall optimal score in the learning process (Kampffmeyer et
al., 2016). The model wants to do as good as possible on as many pixels as
possible, so then it will instead prioritize the classes that are very big at the
expense of small classes. Low accuracy on the small classes will have no or
minimal impact on the overall classification accuracy because of the much
larger classes.

3.8.1 Median frequency balancing

Most machine learning algorithms do not work very well with imbalanced
datasets where, e.g., pixels from one or two classes dominate the number of
pixels among the classes in the training set. One can use different evalua-
tion criteria and techniques for re-sampling the dataset, such as making a
balanced dataset out of an imbalanced one. In segmentation tasks, one con-
siders a dataset to be balanced when the number of pixels belonging to each
class/segment is roughly the same. In most cases, the classes in the dataset
are, however, not ever balanced. Further, since the class distribution in the
individual images tends to be similar, removing individual images does not
generally tend to address the problem and would also result in a reduced
training dataset. For classification tasks, where labeling is less costly this is,
however, a valid strategy to balance the dataset.

A major approach to overcome this problem is by boosting the importance of
small classes. The idea is to assign small classes a higher cost value with the
usage of a weighted cross-entropy loss function resulting in a more balanced
classification result. By including the median frequency balancing (MFB)
(Eigen & Fergus, 2015) which is, a weighted cross-entropy loss, the segmen-
tation accuracy for small classes can be effectively improved (Bischke, Helber,
Borth, & Dengel, 2018). MFB was first proposed by(Eigen & Fergus, 2015)
to improve depth prediction and semantic labeling in imbalanced datasets.

In the segmentation task, the model receives the whole image as input and
is tasked to generate a full resolution pixel-by-pixel labeled image. MFB
weights the class loss by the ratio of the median for all classes in the training
set, and the individual class frequency. The re-weighted cross-entropy loss
function is as follows
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L = − 1

N

N∑
n=1

C∑
c=1

l(n)c log,
(
p(n)c

)
ωc (3.37)

where:

N is the number of samples in a mini-batch.

p
(n)
c is the softmax probability that the sample n is in class c.

The ωc is given by

ωc =
median ({fc | c ∈ C})

fc
(3.38)

and expresses the class weight for class c where fc is the frequency of pixels
in the c class. C is the set of all classes.
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Chapter 4

Deep learning for medical
endoscopy

Deep Learning is one of the most popular trends in Machine learning research,
and in particular CNNs have rapidly become a methodology of choice for
analyzing medical images. In this chapter we will briefly present some of
the prior work on designing automatic medical decision support systems for
medical imaging with a particular focus on endoscopy.

4.1 Traditional machine learning

Historically, from early 2000’s computational video analysis methods for au-
tomatic polyp detection have been developed first using flexible video endo-
scope, later also including WCE. At that time it was mainly integrated as
a reviewing software from the manufacturer (Karkanis, Iakovidis, Maroulis,
Magoulas, & Theofanous, 2000).

Several techniques to finding bleeding in the gastrointestinal tract are pub-
lished in reviews and papers. This includes a variety of rule-based and tra-
ditional machine learning algorithm based methods are applied to extract
color, texture and other features (Iakovidis & Koulaouzidis, 2015). Some of
the papers describe how the use of the color space is applied in the detection
of hemorrhage (bleeding), such as (Hwang, Oh, Cox, Tang, & Tibbals, 2006),
where they proposed a technique to detect the bleeding regions automatically
utilizing the Expectation Maximization (EM) clustering algorithm. Another
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paper (Karargyris & Bourbakis, 2008) proposed a novel methodology based
on synergistic integration of methods, such as Color K-L transformation,
fuzzy region segmentation, and Local-Global graphs for automatically de-
tecting blood-based abnormalities in WCE videos. Berens et.al. (Berens,
Fisher, et al., 2008) expanded their previous work with a new WCE video
segmentation algorithm based on the hidden Markov model (HMM). They
combined texture and motion features in addition to the color features from
their previous work and improved the classifier results.

Still, many more individual works on traditional machine learning could have
been mentioned, however, the interested reader is referred to a survey by
Karargyris et.al. (Karargyris & Bourbakis, 2010) where they have reviewed
several WCE and conventional flexible endoscopy videos. It shows a variety
of WCE challenges, and that nearly all proposed methodologies by that time
applied traditional machine learning to adapt to the tasks they carried out.
All presentations were based on WCE and conventional endoscopy videos.

4.2 Deep Learning for medical imaging

Deep learning (DL) has made significant progress and demonstrated break-
through performance over conventional machine learning methods across sev-
eral fields (Ching et al., 2018). It is becoming largely used in the domain of
medical imaging, especially some domain that need imaging data analyses,
such as radiology (Hosny, Parmar, Quackenbush, Schwartz, & Aerts, 2018),
where deep learning has among others been used for prediction of cardiology
(Dong et al., 2018), ultrasound, where deep learning approach is used for de-
tecting of thyroid papillary cancer in ultrasound images (H. Li et al., 2018),
and dermatology, where they illustrate the classification of skin lesions using
CNN (Esteva et al., 2017). The emergence of DL-based approaches aims to
meet the desire of healthcare professionals to improve efficiency of the clinical
work.

When it comes to the analyze of WCE images, deep learning has recently
demonstrated promising results for bleeding detection. A novel bleeding
detection approach based on an eight-layer CNN was proposed by (Jia &
Meng, 2016). This network performs detection of both active and inactive
bleeding frames achieving high-level accuracy scores.
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4.3 Segmentation methods of angiodysplasia

For the detection and localizing of AD lesions various approaches have been
proposed recently. Vieira et.al. (Vieira et al., 2016) presents a methodology
to segment the ADs using different color spaces and a Maximum a Posteriori
(MAP) method to divide the WCE image into two regions, based on spatial
information using Markov Random Fields (MRF) theory. The segmentation
was performed using a statistical classification based on Bayes rule where
the posterior probability of each class was calculated. Another more recent
method was proposed by (Shvets et al., 2018) and is closely related to our
method and a summary of it is presented in Subsection 4.3.1.

4.3.1 Segmentation of angiodysplasia - clarification

Here, a review is provided of Shvets et al., 2018 for completeness. However,
note that the objective of the work in this thesis is not on achieving overall
best accuracy, but instead aims to analyze the effect of weighting the terms
in the loss function and the effect of class imbalance. For the ease of training,
experiments in this work are therefore done on a shallow FCN network that
can be trained rapidly and overall accuracy will not be comparable to Shvedt
et al., who use a much larger network that is much more time-consuming to
train.

To illustrate what separates these works, a more detailed descriptions of the
the differences is provided.

• To improve model generalization during training of the data set Shvedt
et al. applied random affine transformations and color augmentation
in HSV space.

• An optimal threshold was chosen for the trained model based on the
validation dataset. Balancing this parameter can be seen as another
approach of addressing the class imbalance by reducing false positives
(fp) or false negatives (fn). In order to avoid this additional variable,
this parameter is fixed to 0.5 in all our experiments. Choosing 0.5 is
intuitive as the output can be interpreted as the probability of a pixel
belonging to the AD class.
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• Shvets et al. focused on the best performing accuracy score by evalu-
ated 4 different deep architectures for segmentation, while this work’s
focus is on the class-imbalance problem.

• Shvets et al., 2018 used a generalized loss function by combining the
common cross-entropy loss function of the U-Net with the Jaccard in-
dex in order to be able to directly optimize the model according to
their chosen evaluation metric. It was claimed to improve overall seg-
mentation performance with a limited amount of data.
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Chapter 5

Dataset and Experimental
Setup

This chapter describes the experiments that were performed as part of this
thesis in order to evaluate the hypothesis that is on applying DNNs for the
detection and segmentation of angiodysplasias on WCE images. We first
present the content of the dataset that was analysed as part of this study
before providing implementation details and describing the training process
of the proposed architecture.

5.1 Dataset

The dataset we are evaluating has 599 color images obtained from wireless
capsule endoscopy and in addition, there are 599 ground truths to the images.
The images are in JPG and PNG format, all images with 576 × 576 pixel
resolution. The origins of the dataset is from the Endoscopic Vision Sub-
challenge1

The dataset is split into two folders or parts composed of 299 images and
labels with apparent AD in one folder and 300 images and 300 labels without
any pathology in the second folder. Pixel-level annotations have been pro-
vided by human experts in form of ground truth images. The ground truth
images consist of 576× 576 pixel binary masks in JPG format, where white

1https://endovissub2017-giana.grand-challenge.org/Angiodysplasia-ETISDB/
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Figure 5.1: The top row corresponds to typical sample images with-
out lesions. The middle row illustrates images with lesions and the
bottom row contains the ground truth masks for the images in the
middle row.

pixels correspond to lesions (angiodysplasias) located in the image and black
pixels correspond to the background class.

Example images from the dataset are shown in Figure 5.1, where the four
images in the first row are images without AD pathology. Images in the
middle row have one to several AD lesions, and the last row contains labels
that match the AD pathology we see in images from the second row. Figure
5.1 illustrates a problem in the dataset, namely the class imbalance, which is
caused by the fact that lesions usually make up small objects in the images.
Previous work has shown that class imbalance can be problematic for CNNs
and we therefore analyse this class imbalance further in the following section.

5.1.1 Investigation of class imbalance

Figure 5.2 illustrates the previous imbalance further by displaying the overall
AD lesion distribution for the dataset. In the left figure, we can observe that
most images contain very few lesions. For instance 92% of the images have
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Figure 5.2: Distribution to the left show the number of lesions per
image. The lesion area in the dataset is shown in the distribution to
the right.

2 or fewer lesions and only one image has as many as 6 lesions. The chart
to the right shows the distribution of pixels that corresponds to AD lesion
per image. Again, we observe that most images contain very few lesion
pixels. The images with the most lesion pixels contains around 12000 lesion
pixels, which means that less than 4% of that image are covered by lesion.
The median number of lesion pixels per image is 1998, which corresponds to
around 0.6% of the image.

5.1.2 Dataset Preparation

In this subsection, we discuss how the dataset containing the AD-images was
preprocessed and split into training, validation and test dataset and highlight
the data augmentation techniques that were used to artificially expand the
training dataset to improve model performance.

Cropping

In order to remove unwanted text annotations and irrelevant black pixels
around the outside of the image, the original images (and ground truth an-
notations) were cropped from 576x576 pixels to the size of 480x480 pixels.
To achieve this, 48 pixels were cropped on each side. For simplicity when
regarding data augmentation (see below), we ensure that images keep the
square shape after the cropping phase. The data augmentations will include
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image rotations and would result in unusual stretching of the objects if the
height and width of the images differs and non-square images would include
unwanted artifacts that would hamper the performance of the model.

Split

In a supervised learning model ground truth or labels are applied. The
dataset is normally split into a training set, a validation set, and a test set.
The training set is applied to train the model, while the validation set is
applied for verifying the model and hyper-parameter tuning. Finally, the
test set is applied to evaluate the performance of the model. This last step
is done to evaluate the generalization performance of the model (Nielsen,
2015).

In order to have consistent data that gives reproducible results the actual
dataset with 299 AD pathology images was randomized and divided into
three sets. The training set contains 80% of the images and the validation
and test set contain 10% of the data each. This results in a training set which
contains 239 images and 30 validation and test images. Once the best hyper-
parameters were found using the training and validation set, the model was
trained and evaluated on the independent test set to analyse the predictive
power of the model.

Augmentation

To improve deep learning performance an image classifier needs a fair amount
of images to train on. When the training dataset only contain 239 images the
size is quite limited. In addition to the previous pre-processing steps, there
are further ways to improve the model performance by artificially increasing
the training data size, namely data augmentation which was described in
Subsection 3.6.6.

Augmentation has shown to be helpful to build upon as an improvement for
network shortcomings (Perez & Wang, 2017). If the network model detects
an object at some position but fails in situations where it has not been ex-
posed to before, such as when the object is rotated, then it opens the ability
to introduce data augmentation to artificially inflate the training set with ro-
tated examples. We augmented the data by rotating the 239 training images
in 90, 180, 270, and 360 degree interval, and repeated equivalently rotations
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using the same but mirrored image samples. This resulted in 8 rotated im-
ages out of just one and thereby expanded the training dataset from 239
images to 1912 images and augmented also the corresponding representation
of labels from 239 labels to 1912 labels.

No augmentation was done on the validation set, meaning the dataset con-
tains only original images.

Implementation Details

To introduce the datasets for DNNs there are different ways to do it here. We
decided to adopt a Lighting Memory-mapped Database (LMDB). LMDB is
an open-source software database of choice for large datasets. Four LMDBs
were created from the original data, one containing the images of the training
dataset, one containing the corresponding labels, one for the images of the
validation dataset and finally one containing the labels for the validation
dataset.

An alternative to the LMDB dataset, was to implement a tailor-made input
layer2 for the Caffe framework, however, over the course of this thesis it was
concluded that the benefit of such a layer was limited compared to the LMDB
approach and not proportional to the amount of work required to complete
it.

The deep learning framework Caffe was used for the experimental setup and
implementation of the models in CNNs. All evaluations were performed
using the deep learning framework Caffe 3 on a single Geforce GTX 1080
(GPU). To support the segmentation of the WCE images and median fre-
quency balancing the loss layer of the Caffe framework was modified (re-
quiring modifications of the CUDA code to enable the code to run on the
graphics processing unit (GPU)). The model specification mostly follows the
specification in (Kampffmeyer et al., 2016) and will be described further in
the next section.

2www.riptutorial.com/caffe/example/19019/prepare-image-dataset-for-image-
classification-task

3https://caffe.berkeleyvision.org
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5.2 Network

This section presents the network architecture of the model that was imple-
mented as part of this thesis.

5.2.1 FCN Architectures

The FCN network was chosen as it represents one of the most widely used
segmentation models. In order to be able to analyse the model quickly and
avoid large training times, the FCN architecture was chosen to be reasonably
light-weight. A summary of the FCN architecture is given in Figure 5.3. The
architecture has a total of 9 convolutions and 3 max-pooling layers.

It has become commonplace to have a BN followed by each convolution stage
(Long et al., 2015), unlike earlier FCN architectures that were non-normalize
networks (Ioffe & Szegedy, 2015). The characteristics of BN is to allow for
a higher learning rate (lr) due to smoother gradients and faster convergence
to a minima.

Dropout is applied with a drop-rate of 0.2 and inserted after the last BN
before the transpose convolution where the up-sampling is learned. Dropout
improves the generalization performance of the network by reducing the prob-
lem of overfitting.

After the convolution layers and the pooling layers in the first part of the
network, one convolution layer is used with a 1×1 kernel in order to take the
512 channel input down to a 2 channel input where each channel corresponds
to one class (lesion vs background).

The up-sample layer is followed by a softmax function and succeeded by the
weighted loss and a computation of the overall accuracy. Note that for the
convolution operations, the notation ”3×3 conv. 64” means that 64 different
convolutions are performed, each having filter shapes of sizes 3×3. The depth
of the filters is analogue to the number of channels to the convolution input.

Each layer of data in the FCN network is a three-dimensional array at size
h × w × d, where h and w are spatial dimensions and d is the feature or
channel dimension. The first layer takes in the RGB image, with pixel size
h× w, and d color channels.
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The network has shown to be sufficiently large for satisfactory performance,
while simultaneously being small enough to have a manageable memory ca-
pability and training time. Recall that the FCN-32s architecture has 16 con-
volutions layers and 5 max-pooling layers leading to a considerable increase
in overall training time.

Figure 5.3: Architecture details for the FCN implementation.

5.2.2 Implementation details

Choosing the hyper-parameters can be somewhat challenging in DL applica-
tions since there is no straight forward way to find the best configuration for
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these parameters in such a high dimensional space. Hyper-parameter tun-
ing is usually done by examining some portion of the hyper-parameter space
by running several iterations of training and validation in combinations and
then selecting the configuration which results in the best model performance.
Further, hyper-parameter search can include the architecture, leading to the
need to remove, change or insert layers. There is a whole field of research on
finding the ideal architecture (Elsken, Metzen, & Hutter, 2019), with most
approaches still being computational prohibitive. Unless something else is
explicitly stated, the choice of the different hyper-parameters is based on
monitoring the performance on the validation dataset during training.

Training stability

Both the FCN network and the FCN+weighting model were trained on
batches that consisted of 12 images of size 480 × 480 pixels. The batch
size was chosen due to the capacity of GPU memory. Note that the batch
size in gradient descent is a tradeoff between the speed of each update step
and the accuracy of the gradient estimation. Increasing batch size will re-
sults in a more stable and robust training procedure as several gradients are
accumulated over the batch size and used to update the average loss of the
loss function. However, each update step will be more costly due to the fact
that less computation is required. Finally, (reasonably) small batch sizes
have also shown to introduce stochasticity that can lead models to escape
local minima (Montavon, Orr, & Müller, 2012).

Optimization Methods

There are several available optimization methods that build on the standard
stochastic gradient descent procedure. However, the network was trained
using the more recently proposed algorithm Adaptive Moment Estimation
(ADAM) (Kingma & Ba, 2014). ADAM claims to be a little more robust
in a wide range of non-convex optimization problems in the field of machine
learning. In relation to the learning rate (lr), it adapts scale for different
weights instead of hand-picking manually a single learning rate as is done in
SGD (Kingma & Ba, 2014). Note, this is a common trade of most of the
proposed optimizers as they remove the time-consuming task of fine-tuning
the learning rate manually and make training more robust to the starting
learning rate.
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Other parameters

•Gamma: The learning rate for the model was dynamically reduced after
each 2500 iterations (batches) by a factor of 10.

•Learning rate (lr): The training started with lr of 1 ∗ 10−5 and was
gradually reduced throughout the training due to the gamma multiplier.

•Optimizer: Networks were trained using the ADAM optimizer with default
parameters, (β1 = 0.9 and β2 = 0.999) (Kingma & Ba, 2014).

•Weight decay: Is a regularization technique also known as the L2-
regularization (Nielsen, 2015). During training, the network weight decay
was at 0.0005, see also Subsection 3.5.

•Class balancing: To address the high imbalance in WCE image datasets
the FCN-network was trained with class weighting for the white pixel minority
class at 0.9 and class weighting at 0.1 for the black pixel majority class. The
reasons for this choice is further discussed in Subsection 5.2.3

5.2.3 Class weighting

In order to compute the class weights, we have to investigate the frequency
of the lesion class and the background class. As we have two classes, the
MFB weighting would consist of the mean of the frequencies divided by the
class specific frequency and thereby in the following weights:

By iterating over all the images in the training set and counting the number
of background and lesion pixels we get

Pixel class 0 = 54483717 pixel, approx 99%

Pixel class 1 = 581883 pixel, approx 1%

This results in the following weights:
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1
2
(54483717 + 581883)/54483717 = 0.5

1
2
(54483717 + 581883)/581883 = 47,3

The difference would thus be at a order of 100x.

Empirically, experiments showed that such a large difference resulted in the
model learning to over-segment the lesion class and the weights, due to the
huge class imbalance, were therefore reduced to a factor of 10.

To result in a more balanced classification result, we assigned the FCN net-
work a scaled cost value with the usage of a weighted cross-entropy loss
function during training. The FCN network was trained several times on
both methods where different weighting values were evaluated, but the high-
est accuracy for both classes was obtained by weighting the foreground class
0.9 and the background class 0.1.

5.3 Analyses of the hyperparameters

This section summarizes and discusses the training process of the neural
network architectures above. The two separate FCN-architectures are trained
in an end-to-end manner on the WCE training dataset, one with and one
without the class-weighted entropy loss, and the validation dataset is used
to perform early-stopping of the training.

We further present an analyses of the effect of the weighting by presenting
several additional results for different learning rates and different weightings.

5.3.1 Overall result

The learning curves during training for the best-performing models are shown
in Figure 5.4. The model that achieved the highest validation accuracy was
reached after 5000 iterations (snapshot) for the FCN model and 7500 itera-
tions for the FCN-weighted model and training took approximately 15,5 and
23,75 minutes, respectively.
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(a) (b)

Figure 5.4: Learning curves: Shows the FCN accuracy on the training
and validation dataset for the (a) and FCN+weighting accuracy on
the training and validation dataset for the (b). For both figures, the
two curves with blue color show the mean accuracy for the foreground
class, and the two curves in black show the background class. The
green and yellow colors are the loss curves for the train and validation
loss respectively.

The accuracy on the validation set during training and the quantitative re-
sults obtained are shown in Table 5.1. The mean accuracy of the back-
ground class does not differ noticeably on any of the training methods and
this is also the case for the total accuracies on both cases. The accuracy
for the foreground class on validation was at 73.2% and 88.6% for FCN and
FCN+weighting respectively and it shows an improvement on accuracy for
the small foreground class when the class weighting is included in the train-
ing. The result was achieved with weighting 0.9/0.1 in favour the foreground
class.

weighting iter. lr. foregr. backgr. total
method foregr./backgr. accuracy accuracy accuracy

FCN 5000 1 · 10−5 0.732 0.997 0.993
FCN+w 0.9/0.1 7500 1 · 10−5 0.886 0.993 0.992

Table 5.1: Comparison of the best metrics for the FCN and
FCN+weighting for the validation dataset.
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5.3.2 Analyses of weighting scheme

In this section, the effect of weighting the classes in the loss function are
analyzed. Results for different weightings are shown in Table 5.2 and illus-
trates that the overall accuracies are improving as the weighting approaches
the setting 0.9/0.1 in favor of the foreground class. Rows four and five show
that the foreground pixel accuracy decreases as the class weighting in favor of
the foreground class is decreased. Increasing the weighting as shown in row
one and two, does not further increase the foreground class accuracy, which
suggests, that the model is unable to further increase on the foreground class
accuracy and potentially is overfitting on the training dataset for the case
where the weighting is 0.96/0.04. The third row shows the run for the cho-
sen weight configuration. Recall that the foreground pixels class matches less
than 1% of the total number of pixels.

weighting iter lr foregr. backgr. total
method foregr./backgr. accuracy accuracy accuracy
FCN+w 0.96/0.04 12600 1 · 10−5 0.508 0.997 0.992
FCN+w 0.95/0.05 1400 1 · 10−5 0.884 0.840 0.841
FCN+w 0.9/0.1 7500 1 · 10−5 0.886 0.993 0.992
FCN+w 0.6/0.4 8000 1 · 10−5 0.562 0.996 0.991
FCN+w 0.5/0.5 13800 1 · 10−5 0.498 0.997 0.992

Table 5.2: Comparison the FCN+weighting metric results on the
validation using various class weighting.

5.3.3 Analysis of early stopping

The accuracy results in Table 5.3 illustrate the effect of early stopping. Re-
sults for a single run are shown, when performing early stopping (at itera-
tion 1400) and when continuing to train the model (to iteration 13800). The
low overall performance for the model that was produced by early stopping
(84.1%) is a bit misleading as it is due to the low background accuracy. How-
ever, the accuracy for the foreground class is considerably higher than for the
model that was not stopped using early stopping. This is intuitive as the loss
function, which is used to perform early stopping, is weight and will therefore
prioritize foreground class accuracy over background class accuracy.
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iter. lr foregr. backgr. total
method accuracy accuracy accuracy

FCN+weighting 1400 1 · 10−5 0.884 0.840 0.841
FCN+weighting 13800 1 · 10−5 0.498 0.997 0.992

Table 5.3: Comparison of metric results on the FCN weighting vali-
dation datasets, one with early stopping and one where the training
continues.

5.3.4 Analysis of learning rate

The training examples in Table 5.4 illustrate different learning rate settings.
The training in the first row was stopped early due to low accuracy and no
(or very slow) improvement in the average loss. The third row shows the run
for the chosen weight configuration. The training in the last row was instead
stopped early due to the fact that the loss was increasing, due to the high
learning rate.

weighting iter lr foregr. backgr. total
method foregr./backgr. accuracy accuracy accuracy
FCN+w 0.95/0.05 2600 1 · 10−6 0.315 0.670 0.666
FCN+w 0.9/0.1 7500 1 · 10−5 0.886 0.993 0.992
FCN+w 0.95/0.05 400 1 · 10−4 0 1 0.989

Table 5.4: Results on FCN+weighting metric on the validation on
various learning rate.

5.3.5 Summary of the analyses

In this section, several experiments were performed with many different
hyper-parameters in order to analyze their effect on training. The results
illustrate that the best performance can be obtained with a weighting of
0.9/0.1 in favor of the foreground class and a learning rate of 1 · 10−5. Small
changes in the parameter choices led to poor model performance, both with
regards to convergence as well as resulting in considerably lower accuracy.

A full version of the FCN model, pre-trained on ImageNet, was also fine-
tuned on the data at hand. However, it did not improve results.
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5.4 Evaluations

The purpose of this Section is to analyze the result of weighting and describe
the semantic segmentation accuracy of the experiments. The segmentation
results are compared pixel-wise with the corresponding ground truth (GT)
or labels and the semantic segmentation accuracy on the experiments follows
the metrics described in (Fernandez-Moral et al., 2018). The authors describe
three standard accuracy metric methods for segmentation evaluation which
are

• pixel accuracy : tn/(tn+ fp) and tp/(tp+ fn)

• Intersection over union (IU/Jaccard) :
tn/(tn+ fp+ fn) and tp/(tp+ fn+ fp)

• F1 Score/Dice : 2tn/(2tn+ fp+ fn) and 2tp/(2tp+ fn+ fp)

Especially the F1-score and the Jaccard index, also called intersection over
union (IoU), are typical metrics widely used to evaluate the classification re-
sults (Fernandez-Moral et al., 2018). However, all three metrics have various
pros and cons.

The above metrics are computed in relation to the following confusion matrix
in Table 5.5.

Since class frequencies are imbalanced and biased by the large dominant class
it is most beneficial to evaluate the metrics per class, and further report the
results of the average metric for the classes. Compared with global metrics,
this class-wise average becomes usually less affected by imbalanced class fre-
quencies (Fernandez-Moral et al., 2018).

Predicted class

True class
true positive (tp) false negative (fn)
false positive (fp) true negative (tn)

Table 5.5: The Confusion matrix and notations. In the confusion
square matrix each column represents the instances of a predicted
class while each row represents the elements in an actual class.
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The first metric, accuracy, evaluates the percent of pixels of that class that
are classified correctly. On circumstances with imbalanced classes where one
dominant pixel class dominates the image, accuracy is not an ideal metric.
The next metric measures the IoU of the predicted labels of each class. The
IoU considers both fp and fn and thus solves some of the major drawbacks
considering imbalance described before and is a widely used metric for se-
mantic segmentation.

The third measure the F1 score which is a function of two other metrics,
namely

• Precision = tp / (tp + fp)

• Recall = tp / (tp + fn)

This F1 score might be a better measure to measure when seeking a balance
between Precision and Recall. Precision is a good observation to discover
when the costs of fp are high.

In general, the IoU metric tends to penalize single instances of bad classifica-
tion significant more than the F1 score even when they can both agree that
this one example is bad. Similarly to how L2 can penalize the largest spikes
more than L1. So while the F1 metric measures something closer to average
performance, the IoU metric reports a worst-case effect.

5.5 Results

The results on test set of the Deep learning segmentation on angiodysplasia
lesions localized in WCE examinations are summarized and presented in this
section. The quantitative results are treated first, followed by displaying the
results of the segmentation.

5.5.1 Metric score

As discussed above, it is important to consider multiple metrics when eval-
uating models, especially in the presence of class imbalance. Table 5.6 sum-
marizes the result of the experiments on the test set. The best scores are
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highlighted in bold. The pixel accuracy for the foreground class is highest for
the FCN+weighting model, which agrees with our intuition as the weighting
increases the foreground importance. However, this comes at a slight de-
crease in background accuracy. As previously seen, the overall accuracy will
still be higher for the FCN without weighting as the background accuracy is
slightly higher. Note, just by predicting a black background and disregarding
all input leads to a global accuracy of about 99%.

accuracy IoU F1 score
model foregr. backgr. foregr. backgr. foregr. backgr.
FCN 0.683 0.997 0.547 0.995 0.707 0.997

FCN+weighting 0.842 0.994 0.508 0.992 0.674 0.996

Table 5.6: Metrics for the FCN and FCN+weighting for the test
dataset.

From the IoU and F1 metric, we observe in Table 5.7, that the strong weight-
ing that was used to train the model, tends to produce more fp for the FCN
with weighting. This results in the lower performances on this metric.

foreground pixel background pixle
model tp fp tn. fn.
FCN 44114 16092 6831359 20435

FCN+weighting 54342 42348 6805103 10207

Table 5.7: Reporting the pixel frequencies for the FCN and
FCN+weighting models on the test dataset.

5.5.2 Underlying metric score

To further investigate the performance of the models, we look at the precision
and the recall. From the precision score for the FCN model we can observe in
Table 5.8 that because of the strong weighting, the precision score of the FCN
model with the weighting was much smaller for the foreground pixel class,
despite the large improvement of the tp frequency of the FCN+weighting
model. Observation shows that it came at the expense of an increase of near
three times for the fp pixel frequency, see Table 5.8. This means that even by
improving the tp pixel frequency the expense is at the same time three times
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precision score recall score
model foregr. backgr. foregr. backgr.
FCN 0.733 0.997 0.683 0.997

FCN+weighting 0.562 0.998 0.842 0.994

Table 5.8: Underlying score for the FCN and FCN+weighting models
on the test dataset.

as many of the fp pixels misclassified from the background class, leading to
a worsened accuracy.

One interesting subsequent observation is that the recall score was calcu-
lated at 84.2% on the foreground class FCN+weighted model toward the
FCN model score for the foreground class at 68.3%. The fn pixel frequency
is just half of what it is on the FCN model, meaning a corresponding number
of pixels are labeled as positive and added as the tp (the lesions class). This
might indicate that the underlying structure of the FCN+weighting network
output having more positive pixels within the region of detecting angiodys-
plasia disease. Additionally, the fp pixel frequency is three times as high,
and for classification and segmentation of diseases such as angiodysplasia it
can be argued as more preferable to present too many of the fp than the fn.
This argumentation may be supported by inspecting the segmentation result
images in Figure 5.5.

5.5.3 Result of segmentation

The qualitative result of the segmentation of six of the images from the test
set are shown in Figure 5.5. The FCN algorithm identifies angiodysplasia
lesions regularly but Figure 5.5 also illustrates the above mentioned problem
of fp for the weighted model. This applies specifically to the image in the
second and fourth column, where lesions are detected that are not in the
ground truth. Similarly for the FCN model, we observe that it misses lesions
(column six) as it aims to maximize performance on the background class.
A good balancing of the classes is therefore crucial.
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Figure 5.5: The two top rows show the images and their ground truth
from the test dataset. The ground truth labels the angiodysplasia lo-
cation output. The third row shows qualitative segmentation results
using the FCN network, and the fourth row shows the qualitative
segmentation results using the FCN network with weighting.



Chapter 6

Conclusion and future work

In this thesis, we analyze the impact of imbalanced classes for the task of
angiodysplasia segmentation using convolutional neural networks. In order
to address the high imbalance that is commonly found in the WCE image
datasets, we utilize a class-balancing loss in order to increase the importance
of finding lesions.

6.1 Future work

Results showed that a considerable amount of foreground pixel is getting
misclassified by the models. Including weighting lead to an improvement
in accuracy for the foreground class, but comes at a price as pixels of the
background class get misclassified and performance according to metrics such
as IoU and F1 diminishes. To improve overall accuracy, a larger and deeper
network will need to be employed in future work.

As an alternative or extension of this work, the effect of adding the Jaccard
index as done in Shvets et al. on the class imbalance problem can be analyzed
as it directly incorporates tp, fp and fn.

Finally, a more optimal threshold can be obtained by using ROC curves to
monitor how the four metrics tn, fp, fn, tp are changing when the threshold
is moved.

103
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6.2 Conclusion

In this thesis a deep neural network has been trained for the task of an-
giodysplasia segmentation from WCE images. Particular focus was put on
the problem of class-imbalance, the problem that the important foreground
pixels only make up a small fraction of the total pixels. Weights were in-
troduced to the loss function in order to incorporate the importance of the
different classes and the effect of these weights was analyzed.
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