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Abstract 45 

Invertebrate herbivores depend on external temperature for growth and metabolism. Continued warming 46 

in tundra ecosystems is proposed to result in increased invertebrate herbivory. However, empirical data 47 

about how current levels of invertebrate herbivory vary across the Arctic is limited and generally 48 

restricted to a single host plant or a small group of species, so predicting future change remains 49 

challenging. We investigated large-scale patterns of invertebrate herbivory across the tundra biome at the 50 

community level and explored how these patterns are related to long-term climatic conditions and year-51 

of-sampling weather, habitat characteristics and aboveground biomass production. Utilizing a 52 

standardized protocol, we collected samples from 92 plots nested within 20 tundra sites during summer 53 

2015. We estimated the community-weighted biomass lost based on the total leaf area consumed by 54 

invertebrates for the most common plant species within each plot. Overall, invertebrate herbivory was 55 

prevalent at low intensities across the tundra, with estimates averaging 0.94% and ranging between 0.02% 56 

and 5.69% of plant biomass. Our results suggest that mid-summer temperature influences the intensity of 57 

invertebrate herbivory at the community level, consistent with the hypothesis that climate warming should 58 

increase plant losses to invertebrates in the tundra. However, most of the observed variation in herbivory 59 

was associated with other site level characteristics, indicating that other local ecological factors also play 60 
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an important role. More details about the local drivers of invertebrate herbivory are necessary to predict 61 

the consequences for rapidly changing tundra ecosystems. 62 

Keywords: background herbivory, biomass loss, climate change, community-weighted average, 63 

invertebrate, insects, tundra   64 

 65 

Introduction 66 

Invertebrate herbivores can have strong effects on the structure and function of Arctic ecosystems. Most 67 

studies of invertebrate herbivory in high-latitude systems have focused on outbreak events, when 68 

herbivores consume massive amounts of plant biomass over a short time period. Outbreaks have most 69 

frequently been reported for boreal forests and the forest-tundra ecotone (Jepsen et al. 2013; Karlsen et al. 70 

2013; Kaukonen et al. 2013) whereas few have been described in true tundra systems (Post and Pedersen 71 

2008; Lund et al. 2017). In contrast, under non-outbreak densities, invertebrates are responsible for low 72 

but chronic biomass removal, referred to as background herbivory (Kozlov and Zvereva 2017). At these 73 

low densities the immediate effects of invertebrates appear minimal (Kotanen and Rosenthal 2000), but 74 

the longer-term nature of background herbivory may have prolonged effects on plant growth (Zvereva et 75 

al. 2012), community interactions (Barrio et al. 2013), and nutrient fluxes (Metcalfe et al. 2016). The 76 

current understanding of the patterns of background invertebrate herbivory in tundra environments is 77 

based on only a few studies that focused on either a single host plant species (Betula glandulosa-nana 78 

complex, Barrio et al. 2017) or on specific growth forms (shrubs, Kozlov et al. 2015a). No studies have 79 

assessed patterns of invertebrate background herbivory at the community level across the tundra biome.  80 

The interaction between invertebrate herbivores and plants in tundra ecosystems occurs under 81 

environmental conditions characterized by cold temperatures, a short growing season, and precipitation 82 

that falls mostly as snow (Strathdee and Bale 1998). Current trends associated with rapid climate change 83 

at high latitudes indicate that the tundra biome will continue to experience increased temperature and 84 

altered precipitation regimes, as well as a longer growing season (Post et al. 2009; IPCC 2013; Overland 85 

et al. 2017). Invertebrate ecophysiology strongly depends on temperature, so even moderate increases in 86 

temperature have the potential to alter the duration of the life cycles (or parts of them) of invertebrate 87 

herbivores, increase their densities and activity (Asmus et al. 2018), or alter their distribution ranges or 88 

those of their competitors (Hodkinson and Bird 1998; Bale et al. 2002; Bolduc et al. 2013). For example, 89 

higher summer temperatures can increase the intensity of herbivory (Birkemoe et al. 2016), create 90 

phenological mismatches between specialist herbivores and plant species (Kharouba et al. 2015) or 91 



alternatively, induce stronger phenological matches between plants and herbivores (Jepsen et al. 2011; 92 

Pureswaran et al. 2019), and/or alter herbivore feeding choices (Barrio et al. 2016a), although these 93 

patterns are far from being general in either space or time (Kozlov and Zvereva 2015; Zvereva et al. 2016; 94 

Kozlov et al. 2017). Moreover, changes in precipitation could affect the amount of damage caused by 95 

invertebrate herbivores indirectly, through their influence on leaf traits, such as leaf toughness (based on 96 

the structural materials that make up the leaf) or leaf chemistry. Stress due to dry conditions can either 97 

increase the toughness of leaves, thus decreasing their palatability for invertebrate herbivores (Onoda et 98 

al. 2011) or induce plants to decrease the production of herbivore defense chemicals, resulting in an 99 

increase in the palatability of leaf tissues (Berg et al. 2008). Kozlov et al. (2015b) found that precipitation 100 

contributed to latitudinal patterns observed in invertebrate herbivory, such that increased precipitation 101 

resulted in higher levels of invertebrate-caused defoliation. With the potential for so many different 102 

responses to climate change, it is essential to document the existing patterns of invertebrate herbivory and 103 

to explore the drivers behind these patterns in order to predict future changes. 104 

The level of herbivory on plants can also be driven by local site characteristics, such as habitat type, 105 

productivity or plant community composition. Herbivory is generally lower in more diverse plant 106 

communities, but this varies with the host specificity of insects, and plant species composition may be 107 

more important than species richness per se (Jactel and Brockerhoff 2007). For example, different growth 108 

forms or functional groups of plants differ in their palatability and responses to herbivory (Turcotte et al. 109 

2014). In general, deciduous shrubs are more palatable than evergreen shrubs (MacLean Jr. and Jensen 110 

1985; Turcotte et al. 2014), and shrubs, due to plant apparency, tend to be consumed more than 111 

herbaceous plants (Turcotte et al. 2014). Graminoid species are often less palatable due to lower 112 

nutritional content and stronger physical defenses (Tscharntke and Greiler 1995). Thus, local and site 113 

level factors influencing variation in herbivory need to be considered in combination with climate drivers.  114 

We assessed invertebrate herbivory within vascular plant communities across the tundra biome to 115 

investigate the role of climatic drivers, specifically temperature and precipitation, habitat, and 116 

aboveground plant biomass, in explaining the variation in plant losses to invertebrate herbivores. We 117 

predicted that higher levels of invertebrate herbivory would be associated with sites experiencing higher 118 

summer temperatures and higher precipitation, and would vary across habitats with different aboveground 119 

biomass availability, such that sites with more plant biomass will experience higher levels of herbivory 120 

(Bonser and Reader 1995). We also assessed the hypothesis that different plant functional groups 121 

(deciduous shrub, evergreen shrub, graminoid, herbs) experience different levels of herbivory due to 122 

differences in palatability, such that deciduous shrubs would have more damage than evergreen shrubs, 123 

shrubs would have more damage than herbaceous plants, and that herbs would have more damage than 124 



graminoids.  To do this we examined invertebrate herbivory at the species level for 42 vascular plant 125 

species grouped into broad functional groups. To our knowledge, this is the first survey of community 126 

level invertebrate herbivory in the tundra. Our coordinated study may provide a framework for future 127 

global monitoring efforts of invertebrate herbivory in other ecosystems too. 128 

 129 

Methods 130 

Study design 131 

This study was conducted during the summer of 2015 and involved researchers working at 20 132 

Arctic/alpine tundra sites in the Northern Hemisphere (Figure 1). In order to ensure consistent data 133 

collection, we adopted a common protocol designed by the Herbivory Network (Barrio et al. 2016b; 134 

Online Resource 1) that provided a simple, hierarchical design for sampling individual plants and plots 135 

within each study site. The protocol was distributed to members of the Herbivory Network who generally 136 

selected locations associated with their own long-term research efforts; these sites are described in more 137 

detail in Rheubottom (2018). Sites spanned high-latitude tundra ecosystems ranging from 55.24 to 78.60 138 

°N and one alpine site in the Swiss Alps (Val Bercla 46.47 °N). 139 

A study site was broadly defined as an area of 0.25-25 km2 where sampling was conducted. At each site, 140 

the dominant habitat type was identified, avoiding areas influenced by extremes in moisture, soil 141 

chemistry, or disturbances, so that study sites would represent a variety of habitats characteristic of the 142 

tundra biome (Table 1). Habitat types were determined based on the broader habitat categories defined in 143 

the Circumpolar Arctic Vegetation Map (CAVM; Walker et al. 2005), or were classified as alpine tundra. 144 

Latnjajaure was included in the erect-shrub tundra category based on a similar definition from Virtanen et 145 

al. (2016).  Overall, a total of 6 habitat types were considered (Table 1). 146 

At each site, five plots (20 × 20 m) were established at least 100 m apart. Three focal species of vascular 147 

plants were identified in each plot based on their overall contribution to the community-wide foliar 148 

biomass, with the exception of Toolik Lake where five focal species were sampled (Table 1). 149 

Consequently, the focal species were plot-specific and could differ between plots within the same study 150 

site. In total, 42 focal species were sampled across all sites, including 13 graminoids, 9 deciduous shrubs, 151 

8 evergreen shrubs, and 12 herbs (Table 2).    152 

Sampling protocol 153 



Three individual plants for each of the focal species at each plot were identified. Plants were considered 154 

different “individuals” when they were at least 10 m apart. Leaf samples (ca. 100 leaves per plant 155 

individual) were collected from each individual. In the case of plants that did not have enough leaves, 156 

samples were collected from “aggregates”, i.e. multiple stems growing close together (within 1–2 m). The 157 

selection of individuals or aggregates was undertaken from a distance of 5–10 m to avoid recognition of 158 

invertebrate herbivory during the selection process and avoid confirmation bias (i.e. picking individuals 159 

specifically because they were damaged or undamaged; Kozlov et al. 2014). In many cases, branches or 160 

stems were collected to avoid damaging leaves by detaching them in the field, or missing leaves with a 161 

large amount of damage (i.e. only the petiole remaining). Samples were press-dried as herbarium 162 

specimens and sent for analysis by the first author. 163 

The contribution of each of the focal species to the biomass in each plot was estimated using the point-164 

intercept method. In each plot, 16 sampling points were placed in a regular grid 5 m apart. Point-intercept 165 

data were collected at each sampling point using a 50 × 50 cm frame with ten fixed pin positions. The 166 

number of times a focal species touched each pin was recorded (i.e. multiple hits per pin per focal species 167 

were possible). Three of the sampling points were randomly selected to harvest total aboveground plant 168 

biomass using the same frame, after the point-intercept data were collected. Biomass samples were stored 169 

in paper bags and air-dried in the field; in the lab, biomass samples were sorted into the three focal 170 

species recorded for each plot and ‘other’ biomass, and weighed to the nearest mg.  171 

The sampling points that had both point-intercept and biomass data were used to calculate a conversion 172 

factor to estimate plant biomass based on point intercept data as described by Bråthen and Hagberg (2004; 173 

Online Resource 2). Biomass estimates for each focal species in each plot were then calculated based on 174 

the 16 sampling points, multiplying the mean number of hits per pin of each of the focal species by the 175 

corresponding conversion factor.  176 

Leaf damage assessment 177 

Leaf sample preparation involved detaching the leaves from the branches/stems or, for graminoids, at the 178 

ligule. All leaves were sampled starting from the uppermost one on each branch/stem, until the desired 179 

number of leaves was obtained. A dissecting microscope was used to observe leaves for damage. Each 180 

leaf was examined on both sides with a light source shinning down on to the leaf to assess external 181 

damage, and then, both sides were examined with a light source shinning up through the leaf to evaluate 182 

internal damage (Barrio et al. 2017). Leaf mine damage was identified by the presence of invertebrates 183 

inside the mines, while galls that were unclear were reviewed by entomologists at the University of 184 

Alberta. 185 



The percent area of each leaf that was damaged by invertebrates (either chewing or skeletonization caused 186 

by external feeders, mining, or gall damage) was visually attributed to one of the following damage 187 

categories: intact leaves, <1%, 1-5%, 5-25%, 25-50%, 50-75%, and >75% of leaf area damaged or 188 

removed by herbivores (Kozlov 2008; Barrio et al. 2017). When two different types of invertebrate 189 

herbivory were present on the same leaf (3.3% of leaves), the second damage type (smaller percentage) 190 

was recorded as secondary damage and included in the analysis (see below), but the leaf was not counted 191 

twice in the total number of leaves. Data for the damage assessment of Betula nana was previously used 192 

in Barrio et al. (2017) which focused on examining variation in invertebrate herbivory for a single species 193 

complex across the Arctic.  194 

Calculation of community weighted estimates of biomass lost (CWBL) 195 

As an approximation of foliar loss to invertebrate herbivores, the percent leaf area damaged (PLAD) was 196 

calculated as the mean leaf area damaged for each of the focal species in a plot. The number of leaves in 197 

each damage category was multiplied by the median value of damage in that category (for example, a leaf 198 

in the 25-50% bin was assigned as having 37.5% damage), summed over all damage categories and 199 

divided by the total number of leaves in the sample (Barrio et al. 2017).  200 

The community weighted biomass lost (CWBL, %) due to total invertebrate leaf damage was calculated 201 

for each plot (Online Resource 3), taking into account the proportion of biomass contributed by each of 202 

the focal species, and how much of this was consumed by invertebrates, as estimated by PLAD. CWBL 203 

takes into account the effect of different species composition at different study sites, and allows for 204 

comparisons across sites with different habitat types. In order to control for the biomass of the focal 205 

species being only a proportion of the total community biomass, the percent contribution of each focal 206 

species to the total biomass was incorporated into the CWBL calculation. In the case of Toolik Lake, no 207 

total biomass harvest data was available but five focal species were reported; it was assumed that these 208 

five focal species represented most of the biomass at the community level and the contribution of each 209 

focal species to the biomass of these five focal species was included in the CWBL calculations (Online 210 

Resource 3). CWBL was expressed as a percentage of the total biomass in a plot to control for the 211 

variation in biomass across tundra sites, from polar deserts to shrub tundra.  212 

Statistical analyses 213 

The combined leaf damage caused by different feeding guilds of invertebrate herbivores (defoliators, 214 

miners and gallers) was used in our analysis because some types of leaf damage, such as mining or 215 

galling, tend to be infrequent in tundra (Barrio et al. 2017). The variation in CWBL was analyzed using 216 



Linear Mixed Effects Models (LMM) (Zuur et al. 2009), including study site as a random factor to 217 

account for the study design of multiple plots sampled within each site. Predictor variables included 218 

climatic variables (long-term mean July temperature and precipitation, and July 2015 temperature and 219 

precipitation relative to the long-term average), total plant biomass per m2, and the habitat type of the 220 

study site (Table 1; Online Resource 3). Temperature and precipitation data were compiled from the 221 

CRU TS3.10 Dataset (Harris et al. 2014), and divided into long-term July means (based on data from 222 

1990-2015) and the deviations from the respective means in July 2015. Long-term means incorporated 223 

interannual variation in temperature and precipitation, while the 2015 values indicated deviations in the 224 

weather conditions during the sampling year relative to the long-term average (i.e. if the summer 2015 225 

was colder and/or wetter than average at a particular site). July was used to indicate mid-summer 226 

conditions that coincide with peak temperatures and peak plant biomass (Myers-Smith et al. 2015; Barrio 227 

et al. 2017). The six different habitats included wetlands, erect-shrub tundra, prostrate-shrub tundra, 228 

barren tundra, graminoid tundra, and alpine tundra (Table 1).  229 

Five models were constructed (Table 3) based on our a priori hypotheses that herbivory would be driven 230 

by: 1) the long-term mean July temperature; or by more additional variables: 2) the long-term mean 231 

precipitation, 3) the 2015 deviations from average temperature and precipitation, 4) aboveground plant 232 

biomass or 5) habitat type. The five models were compared using AICc values (Table 3). Collinearity 233 

between the predictors was assessed across the 20 sites, and only combinations of variables with 234 

correlations r<|0.55| were included in the models (Table 3). Running the analyses with and without the 235 

alpine site and with and without Murmansk, which showed the largest value of CWBL (Figure 2) did not 236 

change the results, so these sites were retained in the analyses.  237 

In a separate analysis, we examined whether different plant growth forms and/or functional groups 238 

experienced different levels of invertebrate herbivory. Using a Welch's two-sample t-test, we compared 239 

woody plants to herbaceous plants, deciduous shrubs to evergreen shrubs, and herbs to graminoids.   240 

Model assumptions were checked by visually examining plots of the residuals versus fitted values to 241 

determine homoscedasticity of variances; normality of residuals was examined via QQ-plots. In order to 242 

meet the assumptions the CWBL values were log10-transformed prior to analysis. All statistical analyses 243 

were carried out in R 3.5.1 (R Development Core Team 2017), and LMMs were built using the lme4 244 

package (Bates et al. 2015). 245 

 246 

Results 247 



Distribution of damage among herbivore feeding guilds 248 

Invertebrate damage was found in 9,062 of 77,586 leaves examined (11.7%). The majority of damaged 249 

leaves (7,265 or 80.2%) had feeding marks of externally defoliating invertebrates. We found only 772 250 

mined leaves and 1,025 leaves with insect or mite galls (8.5% and 11.3% of all damaged leaves, 251 

respectively). Damage by defoliators was recorded in leaves of 35 of the 42 focal plant species, by leaf 252 

miners in 21 species, and by gall-forming herbivores in 21 species (Table 2). 253 

Variation in herbivory among focal species 254 

The 42 focal species included in our analyses experienced varying levels of invertebrate herbivory. The 255 

highest average percent leaf area damaged (PLAD) from all samples combined was 26.05% (Vaccinium 256 

myrtillus), while seven plant species had no invertebrate damage at all (Table 2). Only 13 species 257 

experienced leaf area losses greater than 1%, with only three of those species experiencing more than 5% 258 

(V. myrtillus, Salix reticulata (9.13%), and Oxyria digyna (6.13%); Table 2). 259 

We found differences in invertebrate herbivory between plant growth forms and/or functional groups. 260 

Foliar losses of woody plants were four times higher than that of herbaceous plants (2.93% vs. 0.70%; 261 

t561.42=5.16, p<0.0001). Within woody plants, the losses of deciduous shrubs were 14 times greater than 262 

the losses of evergreen shrubs (5.20% vs. 0.37%; t285.17=5.38, p<0.0001). Within herbaceous plants, the 263 

losses of herbs were four times as large as the losses of graminoids (1.16% vs. 0.28%; t121.15=2.50, 264 

p=0.0137).  265 

Variation in herbivory among study sites 266 

At the site level, the CWBL due to invertebrate herbivores varied from 0.02% (Bogstranda, in Svalbard) 267 

to 5.68% (Murmansk, Russia), with an average (±SE) of 0.94  ± 0.31% (n=20; Figure 1; Online 268 

Resource 3). Aboveground biomass of vascular plants at our plots ranged from 2.56 to 854.68 g/m2. 269 

CWBL ranged between 0.002 and 10.68% across all plots examined, with an average (±SE) of 0.98 ± 270 

0.17% (n=92). 271 

Two models received similar support (ΔAICc<2; models 1 and 4 in Table 3). Both models included the 272 

effect of long-term mean July temperature (Table 3); the second best model also included total 273 

aboveground biomass, but its effect was not significantly different from zero (estimate= -0.001, 95% CI= 274 

(-0.002, 0); Online Resource 4). The models predicted a linear positive relationship between the log-275 

transformed community weighted biomass lost (CWBL) and July temperature (Figure 2), with an 276 

estimated increase of 0.11% CWBL per 1 °C (model 1: estimate= 0.106, 95% CI= (0.028, 0.184); model 277 



4: estimate= 0.114, 95% CI= (0.038, 0.190)). However, the models still had a high percentage of 278 

unexplained variability between the different tundra sites, associated with the random effect (model 1: 279 

67.73%, model 4: 65.14%; Online Resource 4).  280 

 281 

Discussion  282 

Invertebrate herbivory was detected at all our 20 study sites, suggesting that it is a widespread 283 

phenomenon throughout the tundra biome. However, the intensity of herbivory was generally low and 284 

seemed to be influenced by summer temperature and other unknown local site characteristics.  285 

At the community level, the mean foliar biomass lost to invertebrates was 0.94% (n=20), ranging from 286 

0.02% to 5.69%. These levels are consistent with the average value of 0.56% reported from shrubs 287 

growing in tundra regions of the European Arctic (Kozlov et al. 2015a) and with an estimate of 1.20% 288 

loss calculated from the regressions of woody plant herbivory vs. latitude (after Kozlov et al. 2015b) for 289 

the average latitude of our Arctic study sites (68.1 °N). Thus, we conclude that in tundra, plant foliar 290 

losses to invertebrate herbivores at background (i.e., non-outbreak) levels are around 1% of foliar 291 

biomass. This value is 5–13 times lower than reported in temperate plant communities. For example, in 292 

temperate herbaceous communities, invertebrates reduced plant biomass by 13% (Coupe and Cahill 293 

2003), and tissue loss due to invertebrates in temperate forests was 5–8% (Kozlov et al. 2015b). This 294 

discrepancy may be partially attributed to the species-specific data used for the temperate studies 295 

compared to the community-weighted method used in our study, or may simply reflect the lower levels of 296 

invertebrate herbivory in the tundra (Kozlov et al. 2015a).   297 

The variation in community weighted biomass lost to background invertebrate herbivory was associated 298 

with long-term summer temperatures. Our sites spanned a range of summer (July) temperatures across the 299 

tundra biome, from 2.9 to 14.8 °C. Warmer sites had significantly higher levels of invertebrate herbivory 300 

despite a large variation among sites. Our model indicated a logarithmic relationship between long-term 301 

July temperature and CWBL, suggesting that sites with higher temperatures have a more pronounced 302 

increase in herbivory than cooler sites. As a first step to approximate the effects of future warming on 303 

tundra invertebrate herbivory, we can adopt a space-for-time substitution approach to broadly infer 304 

changes in herbivory from locations with different climatic variables (see for example Barrio et al. 2017). 305 

Given the lack of long-term monitoring data on invertebrate herbivory in tundra and despite its 306 

limitations, this approach provides the best solution and allows generating predictions that can then be 307 

tested through monitoring or manipulative field experiments. According to our model, a single degree 308 



increase in temperature will have a stronger effect on herbivory levels at higher temperatures (i.e. in the 309 

low Arctic) compared with lower temperatures (i.e. in the high Arctic). For example, an increase in 310 

temperature from 4°C to 5°C results in an increase in CWBL of 0.02%, while increasing from 13°C to 311 

14°C results in an increase of 0.20%. Depending on the scenario, global temperatures are predicted to 312 

increase by 1.1–2.9°C to 2.4–6.4°C over the next century, and this increase is expected to be more 313 

pronounced in the Arctic (IPCC 2013; Overland et al. 2017). These predicted increases in temperature 314 

would shift even our coldest sites (in Svalbard, Norway; 2.9 °C) into the temperature range where 315 

herbivory levels begin to increase more rapidly (Figure 2). We also found that for sites with mean 316 

temperatures <6 °C, there was very little variation in herbivory level – it was always very low and all 317 

observations were clustered near the trend line. However, at sites with mean July temperatures >8 °C, the 318 

intensity of herbivory becomes much more variable, with some sites showing low herbivory while others 319 

had much higher levels. This suggests that a threshold may exist, below which invertebrate herbivory is 320 

consistently low. Once this threshold is crossed at higher temperatures, herbivory can sometimes be very 321 

high but other site-specific factor(s) may be constraining the levels of herbivory, resulting in the 322 

variability observed in the present study (Figure 2). However, our assessment was based on a single year 323 

and temporal variation may not be consistent across sites, highlighting the need for long-term monitoring 324 

of invertebrate herbivory across multiple sites in tundra ecosystems.   325 

Our models indicate that long-term mid-summer temperatures are partially responsible for this trend 326 

rather than the climatic conditions in the year of sampling. This may be partially related to the life 327 

histories of high latitude insects, which tend to have life cycles that span multiple years (Danks 1992). 328 

Warmer summers year after year may thus have a greater effect than one single warm season, if, for 329 

example, insects are able to complete their life cycle in fewer growing seasons, or if species are able to 330 

complete multiple generations in a single summer. Further, long-term warming could allow lower-latitude 331 

species (with shorter generation times, higher growth rates, and warmer temperature requirements) to 332 

persist at higher latitudes. In contrast, other studies have found that weather in the year of sampling has a 333 

stronger effect on herbivory than long-term climate data (Kozlov et al. 2013, Barrio et al. 2017). These 334 

studies however, were investigating herbivory levels on a single or a few plant species rather than at the 335 

community level. The number of plant species involved in studies estimating herbivore damage can affect 336 

the inferences of these studies, with studies including fewer species tending to overestimate damage 337 

(Zvereva and Kozlov 2019). Warming can also influence the feeding choices of invertebrate herbivores 338 

(Barrio et al. 2016a, Gamarra et al. 2018), so patterns of herbivory of a single species may not be 339 

representative of what happens at the community level. An alternative explanation could be simply that 340 

the weather in the year of sampling in the present study might have been unusual. Most sites had a colder 341 



(14 out of 20) and drier (16 out of 20) summer than their long-term average. Longer-term monitoring may 342 

be able to capture the effects of interannual temperature variation on herbivory, and this could be 343 

effectively implemented through coordinated efforts like the Circumpolar Biodiversity Monitoring 344 

Programme (CBMP; e.g. Gillespie et al. 2019).  345 

Our models including precipitation had little support in explaining the variation in background 346 

invertebrate herbivory (Table 3), but this does not rule out an important role for precipitation as a 347 

mediating factor in changing tundra environments (Bintanja and Andry 2017). Barrio et al. (2017) found a 348 

positive effect of both temperature and precipitation when examining herbivory on dwarf birch (B. 349 

glandulosa-nana) across the tundra biome. Again, this could be an indication that patterns at the species 350 

level may not hold at the community level. Precipitation can influence invertebrate herbivory through its 351 

effects on leaf toughness, yet at the community level this effect could be masked because the community 352 

can be made up of plant species with varying levels of drought tolerance. 353 

A large percentage of the variation in invertebrate herbivory however was not explained by the effect of 354 

long-term mean summer temperature (i.e. the variance associated with the random effect of site was 355 

67.73%). This suggests that local site characteristics other than temperature are driving differences in 356 

herbivory between the sites, and emphasizes the usefulness of longitudinal studies, such as the present 357 

one, to better explore the role of climate on biotic interactions at a biome-wide scale. This site-specificity 358 

is consistent with recent studies that have found strong local effects in the structuring of Arctic arthropod 359 

communities (Hansen et al. 2016). For example, local variation in shrub cover can influence the 360 

composition of the arthropod community assemblage, through locally increasing habitat structural 361 

complexity, such that higher shrub cover leads to a larger and more diverse community of arthropods 362 

(Rich et al. 2013; Asmus et al. 2018). At a local scale, herbivory rates can also be influenced by nutrient 363 

concentrations in the soil that influence leaf quality (Semenchuk et al. 2015). Higher nutrient 364 

concentrations can lead to increased palatability of plant species, and ultimately higher levels of herbivory 365 

(Torp et al. 2010a, b; Semenchuk et al. 2015).  Presence of vertebrate herbivores may also affect the 366 

intensity of invertebrate herbivory through their direct and indirect effects on the abundance of 367 

invertebrate herbivores (Suominen et al. 1999, 2003).  368 

Other local drivers, such as snow cover, can also contribute to small-scale heterogeneity in tundra 369 

landscapes (Kankaanpää et al. 2018). Snow cover can vary substantially on a local scale due to variations 370 

in topography (e.g. hollows with deep snow vs. windswept areas with little snow) (Torp et al. 2010a, b). 371 

Variation in the duration of snow cover can influence overwinter protection of plants (Torp et al. 2010a) 372 

and invertebrates (Danks 2004), timing of emergence for plants (Torp et al. 2010a) and invertebrates 373 



(Høye and Forchhammer 2008), the level of nitrogen in the soil (Semenchuk et al. 2015) and 374 

subsequently in leaf tissue (Torp et al. 2010a, b; Semenchuk et al. 2015), as well as the local composition 375 

of arthropod communities in tundra (Kankaanpää et al. 2018). Accounting for the variation in these local 376 

drivers and their effects on invertebrate herbivory would require site-specific measurements, but represent 377 

a critical step to understand the variability in the observed patterns of herbivory.  378 

Lastly, the structure and composition of plant communities may also influence invertebrate herbivory. In 379 

general, different growth forms have differing leaf tissue palatability such that deciduous plants are more 380 

palatable than evergreens (MacLean Jr. and Jensen 1985; Turcotte et al. 2014). Within this study, the 13 381 

species that had >1% of their leaf area lost were deciduous shrubs (7 species), herbaceous species (4), 382 

graminoids (1), and one palatable evergreen shrub (Vaccinium vitis-idaea). As well, deciduous shrubs had 383 

an average of 5.20% of their leaf area consumed compared with 1.16% for herbs, 0.37% for evergreen 384 

shrubs, and 0.28% for graminoids. This result supports our hypothesis that different plant functional 385 

groups experience different levels of herbivory, with more palatable groups experiencing more damage. 386 

These differences in the palatability of growth forms can translate into the differences observed between 387 

sites. For example, we measured the highest levels of background herbivory in Murmansk, where a large 388 

proportion (49.5%) of the focal species biomass corresponded to V. myrtillus and B. nana, both of which 389 

are palatable deciduous shrubs (MacLean Jr. and Jensen 1985). In contrast, Theistareykir in Iceland had 390 

one of the lowest levels of herbivory (0.06%) and two of the three focal species at this site were 391 

unpalatable evergreen shrubs (Empetrum nigrum and Calluna vulgaris). In the long term, shifts in plant 392 

community composition due to climate change – if more palatable plant species are favored – could 393 

amplify the effects of warming on insect herbivory predicted by our model. In this sense, assessing 394 

herbivory at the plant community level, while masking some of the individual species-specific responses, 395 

may be more representative of a more diverse invertebrate herbivore community, and ultimately of 396 

ecosystem responses to environmental changes. 397 

Conclusions 398 

Our study provides a first assessment of herbivory at the community level across the tundra biome, 399 

providing a valuable baseline reference for evaluating future changes. Background invertebrate herbivory 400 

in the tundra biome at the community level is low (the average loss of foliar biomass is 0.94%). Our study 401 

suggests that plant losses to invertebrate herbivores in the tundra biome should increase, at least at some 402 

sites, as the climate warms, even if some of these losses could be offset by increased plant biomass 403 

production under warming (Day et al. 2008). Clarifying to what degree the relationship between climate 404 

and invertebrate herbivory is a direct effect of warmer temperature, or an indirect effect of warming 405 



temperatures on plant phenology, physiology, or abundance will help predict how the level of invertebrate 406 

herbivory on tundra plants will change in response to a warmer climate. Our results also emphasize that 407 

most of the variation in background invertebrate herbivory is associated with local site characteristics and 408 

highlights knowledge gaps in our understanding of invertebrate herbivory in tundra. It is important 409 

however, to keep in mind that our results represent a single-year snapshot: future studies should include 410 

observations over longer periods of time to estimate year-to-year variation in the intensity of herbivory, as 411 

temporal variation is also likely to play an important role. Ideally, future research should also include 412 

characterizations of the invertebrate herbivore communities and their changes over time. 413 
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Figures and Tables 622 

 623 

Fig. 1 Community weighted biomass lost (CWBL) to invertebrate herbivores at each of the 20 tundra sites. Size and 624 
shade of dots indicate intensity of herbivory, grouped into 6 bins. Audkuluheidi (Iceland) and Ailigas (Finland) (see 625 
Table 1) are covered by nearby sites, and belong in the 0.0-0.3 bin and 0.3-0.6 CWBL bins, respectively 626 
 627 



628 
Fig 2 The relationship between the mean community weighted biomass lost (CWBL) to invertebrate herbivores and 629 
the mean long-term July temperature. Each point represents a study site (n=20); site names are indicated with 630 
abbreviations (see Table 1). The fitted line and 95% confidence interval (shaded) are shown. The point with the 631 
highest CWBL corresponds to Murmansk (MURM); running the analyses with and without this point did not change 632 
the overall trend 633 
 634 
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 636 
 637 
 638 
 639 
 640 
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Table 1. Description of the 20 study sites across the tundra biome: name abbreviation in capital letters and coordinates in decimal degrees are shown in brackets; 655 
sampling date(s) in 2015, elevation, dominant habitat type (broad habitat types as defined by Walker et al. (2005); more specific CAVM sub-categories are 656 
included in brackets when possible), number of plots sampled, identity of the focal species (and the number of plots in which each focal species was found at 657 
each site) and climate variables: long-term average (1990-2015) and 2015 July temperature and precipitation (CRU data from Harris et al. (2014) for the nearest 658 
grid cell with complete information). Sites with 2015 temperatures that differ by more than ± 1°C from the long-term average are in bold, similarly sites that have 659 
2015 precipitation levels that differ from the long-term mean by more than ± 10 mm are also in bold. Sites are listed geographically. 660 

Study Site Region 
Sampling 

Date(s) 

Elevation 

(m a.s.l.) 
Habitat Type 

Number 

of Plots 

Focal Species (number of 

plots present) 

Mean July 

Temperature 

(1990-2015) 

(°C) 

Mean July 

Precipitation 

(1990-2015) 

(mm) 

Mean July 

Temperature 

(2015) (°C) 

July 

Precipitation 

(2015) 

(mm) 

Burntpoint Creek   

BURN  

(55.24, -84.32) 

 

Canada June 25 7-8 Wetlands (W2) 4 Carex aquatilis (4), 

Trichophorum cespitosum 

(4), Andromeda polifolia (4) 

14.8 

 

85.3 14.6 80.0 

Bylot Island  

BYLOT  

(73.15, -79.99) 

 

Canada July 16 44-102 Graminoid (G2)  5 Cassiope tetragona (4), 

Salix arctica (5), 

Arctagrostis latifolia (4), 

Oxyria digyna (1), Papaver 

radicatum (1) 

5.6 36.6 7.5 18.0 

Pika Camp  

PIKA  

(61.22, -138.27) 

 

Canada July 27 1637-1774 Prostrate-shrub 

(P1) 

5 Dryas octopetala (5), Salix 

arctica (4), Carex bigelowii 

(5), Salix reticulata (1) 

10.3 58.0 10.5 80.4 

Ailigas  

AILIG 

(69.89, 27.07) 

 

Finland Aug 11-13 339-346 Erect-shrub (S1) 5 Betula nana (5), Empetrum 

nigrum (5), Vaccinium vitis-

idaea (5) 

12.7 77.8 10.5 32.7 

Njallavaara  

NJAL 

(70.04, 27.60) 

 

Finland Aug 20-21 266-281 Erect-shrub (S1) 5 Betula nana (5), Empetrum 

nigrum (5), V. vitis-idaea 

(5) 

12.4 70.9 10.3 27.2 

Audkuluheidi 

AUDK  

(65.13, -19.67) 

 

Iceland Aug 4 479-498 Prostrate-shrub 

(P1) 

5 Betula nana (5), Empetrum 

nigrum (5), Silene acaulis 

(2), Vaccinium uliginosum 

(3) 

10.2 48.5 8.4 40.5 



Fjallabak  

FJAL 

( 63.83, -19.91) 

 

Iceland Aug 29 648-657 Barren (B1) 5 Salix herbacea (5), Armeria 

maritima (4), Cerastium 

alpinum (1), Salix arctica 

(2), O. digyna (2) 

9.9 94.5 8.5 57.4 

Skálpanes  

SKÁL 

(64.52, -19.91) 

 

Iceland Aug 15 622-641 Barren (B1) 5 Salix herbacea (5), Silene 

acaulis (5), Juncus trifidus 

(2), Armeria maritima (2), 

Luzula spicata (1) 

8.9 66.6 7.2 49.0 

Theistareykir  

THEIS 

(65.9, -17.08) 

 

Iceland Aug 2 326-341 Prostrate-shrub 

(P1) 

5 Betula nana (5), Empetrum 

nigrum (5), Calluna 

vulgaris (5) 

10.3 54.8 7.9 76.7 

Hol  

HOL 

(60.70, 7.94) 

 

Norway July 17-20 1092-1147 Erect-shrub (S2) 4 Betula nana (4), Vaccinium 

myrtillus (4), V. uliginosum 

(1), Avenella flexuosa (3) 

11.9 80.9 10.7 74.9 

Erkuta  

ERKUT 

(68.23, 69.15) 

 

Russia Aug 1-3 18 Wetlands (W3) 5 Betula nana (5), V. vitis-

idea (5), Carex sp. (5) 

12.9 41.0 11.2 60.1 

Murmansk  

MURM 

(68.87, 34.54) 

 

Russia Aug 11 246-265 Erect-shrub (S1) 5 Betula nana (5), Empetrum 

nigrum (5), V. myrtillus  (5) 

13.0 69.3 10.3 46.6 

Bogstranda  

BOGST 

(77.02, 15.75) 

 

Svalbard July 18 20-37 Prostrate-shrub 

(P1) 

5 Salix polaris (5), Saxifraga 

oppositifolia (5), Festuca 

rubra (5) 

4.4 46.0 4.6 32.5 

Kaffiøyra  

KAFFI 

(78.60, 12.24) 

  

Svalbard July 14 27-31 Prostrate-shrub 

(P1) 

5 D. octopetala (3), Salix 

polaris (5), Silene acaulis 

(5), Saxifraga oppositifolia 

(1), Bistorta vivipara (1) 

2.9 53.1 3.6 56.0 

Kikutodden  

KIKUT 

(76.61, 16.96) 

 

Svalbard July 17 11-18 Barren (B1) 3 Luzula confusa (3), 

Cochlearia groenlandica 

(1), Poa arctica (1), Salix 

polaris (1), Saxifraga 

hyperborea (1), Cerastium 

arcticum (2) 

4.3 48.2 4.3 35.0 



Latnjajaure  

LATN 

(68.21, 18.29) 

 

Sweden Aug 4 1000 Erect-shrub 

(Low Arctic 

dwarf birch 

tundra*)  

1 Salix herbacea (1), 

Empetrum nigrum (1), 

Betula nana (1) 

8.8 102.8 7.1 63.5 

Padjelanta  

PADJ 

(67.31, 16.69) 

 

Sweden Aug 2-3 580-641 Erect-shrub (S2) 5 Betula nana (5), Empetrum 

nigrum (5), V. vitis-idaea 

(3), V. uliginosum (2) 

9.5 106.4 7.8 85.3 

Val Bercla  

VAL BER 

(46.47, 9.58) 

 

Switzerland July 9 2490 Alpine tundra* 5 Primula integrifolia (5), 

Kalmia procumbens (5), 

Helictochloa versicolor (5) 

8.9 229.0 12.1 104.4 

Barrow  

BARR 

(71.30, -156.67) 

 

USA Aug 7-8 10 Wetlands (W1) 5 Salix rotundifolia (2), 

Arctagrostis latifolia (3), 

Carex aquatilis (5), Salix 

pulchera (3), Petasites 

frigidus (1), V. vitis-idea (1) 

5.3 21.8 5.1 5.8 

Toolik Lake  

TOOL 

(68.64, 149.57) 

 

USA Aug 1 730-746 Graminoid (G4) 5 Betula nana (5), 

Rhododendron tomentosum 

(5), V. vitis-idaea (5),  

Eriophorum vaginatum (5), 

Carex bigelowii (5) 

11.6 45.0 11.4 38.6 

*Virtanen et al. (2016)   661 
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Table 2. List of all 42 focal vascular plant species, their growth form, total number of sites and plots they were found in, number of samples, total number of 676 
leaves analyzed for each species, number of leaves with external damage, gall damage, and mining damage, number of total damaged leaves for each species, and 677 
the corresponding average percent leaf area damaged (PLAD) for those samples. Some leaves experienced more than one type of herbivory and therefore the 678 
total number of leaves damaged is less than the sum of the three damage types in some plant species. In total, 77,586 leaves were examined. Species taxonomy 679 
follows Roskov et al. (2017). 680 

Focal Species Growth Form 
Study 

Sites 
Plots Samples Leaves 

External 

Damage 

Gall 

Damage 

Mine 

Damage 

Total 

Damaged 

Average 

PLAD 

(%) 

Betula nana L.  Deciduous shrub 10 45 135 14779 2176 12 15 2176 2.08 

Salix arctica Pall. Deciduous shrub 3 11 23 2299 843 63 9 899 3.18 

Salix herbacea L. Deciduous shrub 3 11 33 3400 1007 3 10 1020 3.89 

Salix polaris Wahlenb.  Deciduous shrub 3 11 33 3330 40 34 5 79 0.11 

Salix pulchra Cham.  Deciduous shrub 1 3 3 293 8 2 0 10 0.03 

Salix reticulata L. Deciduous shrub 1 1 3 301 168 9 110 231 9.13 

Salix rotundifolia Trautv. Deciduous shrub 1 2 2 200 17 0 0 17 1.29 

Vaccinium myrtillus L. Deciduous shrub 2 9 27 2756 1334 13 59 1384 26.05 

Vaccinium uliginosum L. Deciduous shrub 3 6 18 1883 75 8 8 91 1.08 

Andromeda polifolia L. Evergreen shrub 1 4 12 1203 28 40 0 67 0.30 

Calluna vulgaris (L.) Hull Evergreen shrub 1 5 15 1500 1 0 0 1 0.01 

Cassiope tetragona (L.) D. Don Evergreen shrub 1 4 4 400 0 0 0 0 0 

Dryas octopetala L. Evergreen shrub 2 8 23 2308 212 3 3 216 0.78 

Empetrum nigrum L. Evergreen shrub 7 31 93 9368 70 1 0 71 0.16 

Kalmia procumbens (L.) Gift, Kron & P.F. 

Stevens ex Galasso, Banfi & F. Conti 
Evergreen shrub 1 5 5 500 9 13 0 22 0.25 

Rhododendron tomentosum Harmaja Evergreen shrub 1 5 15 1502 3 1 1 5 0.03 

Vaccinium vitis-idaea L. Evergreen shrub 6 25 69 6935 408 720 66 1181 1.46 

Arctagrostis latifolia (R. Br.) Griseb Graminoid 2 7 7 692 6 1 0 7 0.01 

Avenella flexuosa (L.) Drejer Graminoid 1 3 9 947 0 0 0 0 0 

Carex aquatilis Wahlenb. Graminoid 2 9 17 1666 33 0 57 90 0.11 

Carex bigelowii Torr.  Graminoid 2 10 30 2955 191 0 21 211 0.76 

Carex spp. L. Graminoid 1 5 15 1471 143 0 283 407 0.93 

Eriophorum vaginatum L. Graminoid 1 5 15 1471 10 0 7 17 0.03 



Festuca rubra L. Graminoid 1 5 15 1510 1 0 0 1 0 

Helictochloa versicolor (Vill.) Romero Zarco Graminoid 1 5 5 500 1 0 2 3 0.11 

Juncus trifidus L. Graminoid 1 2 6 600 0 0 0 0 0 

Luzula confusa Lindeberg Graminoid 1 3 9 904 74 0 0 74 1.65 

Luzula spicata (L.) DC. Graminoid 1 1 3 304 3 0 0 3 0.03 

Poa arctica R. Br. Graminoid 1 1 3 300 0 0 0 0 0 

Trichophorum cespitosum (L.) Hartm. Graminoid 1 5 12 1175 0 0 0 0 0 

Armeria maritima (Mill.) Willd Herb 2 6 18 1802 145 16 0 161 0.90 

Bistorta vivipara (L.) Delarbre Herb 1 1 3 195 10 0 1 11 0.33 

Cerastium alpinum L. Herb 1 1 3 299 4 0 7 11 1.57 

Cerastium arcticum Lange Herb 1 2 6 604 15 7 1 23 0.27 

Cochlearia groenlandica L. Herb 1 1 3 300 3 14 0 16 0.54 

Oxyria digyna (L.) Hill Herb 2 3 7 690 65 51 95 199 6.13 

Papaver radicatum Rottb. Herb 1 1 1 97 0 0 10 10 0.73 

Petasites frigidus (L.) Fr. s.l. Herb 1 1 1 104 57 0 0 57 1.60 

Primula integrifolia L. Herb 1 5 5 437 35 0 2 37 1.36 

Saxifraga hyperborea R. Br. Herb 1 1 3 303 5 1 0 6 0.18 

Saxifraga oppositifolia L. Herb 2 6 17 1701 0 0 0 0 0 

Silene acaulis (L.) Jacq. Herb 3 12 36 3602 65 13 0 78 0.36 
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Table 3. The five models used to explain the variation in community weighted biomass lost (CWBL) to invertebrate 694 
herbivory and the null model. Models were created using Linear Mixed Effects Models with site as a random effect. 695 
AICc values and weights are presented for comparison between models. LTMT = long-term mean temperature; 696 
LTMP = long-term mean precipitation; DT2015 = 2015 temperature difference; DP2015 = 2015 precipitation 697 
difference; TBM = total plant biomass; Habitat = site habitat type. 698 

Model Predictors df AICc AICc Weight 

Null N/A 3 142.3 0.06 

1 LTMT 4 138.5 0.38 

2 LTMT +  LTMP  5 140.8 0.13 

3 LTMT + DT2015 + DP2015  6 140.8 0.13 

4 LTMT + TBM 5 139.6 0.23 

5 LTMT + Habitat 9 141.5 0.09 

 699 


