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ABSTRACT 
 
Much of the heritability of venous thromboembolism (VTE) remains unexplained. Although 

recent genome-wide association studies (GWAS) have identified novel associations for common 

variants, there has been no comprehensive exome-wide search for low-frequency variants that 

may affect the risk of VTE.  We conducted a meta-analysis of 11 studies comprising a total of 

8,332 cases and 16,087 controls of European ancestry and 382 cases and 1,476 controls of 

African-American ancestry genotyped with the Illumina HumanExome BeadChip. We used the 

seqMeta package in R to conduct single variant and gene-based rare variant tests. In the single 

variant analysis, we limited our analysis to the 64,794 variants that had at least 40 minor alleles 

across studies (corresponding to a minor allele frequency of ~ 0.08%). We confirmed 

associations with previously identified VTE loci, including ABO, F5, F11, and FGA. After 

adjusting for multiple testing, we observed no novel significant findings in either single variant or 

gene-based analysis. Given our sample size, we had >80% power to detect minimum odds 

ratios >1.5 and 1.8 for a single variant with minor allele frequency of 0.01 and 0.005, 

respectively. Beyond already known associations, we did not observe evidence for additional 

rare coding variants with moderate-to-large effects contributing to VTE risk. Larger studies and 

sequence data may be needed to identify novel low-frequency and rare variants associated with 

VTE risk.  
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INTRODUCTION 

Candidate gene studies and genome-wide association studies (GWAS) have identified multiple 

genetic variants that are associated with venous thromboembolism (VTE), a condition spanning 

both pulmonary embolism (PE) and deep vein thrombosis (DVT). The majority of genetic 

variants associated with VTE have been located in genes known to be involved in hemostasis, 

such as ABO, F2, F5, F11, FGG and PROCR1. Associations have also been observed for 

variants located in genes outside known hemostasis pathways, such as TSPAN15 and 

SLC44A2 2, and the exact mechanisms by which these genes influence VTE risk have yet to be 

determined. 

 Despite these successes, much of the heritability of VTE remains unexplained. A recent 

study based on 3,290 VTE cases and 116,868 controls from the UK Biobank estimated the 

heritability due to genotyped and imputed SNPs to be ~30%3, and twin studies have estimated 

VTE heritability to be as high as ~ 50%4. However, the UK Biobank study also noted that known 

variants only explain 5% of VTE heritability. Thus, additional genetic variants that contribute to 

VTE risk remain to be discovered.  

Recently developed exome arrays5 allow for cost-efficient genotyping of 240,000 coding 

variants identified through the NHLBI Exome Sequencing Project6. Based on exome and whole-

genome sequencing data from 9,000 subjects of European ancestry, 2,000 subjects of African 

ancestry and 500 subjects each of Hispanic and Asian ancestry, 240,000 SNPs were selected 

for inclusion on the exome array. To be selected, non-synonymous variants had to be seen at 

least three times in at least two datasets whereas splice and stop variants had to be seen at 

least two times and in at least two datasets. The exome array has proven to be an efficient tool 

for identifying low-frequency coding variants associated with blood and cardiovascular traits 

including: hypertension7,8, hematological traits9,10,11,12, lipid levels13, coronary artery disease14, 

and atrial fibrillation15. However, no study has published a comprehensive investigation of the 

association between low-frequency exonic variants and VTE.  



 5 

 We hypothesized that exonic, low-frequency genetic variation would be associated with 

VTE. We meta-analyzed exome array genotype data from 11 European and US studies, totaling 

8,723 VTE cases and 17,563 controls. We conducted both single-variant and gene-based tests 

to identify novel genetic variants associated with VTE risk.  

 

MATERIALS AND METHODS 

Study participants 

All study participants were either of European or African-American ancestry and came from 

eight US-based cohorts (ARIC, CHS, FHS, HPFS, NHS, NHSII, WGHS and WHI), one US-

based case-control study (HVH), one Norwegian case-control study (Tromsø) and one French 

case-control study (MARTHA)16-28 (Table 1). Details of each study have been previously 

published16-27. Physician-diagnosed VTE was identified either through hospital records or 

validated self-reports, supplemented by review of medical records. A detailed description of the 

study-specific design and characteristics is presented in Supplementary Table 1. All 

participating studies were approved by their respective institutional review board and informed 

consent for genetic analyses was obtained from each study participant. 

 

Genotyping and quality control 

Genotyping was conducted using either the Illumina HumanExome BeadChip v1.0, Illumina 

HumanExome BeadChip v1.1 or the Illumina HumanCore Exome BeadChip v1.1, depending on 

study. Genotypes from 765 samples from the Tromsø study were obtained from exome 

sequencing rather than genotyping. Genotypes were called using either GenomeStudio or Zcall. 

Each study conducted data cleaning and quality assurance checks following a common 

protocol. Details of study-specific genotype calling and quality control can be found in 

Supplementary Table 1. 
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One of the included studies (MARTHA) genotyped cases and controls on separate platforms 

(cases were genotyped on Illumina HumanExome 12v.1-2_A and controls were genotyped with 

the Illumina HumanExome 12v.1_A array). We identified a moderate inflation in test statistics 

(𝜆"### = 1.09)	in MARTHA for the single variant analysis with MAF>0.005. Therefore, we re-

meta-analyzed the data while excluding MARTHA, leaving a total of 6,095 cases and 14,149 

controls in a sensitivity analysis.  

 

Statistical Methods 

Each study conducted individual analysis following a common protocol. To avoid type-1 error 

inflation29, studies with more than four controls per case randomly selected a maximum of four 

controls for each case (i.e. 1:4 case:control ratio). Those studies that performed control 

selection (ARIC, CHS, FHS, WGHS and WHI) reviewed the distribution of age and sex following 

control selection to ensure roughly equal distributions among cases and controls. Each study 

conducted both single variant and gene-based analysis. Association analysis were based on 

logistic regression adjusting for age, sex, principal components and other study-specific 

variables (as needed). Analyses were conducted using the seqMeta30 package in R which 

produces study-specific results. Each study sent their study-specific results to the coordinating 

center at Harvard T.H. Chan School of Public Health where the meta-analyses took place.  

 

For single variant analysis, we conducted a meta-analysis of the study-specific score statistics 

based on an additive coding. We limited our analysis to the 64,794 variants that had at least 40 

minor alleles across studies (corresponding to a minor allele frequency of ~ 0.08%). Bonferroni 

correction for the number of variants tested was used to set the significance threshold for the 

analysis corresponding to P<7.7x10-7 (0.05/64,794 variants).  
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For the gene-based rare variant analyses, we conducted two tests: Weighted-Sum Burden31 

(WSB) test as implemented in seqMeta30 and SKAT32. We applied two different sets of criteria to 

select variants, based on coding variant annotation from five prediction algorithms (PolyPhen2, 

HumDiv and HumVar, LRT, MutationTaster and SIFT)33. The ‘broad’ definition included variants 

with a minor allele frequency (MAF) < 0.01 that were nonsense, stop-loss, splice site, as well as 

missense variants that are annotated as damaging by at least one prediction algorithm. The 

‘strict’ definition included only variants with a MAF < 0.01 that were nonsense, stop-loss, splice-

site, as well as missense variants annotated as damaging by all five algorithms. For the SKAT 

analysis, variants were weighted according to the beta density function as previously 

described32. We excluded all genes that had fewer than two variants included in the analysis. In 

total, we tested 15,041 genes using the broad definition and 5,749 genes using the strict 

definition. Bonferroni correction for the number of genes and tests performed was used to set 

the significance threshold for the gene-based analysis corresponding to P<1.2x10-6 

(0.05/41,580 tests [(5,749+15,041) genes × 2 tests]).  

 

We conducted gene set enrichment analysis using the GSEAPreranked algorithm as 

implemented in the GenePattern software and the KEGG, Gene Ontology, and Hallmarks 

pathway sets34,35. We applied GSEAPreranked to four sets of results (1) Burden test of variants 

using a broad definition, (2) Burden test of variants using a strict definition, (3) SKAT test of 

variants using a broad definition, (4) SKAT test of variants using a strict definition. 

 

One of the included studies (MARTHA) genotyped cases and controls on separate platforms 

(cases were genotyped on Illumina HumanExome 12v.1-2_A and controls were genotyped with 

the Illumina HumanExome 12v.1_A array. We identified a moderate inflation in test statistics 

(𝜆"### = 1.09)	in MARTHA for the single variant analysis with MAF>0.005. Therefore, we reran 
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the analysis excluding MARTHA, leaving a total of 6,095 cases and 14,149 controls in a 

sensitivity analysis.  

 

RESULTS 

Single Variant Analysis 

After excluding all variants with MAC<40 (corresponding to a minor allele frequency of ~ 0.08%) 

in the combined study population, single variant meta-analysis showed no sign of genomic 

inflation (𝜆"###=1.03, Supplementary Figure 1). The strongest association was observed for 

rs635634 at the ABO locus (OR=1.60, 95% CI: 1.52-1.68, P=1.51x10-73). In addition, we 

observed significant associations for previously known genes including the F5, FGG, and F11 

(Supplementary Table 2). The most strongly associated rare (MAF<0.01) variant we observed 

was rs121918472 (OR=1.93, 95% CI: 1.46-2.56, P=3.55x10-6), a non-synonymous variant 

located in the Protein S (PROS1) gene, also known as the p.Ser501Pro or PS Herleen 

mutation, MAF=0.005. This variant is also known to be associated with VTE36. After excluding 

known loci, only one single variant remained significant after adjusting for multiple testing but 

this signal was driven exclusively by the MARTHA study (p=1.96x10-15 when including 

MARTHA, p=0.37 after excluding MARTHA). As the signal at this locus is most likely due to 

technical issues, we removed it from further analysis. No other variant reached genome-wide 

significance (P<7.7x10-7). The strongest sub-threshold association was observed for rs755109, 

a common (MAF=0.37) variant previously associated with thyroid stimulating hormones 

(OR=1.10, 95% CI: 1.06-1.16, P=3.31x10-6).  

 

Weighted-Sum Burden (WSB) Rare Variant Analysis  

No gene reached the pre-determined significance threshold of P<1.2x10-6 (Figure 1). The top 

three associated genes using the ‘broad’ and ‘strict’ definitions are shown in Table 2 and all 

associations with p<0.01 are shown in Supplementary Tables 3 & 4. The SERPINA10 gene 
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on chromosome 14 was the third strongest associated gene using the broad (p=0.0002) and 

the strict (p=0.0007) definition. SERPINA10 is expressed primarily in the liver and mutations 

in this gene have previously been linked to VTE37,38. 

 

SKAT Rare Variant Analysis  

No gene reached the pre-determined significance threshold of P<1.2x10-6 (Figure 1). The top 

three associated genes using the using the ‘broad’ and ‘strict’ definitions are shown in Table 

2 and all associations with p<0.01 are shown in Supplementary Tables 5 & 6.  

 

Gene Set Enrichment Analysis 

Gene set enrichment analysis based on the results obtained from WSB and SKAT did not yield 

any significant pathway after adjusting for number of pathways tested (all FDR q>0.08, data not 

shown). 

 

DISCUSSION 

To assess the contribution of rare coding variation to VTE risk, we combined data from 11 

studies spanning four countries, resulting in exome array data on 8,723 VTE cases and 

17,563 controls. By comparison, the number of cases included in this study is larger than the 

largest GWAS of VTE published to date2. Beyond known associations, we did not observe 

evidence that additional low-frequency and rare coding variants with moderate-to-large 

effects contribute to VTE risk.  

 

Although our study is the largest genomic study of VTE to date, our ability to identify rare 

variants associated with VTE was limited by low statistical power. Given our sample size, we 

had >80% power to detect minimum odds ratios of 1.56 and 1.81 for a single variant with MAF = 

0.01 and 0.005, respectively. It is estimated that the exome array includes 97-98% of non-
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synonymous variants and 94-95% of stop variants that would have been detected in an average 

genome through exome sequencing (https://genome.sph.umich.edu/wiki/Exome_Chip_Design). 

Thus, it is possible that we missed coding variants associated with VTE, especially if such 

variants are particularly rare in individuals who are not affected with VTE. Another limitation with 

this study is the limited contribution of non-European populations to our analyses, with 93% of 

our study population being of European ancestry.  

 

Identifying risk factors for VTE, including genetic risk factors, is of great public health 

importance.  VTE affects 1-2/1000 Americans yearly. The incidence has been increasing and 

mortality from PE remains high39-42. The mortality of VTE is greatest in the first 24 hours, and for 

one-fourth of PE patients, the initial clinical presentation is sudden death43-45. Therefore, our 

ability to improve mortality hinges on primary prevention, identifying patients at risk for VTE, and 

understanding the underlying pathophysiology of the disease. Despite the accumulated 

evidence that genetic factors play a major role in the pathophysiology of VTE, only 35% of VTE 

patients undergoing testing for thrombophilia carry a polymorphism known to increase VTE 

risk46. Additional efforts to identify genetic variants associated with VTE risk are still needed. 

 

The INVENT Consortium is a well-established collaboration of genetic studies of VTE and, to 

our knowledge, our meta-analysis includes data from the vast majority of exome array studies of 

VTE. Additional large studies, potentially including comprehensive sequencing data, may be 

needed to identify novel low-frequency rare coding variants associated with VTE. Further 

research into the genetic basis of VTE is needed to aid in the primary prevention of this 

potentially fatal disease.  
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Table 1: Studies included in the VTE exome array analysis. 
 
Ethnicity Study Country Cases Controls 
African-American ARIC US 202 807 
African-American CHS US 30 120 
African-American HVH US 58 181 
African-American WHI US 92 368 
European ARIC US 433 1,734 
European CHS US 112 448 
European FHS US 212 848 
European HPFS/NHS/NHSII US 2,321 2,301 
European HVH US 841 1,788 
European MARTHA France 2,628 3,414 
European Tromsø Norway 528 526 
European WGHS US 610 2,404 
European WHI US 656 2,624 
 Total  8,341 16,087 

 
  



 17 

Table 2: Association results for the three strongest associations from the rare variant WSB test. 
 
Variant 
Inclusion  Gene Beta SE P CMAF* # Variants** 
Broad FAM71C 3.86 0.871 9.30E-06 0.0002 2 
  FOXB2 1.56 0.372 2.71E-05 0.0009 4 

  
SERPINA1
0 0.28 0.077 0.0002 0.017 8 

              
Strict DGAT2 0.64 0.179 0.0004 0.003 4 
  NUDT12 3.11 0.877 0.0004 0.0002 2 

  
SERPINA1
0 0.28 0.082 0.0007 0.015 6 

* CMAF = Cumulative MAF for SNPs included in the analysis   
** Number of Variants included in the analysis    
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Table 3: Association results for the three strongest associations from the rare variant SKAT 
test. 
 
Variant 
Inclusion Gene Qmeta* P CMAF** # Variants*** 
Broad CREB3L1 596343.13 2.59E-05 0.016 7 
  FAM71C 9844.60 3.65E-05 0.0002 2 
  PHC3 514613.94 7.76E-05 0.017 10 
            
Strict SRR 37032.58 9.52E-05 0.0007 4 
  ABCF3 15590.02 0.0002 0.0007 2 
  DSC1 50186.59 0.0004 0.0014 5 

 
* The SKAT Q statistic, defined as 𝑤,𝑈,., , where wj is the weight given to SNP j, and Uj

2 is the 
associated score statistic 
** CMAF = Cumulative MAF for SNPs included in the analysis   
*** Number of Variants included in the analysis    
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Figure 1: QQ plots for gene burden tests including non-synonymous variants with MAF≤0.01. 
The WSB test using a broad definition of variant inclusion (upper left panel), the WSB test using 
a strict definition of variant inclusion (upper right panel), the SKAT test using a broad definition 
of variant inclusion (lower left panel), the SKAT test using a strict definition of variant inclusion 
(lower right panel). 
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SUPPLEMENTARY INFORMATION 
 
Supplementary Figure 1: QQ-plot for single variant analysis based on meta-analysis.  
Supplementary Figure 2: QQ-plot for single variant analysis based on meta-analysis with 
known loci excluded. 
 
Supplementary Table 1: Characteristics and details about genotyping for included studies 
Supplementary Table 2: Single variant results that reached statistical significance after 
adjusting for multiple testing.   
Supplementary Table 3: Association results (p<0.01) from the rare variant WSB test. SNPs 
were included based on the broad definition (see text). 
Supplementary Table 4: Association results (p<0.01) from the rare variant WSB test. SNPs 
were included based on the strict definition (see text). 
Supplementary Table 5: Association results (p<0.01) from the rare variant SKAT test. SNPs 
were included based on the broad definition (see text). 
Supplementary Table 6: Association results (p<0.01) from the rare variant SKAT test. SNPs 
were included based on the strict definition (see text). 
 
 
 
 
 
 
 
 


