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Abstract 

Background: Right ventricular (RV) function is a major determinant of survival in hypoplastic left heart syndrome (HLHS). 

However, the relation of RV geometry to myocardial mechanics, and their relation to transplant-free survival are 

incompletely characterized.  

Methods: We retrospectively studied 48 HLHS patients from the Hospital for Sick Children, Toronto, aged 2.2 IQR 3.62 

years at different surgical stages. Patients were grouped by the presence (n=23) or absence (n=25) of RV “apical bulging” 

defined as a sigmoid shaped septum with the RV leftward apical segment contiguous with the LV lateral wall. Regional and 

global RV strain were measured using speckle-tracking echocardiography and regional strains analyzed for patterns and 

peak values. These were compared between HLHS anatomical sub-types and between patients with versus without apical 

bulging. We further investigated the association between RV geometry and dysfunction with the outcomes of heart-

failure, death or transplant. 

Results: RV global (-7.3±2.8 vs. -11.2±4.4%; p=0.001), basal septal (-3.8± 3.2 vs. -11.4 ± 5.8 %; p=0.0001) and apical-lateral 

(-5.1± 3.5 vs. -8.0 ± 5.8 %, p=0.001) longitudinal strain were lower in patients with versus without apical bulging, 

respectively. Apical bulging was equally prevalent in all HLHS anatomical variants. Twenty of 22 (91%) patients with apical 
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bulging displayed hypertrophy of the LV apical and lateral segments. Death or transplantation were approximately equal in 

both groups but related to reduced RV global strain in patients with (7/7), and not in those without apical bulging (2/8) (p= 

0.022).  

Conclusion: These results suggest that the finding of apical bulging is related to the presence of a hypertrophied 

hypoplastic LV, with a negative impact on regional and global RV function. Therefore, analysis of RV and LV geometry and 

mechanics may aid in assessment and prognostication of this high-risk population. 

Key words: congenital heart disease; hypoplastic left heart syndrome; ventricular function; outcome 

Bullet-points:  

1.  “apical bulging” describes a specific phenotype in HLHS patients  

2.  Apical bulging is consistent with lateral hypertrophy of the residual left ventricle. 

3. Regional dysfunction is pronounced compared to the non-bulging phenotype. 

4. Low transplant-free survival in reduced RV function in presence of apical bulging. 

 

Abbreviations: 

CPD: classic pattern dyssynchrony 

FAC: fractional area change 

HLHS: hypoplastic left heart syndrome 

LV: left ventricle 

RV: right ventricle 
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TR: tricuspid regurgitation 
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Introduction 

Despite improvements in clinical care, morbidity and mortality remain high in children with hypoplastic left heart 

syndrome (HLHS) 1-4. Surgical palliation typically occurs over the early years of childhood in 3 stages: Stage 1 (Norwood 

operation) consisting of aortic reconstruction, resection of the interatrial septum and placement of a systemic-pulmonary 

or right-ventricle (RV)- pulmonary shunt; Stage 2 surgery consisting of a bidirectional superior vena cava-pulmonary artery 

connection and Stage 3 consisting of the Fontan operation (inferior vena cava to pulmonary connection. RV dysfunction, 

tricuspid regurgitation (TR) and the size and hypertrophy of the hypoplastic left ventricle (LV) have been identified as 

important risk-factors for adverse outcomes in HLHS 2, 5-7. Moreover, it has been proposed that certain anatomic variants, 

especially mitral stenosis with aortic atresia, or the presence of septal hypertrophy have worse outcomes 8, 9. Thus, RV and 

LV factors, both of which affect RV geometry, may impact outcomes. In the normal heart, the RV has a complex shape 10, 

and interacts in an intimate fashion with the LV.  In patients with HLHS, this interaction is affected by the absence of a 

normal LV, which influences RV geometry and mechanics and impacts normal ventricular interdependence 11.   

Several studies have utilized strain imaging for assessment of regional and global function in HLHS 12-16 and to define 

adverse mechanics which may affect RV function. These studies have consistently shown reduced regional basal septal 

strain and strain rates across the surgical stages of single-ventricle palliation 13, 17-20; while other studies have suggested 

that RV function is affected by LV size and hypertrophy 7, 19.  However, the impact of abnormal LV and RV geometry, and 

their impact on RV efficiency and function remain incompletely understood.  

Accordingly, we sought to determine patterns of regional RV strain in patients with HLHS, and to investigate their 

association with RV geometry, anatomical HLHS variants and the clinical outcomes of heart failure, heart transplantation 

or death.   
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Methods 

The institutional research ethics board approved this study with waiver of informed consent. We retrospectively identified 

children from the Hospital for Sick Children in Toronto with HLHS from our institutional database between 2008 and 2010 

12. For this study, ‘classic’ HLHS was defined as usual atrial arrangement, atrioventricular and ventricular-arterial 

concordance and a LV deemed too small to support the systemic circulation leading to single-ventricle palliation 21. 

Patients at all stages of surgical palliation were included if clinically stable at echocardiography. The clinical outcomes of 

need for heart failure medications, transplantation or death were recorded from the medical records. 

Two-Dimensional Echocardiography 

We retrospectively analyzed the last available complete echocardiogram in order to include a maximal number of patients 

with restituted volume-load. Anatomic subtype was recorded as mitral stenosis with aortic atresia, mitral stenosis with 

aortic stenosis, or mitral atresia with aortic atresia. TR severity was determined by the vena contracta width (summation 

of jets if more than one) and classified as none or trivial, mild or moderate to severe. Based on the Pediatric Heart 

Network Single Ventricle Reconstruction trial, a vena contracta width of  ≤ 2.5 mm indicated mild TR and a vena contract 

width > 2.5 mm indicated moderate or severe TR 22. RV function was assessed in an apical 4-chamber equivalent view by 

the RV fractional area change (FAC; [end-diastolic area-end-systolic area]/end-diastolic area) 23.  

Assessment of segmental and global endocardial longitudinal strain  

Longitudinal strain was analyzed using Digital Imaging and Communications in Medicine (DICOM)–format grayscale images 

by vector velocity imaging (TomTec Imaging Systems GmBH, Unterschleissheim, Germany) (Figure 1). The endocardium 

was manually traced in an apical four-chamber equivalent view, and adequate tracking was ensured throughout the 

cardiac cycle. Strain curves of 6 segments were displayed including the basal, medial and apical walls of the rightward 

lateral RV wall and the apical, medial and basal segments of the leftward lateral wall. When a LV was present, the 
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endocardial line followed the RV side of the septum. Segments were defined by equal lengths along the endocardial line 

from base to apex as automatically defined by the software. Peak systolic strain values were expressed as the highest peak 

during systole as either a peak positive or peak negative strain-value. “Global strain” was defined as the average of peak-

systolic strain-values of the six segments.  Due to the lack of normal-values for HLHS patients, we defined hypokinesia 

according to previous strain-measurements in patients with Fontan-surgery, as peak longitudinal strain values > (weaker 

than) -8% as hypokinetic 24. Based on previous studies on patients with transmural myocardial scar tissue values > (weaker 

than) -4% were defined as akinetic 25. Positive strain was defined when the absolute systolic value of a positive excursion 

of the strain curve was higher than the absolute value of a negative excursion.  

Figure 1 displays different strain-patterns corresponding to dyssynchrony and different degrees of reduced contractility 

represented by reduced systolic myocardial shortening. Strain curves were assessed to be normal (Panel A) when peak 

strain and activation was simultaneous with peak-strain values <-8%, indicating normokinesia. According to previously 

established inter-segmental patterns 15, we evaluated for characteristic mechanical signs of early regional activation 

leading to “classic pattern dyssynchrony” (CPD) (Panel C) as manifested by an early systolic “flash” followed by a systolic 

rebound stretch  of that segment at the time-point of late systolic shortening of the opposing wall 15, 26, 27. Not classified as 

CPD was “delayed mechanical activation”, defined as systolic stretch in one segment compared to early contraction of the 

opposing segments but without rebound stretch of the early activated segments (Panel D). “Mechanical dispersion” was 

assessed visually by non-simultaneous time to peak strain between several segments (Figure 1, panel B and C).  

RV and LV geometry 

All geometrical measurements were derived from the end-diastolic and end-systolic apical four-chamber view equivalent 

images. To quantify RV and LV geometry, the septal length and RV length were measured. RV length was measured from 

the center of the tricuspid annular plane to the RV apex, and the ratio of septal/RV length calculated. LV area was 
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measured at end-diastole including the myocardium of the septum and lateral wall. RV/LV area ratio was derived from the 

endocardial contour of the RV and LV cavities. LV myocardial area was used as a measure for myocardial mass of the 

residual LV and calculated from the difference of the (total) LV area minus the LV cavity area.  Additionally, LV septal or 

apico-lateral hypertrophy was defined by visual assessment when the walls exceeded 1.5 times the maximal RV wall 

thickness. As shown in Figure 2, apical bulging was defined as a sigmoid shaped septum with the left lateral RV apical 

segment contiguous with the LV lateral wall and not with the septum. In these hearts, from the coronal/ apical 4-chamber 

view the septum is in a more horizontal position and the RV appears kidney like shaped.  Hearts without apical bulging 

displayed either a flat septum when the septal length was >25% of the RV length with more ellipsoid-shape or a spherically 

shaped RV with a diminutive LV when the septal length measured <25% of the RV length. 

Statistical Analysis 

Data are displayed as mean ± SD for normally distributed variables or as medians with interquartile ranges. Fisher`s exact 

test was used for nominal dichotomous variables and the Chi Square test for frequencies of non-dichotomous nominal 

variables. Differences between continuous measures between groups or between anatomical variants were analyzed with 

Analysis of Variance (ANOVA). Post-hoc analysis testing the mean of one group against the mean of all other groups, was 

calculated for groups with at least 9 patients.  p- values < 0.05 were considered statistically significant. For interobserver 

variability, using the same cardiac cycle, two independent observers drew new regions of interest.  

Reproducibility 

For the assessment of intra- and inter-observer variability, regions of interest were redrawn using the same DICOM loop. 

Intra-observer reliability was analyzed at least 1 month after the original measurements, blinded to previous results. For 

inter-observer reliability, observers were blinded to the other observer’s analysis. Reproducibility of strain measurements 

was assessed using intraclass correlation coefficients of variation on data from 10 randomly selected patients. 
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Results  

Forty-eight infants and children with HLHS (median age 0.75 years, range 0 - 14 years; interquartile range (IQR) 3.62 years; 

mean 2.2 years) were retrospectively analyzed. Table 1 shows their clinical characteristics, prevalence and severity of TR 

and different anatomical variants of HLHS separately for apical bulging vs. non-apical bulging. There was no significant 

difference in clinical parameters between these groups. All patients underwent a BT shunt or hybrid procedure and no 

patients underwent a RV-PA conduit at stage 1. Apical bulging seems not to be associated with a certain type of anatomical 

variant. In addition to the last echocardiography included into the study, two to three repeated echocardiograms over 1-3 

years were available in 12 children at different surgical states. Five out of 12 children displayed apical bulging and 7 did 

not. During this time the presence or absence of apical bulging did not change for any of the patients. 

RV and LV geometry 

Of 48 patients, 23 patients displayed apical bulging (Figure 2, Panel B), while 25 patients displayed no RV apical bulging 

with either a small residual or virtually absent LV (Figure 2, Panel A) or a flat septum (Figure 2, Panel C). Table 2 describes 

the differences in RV and LV geometry and function. RVs without apical bulging displayed smaller septal/RV length, shorter 

septal length, smaller LV total area (cavity + myocardium) and a smaller LV/RV area ratio. Table 2 also demonstrates that 

LV lateral-apical hypertrophy was associated with the presence of RV apical bulging, while septal hypertrophy was only 

seen in half of this group. All patients with apical bulging had either LV lateral-apical or septal hypertrophy. Apico-lateral 

hypertrophy was present in only three patients without apical bulging, all with a relatively sizeable LV and flat septum. One 

of these patients had a diminutive LV cavity with a flat basal septum and mild sigmoid curvature towards the apex. The LV 

myocardial area in patients with apical bulging was significantly larger compared to patients without apical bulging. Apical 

bulging with LV lateral-apical hypertrophy were evenly distributed across all anatomical variants. Septal hypertrophy was 

only seen in patients with mitral stenosis and in one out of four patients with aortic atresia. 
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Segmental function 

Table 2 and Figure 3 illustrate differences in global and regional segmental function between patients with the presence 

versus absence of apical bulging. Patients with apical bulging showed highest strain in the “bulging” RV left apical segment 

and RV basal lateral wall, significantly reduced strain of the basal septum and RV apical right lateral wall and overall 

significantly reduced RV global strain. Patients without apical bulging showed more homogenous strain values, fewer 

abnormal strain patterns and less variation in strain patterns among segments. Patients with apical bulging had a higher 

proportion of akinetic and hypokinetic segments. Hypokinesia was present in the majority of hearts with apical bulging and 

a high percentage of these hearts displayed segments with positive strain (systolic stretch), reflecting inefficient 

myocardial contraction. In contrast, patients without apical bulging showed a more homogeneous contraction pattern, 

less hypokinetic segments, less stretched segments and overall better RV global strain.  

Strain-patterns and signs of dyssynchrony 

Next, we assessed all regional strain curves for inefficient contraction patterns including classic pattern dyssynchrony and/ 

or delayed onset of shortening. Delayed onset of shortening with normal peak segmental strain, as displayed in Figure 1 

panel D, was observed in 4/48 (8%) hearts. Classic pattern dyssynchrony (Figure 1, panel C) was not observed in any of the 

patients. Time-to peak strain within the 6 segmental strain-curves was visually assessed to display mechanical dispersion 

(Figure 1*) in 43/48 hearts (90%). 

Regional RV mechanics and outcomes 

Figure 4 compares the presence of transplant or death in patients with and without apical bulging in relation to the global 

RV strain-value. As opposed to patients without apical bulging, patients with apical bulging displayed lower strain when 

heart-failure medication was applied and RV strain decreased further in patients who experienced transplant or death. 
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Here, RV dysfunction with global strain > (weaker than) -8% was present in all 7 patients in the apical bulging group, 

significantly higher (p= 0.022) compared to 2/8 patients without apical bulging.  

Table 3 illustrates the distribution of patients with reduced RV strain and TR in relation to heart-failure, and the outcome 

of transplantation or death; comparing patients with versus without apical bulging. In the apical bulging vs. non-bulging 

groups 5/7 vs 5/8 patients experienced death or transplant before completion of Stage 2 operation, respectively. Of the 

three transplanted patients with apical bulging, two had TR and reduced RV function and one had reduced RV function. 

One of the two transplanted patients without apical bulging had moderate to severe TR and none showed reduced RV 

function. In all patients, death or transplant was experienced in patients with apical bulging and severely reduced RV 

function, while death or transplant in the group without apical bulging was associated with different reasons including 2/8 

patients with reduced RV function, 4/8 patients with TR and good RV function and 2/8 patients without TR and good RV 

function who died out of hospital from unascertained causes. The time-interval between death or transplant and the 

study-echocardiogram was recorded in 9 of 15 patients. Among the patients who died, the interval was 0; 0; and 17 

months vs. 0; 3 and 4 months in the non-bulging vs. apical bulging group, respectively. The interval in the transplanted 

patients was 24 months in the non-bulging group vs. 0 and 2 months in the apical bulging group. After stage 1 operation, 

6-18 months after the previous examination, patients with apical bulging showed a tendency to worsening global 

longitudinal strain with a reduction by +1.6 ±3.4%; vs. -3.5 ±7.5% (N.S.) increase in strain in the non-apical bulging group. 

Among patients experiencing death or transplant, 3 of those with repeat studies showed further reduced strains by +3.6 

±2.7%, while patients without apical bulging tended to have improved (more negative) strain by -6.9 ± 8.8% (N.S.). 

Reproducibility: Intra-observer and inter-observer agreement for segmental strain were good, with intra-class correlation 

coefficients of 0.85 and 0.82, respectively  

Discussion 
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The major findings of the study are: definition of an “apical bulging” HLHS phenotype which is related to apico-lateral 

hypertrophy of the hypoplastic left ventricle. 2.  The association of this phenotype with more pronounced regional 

dysfunction and lower global RV strain compared with the non-apical bulging phenotype.  3. Transplant or death were 

related to reduced RV function in the apical bulging group. 

Interpretation of the findings 

The visual assessment of strain-curves showed predominantly non-simultaneous time-to peak values 12, 13, 17-20. However, 

this “mechanical dispersion” was not related to CPD (Figure 1, panel C) as typical mechanical manifestation of electro-

mechanical dyssynchrony 15, 26, 27. As CPD or other types of delayed electrical activation with non-simultaneous peak-

strains were not identified in any patient in this cohort, the observed regional functional inhomogeneity more likely 

reflects differences in contractile function or differences in regional wall stress perhaps due to the differing geometry. Our 

results are consistent with other HLHS studies which described reduced strain in the basal septum 13, 17-20. Petko et al. 

suggested that this phenomenon may be associated with hypertrophy of the hypoplastic LV 19. The current study shows 

that “apical bulging” was associated with reduced basal septal function. The current study shows that “apical bulging” was 

associated with reduced basal septal function. In these patients, septal mechanics seemed to be related to apical and 

lateral hypertrophy of the hypoplastic left ventricle, while septal hypertrophy was only seen in 50% of patients.  Systolic 

stretching and absence of septal hypertrophy in the otherwise hypertrophied LV may occur due to isovolumetric 

contraction with pressure-generation and shortening of the (hypertrophied) lateral wall. Ventricles without apical bulging, 

and a flat septum, had neither septal nor apico-lateral hypertrophy of the hypoplastic LV, consistent with unrestrictive 

systolic volume shift (i.e. by mitral regurgitation or VSD), and LV deformation contributing to RV function. Overall, our 

results suggest that a hypertrophied, isovolumetrically contracting hypoplastic LV may negatively impact mechanical RV 

function. 
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Interestingly, in the RV, not only the basal septum, which in part reflects the function of the residual hypoplastic LV, but 

also the apical rightward (i.e. “free wall”) segment shows similarly reduced deformation. Reduced contractile properties or 

increased afterload of this segment with flattened curvature might be possible explanations 28. The more horizontal 

orientation of this segment in ventricles with an apical bulge may also lead to a reduction in longitudinal strain.  Abnormal 

coronary anatomy, and specifically coronary-LV cavity sinusoids may potentially affect ventricular function and have been 

associated with an anatomical sub-type of mitral stenosis and aortic atresia.  In our study there were insufficient cases to 

assess the relation to apical bulging, but as apical bulging was not related to anatomical sub-type we doubt that this was a 

significant factor in this cohort. Increased QRS duration and electromechanical dyssynchrony with non-simultaneous peak 

strains did not play a role in this patient population where QRS length was reported to be in the range between 58 and 122 

ms (Table 1) and no patient had classic pattern dyssynchrony strain patterns. 

HLHS anatomical variants 

Our results suggest that hypertrophy of the hypoplastic LV is closely connected with apical bulging and associated with 

reduced global and segmental function. Although LV hypertrophy is often seen in the setting of mitral stenosis with aortic 

atresia, apical bulging was present in all anatomical sub-types. Our results are somewhat different from some previous 

studies that found tighter relations between functional parameters and HLHS anatomical variants 19. However, these did 

not emphasize the configuration of apical bulging.  

The presence of apical bulging did not correspond with anatomical sub-type. This may partly stem from limitations in the 

anatomical sub-type classification. For example, patients with MS/AA typically have a muscle-bound LV. However, there 

are patients with severe aortic stenosis and minimal prograde flow who are classified as MS/AS, but likely have a MS/AA 

anatomical subtype. These patients also differ from many MS/AS patients without an extremely hypertensive LV. There 

may be other patients with MS/AA during fetal life in whom the mitral valve ultimately closes. These patients are classified 
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as MA/AA, but may be different from patients with no identifiable LV. The developmental time point of valvular atresia 

and the degree of valvular stenosis during fetal life is important for the final configuration of the residual LV and might 

explain the varying degree of LV hypertrophy within the same anatomical variants. Description of apical bulging may 

circumvent some of these limitations. 

Ventricular function, TR and outcomes in patients with and without apical bulging 

Although global longitudinal and segmental strains are commonly reduced in HLHS 16, 29, 30, EF or FAC might not be affected 

if circumferential shortening compensates 31. EF and FAC express the sum of strains in all directions, thus these measures 

for ventricular function cannot be interchangeably replaced. Additionally, radial and circumferential strain might not be as 

sensitive to early loss of myocardial function as longitudinal strain 14, 32. In the current study, FAC was not different 

between those with versus without apical bulging; or between the different anatomical sub-types. However, all patients 

with significantly reduced FAC also displayed reduced RV global strain.   

The number of patients with death or transplant outcome was similar in the groups with versus without apical bulging. 

However, while preliminary, our results might suggest that patients with the lowest RV strain might be at risk for death or 

transplant. As previously described, the presence of moderate to severe TR was associated with transplant or death, 

regardless of apical bulging 12. The 3 patients with apical bulging and repeated echocardiography showed a tendency 

towards further reduced strains, while the 4 patients without apical bulging had a tendency towards improved strain-

values after stage 1 surgery, perhaps indicating that impaired myocardial function after stage 1 palliation might manifest in 

the presence of apical bulging, but less so in its absence. Interestingly, the presence of TR with normal ventricular strain-

values was not observed in patients with apical bulging. In this patient group, all 3 patients with TR had reduced RV 

function leading to transplant or death which raises the hypothesis that these ventricles may not be able to compensate 

for the additional volume-loading imposed by TR. 
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The presence of either reduced RV strain (predominantly in the apical bulging group) or moderate to severe TR was 

associated with 13/15 (86%) outcomes of death or transplant. Thus, reduced RV strain in patients with apical bulging and 

moderate to severe TR might constitute risk factors for adverse outcomes. 

Limitations  

This was a retrospective, cross sectional, descriptive study with inherent limitations. Serial study would have been 

stronger, but RV configuration in terms of presence or absence of apical bulging does not change or develop over time. 

Cardiac functional parameters were not analyzed for the influence of changing hemodynamics at differing surgical stages 

or the different surgical techniques or time-duration between the surgical palliative stages. Images were not specifically 

optimized for strain-analysis and analyzed at relatively low frame rates. Short-axis images for circumferential strain-

measurements were not available, and LV strain-was not assessed. The number of patients overall was moderate and 

small in some sub-groups with a wide age range and echocardiography was performed at different surgical states. 

Therefore, conclusions need to be made cautiously. The availability of 3D or MRI derived RV EF would have strengthened 

the study but was unavailable. Although others have reported on circumferential RV strain in HLHS, we have not found this 

measurement consistently feasible or reproducible. The study predominantly investigated the association of myocardial 

function and geometry. Due to the small sub-group sample size, the ability to correlate functional and geometry results 

with death or transplant is limited and our findings are descriptive. 

Conclusions 

Apical bulging of the RV in HLHS is present in association with LV lateral wall and apical hypertrophy. Apical bulging is 

associated with reduced basal septal, and RV global longitudinal strain, possibly due to the impact of abnormal inter-

ventricular interaction with a hypertrophied residual LV. The combination of apical bulging with low RV strain appears to 

be associated with transplant or death. Indeed, transplant or death occurred in most cases in patients with reduced RV-
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strain associated with apical bulging or with moderate to severe TR. These results suggest that assessment of RV and LV 

geometry and mechanics may aid in prognostication of this high-risk population. This needs further investigation in 

longitudinal studies. 
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Figure legends: 

Figure 1 

Cartoons depicting representative segmental strain-patterns encountered in the patient population  

Panel A: Normal contractile myocardium in all segments with simultaneous peak and equal systolic peak strain-values. 

Panel B: Strain curves with either differing contractile force or differing regional wall stress. The dark blue and yellow curve 

represent hypokinetic segments, the light blue and purple curve reflect akinesia, while the purple curve reflects no systolic 

stretch of non-elastic myocardium, scar tissue or prosthetic material, the light blue curve reflects systolic stretch of non-

contractile myocardium with preserved tissue elasticity.  

Panel C: Classic pattern dyssynchrony (CPD) with early systolic contraction and later systolic rebound stretch of the earliest 

activated segments, while late electrically activated segments stretch early during systole and still shorten after aortic 

valve closure (AVC)   

Panel D: Dyssynchronous activation: Early segmental activation and stretching of other segments can be seen with 

simultaneous peak strains at the time-point of AVC.  

*: Presence of mechanical dispersion (peak strain-values are not simultaneous) occurring either due to different contractile 

properties of the segments (Panel B) or CPD (Panel C).  

Figure 2 

Typical patient-examples: Types of right ventricular geometry in relation to the configuration of the hypoplastic left 

ventricle and longitudinal segmental strain-curves. 

Panel A: “no apical bulging” with small left ventricle; Panel B: “apical bulging” with a hypertrophic hypoplastic left 

ventricle; Panel C:  “no apical bulging” with ‘Larger’ LV with a flat septum 
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Figure 3 

Segmental function in the 6 segments of an “apical 4 chamber view”. * p<0.05 between one segments and all other 

segments; Ϯ p<0.05 between the same segments of different groups 

Figure 4 

Relation of outcomes and global strain in patients with and without apical bulging 

 



Table 1 

Table 1: Patient characteristics  

  All patients  
  

n = 48  
  

Apical Bulging  
  

n = 23  

No Apical  
Bulging n 

= 25  

P   
(Fisher`s 

exact test)  

  n (%) or  
mean ± SD  

n (%) or  mean 
± SD  

n (%) or  
mean ± SD  

  

Male (n)  30  15  15  0.130  

Age (y)  0.75 IQR 3.6  0.5 IQR 3.0  1.2 IQR 2.6  0.186  

Weight (kg)  7.9±9.4  6.9±8.7  8.3±10.5  0.172  

          

Echocardiography at 
Surgical stage (n)    

    0.586  

At birth  1  0  1  

Before Stage 2   14  8  6  

Transplant  2  1  1  

Death   8  4  4  

After Stage 2 before 
Fontan completion  

20  10  10  

Transplant   3  2  1  

Death  2  1  1  

After Fontan completion  13  5  8  

TV valve regurgitation (n)        0.566  

no  9  4  5  

mild  30  16  14  

Moderate-severe  9  3  6  

QRS width (ms) 
Range (ms)  

85 ± 18  
  

82 ± 19 58-124  86 ± 17 58-
122  

0.394  

Aanatomical variants          
Mitral Stenosis +Aortic 
Stenosis  

16 (33%)  8 (50%)  8 (50%)  0.43  

Mitral Stenosis +Aortic 
Atresia  

16 (33%)  10 (63%)  6 (38%)  

Mital Atresia+Aortic 
Atresia  

13 (27%)  5 (38%)  8 (62%)  

        

  
TV: tricuspid valve; Stage 1 surgery: Aortic reconstruction, resection of the interatrial septum 
and placement of a systemic-pulmonary shunt; Stage 2 surgery: Bidirectional cavo-pulmonary 
artery connection”  

  



Table 2 

  

Table 2: Right and Left Ventricular Geometry, segmental function and clinical outcome in both groups  
  

  n  All  
  

n  Apical 
Bulging  

n  No Apical 
Bulging  

P-value  
ANOVA 

or  
Fischer`s 

exact 
test  

    n (%) or  
mean ± SD  

  n (%) or  
mean ± SD  

  n (%) or  
mean ± SD  

  

Septal length (cm)  47  2.1 ± 1.0  22  2.4 ± 0.8  25  1.7 ± 1.0  0.021  

RV Length (cm)  47  3.7 ± 1.0  22  3.9 ± 0.9  25  3.6 ± 1.0  0.232  

Septal/RV length ratio  47  0.56 ±  
0.22  

22  0.62 ± 0.14  25  0.49 ± 0.26  0.029  

RV  end-diastolic area (cm2)  47  9.8 ± 4.7  22  9.6 ± 4.5  25  10.0 ± 5.0  0.799  

RV  end-systolic area (cm2)  47  6.0 ± 1.1  22  5.9 ± 3.0  25  6.1 ± 2.9  0.847  

RV FAC (%)  47  36.0 ±  
13.5  

22  37.3 ± 13.2  25  34.8 ± 14.0  0.267  

LV cavity area(cm2)  45  1.0 0.9  22  1.1 ± 0.7  23  0.9 ± 1.0  0.698  

LV cavity + myocardial area (cm2)  45  2.7 ± 1.7  22  3.3 ± 1.5  23  2.1 ± 1.9  0.018  

LV  myocardial area (cm2)  45  1.3 ± 1.9  22  2.2 ± 1.3  23  1.2 ± 1.2  0.008  

LV/RV area ratio  45  0.32 ±  
0.23  

22  0.40 ± 0.20  23  0.24 ± 0.23  0.016  

Septal hypertrophy, v.a. (n/%)   46  10 (22)  22  10 (45)  24  0 (0)  <0.0001  

LV lateral-apical hypertrophy, v.a. 
(n/%))  

46  23 (50)  22  20 (91)  24  3 (13)  <0.0001  

Septal or lateral hypertrophy (n/%)  46  25 (54)  22  22 (100)  24  3 (13)  <0.0001  

RV global longitudinal strain (%)  48  -9.5 ± 4.2  23  -7.3 ± 2.8  25  -11.3 ± 5.8  0.001  

Basal Septum: Segmental strain (%)   48  -7.9 ± 6.0  23  -4.1 ± 3.4  25  -11.4 ± 5.8  0.0001  

Percentage of segments with 
positive strain/heart (%)  

48  14 ± 18  23  22 ± 22  25  7.3 ± 11  0.001  

Percentage of segments with 
hypokinesia/heart (%)  

48  41 ± 28  23  55 ± 22  25  30 ± 28  0.001  

Number of hearts with at least 1 
segment with positive strain  

48  21 (44)  23  13 (59)  25  8 (32)  0.082  

Number of hearts with at least 2 
segments with positive strain   

48  12 (25)  23  9 (41)  25  3 (12)  0.042  

Number of hearts with at least 3 
segments with hypokinesia  

48  21 (44)  23  16 (73)  25  5 (20)  0.001  



Table 3 

Number of hearts with at least 2 
segments with hypokinesia  

48  26 (54)  23  20 (91)  25  6 (24)  <0.0001  

No Heart-failure medication  48  19 (40)  23  11 (48)  25  8 (32)  0.365  

Heart-failure medication  48  14 (29)  23  5 (22)  25  9 (36)  

RV: Right Ventricular; LV: Left Ventricular; FAC: Fractional Area Change; v.a.= visually assessed: Hypertrophy 
was present, when the walls exceeded 1.5 times the maximal RV wall thickness.  

  
  

  
Table 3: Clinical outcome and functional parameters  
  
Clinical outcome  RV global strain  TR  All Patients  Alive  Death or 

Transplant  
Fisher`s exact  
test  p-value  

No Apical Bulging  high <-8%  No TR  15  13  2  0.025  
high <-8%  TR  6  2  4  
low > -8%  No TR  3  1  2  
low > -8%  TR  1  1  0    

Apical Bulging  high <-8%  No TR  10  10  0  0.003  
high <-8%  TR  0  0  0  
low > -8%  No TR  10  6  4  
low > -8%  TR  0  0  3  

              

  
Outcome data were derived from the time-period of clinical follow-up until the last surgical stage. Heart failure was 
defined by prescription of heart-failure medication. TR: moderate to severe tricuspid regurgitation; global right ventricular 
(RV) strain was derived from strain of one long-axis view  
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