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Summary

Plants produce awide array of secretions both above and below ground. Known asmucilages or

exudates, they are secreted by seeds, roots, leaves and stems and fulfil a variety of functions

including adhesion, protection, nutrient acquisition and infection. Mucilages are generally

polysaccharide-rich and often occur in the form of viscoelastic gels and in many cases have

adhesive properties. In some cases, progress is being made in understanding the structure–
function relationships of mucilages such as for the secretions that allow growing ivy to attach to

substrates and the biosynthesis and secretion of the mucilage compounds of the Arabidopsis

seed coat. Work is just beginning towards understanding root mucilage and the proposed

adhesive polymers involved in the formation of rhizosheaths at root surfaces and for the

secretions involved in host plant infection by parasitic plants. In this article, we summarise

knowledge on plant exudates and mucilages within the concept of their functions in

microenvironmental design, focusing in particular on their bioadhesive functions and the

molecules responsible for them.Wedrawattention to areas of future knowledgeneed, including

the microstructure of mucilages and their compositional and regulatory dynamics.

Introduction

Land plants have a great ability to adapt to a diverse range of
environments. Being sessile and unable to evade unfavourable
conditions, their survival depends critically on their ability to sense
their environment and, if possible, create favourable local condi-
tions. To meet these demands, plants have developed a range of
strategies, including morphological adaptations, long-distance
communication via volatiles or synthesis of protective metabolites.
Plants have also evolved ways to bioengineer favourable microen-
vironments in their immediate surroundings by the secretion or
exudation ofmucilages from various surfaces.Mucilage, defined by
Sasse et al. (2018) as a matrix of high-molecular-weight com-
pounds, is secreted as a viscoelastic gel that is often polysaccharide-
rich. The wider term exudates encompasses mucilages but can also
include compounds of lower molecular weight and more soluble
high-molecular-weight polysaccharide and protein components
that may not contribute to gel-like structures. Depending on the
plant species, exudates andmucilages can be secreted by almost any

plant organ, and seemingly from all clades of the angiosperms
(Brown et al., 2017), and in a few cases multiple exudate types with
different origins have been described for the same species or genus
(e.g. seed coat, haustorial and stem exudates for parasitic dodder
(Cuscuta spp.)) (Schaffner, 1976; Lyshede, 1984; Vaughn, 2002).
Mucilages and other exudates provide an effective means to execute
a variety of functions beyond the confines of their tissues and organ
surfaces. Classic examples include the capacity of climbing plants to
climb up vertical surfaces using sticky tendrils or roots (Endress &
Thomson, 1977; Groot et al., 2003; Huang et al., 2016). Other
types of exudates are produced by leaves or by stems and have
become known as extrafloral nectars (Deynze et al., 2018; Pierce,
2019). Below ground, the roots are equally adept in producing
mucilages that have an impact on the properties of their immediate
soil environment (Sasse et al., 2018). Each type of secretion
essentially consists of a unique blend of molecules that, depending
on its location, serves a specific set of functions. These functions
range from attracting beneficial microbiota (Haichar et al., 2014)
and insects (Deynze et al., 2018), modifying soils for enhanced
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nutrient and water uptake (Galloway et al., 2018) or surface
anchorage for climbing (Bowling & Vaughn, 2008) to attachment
to hosts before their infection (Vaughn, 2002).

Some molecules within mucilages have bioadhesive properties,
making them sought-after materials for biotechnological, biomed-
ical or agricultural applications (Favi et al., 2014; George &
Suchitra, 2019). Important breakthroughs have been made in the
last few years in investigations of the sticky adhesives used by
English ivy andby sundew (Zhang et al., 2010; Lenaghan&Zhang,
2012), and a current focus on molecular genetic investigations of
seed coats (Golz et al., 2018; Sechet et al., 2018) and the
rhizosheath (Sasse et al., 2018) underpins the potential of this
field. With this review we first highlight the wealth of the different
sticky mucilage types that are produced by plants. We further
elaborate on the current state of the art regarding the analysis of the
molecules lending bioadhesive plant secretions their specific
functions and point out where future efforts could be focused.

Plant exudate and mucilage diversity

Exudates and mucilages can be categorised based on their location
and on their potential to influence the microenvironment of the
plant in various ways (Fig. 1). Some mucilages are highly conspic-
uous such as the droplets on the glandular hairs produced by
carnivorous plants to capture insects and supplement their diet with
nitrogen (Huang et al., 2015).Others are less obvious or evenhidden
from sight as they are produced below ground (Baetz & Martinoia,
2014). The following sections give a brief overview of their diversity.

Aerial adhesive mucilages facilitating climbing motion

Some climbing plants stick to surfaces of almost any nature with
adhesive structures (Fig. 2a). A study of the attachment organs of
climbing fig (Ficus pumila) andEnglish ivy (Hedera helix) identified
clusters of adventitious roots as the organ from which an adhesive
mucilage that robustly secures the plant to vertical surfaces is
secreted (Groot et al., 2003; Melzer et al., 2010). Virginia creeper
(Parhenocissus quinquefolia), by contrast, produces adhesive discs at
the end of short tendrils for climbing (Bowling & Vaughn, 2008).
A detailed compositional analysis has been so far only performed
for H. helix (Huang et al., 2016) and revealed that the major
components of the mucilage secreted by English ivy are pectic
rhamnogalacturonan-I (RG-I) polysaccharide domains that are
held together by a nanospherical arabinogalactan protein (AGP)
molecule (Table 1). This multipolysaccharide architecture is
supported by calcium-driven electrostatic interactions between
the acidic residues of the AGP and RG-I domain (Huang et al.,
2016). The AGP nanoparticles are highly uniform and evenly
spread over the attachment area (Lenaghan & Zhang, 2012). The
firm attachment is further supported by cellulose microfibril-
dependent shape changes of adventitious root hairs at the
attachment interface (Melzer et al., 2010), accentuating the
possibility that structural and chemical features have been fine-
tuned together to form an attachment organ that meets the special
needs of climbing plants.Whether the polysaccharide composition
of the adhesive mucilages and their nanostructures are conserved
amongst climbing plants or whether each climber has its own
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Fig. 1 Overview of plant mucilage types. Schematic representation of the location of plant mucilage production (indicated by circles) and the corresponding
specific tasks of the sticky secretions. Above-ground organs are shown against a blue background, soil surface is shownon a grey background and the soil body
with the root systems is shown in yellow. The ways in which they can shape the microenvironment of the plant are listed to the right.
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‘signature cement’ is an intriguing question that should be
addressed in the future.

Extrafloral nectars secreted by stems, leaves or aerial roots to
provide protection and nutrition

Many land plant species secrete mucilage through their stems as
extrafloral nectar (Deynze et al., 2018; Pierce, 2019). Despite their
name, extrafloral nectars are not involved in attracting pollinators
but rather entice invertebrates such as ants or wasps to protect the
plants from herbivorous predators (Gaume & Forterre, 2007;
Llhan et al., 2007) or to supplement their diet with nitrogen by
trapping insects or cultivating microbial symbionts (Adlassnig
et al., 2010;Deynze et al., 2018). Sundew (genusDrosera) (Fig. 2b)
or butterworts (genus Pinguicula) possess trichomes with terminal
glands, which produce the mucilage in small droplets on their
upper leaf surface (Adlassnig et al., 2010) while pitcher plants
secrete larger volumes of theirmucilage in special leaves formed like
a cone (Gaume & Forterre, 2007). So far, only the mucilage of
Drosera has been subjected to an analysis of its polysaccharide
composition and was shown to contain predominantly high-
molecular-weight substances that resemble pectins (Tables 1, 2)
(Huang et al., 2015). The architecture of the mucilage appears to
have a higher order nanostructure that changes depending on the
presence or absence of tensile forces (Huang et al., 2015). A
hypothetical polygonal polysaccharide-based nanonetwork was
proposed based on atomic force microscopy images. These
nanostructures can be transformed into a parallelogram shape
upon application of a tensile force, which would explain the high
tensile strength reached by the sundew mucilage (Huang et al.,
2015). Myo-inositol (MI) was identified in the lower molecular
weight fraction as the predominant nonpolysaccharide organic
component (Kokubun, 2017). MI seems to be unique for sundew

and could not be detected in other plant mucilages that served as
control (Kokubun, 2017).

The parasitic giant dodder (Cuscuta reflexa), which infects shoots
of other land plants, was also found to possess a stem exudate in the
form of droplets whose sticky nature helps it to facilitate contact
with host surfaces (Fig. 2c) (Schaffner, 1976). It has been
hypothesised that the dodder secretes excess sugars with it in order
to secure the flow of less abundant organic or inorganic compounds
and maintain an osmotic balance (Schaffner, 1976). The compo-
sition of this exudate has not yet been examined.

Haustorial mucilage aids in the infection process by parasitic
plants

In addition to the extrafloral ‘nectar’, Cuscuta also produces
additional types of secretions that are crucial for succeeding with its
infection (Vaughn, 2002). Being shoot-parasitic, Cuscuta species
wrap around the stems of other plants (their hosts) and withdraw
their nutrients by forming physical and physiological nutrient
bridges, called haustoria.Topenetrate the plant cell wall barrier, the
parasite must firmly attach to their hosts and push the haustorium
into the host tissue using a combination of mechanical force and
chemical tissue maceration (Vaughn, 2002). To provide a counter-
force for the penetration process, the upper haustorium (sometimes
also termed appressorium) exudes a viscous mucilage from club-
shaped epidermal cells that form at the interface with the host
(Vaughn, 2002). Immunological analyses revealed that this
mucilage is mainly composed of pectins, extensins and AGPs
(Table 1). In addition, anothermucilage was observed surrounding
the developing endophytic part of the C. reflexa haustorium
(Fig. 2f). This mucilage is predominantly visible during early
infection stages and is difficult to analyse without interference from
host activities, explaining why it has not yet been characterised.

(a) (b) (c)

(d) (e) (f)

Fig. 2 Examples of sticky mucilages secreted by plants. (a) Tendrils of climbers from ivy adhere to a brick wall. (b) Hairy glands have captured an insect
(arrowhead) on the leaves of the carnivorous Drosera binata. (c) Extrafloral nectar drops cover the stem of Cuscuta reflexa. (d) Arabidopsis thaliana seeds
produce a gelatinous seed coat, as visualised by staining with ruthenium red. Bar, 0.2 mm. (e) Hordeum vulgare L. primary rootlet from a germinating grain
produces rhizal secretions. Pieces of vermiculite onwhich the grainswere germinated are firmly sticking to themucilage. Bar, 0.5 mm. (f) Haustoria of parasitic
plants (here cross-section from C. reflexa haustorium grown on a synthetic foam to visualise the mucilage) secrete a gelatinous matrix containing cell-wall-
dissolving enzymes. Bar, 0.1 mm. Asterisks mark the secreting organs (a), secreted droplets (b, c) or mucilage sheaths (d–f).
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BesidesCuscuta, the root parasiteOrobanche crenatawas also found
to produce a pectin-richmucilage at the interface between itself and
its hosts (Perez-de-Luque et al., 2006). O. crenata forms similar
host attachments as C. reflexa but with the difference that it
connects to the host root system below ground. Interestingly, the
mucilage that the parasite secretes and that may help the parasite to
infect susceptible hosts appeared to fill host xylem vessels in
resistant hosts and ultimately led to the death of the parasite (Perez-
de-Luque et al., 2006). Future investigations need to focus on
comprehensive analyses of the haustorial mucilage composition in
these two and other species, and also link possible differences in
composition to differences in infection strategies, host specificity
and host responses. In this context, and with the tensile strength of
the infection organ in mind, a nanostructural analysis of the
mucilages involved in parasitic plant infection would be very
interesting.

Desiccation prevention and surface adhesion properties of
seed coat mucilage

The production of a coat of gelatinous material derived from cell
wall polysaccharides is fairly widely found in seeds of land plants
(Fig. 2d). A prominent example of seed coat mucilage is the viscin
produced by hemiparasitic mistletoe species. This mucilage
protects the seeds during their passage through the guts of birds
and ensures that the seed is firmly attached to the branches of its
host trees when excreted by the birds. The viscin mucilage of
Phoradendron californicum has been subject to extensive biochem-
ical characterisation and was found to consist predominantly of
highly branched xylans, arabinans, pectic rhamnogalacturonans
and xyloglucans (Gedalovich et al., 1988). A comparative study
involving P. californicum and two other Viscaceae species indicated
that compositional differences, mainly in the type of neutral sugars,
exist between the species and that these may be specific enough to
serve as taxonomic markers (Gedalovich-Shedletzky et al., 1989).

In the model land plant Arabidopsis thaliana, specialised
mucilage secretory cells (MSCs) in the outer integument produce
large amounts ofmucilaginous hydrophilic polysaccharides in rings
around a central columella that is compositionally similar to a
secondary cell wall (Haughn&Western, 2012). Themucilaginous
rings in each cell dehydrate during seed maturation but rapidly
expandwhen in contact withwater during imbibition of themature
seed, accompanied by rupturing and rapid degradation of the
outermost cell walls (Golz et al., 2018). The released mucilage
envelope can be divided into an inner and an outer layer (Haughn
& Western, 2012), and this organization provides coherence and
stability (Voiniciuc et al., 2015). The outer layer is a poor adhesive
due to its higher content of unbranched pectic RG-I that stretches
out into the soil (Tsai et al., 2017), whereas the inner layer has
strong adhesive properties and contains pectins in a matrix of
cellulose scaffolds that span this layer and connect it to the seed coat
(Macquet et al., 2007; Voiniciuc et al., 2015). Linkage analyses and
the investigation ofmutants impaired in several cell-wall-associated
proteins pointed towards a significant contribution of proteins,
including AGPs of type I, in the seed coats (Haughn & Western,
2012) (Table 1). The analysis of flaxmucilage revealed thatmany ofT
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these components are located in distinct domains or layers (Miart
et al., 2019), suggesting a highly sophisticated and complex
regulatory network in charge of seed coat production. High-
throughput screens for phenotypic differences in the mucilaginous
seed coats of Arabidopsis mutants have helped to identify specific
genes that secure proper seed coat production (Golz et al., 2018,
and references herein). In particular, these studies have highlighted
the contribution of transcription factors to MSC differentiation
and have led to a proposed hierarchical network involving three
distinct tiers or levels of regulation (Golz et al., 2018).

Seed coats are a potential source for carbon and therefore
tentatively a source for nourishing the developing seed, although
some studies suggest that this resource is not utilised (Huang et al.,
2004). Rather, the seed coat mucilage seems to enhance water
availability to the seed andmake it less vulnerable to short-term dry
spells (Huang et al., 2004). It provides a barrier to the environment
and keeps the seed moist due to its water-holding capacity. It is
further implicated in the mediation of germination under water-
logged conditions (Haughn & Western, 2012), in soil seed bank
maintenance and in seed dispersal (Yang et al., 2012; Voiniciuc
et al., 2015; Tsai et al., 2017). The specific set of functions can vary
between species. It is plausible that seed coatmucilage could also be
involved in the recruitment of beneficial soil microbiota (as
hypothesised for root bioadhesives), which is a crucial foothold for
plant growth, although experimental evidence for this has yet to be
generated.

Root exudates bioengineer rhizospheres for sustained
resource uptake

While disputed, most data agree that plants invest a considerable
amount of their resources into releasing exudates from roots
(Fig. 2e), and estimates that between 10% and 40% of photosyn-
thate ‘currency’ is spent on root exudates have been put forward
(Newman, 1985;McNear, 2013). Root exudates, including a great
complexity of both low- and high-molecular-weight components,
influence zones of soil at root surfaces known as rhizospheres (Baetz
& Martinoia, 2014). The release of polysaccharide-rich mucilage
from root tips is well established and thismay lubricate roots to ease
penetration through deeper layers of soil and may also be involved
in forming a protective barrier (Bacic et al., 1986; Read&Gregory,
1997). It is proposed that bioadhesive mucilage components of
exudates are important factors, along with root hairs, in the
formation of cylinders of soil around roots known as rhizosheaths.
Rhizosheaths could enable plants to sustain and increase nutrient
and water uptake from the soil (Traore et al., 2000; Brown et al.,
2017; Pang et al., 2017; Galloway et al., 2018). Rhizosheath
bioengineering by some grass species during periods of drought has
been observed, where the grasses increased the thickness of their
rhizosheaths (Hartnett et al., 2012). This increase in structural
integrity was thought to be caused by a combination ofmechanistic
force exerted by root hairs as well as increasedmucilage production.
Xyloglucan, an otherwise abundant cell wall component, has been
demonstrated to be released by plants and is a soil-binding factor
that could enhance water infiltration and aeration (Galloway et al.,
2018). Adhesiveness is likely to be only one functional aspect of

root high-molecular-weight exudates in the bioengineering of soil.
There will be highly complex interactions between the structurally
diverse molecules released from plant roots and the soils and soil
microbiomes, which themselves are also highly heterogenous. The
capacity for putative bioengineering to alter the physical microen-
vironments will be considerable. It appears that this will involve
differing impacts on soil aggregation through varied viscosities and
surface properties, on drying/wetting cycles and the potential for
hydrophobicity of mucilage after drying and binding properties in
general, including the sequestering of heavy metals (Ray et al.,
1988; Watt et al., 1994; Dennis et al., 2010; Naveed et al., 2017;
Kroener et al., 2018). Similarities between some of these aspects of
root mucilage properties and impacts and those of other plant
secretions will be a fruitful area for future research in conjunction
with detailed structural characterisations.

Regarding the mechanisms involved in root mucilage secretion,
the leading hypothesis is that mucilage could be secreted from
continually lysing epidermal cells on the root body (Read &
Gregory, 1997). However, other reports indicate that higher
amounts of mucilage could be secreted than what would be
predicted from lysing cells (Guinel&McCully, 1986). Approaches
using hydroponics, where roots are not subjected to penetrative
forces, have also detected continual secretion (Galloway et al.,
2018). An important future goal will be to untangle the
polysaccharide secretions from root tips and the possible secretion
from root hairs that promote rhizosheath formation. Difficulties in
collecting pure enough samples for immuno- and physicochemical
analyses have been one limiting factor. The isolation of root-
derived high-molecular-weight polymers from hydroponic media
has provided amore reliable and scalable samplingmethod (Akhtar
et al., 2018) but uses an artificial environment removed from soil.
Nevertheless, it is a valuable approach to understanding the
formation of rhizosheaths that will hopefully in the future be
supported by molecular genetic approaches.

Molecules in the mucilage conferring bioadhesive
properties

Due to the range of molecules present inmucilages and due to their
varying accessibility, a variety of methods have been used to isolate
them (Table 1). Despite the fact that the composition of each type
of mucilage has yet to be fully deciphered, some mono- and
polysaccharides as well as glycoproteins that are typically also key
architectural components within the plant cell wall appear to be
very common in the plant mucilages (Tables 1, 2) (Voiniciuc et al.,
2018). AGPs and pectins (RG-I) are the key components in most
mucilages, appearing in aerial, haustorial, rhizal and seed coat
mucilages (Table 1). The adhesive properties of both groups of
molecules are well documented, particularly with their use as
emulsifiers in industry (Nakauma et al., 2008). Xyloglucan along
with b-1,3-glucans have recently been shown to have soil-binding
properties (Akhtar et al., 2018;Galloway et al., 2018) and are target
polymers for our understanding of rhizosheath formation. Nanos-
tructure analysis of climbing plant and insectivourous plant
mucilages has revealed highly ordered structures that contribute
to extreme tensile strengths. An application of the techniques used
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to visualise these structures to other types of mucilages promises to
be a revealing undertaking, and can uncover whether there are
tentative common structures related to adhesion or other common
functions, despite the differences in the mucilage compositions.

Molecular mechanisms of the secretion of mucilage

Themolecularmechanisms ofmucilage secretion have beenmainly
investigated using the Arabidopsis seed coat as a model, where
special secretory cells are used to produce and exude the mucilage
components (Sechet et al., 2018). Polysaccharides are formed
either through monosaccharide cytosolic synthesis or within the
Golgi apparatus by glycosyl-transferase enzymes (Voiniciuc et al.,
2018). The exception are glycoproteins, in which the protein
domain is formed within the rough endoplasmic reticulum and is
attached to the polysaccharide domain within the Golgi apparatus
(Voiniciuc et al., 2018). How these two domains localise together
remains unknown. The key proteins involved in the production of
cellulose, pectin and hemicellulose moieties of mucilage include
Cellulose Synthase-like (CSL) A2, Galaturonosyl Transferase-like
(GATL) 5, Galaturonosyl Transferase (GAUT) 11 and Rhamnose
Biosynthesis (RHM)2 (Arsovski et al., 2010;Tsai et al., 2017). The
products of these enzymes are packaged into vesicles and are
exported to the plasma membrane where they join the apoplast
pathway for secretion (Tsai et al., 2017). Following the secretion of
mucilage, Pectin Methylesterase Inhibitor (PMEI) 6, beta-Xylosi-
dase (BXL) 1 and beta-Galactosidase (BGAL) 6 play a role in
assembling mucilage to stabilise its final form (Arsovski et al.,
2010), although how they do this remains unclear. Beforemucilage
biosynthesis, the epidermal cell walls of the seed coat undergo
major changes to accommodate such levels of secretion. For other
mucilages, the principal pathways of production and shuttling to
the apoplastic compartment are probably the same as for the seed
coats although in some cases (e.g. in root mucilage) sloughing and
lysing of cells contribute to mucilage production (Cannesan et al.,
2012).

Conclusion and future perspectives

Exudates and mucilages enable plants to exert influences on their
immediate surroundings, creating microenvironments that can be
favourable for their growth. Some molecules present in these
mucilages possess naturally adhesive properties that have potential
biotechnological and biomedical value in the form of glues or
wound covers – although the precise bioadhesivemolecules present
in the secretions have rarely been identified. These adhesives could
also be used to prevent or even reverse the process of soil erosion,
thus potentially increasing our ability to produce sufficient food for
growing populations. Their application as blueprints for natural-
based soil conditioners could boost the abundance of soil aggregates
and water retention, thus preventing its degradation. However, to
date,most of the insight into themolecular regulation, biochemical
composition and structure–function relationships of mucilages has
been based on a few key model species. In the case of the most
prominent model, the thale cress A. thaliana, it does not have an
ecological or economical value per se and can at best serve as a guide

to look for similar genes, molecules and networks. This requires
good genomic knowledge on other species withmore prominent or
potentially more valuable mucilages. A very promising approach
that has yielded major breakthroughs in recent years is the use of
techniques enabling visualisation of nanostructures (Huang et al.,
2015, 2016). Such techniques will potentially allow novel insights
into generation of mucilages and exudates, particularly when
combined with molecular approaches.

Together, the benefits from translational approaches using plant
mucilages and exudates as a basis for biotechnological applications
give ample incentive to learn more about the common and the
unique molecules that are part of the different plant mucilages and
to understand their synthesis, properties and functions.
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