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Abstract: We introduce the fully automatic design of a numerically optimized decision-tree algorithm
and demonstrate its application to sea ice classification from SAR data. In the decision tree, an initial
multi-class classification problem is split up into a sequence of binary problems. Each branch of the
tree separates one single class from all other remaining classes, using a class-specific selected feature
set. We optimize the order of classification steps and the feature sets by combining classification
accuracy and sequential search algorithms, looping over all remaining features in each branch.
The proposed strategy can be adapted to different types of classifiers and measures for the class
separability. In this study, we use a Bayesian classifier with non-parametric kernel density estimation
of the probability density functions. We test our algorithm on simulated data as well as airborne and
spaceborne SAR data over sea ice. For the simulated cases, average per-class classification accuracy
is improved between 0.5% and 4% compared to traditional all-at-once classification. Classification
accuracy for the airborne and spaceborne SAR datasets was improved by 2.5% and 1%, respectively.
In all cases, individual classes can show larger improvements up to 8%. Furthermore, the selection of
individual feature sets for each single class can provide additional insights into physical interpretation
of different features. The improvement in classification results comes at the cost of longer computation
time, in particular during the design and training stage. The final choice of the optimal algorithm
therefore depends on time constraints and application purpose.

Keywords: classification; decision tree; feature selection; SAR; sea ice; ice types

1. Introduction

The focus of this study is the development of a strategy for automatic optimization of a decision
tree for classification problems. While the proposed algorithm is generic and can be applied to any
given classification problem, we demonstrate its potential on the example of sea ice type classification
in Synthetic Aperture Radar (SAR) data.

There is a strong interest in ice type classification in particular from an operational perspective.
As, in particular, the summer sea ice extent declines [1-3], the Arctic Ocean becomes more accessible
to marine traffic and offshore operations [4], to which sea ice and icebergs can pose a significant
danger [5-7]. Fast, robust and reliable methods for mapping of sea ice types are therefore needed to
ensure the safety of shipping and offshore operations in the Arctic.

There are several ice services worldwide that produce sea ice charts on a regular daily basis.
Usually, the charts show total ice concentration or a combination of ice concentration and ice type.
Because of its independence of daylight and weather conditions, SAR provides an excellent tool for
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year-round sea ice observations. It is therefore one of the main data sources for mapping of ice types
and ice chart production. For now, however, analysis of the images is mostly performed manually.
With new satellite missions being launched and an increasing number of images available, this manual
approach needs to be supplemented by reliable methods for automatic or semi-automatic mapping of
sea ice conditions.

There are already a substantial number of studies that investigate automatic or semi-automatic
sea ice classification using SAR imagery. Many approaches use traditional classification strategies,
that separate all classes in one step and assign a class label to each pixel. Common algorithms
are Bayesian classifiers [8,9], support vector machines [10,11] or neural networks [12-16]. All of
these methods require training data with known class labels in order to determine the decision
boundaries between classes. In segmentation-based approaches, on the other hand, no training data
is needed. The image is simply segmented into regions [17,18] with statistically similar backscatter.
However, the actual class labels, i.e., the ice type of each segment, are initially unknown and have to
be determined after the segmentation [19,20].

Both classification and segmentation methods need a set of features that allows to distinguish
between different surface types. There are numerous studies investigating the potential of various
features for ice type classification. Commonly used features are simple backscatter intensities [21],
texture features [22-24] or polarimetric features [9,25]. The performance of features for separation
of ice types can furthermore differ depending on the ice situation (winter or melt season) and the
wavelength of the radar system [26-28]. Prior to classification or segmentation, a set of suitable
features needs to be generated. There are various established methods to do so, including feature
transformations such as Principal Component Analysis (PCA) or feature selection methods such
as Sequential Forward/Backward Feature Selection (SFFS, SBES) [29]. In the methods described
so far, one common feature set is selected for the entire classification or segmentation problem.
This constitutes the main conceptual difference compared to decision trees.

Decision trees (DT) are a particular type of supervised forward classifier that requires training
data with known class labels. In contrast to the classification methods mentioned earlier, where all
classes are separated in one step (all-at-once), a DT splits the multi-class decision into a series of
binary decisions. It uses these binary splits to extract patterns or rules in a dataset [30]. DTs have been
used for sea ice classification in various studies. For example, the authors of [31] employ a DT for
discrimination of sea ice types and open water from dual co-polarized SAR, while the authors of [32]
use it to classify multi-sensor satellite observations of a polynya region in the Ross Sea. In both of these
studies, as in many other cases, the DTs are designed manually, based on local knowledge or manual
interpretation of data. Automated trees, on the other hand, can be designed by applying splitting
criteria and stop-splitting rules. However, single trees tend to show large variance, and in practice it is
not uncommon for a small change in training data to result in a very different tree [29]. Random-forest
(RF) classifiers are one established way to overcome this overfitting issue. As implied by the name,
an RF classifier uses a large number of individual trees, each of which is designed from a randomly
selected subset of the entire training set (Bootstrap Aggregation, Bagging) and a randomly selected
subset of features. Each tree gives an individual class label as output and the final class is decided
by a majority vote from all trees in the forest. Generalization of the method is achieved through the
randomization of the different training subsets and thus overfitting to the training data is avoided.
Single DTs as well as RFs are used by, e.g., Refs. [30,33] for monitoring of landfast ice and retrieval of
melt ponds on multi-year ice, respectively.

The objective of our study is to develop the automatic design of a numerically optimized DT with
regard to classification accuracy (CA). In contrast to the RF, our algorithm designs and uses only one
single tree. Each branch of this tree classifies one single class and takes it out of the dataset. The order
of classification steps and the chosen feature sets are selected by combining CA and sequential search
algorithms. Depending on the available features and the balancing of the training data, we expect
this optimized DT classifier to perform better than a traditional classifier. While the RF achieves
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generalization through random selection of training and feature subsets and a subsequent majority
vote of a large number of independent trees, our algorithm generalizes through cross-validation over
the entire training set during the design stage. The algorithm specifically tailors the feature set in
each branch of the tree to the class that will be separated in that respective branch. Besides improved
CA, these individually selected feature sets can also provide information on dominant scattering
mechanisms for different ice types and on the potential of different features to distinguish between
certain classes. This information is more difficult to obtain from an RF, which uses the majority vote of
a large number of different trees with random feature sets.

We test our proposed method on a variety of simulated and real data and compare the results
with those from all-at-once (AAO) classifiers. The remainder of this article is structured as follows:
The fully automatic design of the DT is described in detail in Section 2. In Section 3, we introduce the
datasets used for testing the algorithm performance. Section 4 presents the optimized tree designs and
all classification results, followed by discussion and conclusion in Sections 5 and 6, respectively.

2. Method

2.1. DT Design Strategy

Separation of sea ice types is a typical multi-class problem. A traditional AAO classification
algorithm uses one set F of input features (e.g., radar intensities at different frequencies, polarimetric
or texture parameters) to separate all classes w; in a single step (Figure 1). In a DT, this multi-class
decision is replaced by several binary decisions with distinct feature sets F; (Figure 2). Both approaches
are supervised and require training data for each class.

X

F

Figure 1. Traditional multi-class classification for a four-class problem. A feature vector x is assigned

to one of the four classes wjina single decision, using the feature set F.

In the DT example, sketched in Figure 2, the order of separating single classes is given. The DT
architecture is usually determined manually, based on expert knowledge of regional ice conditions
at the given point in time. Class wj is classified in branch Bj, class w; in branch B, and a final
binary decision separates w3 and wy in branch B;. Furthermore, feature sets F; are given, which are
different in each branch B;. In the final branch, the two remaining classes are classified simultaneously.
The architecture of the tree, i.e., the order of classes and the chosen feature sets, needs to be determined
in some way. We refer to this as the DT design stage. After the design stage, the finished tree can be used
for forward classification of new samples, i.e., images acquired at similar ice and temperature ranges.

In this work, we present an automated design strategy for an optimal DT in terms of CA. The basic
concept of our proposed DT design stage is sketched in Figure 3. In every branch, we test each of
the remaining classes as a single class against the combination of all other remaining classes and
calculate the average per-class CA. To ensure that the CA is independent of the training data, we use
100-fold cross validation, i.e., we randomly split all training data over the two step-specific classes
into 100 sub-groups. Looping over these sub-groups, each of them is once retained for determining
the CA, while the remaining sub-groups serve as training data. The results from all sub-groups are
averaged to obtain the final score for the current step. The highest scoring class is selected as the
single class w; for the current branch B;. All samples from this class are taken out of the training data
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before the next branch. Note that other class-separability criteria than average per-class CA may be
used at this stage without altering the proposed strategy for the DT design. To obtain the best CA for
every single-class test within each branch, we run a Sequential Forward Feature Selection (SFFS) to
determine the optimal feature set. The procedure of the SFFS is as follows:

Compute the CA for each of the features individually. Select the feature with the highest score.
Compute the CA for all possible pairs of features that contain the winner from the previous step.
Select the best two-feature combination.

e  Continue sequentially to add remaining features to the previously selected set, always choosing
the highest scoring combination.

e  Stop if the CA of the currently best feature set is lower than the CA of the best feature set from the
previous step, or when all available features are selected.

e  Select the feature set from the step with the maximum CA as the optimal one.
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Figure 2. Decision-tree classification for a four-class problem. A feature vector x is assigned to one of
the four classes wj after a maximum of three binary decisions, using separate feature sets F; for each
individual decision.

During the DT design stage, sketched in Figure 3, SFFS is performed in total eight times: Four times
in branch Bj, three times in branch B, and once in the final branch B;. As mentioned in many textbooks,
the SFFS is in fact a sub-optimal method of feature selection, as there is no guarantee that the optimal
two-dimensional feature set originates from the optimal one-dimensional one (or similar at higher
levels). However, if many features are available, forming all possible combinations quickly results in a
very large number of feature sets to test, which is impractical [29]. Nevertheless, the choice of feature
selection can be adjusted depending on the available time and computational power. As long as a
logical selection criterion is applied that results in an optimal choice of features in terms of this metric,
the exact selection process does not alter the concept of the optimized DT design that we propose here.
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Figure 3. Design stage of decision tree for a four-class problem. The optimal path through the tree is
highlighted in red and may differ from the decision-tree (DT) architecture shown in Figure 2. Sequential
Forward Feature Selection (SFFS) is run at each black square to determine the feature set I; during the
design stage.

2.2. Choice of Classifier

The concept of the DT design strategy can generally be applied to any classification algorithm.
In this study, we use an algorithm based on Bayesian decision theory, which assigns the feature vector x
for each pixel in the image to the most probable class w;:

x —w; if Pwilx) > P(wg|x) Vo k#1, (1)

where P(w;|x) is the posterior probability of class w;, given pixel x. Employing Bayes rule, the decision
rule can be expressed through the likelihood ratio:

p(x|wr)

X = wj vV o k#i, )
with the prior probabilities P(w;) and the class-specific probability density functions (PDF) p(x|w;).
The prior probabilities reflect total abundances of different classes and can be estimated from training
data or set equal for Maximum-Likelihood (ML) classification. The decision then depends entirely on
the class-specific probability density functions (PDFs) p(x|w;), which must be estimated from the data.
For known parametric forms of class distributions, the parameters for each class can be estimated from
the training data. If the form of the PDFs is unknown, it can be approximated through kernel density
estimation (also known as Parzen windows [34]). Since we do not want to include assumptions about
the PDFs in our algorithm, we have implemented Parzen windows with a multi-variate Gaussian
kernel function to approximate the PDFs directly from the training data. The width of the Gaussian
kernel function is estimated using Silverman’s rule of thumb [35] and the number of used kernels is
controlled by the number of available training points.
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2.3. Balancing of Probabilities

At various steps during the DT design stage, several single classes are combined to one mixed
class wy,;,. Each of these combinations requires a choice for the balancing of the prior probabilities,
with the two basic options being an ML decision for the final result or an ML decision in every single
branch. We choose to balance the prior probabilities for ML of the final result. Without prior knowledge
about the data, this is the most natural approach to take. Furthermore, it corresponds to the balancing
of an ML AAO classifier, and we score our results accordingly.

In practice, prior influence of single individual classes is removed when estimating class-specific
PDFs and choosing equal prior probabilities. (Remember that the PDF by definition integrates to one).
The prior probability P(wy,y) for a mixed class consisting of N individual classes must therefore be
weighted by the factor N. The PDF p(x|wiy) of the mixed class can either be estimated by summing
up and scaling the PDFs from the individual classes, or by a single kernel density estimation using all
training samples from the combined classes. For the latter option, however, the number of training
samples per class will be embedded in the resulting PDF and thus influence the balance of individual
classes. We therefore compute the mixed PDF by summing up and scaling individual PDFs:

1 N
p(xlwmin) = & Y p(x|w;) ®)
i=1

The decision rule is now given by:

P(ﬂwsingle) P(Wmix)

X — Wy if 4)
single p(x|wpix) P(wsingle)
With prior probabilities according to:
N 1
P(wWpix) = N+l and P(wsingle) = N+l &)
This results in:
X|ws;
X — Wsingle if p(7| smgle) >N (6)

p (£| c‘)mix)
Equation (6) is now the decision rule for a single-vs.-mixed-class decision where we assume that all
individual classes appear with the same probability.

2.4. Experiment Design

We have implemented the DT design strategy with a Baysian classifier as described in
Sections 2.1-2.3 and tested it on different simulated and real examples. For each example, we designed
the numerically optimized DT and employed it for classification of the full image. Since we desire ML
for the final result, we adjusted the balancing of prior probabilities according to Equations (5) and (6).
For comparison, we also tested the numerically optimized DT with ML in each individual branch.

Furthermore, we performed an SFFES for traditional AAO classification and separated all classes in
one step using the single selected feature set. To be able to compare results in terms of the AAO vs. DT
approach, the AAO classifier is designed in exactly the same way as the DT, i.e., a multi-dimensional
Bayesian classifier with Parzen density estimation using Gaussian kernel functions. It should be noted
that any other classification method (support vector machine, neural network, etc.) could potentially be
chosen. However, the same method should be employed for both AAO and DT to allow a comparison
of the two approaches, which is independent of the underlying classifier.

To assess the final performance of a classifier in terms of classification accuracy, an independent
validation set is needed. For the simulated images, we know all class labels by definition. We can
therefore use all image pixels for validation that were not selected for the DT design and training.
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For the real datasets, we have split the selected ROIs for the different classes into training and validation
set. During the DT design stage, cross-validation as described in Section 2.1 is performed within
the training set, such that the performance of the final classifier can be assessed from a completely
independent validation set.

3. Datasets

We have tested the numerically optimized DT on a variety of simulated and real datasets.
The simulated data are used to demonstrate the robustness of the proposed method under controlled
conditions with perfect validation data. For testing on real data we have used images from the
spaceborne Sentinel-1 mission and an airborne, multi-channel SAR dataset with overlapping optical
data. In the following, we present two representative examples. Since validation on the real datasets is
much more reliable in the high-resolution airborne case with overlapping optical data, we choose to
present this example as a detailed case study.

3.1. Simulated Test Dataset

To test the functionality and performance of the algorithm, we have generated several simulated
examples with varying numbers of classes and features. In these simulated examples, the samples
are simply drawn from class-dependent, multi-variate distributions and do not have a particular
physical interpretation. In the case of SAR data, the different dimensions (features) could, e.g.,
represent intensities, polarimetric parameters, texture or other features. The test case presented here
is an image with 1000 x 1000 pixels, 25 features and four classes separated in the four quadrant
corners. We therefore refer to it as the C4-F25 dataset. The samples for each class are drawn from
multi-variate Gaussian distributions. Mean values and variances of the distributions are designed
such that the classes are partly separable in some of the features, while completely overlapping in
other features. Furthermore, some features allow only to distinguish between two classes, while the
remaining classes overlap.

We have randomly selected training data from the image with a varying number of training
samples for each class. To ascertain that the training data is representative for the classes, we have run
several tests using different training set sizes. We found the minimum required number of training
samples per class to be approximately 400, with the exact number depending on the design of the
distributions, i.e., the mean values and covariance matrices and the chosen dimensionality of the
problem. The results shown in the next section were obtained with 1989, 1768, 1968 and 2139 training
samples for classes C; to Cy4, respectively. Remember that the different abundances of training samples
are taken care of by correct balancing of probabilities, such that we achieve an ML classification
(Section 2.3). Figure 4 shows one-dimensional histograms for some selected features of the training
data set.

3.2. Airborne SAR Dataset: ICESAR

As a test case for airborne SAR data, we have chosen the ICESAR dataset acquired by AWI and
DLR over sea ice in Fram Strait in March 2007. The dataset is described in detail in [26,36].

During the campaign, joint flights of AWI and DLR airplanes were carried out acquiring both
radar (ESAR) and optical data. The ESAR measurements were recorded at C-band (dual-polarization,
VH and VV) and at L-band (quad-polarization, HV, HH and VV) at incidence angles ranging from
26 to 55°. At a flight altitude of 3000 m, the resulting swath width is approximately 3 km.
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Figure 4. Single-feature histograms for selected example features of the training data from the simulated
test image C4-F25.

The original ESAR images are delivered in single-look-complex (SLC) format and the measured
reflectivity is given as radar brightness B°. For the classification, we used final products in a
ground-range multilook format with a pixel size of 1.5m. To decrease the incidence angle sensitivity
of the ground reflectivity, we converted the °-values to 7’-values. Relationships between g%, 4° and
the backscattering coefficient ¢ are given by

0 _ "
p= sin(07) @)
and 0
0_
T o 61)’ ®

where 0 is the local incidence angle.

Optical images were recorded while repeating the flight track from the ESAR data at low altitudes.
The RGB-layers in the visual representation of the optical data correspond to wavelength ranges 410
to 470nm, 500 to 570 nm and 580 to 680 nm, respectively. The spatial resolution of the optical data
is dependent on flight altitude and speed. It varies between 0.2 and 0.5m across-track and 0.9 and
1.3 m along-track.

The maximum time lag between radar and optical measurements during the campaign was less
than two hours and only minor variations of the ice cover characteristics can be recognized in the
images, due to ice drift and deformation (Figure 5). However, the main ice situation during optical
and SAR measurements was the same. We could therefore use a combination of optical data, SAR data
and handheld photos taken during the flights to manually determine training regions for different ice
classes. Only areas that appeared homogeneous were taken into account for these regions of interest
(ROI). In total, we have defined six distinct classes (Table 1). The acquired images and the manually
defined ROlIs for all classes are shown in Figure 5.
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C-band, VH C-band, VV L-band, RGB optical scanner

>

Figure 5. ICESAR dataset. From left to right: C-band VH, C-band VYV, L-band false-color (R-HV, G-HH,
B-VV), optical scanner. Colored boxes in the L-band image indicate training regions for different classes.

Table 1. Classes defined from visual inspection of the ICESAR dataset, with corresponding color codes
and number of samples.

Description Color Code # Training Samples # ROIs

Class wy Open water dark blue 2398 3
Classwy  Grey-whiteice light green 10,640 9
Class w3 Level ice black 14,233 8
Class wy Deformed ice red 6356 12
Class ws Nilas cyan 12,946 8
Class wg Grey ice dark green 2342 5

4. Results

In this section, we present the results obtained from our proposed algorithm and the comparison
methods. We first give a general comment on computation times and then list the detailed classification
accuracies, order of classes in the DT and selected feature sets for the previously introduced datasets.

Generally, the DT approach is more time consuming than the AAO approach, since it requires
more operations. This is in particular true for the design stage. In the AAO approach, a six-class
problem requires one single SFFS with six classes during the design stage. In the DT approach however,
the design stage of the same six-class problem requires six SFFSs with two classes each in the first
branch, five in the second branch, four in the third, three in the fourth and one in the fifth. Besides the
dimensionality of the feature vector, the number of operations within a SFFS is proportional to the
number of training samples and trained classes. In the DT, the number of training samples decreases
with every branch, but the decrease is not known a priori and differs from case to case. For a six-class
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problem, the upper limit of the design stage computation time ratio for DT versus AAO is therefore
6x25x249X243x241%2 — 6 33, meaning that the DT design and feature selection takes up to six times
longer than the AAO feature selection. Once designed and trained, the forward classification for the
DT approach is still more time consuming than the AAO approach, but with smaller difference. In the
AAO approach, the forward classification stage of a six-class problem requires the evaluation of 6 PDFs
for all patterns that are to be classified. In the DT approach, forward classification of the same six-class
problem requires the evaluation of two PDFs in each branch. Again, we do not know a priori how
many patterns will be removed from the data in each branch, so the upper limit for the ratio of forward
classification times is % = 1.67.

4.1. Results for Simulated Test Dataset

For the simulated example, all pixels that were not selected for training can be used as a
validation set to estimate the final CA. The results for the C4-F25 dataset are summarized in
Table 2. Our numerically optimized DT performs 3.5% better overall than a traditional AAO
classifier, increasing total CA and average per-class CA from 75.21% to 78.78%. For individual classes,
the improvement can be significantly larger (Table 2, class w3). Table 3 shows the order of selected
classes and the corresponding feature sets. The single feature set selected for AAO classification is
{f5, f2, fo, fa, f13}. Note that the class-specific feature sets can either be subsets of the AAO feature
set (Table 3, Branch 1), or may contain features which are not in the AAO feature set at all (Table 3,
Branch 2).

The total CA for the DT with ML in each individual branch is 76.60%, which is 2% lower than the
total CA for our proposed approach of ML for the final result.

Table 2. Classification accuracy (%) for simulated test dataset C4-F25 for all-at-once (AAO) and
decision-tree (DT) classifier.

Total Per-Class CA Average
CA w1 wy w3 wy Per-Class CA
AAO 7521 8170 80.38 60.12 78.62 75.21
DT 7878 8450 8261 68.84 79.16 78.78

We show here only one representative example for the simulated datasets. Naturally, the exact
scores and improvements in classification results differ, depending on dimensionality and design of
the feature space as well as number and separability of the classes. However, in all 100 simulated
cases, the optimized DT performs better than the traditional AAO classification. In all tested cases,
improvements in average per-class CA range from 0.5% to 4%.

The DT with ML in each individual branch always performs worse than the final ML DT. In many
cases, it also results in a lower CA than the traditional AAO classification, and hence correct balancing
of the prior probabilities is important. After tuning of basic input parameters, the RF classifier performs
similar to our optimized single DT. The best result was found with 100 trees and a maximum depth of
10, and achieved a total CA of 79.29% for the presented example.

Table 3. Single classes and selected features for each branch of the numerically optimized DT for
simulated test dataset C4-F25.

DT Branch  Single Class  Selected Features

By wy f2. f5, fa
B, w1 f5, fo5, foar f2
B3 Wy fo, f5, f8, f2

AAO — f5, f2. fo, fa, f13
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4.2. Results for ICESAR Dataset

To estimate an independent CA for the ICESAR dataset, we split the pixels from the ROIs evenly
into training and validation pixels. While the training set is used for kernel density estimation of the
PDFs (see Section 2.2), the validation set is used for calculation of CA. The estimated CA and the order
of selected classes with corresponding feature sets are summarized in Tables 4 and 5, respectively.
Figure 6 shows the classification result from the DT classification.

Again, the DT performs better in terms of total CA as well as average per-class CA, with an
improvement of about 2.5%. We also note that all individual classes score higher in the DT than in the
AAO method. A particularly large improvement is achieved for grey-white and grey ice, with per-class
CA increased by 7% and 4%, respectively (Table 4). Note also, that these are the lowest scoring classes
overall, which are separated in the last branch of the DT.

classification result

grey ice

lead ice

deformed ice

level ice

grey-white ice

open water

Figure 6. Result of ICESAR ice type classification from numerically optimized DT.

Table 4. Classification Accuracy (%) for ICESAR dataset for all-at-once (AAO) and decision-tree

(DT) classifier.
Total Per-Class CA Average
CA w1 wr w3 wy ws we Per-Class CA
AAO 8512 9725 6824 8675 9821 9281 61.36 84.10

DT 8748 99.75 7543 8740 98.57 93.69 65.76 86.77
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Table 5. Single classes and selected features for each branch of the numerically optimized DT for

ICESAR dataset.
DT Branch Single Class Feature Set

By wy: deformed ice Lyv, Ly

B, wy: open water Lun, Cvv, Lyy, Lry
Bs ws: nilas Cvv, Lun, Lyv, Cvy
B, ws: level ice Cvu, Cyvv, Lyy

Bs we: grey ice Cvv, Lun, Luv, Lvy

AAO — Lun, Cvv, Lvv, Luv, Cvu

We use five features in this example, and they all contain relevant information on some of the
trained classes. Consequently, the single feature set for AAO classification contains all available
features in order selected by the SFFS: {Lyy, Cyy, Lvy, Lyv, Cvyl. The class-specific feature sets of
the individual DT branches are subsets of the single AAO feature set (Table 5).

5. Discussion

The tests on the simulated datasets show that the DT design works as expected. Class wy is
selected as the individual class in the first branch, starting with feature f,, followed by f5 and f4.
This is in agreement with our design of the class distributions and can be confirmed by visual inspection
of the histograms in Figure 4: In the 1D histograms, the most separable single class is clearly class wy
in feature f;.

Once the samples of class w; are removed from the dataset, class w; becomes the most separable,
starting with feature f5, followed by f,5 and f4. Interestingly, the latter two features are not part
of the commonly selected feature set in the traditional AAO classifier. This is due to different
reasons: For feature f,4, there is large overlap between classes w; and wy, and classes w3 and wy,
respectively. Therefore, this feature does not contribute enough information to be selected in an
AAO approach, where all classes are supposed to be separated simultaneously. For feature f;s,
there seems to be too much overlap between the classes, although all distributions are slightly offset.
However, after removing all samples from class wy in the first branch of the DT, class w; suddenly
becomes significantly more separable in both features f,4 and fp5. This example demonstrates how the
optimized DT allows us to make efficient use of features, which are not considered at all in a traditional
multi-class classification.

Furthermore, we find that the numerically optimized DT performs about 3% better in terms of
total CA than a corresponding AAO classifier. As shown earlier, this improvement comes at the cost
of significantly longer computation times for classifier design and slightly longer times for forward
classification. However, once an optimal design for a given problem such as ice type classification
for a certain ice condition and from a particular sensor or combination of sensors has been decided,
the most time consuming design stage does not need to be performed repeatedly for new images.
As expected, demanding ML in each individual branch of the DT leads to reduced classification
accuracy. This emphasizes the importance of proper balancing of the single and mixed-class prior
probabilities according to Equation (5).

The tuned RF classifier achieves results comparable to those of the optimized single DT. While the
total CA is slightly higher in the presented example, it is slightly lower for other simulated cases.
However, the final class label of the RF is determined by a majority vote from a large number of
trees in the forest. Our method uses only one single, multi-variate tree, with feature sets tailored
towards individual classes. These class-specific feature sets of the single tree make the interpretation
of individual features easier compared to the statistical interpretation of an RF. The direct connection
between a particular set of features and class distinction is obvious.

An improved overall classification result for DT compared to AAO is also achieved for ice type
classification from the airborne ICESAR dataset. As in the simulated cases, demanding ML in every
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single branch leads to lower total CA. The order of selected individual classes confirms that, at the
relatively fine spatial resolution of 1.5m, deformed ice is the individually best separable of the six
classes given in Table 1. Furthermore, the selected features verify that L-band is superior to C-band
measurements in the detection of deformed ice zones (Table 5, Branch 1). This is in agreement with
results from earlier studies on the use of L-band for sea ice type classification, e.g., [26,28,36]. For open
water we expect changing feature vectors, dependent on wind speed and direction relative to the open
water leads in the ice cover. Visually, level ice and grey-white ice can be much better distinguished at
C-band than at L-band, and level ice appears more inhomogeneous in the cross-polarized intensity
channels than grey and grey-white ice (here we refer to intensity variations between the bright narrow
deformation features). Both observations are reflected in the selected features (Table 5, B4). This may
be a consequence of beginning brine drainage, increasing volume of air bubbles and continued
metamorphism processes in the snow layer.

A particularly large improvement in per-class CA was achieved for grey-white (7.2%) and grey
ice (4.4%). Note that these are the classes with the overall lowest per-class CA, and thus the classes that
are separated in the last branch of the DT (Table 5, Bs). Usually one expects that higher frequencies are
more suitable to distinguish new and young ice. It is hence interesting to note that—although C-band
VV-polarization is the first choice for distinguishing grey and grey-white ice—the additional use of
L-band improves their separation. A more detailed analysis of the optimal choice of single features in
the DT approach is beyond the scope of this study. We emphasize, however, that the selected features
are related both to the characteristics of the single selected class and the remaining mixture of classes
in each branch. In our example, this is valid for B1—Bj.

6. Conclusions

We have introduced the fully automatic design of a numerically optimized DT classification
algorithm that splits a multi-class classification problem with m classes into m-1 binary problems.
In each branch of the DT, one class is separated from the other still remaining classes with an optimal
set of features.

Tests on simulated datasets have demonstrated the capability of our algorithm to increase the
total CA by 3.5% compared to traditional AAO classification. Improvement of 2.5% was achieved
for classification of sea ice types from an airborne SAR dataset. Depending on class distributions
and separability, individual classes may show larger improvement. In the presented sea ice example,
CA for grey-white and for grey ice was improved by 7.2 and 4.4%. Since the absolute numbers of actual
CA scores are highly dependent on the scene contents, we can only meaningfully compare to other
methods using the same scenes. In our simulation and real world ICESAR examples, our proposed
algorithm performs better than the more traditional AAO feature selection and Bayesian classification,
and performs equivalently to the commonly used RF machine learning approach. At the same time
our algorithm offers more direct interpretation of features and their potential to distinguish between
particular classes.

The improved CA of the DT compared to the AAO approach comes at the cost of longer
computation time. This is in particular true for the design and training stage, but to a lesser extent also
for the forward classification stage. When time constraints are an essential part of the problem, as is
the case in operational sea ice charting, the final choice of the classification strategy must be a trade-off
between desired CA for single ice types and time constraints.
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Data

Availability: Data as well as Python and Matlab scripts for data processing, analysis and classification can

be achieved by contacting the first author.
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