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a b s t r a c t 

Colorectal polyps are known to be potential precursors to colorectal cancer, which is one of the lead- 

ing causes of cancer-related deaths on a global scale. Early detection and prevention of colorectal cancer 

is primarily enabled through manual screenings, where the intestines of a patient is visually examined. 

Such a procedure can be challenging and exhausting for the person performing the screening. This has 

resulted in numerous studies on designing automatic systems aimed at supporting physicians during the 

examination. Recently, such automatic systems have seen a significant improvement as a result of an 

increasing amount of publicly available colorectal imagery and advances in deep learning research for 

object image recognition. Specifically, decision support systems based on Convolutional Neural Networks 

(CNNs) have demonstrated state-of-the-art performance on both detection and segmentation of colorec- 

tal polyps. However, CNN-based models need to not only be precise in order to be helpful in a medical 

context. In addition, interpretability and uncertainty in predictions must be well understood. In this pa- 

per, we develop and evaluate recent advances in uncertainty estimation and model interpretability in the 

context of semantic segmentation of polyps from colonoscopy images. Furthermore, we propose a novel 

method for estimating the uncertainty associated with important features in the input and demonstrate 

how interpretability and uncertainty can be modeled in DSSs for semantic segmentation of colorectal 

polyps. Results indicate that deep models are utilizing the shape and edge information of polyps to make 

their prediction. Moreover, inaccurate predictions show a higher degree of uncertainty compared to pre- 

cise predictions. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Colorectal Cancer (CRC) is one of the leading causes of cancer-

elated deaths worldwide ( Siegel et al., 2017; Chen et al., 2016;

arsen, 2016 ), with an estimated five-year survi val rate for an ad-

anced stage CRC diagnosis of 14%. The estimated survival rate for

arly diagnosis is 90% ( Larsen, 2016 ). Currently, the gold standard

or CRC prevention is through regular colonoscopy screenings. One

f the main tasks during a screening is to locate small abnormal

rowths called polyps, which are known to be possible precur-

ors to CRC. Hence, increasing the detection rate of polyps is an

mportant component for reducing mortality rates. However, such

creenings are manual procedures performed by physicians and are

herefore affected by human factors such as fatigue and experience.

ne study has estimated the polyp miss rate during a screening to
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e between 8–37%, depending on the size and type of the polyps

 Van Rijn et al., 2006 ). A possible method for increasing polyp de-

ection rate is to design Decision Support Systems (DSSs), which

ould aid physicians during or after the procedure. A dependable

nd robust DSS would have the advantage of not being influenced

y human factors and could also provide a second opinion for in-

xperienced practitioners. 

One popular approach for developing DSSs has been through

achine learning, with promising results on a range of different

asks like brain tumor segmentation ( Havaei et al., 2017 ), retinal

essel segmentation ( Guo et al., 2019 ), melanoma lesion segmen-

ation ( Nida et al., 2019 ), and colorectal polyp detection ( Bernal

t al., 2015; 2014; Liu, 2017; Ribeiro et al., 2016 ). In the context

f CRC prevention, there have been a number of studies on the de-

ection of polyps with encouraging results ( Tajbakhsh et al., 2016;

wang et al., 2007; Alexandre et al., 2007; Wimmer et al., 2016;

äfner et al., 2015 ), but polyp segmentation has proven to be a

hallenging task and the necessary precision has been difficult to

btain ( Bernal et al., 2015; 2014; Condessa and Bioucas-Dias, 2012 ).
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However, as a consequence of increasing amounts of publicly avail-

able colon imagery combined with advances in deep learning re-

search for image analysis, recent studies based on deep learning for

colorectal polyp segmentation have shown promising results and

a significant increase in precision ( Vázquez et al., 2016; Brandao

et al., 2017; Urban et al., 2018 ). 

High precision is a crucial component of any reliable DSS, but

other constituents are also vital in order to engineer dependable

DSSs. Physicians are tasked with making decisions that can have

fatal consequences and they go to great lengths in order to ensure

that the decision they make is likely to have a favorable outcome.

Therefore, a trustworthy DSS should provide a measure of uncer-

tainty to accompany its prediction such that physicians can make

well-informed decisions. Another integral part of a dependable DSS

is to communicate to the user what factors influences a prediction.

Without such information, the user can not determine if the model

is detecting features that are actually associated with the disease

in question or if it is exploiting artifacts in the data. For instance, a

study by Zech et al. (2018) uncovered that a deep learning model

tasked with diagnosing disease from x-ray images had learned to

exploit information in metal tokens included in the x-ray images

for inference instead of detecting disease-specifics features. When

the model is then presented with an image without these artifacts

the precision drops considerably. 

Despite the obvious benefit of increased performance, systems

based on deep learning have no inherent way of representing the

uncertainty associated with a model’s prediction nor do they pro-

vide any indication as to what features in the input influences a

particular prediction. This lack of theoretical understanding for the

underlying mechanics of deep models have resulted in deep learn-

ing based models often being referred to as ”black boxes” ( Alain

and Bengio, 2017; Shwartz-Ziv and Tishby, 2017; Yu and Príncipe,

2018 ). Multiple recent studies have proposed methods that, to

some extent, address the lack of transparency ( Gal and Ghahra-

mani, 2016; Kendall and Gal, 2017; Springenberg et al., 2015; Zeiler

and Fergus, 2014; Bach et al., 2015; Simonyan et al., 2013 ), and

they have seen some use in analysis of medical images ( Dubost

et al., 2019; Zech et al., 2018 ) However, these methods have yet

to be utilized in DSSs for colorectal polyp segmentation based on

deep learning. 

Our contributions are the following: 2 

• We incorporate and develop recent advances in the field of

deep learning for semantic segmentation of colorectal polyps

in order to create deep models that provide uncertainty mea-

sures along with their prediction. Results indicate that erro-

neous predictions show a significantly higher degree of uncer-

tainty compared to correct predictions. Furthermore, we model

input feature importance to create interpretable deep models.

Results show that our models are considering shape and edge

information in order to segment polyps. 
• We propose a novel method for estimating uncertainty in the

importance of input features, which we refer to as Monte Carlo

Guided Backpropagation, and demonstrate how this method

can be used in the context of colorectal polyp segmentation. 

To the authors’ knowledge, none of the above points have been

previously explored in the context of semantic segmentation of

colorectal polyps. 
2 This work significantly extends our preliminary study ( Wickstrøm et al., 2018 ) 

by: (1) Including U-Net in our analysis; (2) significantly extending our experimental 

section by including new experiments on the 2015 MICCAI polyp detection chal- 

lenge ( Bernal et al., 2017 ) and the Endoscene dataset ( Vázquez et al., 2016 ) (3) 

proposing a novel method for estimating uncertainty in the importance of input 

features and evaluating our proposed method on two polyp segmentation datasets; 

(4) providing a more thorough literature background discussion and placing our 

work into a broader context. 
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. Models and methods 

In this section we introduce Fully Convolutional Networks

FCNs) and describe the three architectures utilized in this study.

ext, we explain how we incorporate uncertainty and inter-

retability in deep learning based DSSs ( Sections 2.2 and 2.3 ). Fi-

ally, we present our method for estimating the uncertainty asso-

iated with the importance of input features ( Section 2.4 ). 

.1. Fully convolutional networks 

FCNs are CNNs particularly suited to tackle per pixel prediction

roblems like semantic segmentation, i.e. providing a probability

core for what class each pixel belongs to. For instance, in the case

f semantic segmentation of colorectal polyps, each pixel is labeled

s a polyp or as part of the colon (background class). Segmentation

s considered a more challenging task than detecting or localizing

n object in an image, but provides more information. The shape

nformation provided by a meaningful segmentation map can for

xample be used to study anatomical structures or inspect other

egions of interest ( Sharma et al., 2010 ). 

We investigate three architectures for the task of polyp seg-

entation, namely the Fully Convolutional Network 8 (FCN-

) ( Shelhamer et al., 2017 ), U-Net ( Ronneberger et al., 2015 ) and

egNet ( Badrinarayanan et al., 2017 ) for the following reasons.

hese networks have been applied in a number of different do-

ains and are chosen to form a well-understood foundation for

ur studies. This enables uncertainty and interpretability experi-

ents to be the main focus. Previous use of the FCN-8 for polyp

egmentation has shown promising results ( Vázquez et al., 2016;

randao et al., 2017 ). SegNet has been shown to achieve compara-

le results to the FCN-8 in some applications but is a less memory

ntensive approach with fewer parameters to optimize. U-Net has

reviously demonstrated encouraging results on medical tasks and

oes also contain fewer parameters than the FCN-8, thus providing

 lightweight alternative. We include these different networks in

his study in order to compare what features are considered im-

ortant by different models and how uncertainty estimates differ

mong networks. The interested reader can find a detailed descrip-

ion along with figures of the three models in Appendix A . 

.2. Uncertainty in fully convolutional networks 

Despite their success on a number of different tasks, CNNs are

ot without flaws. One of these flaws, which becomes especially

pparent for medical applications, is their inability to provide any

otion of uncertainty in their prediction. When a physician is con-

idering the symptoms of a patient and contemplates what medi-

ation to prescribe there might be several viable options, and the

nal decision might spell the difference between a fatal or favor-

ble outcome. Since the stakes are so high, physicians will have

o weight the different options and reflect on which choice is most

ikely to have a favorable outcome. If a physician decides to consult

 DSS based on a CNN, she or he would be presented with a rec-

mmendation that has no indication as to how likely a desirable

utcome is, thus making it difficult for the physician to trust the

ystem. Although the softmax output regularly found at the end of

 CNN is sometimes interpreted as model confidence, this is gener-

lly ill-advised ( Gal and Ghahramani, 2016 ) and other approaches

ust be considered. 

In contrast, Bayesian models provide a framework which

aturally includes uncertainty by modeling posterior distri-

ution for the quantities in question. Given a dataset D ≡
x n ∈ R 

D , y n ∈ R 

C 
}N 

n =1 
, where x n denotes an input vector and y n 

enotes its corresponding one-hot encoded label vector, the pre-

ictive distribution of a Bayesian neural network for a new pair of
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Fig. 1. Illustration of the Monte Carlo Dropout procedure. The same input image is 

passed through a trained FCN with Dropout applied T times, resulting in T different 

predictions. The standard deviation of each pixel is then estimated based on these 

T predictions. 
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amples { x ∗ , y ∗ } can be modeled as: 

p(y ∗| x ∗, D) = 

∫ 
p(y ∗| x ∗, W ) p(W | x ∗, D) dW (1)

n Eq. (1) , W refers to the weights of the model, p ( y ∗ | x ∗ , W ) is

he softmax function applied to the output of the model, denoted
ig. 2. Figure displays the prediction, uncertainty map, and interpretability map for the 

iewed in color. 
y f W 

( x ∗ ), and p(W | x ∗, D) is the posterior over the weights which

apture the set of plausible model parameters for the given data.

btaining p ( y ∗ | x ∗ , W ) only requires a forward pass of the net-

ork, but the inability to evaluate the posterior of the weights an-

lytically makes Bayesian neural networks computationally infeasi-

le. To sidestep the problematic posterior of the weights, ( Gal and

hahramani, 2016 ) proposed to incorporate Dropout as a method

or sampling sets of weights from the trained network to approxi-

ate the posterior of the weights. The predictive distribution from

q. (1) can then be approximated using Monte Carlo integration as

ollows: 

p(y ∗| x ∗, D) ≈ 1 

T 

T ∑ 

t=1 

Softmax ( f W 

∗
t 
(x ∗)) (2)

here T is the number of sampled sets of weights and W 

∗
t is a

et of sampled weights. In practice, the predictive distribution from

q. (2) can be estimated by running T forward passes of a model

ith Dropout applied to produce T predictions and then computing

he standard deviation over the softmax outputs of the T samples.

e will refer to these uncertainty estimates as uncertainty maps.

his method of utilizing Dropout for sampling from the posterior

f the predictive distribution is referred to as Monte Carlo Dropout,

nd the method is illustrated in Fig. 1 . 

.3. Interpretability in fully convolutional networks 

Another desirable property which CNNs lack is interpretability,

.e. being able to determine what features induce the network to

roduce a particular prediction. For instance, a physician might be

nterested in discerning what information the prediction of a given

SS is based on, and if it concurs with medical knowledge. A CNN-

ased DSS has no inherent way of providing such an explanation.

owever, several recent works have proposed different methods

o increase network interpretability ( Zeiler and Fergus, 2014; Bach

t al., 2015 ). In this paper, we evaluate and develop the Guided

ackpropagation ( Springenberg et al., 2015 ) technique for FCNs on

he task of semantic segmentation of colorectal polyps in order to
FCN-8, SegNet and U-Net, for the input image shown in the leftmost column. Best 
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Fig. 3. Precision and recall vs uncertainty plot for background and polyp class on 

the Endoscene test set. 
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assess which pixels in the input image the network deems impor-

tant for identifying polyps. We choose Guided Backpropagation as

it is known to produce clearer visualizations of salient input pix-

els compared to other methods ( Zeiler and Fergus, 2014; Simonyan

et al., 2013 ). We refer to these visualizations of salient pixels as

interpretability maps. 

The central idea of Guided Backpropagation is the interpretation

of the gradients of the network with respect to an input image.

Simonyan et al. (2013) exploited that, for a given image, the mag-

nitude of the gradients indicate which pixels in the input image

need to be changed the least to affect the prediction the most. By

utilizing backpropagation ( Rumelhart et al., 1988; Werbos, 1974 ),

they obtained the gradients corresponding to each pixel in the in-

put such that they could visualize what features the network con-

siders essential. Springenberg et al. (2015) argued that positive gra-

dients with a large magnitude indicate pixels of high importance

while negative gradients with a large magnitude indicate pixels

which the networks want to suppress. If these negative gradients

are included in the visualization of important pixels it might re-

sult in noisy visualization of descriptive features. In order to avoid

noisy visualizations the Guided Backpropagation procedure alters

the backward pass of a neural network such that negative gradi-

ents are set to zero in each layer, thus allowing only positive gradi-

ents to flow backward through the network and highlighting pixels

that the system finds important. 
.4. Monte carlo guided backpropagation: Uncertainty in input 

eature importance 

To determine the uncertainty associated with an input feature’s

mportance for the prediction, we propose a novel approach in-

pired by Monte Carlo Dropout combined with Guided Backprop-

gation. In Section 2.2 we discussed CNNs inability to produce

ny notion of uncertainty and described Monte Carlo Dropout,

hich provides a method to obtain approximate measures of un-

ertainty for CNNs by utilizing Dropout during inference. Accom-

anying a model’s prediction with an uncertainty estimate adds

he option to assess if a particular prediction is highly certain or

 case that could require further analysis from a human expert. In

ection 2.3 we described Guided Backpropagation, a technique de-

eloped to visualize the relative importance of input features for

NNs by considering the positive gradients from a backward pass

hrough the network. But, determining the importance of the in-

ut features based on gradients from a single backward pass en-

ounters the same issue we discussed regarding decisions based

n predictions from a single forward pass. How confident are we

hat these features are important for the decision of the network? 

Given a new sample x ∗ , we want to find the gradients that cor-

espond to the input features, denoted by δ0 . Taking a similar ap-

roach as in Section 2.2 , the approximate predictive distribution

or the gradients of the input features is given by 

 ( δ
0 | x ∗) = 

∫ 
p( δ

0 | x ∗, θ) q ( θ) d θ. (3)

alculating p ( δ0 | x ∗ , θ) is done through the backpropagation algo-

ithm, i.e. computing the gradients with respect to the output of

he network and then using the chain rule to work backward to-

ard the input gradients. Also, we modify the backward pass such

hat negative gradients are canceled, following the Guided Back-

ropagation procedure. For clear notation, we denote this proce-

ure as ∇ θ f gb ( x ∗ ; θ), where ∇ θ indicate finding the gradients of

ach layer with respect to the parameters of the network and

 

gb ( x ∗ ; θ) is the prediction of the model with the modified back-

ard pass. The predictive distribution in Eq. (1) can then be ap-

roximated using Monte Carlo integration as follows: 

 ( δ
0 | x ∗) = 

1 

T 

T ∑ 

t=1 

∇ θ f gb (x ∗; W 

∗
t ) . (4)

n practice, this amounts to performing T forward and backward

asses with Dropout applied and computing the standard deviation

ver the gradients of each input pixel over all T samples. We refer

o this method of estimating gradient uncertainty as Monte Carlo

uided Backpropagation. 

. Experiments 

.1. Experimental setup 

We evaluate our methods on a recent benchmark dataset for

olyp segmentation, namely the EndoScene dataset ( Vázquez et al.,

016 ), which consists of 912 RGB images obtained from colono-

copies of 36 patients. Each input image has a corresponding an-

otated (labeled) image provided by physicians, where pixels be-

onging to a polyp are marked in white and pixels belonging to the

olon are marked in black. We consider the binary task of classi-

ying each pixel as polyp or part of the colon (background class).

ollowing the approach of Vázquez et al. (2016) we separate the

ataset into a training, validation, and test set. The training set

onsists of 20 patients and 547 images, the validation set consists

f 8 patients and 183 images, and the test set consists of 8 patients

nd 182 images. All RGB input images are normalized to the range

0,1]. All models were trained using ADAM ( Kingma and Ba, 2014 )
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Fig. 4. Figure displays the prediction, uncertainty map, and interpretability map for the FCN-8, SegNet and U-Net, for the input image shown in the leftmost column. Best 

viewed in color. 

Table 1 

Results on the EndoScene test dataset. 

Model # Parameters(M) IoU background IoU polyp Mean IoU Global Accuracy 

SDEM ( Bernal et al., 2014 ) - 0.799 0.221 0.412 0.756 

U-Net 27.5 0.945 0.516 0.723 0.945 

SegNet 29.5 0.933 0.522 0.727 0.935 

FCN-8 ( Vázquez et al., 2016 ) 134.5 0.946 0.509 0.727 0.949 

FCN-8 134.5 0.946 0.587 0.767 0.949 
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ith a batch size of 10 and a cross-entropy loss. We use the val-

dation set to apply early stopping by monitoring the polyp IoU

core with a patience of 30. For performance evaluation, we calcu-

ate the Intersection over Union (IoU) metric and global accuracy

per-pixel accuracy) on the test set. For a given class c , prediction

ˆ  i and ground truth y i , the IoU is defined as 

oU (c) = 

∑ 

i ( ̂  y i == c ∧ y i == c) ∑ 

i ( ̂  y i == c ∨ y i == c) 
(5) 

here ∧ is the logical and operation and ∨ is the logical or opera-

ion. 

Additionally, we evaluated our proposed method for estimating

ncertainty in input feature importance on the 2015 MICCAI polyp

etection challenge ( Bernal et al., 2017 ). As the test images of this

ataset are of high quality and our proposed approach is mostly

 visual technique, assessing our method on this data will provide

urther validation of our method. 

.2. Quantitative and qualitative results 

Quantitative results In Table 1 we report our results for the FCN-

, SegNet and U-Net along with the results of previous works on

olyp segmentation from both traditional machine learning and

eep learning based approaches. The traditional machine learn-

ng method computes a histogram based on the pixel values and

ses peaks and valleys information from the histogram to per-

orm segmentation. It is referred to as the Segmentation from En-

rgy Maps (SDEM) algorithm ( Bernal et al., 2014 ). For the deep

earning approach, segmentation is performed using the FCN-8,
ut without Batch Normalization or transfer learning. This ap-

roach is referred to as FCN-8 in Table 1 . The results show that

ll deep learning approaches significantly outperform the more

raditional machine learning approach, and the difference in per-

ormance between our implementation of the FCN-8 and that of

ázquez et al. (2016) demonstrates that including recent advances

n deep learning methodology can improve performance. 

Qualitative results Fig. 2 (b) and 4 (b) displays some qualita-

ive results on the test data for the FCN-8, SegNet and U-Net.

ig. 2 shows a typical example where a large, elliptical polyp is lo-

ated with high precision by all three models. In Fig. 4 we present

 more challenging example where all models fail to locate the

mall polyp present in the image. Interested readers can find addi-

ional results in Appendixs B and C . 

.3. Modeling uncertainty in prediction 

Figs. 2 (c) and 4 (c) present examples of uncertainty estimation

or the FCN-8, SegNet and U-Net, respectively, using Monte Carlo

ropout. These uncertainty maps are obtained by sampling 10 pre-

ictions from each model with a dropout rate of 0.5 and estimat-

ng the standard deviation for each pixel. Pixels displayed in bright

reen are associated with high uncertainty while pixels displayed

n dark blue are associated with low uncertainty. 

The example shown in Fig. 2 shows that all models have high

onfidence for most pixels in their prediction, with the exception

f pixels around the border of the polyp itself. This is reasonable,

s it is difficult to assess exactly where the polyp starts and the

olon ends. In the example shown in Fig. 4 , where all models make
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Fig. 5. Figure displays input image (a), ground truth (b), prediction with uncertainty overlaid (c), input feature importance (d), and uncertainty in input feature importance 

(e). For the uncertainty in input feature importance results, pixels colored green indicate that the features are important for the prediction of polyps and that the model is 

certain of its importance. Pixels colored red indicate features that might be important for the prediction of polyps but the model is uncertain of its importance. Best viewed 

in color. Input image originated from the MICCAI dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 6. Figure displays input image (a), ground truth (b), prediction with uncertainty overlaid (c), input feature importance (d), and uncertainty in input feature importance 

(e). For the uncertainty in input feature importance results, pixels colored green indicate that the features are important for the prediction of polyps and that the model is 

certain of its importance. Pixels colored red indicate features that might be important for the prediction of polyps but the model is uncertain of its importance. Best viewed 

in color. Input image originated from the Endoscene dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 7. Figure displays input image (a), ground truth (b), prediction with uncertainty overlaid (c), input feature importance (d), and uncertainty in input feature importance 

(e). For the uncertainty in input feature importance results, pixels colored green indicate that the features are important for the prediction of polyps and that the model is 

certain of its importance. Pixels colored red indicate features that might be important for the prediction of polyps but the model is uncertain of its importance. Best viewed 

in color. Input image originated from the MICCAI dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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naccurate predictions, the uncertainty estimates look notably dif-

erent, with large regions of uncertainty for all three models. The

xamples shown in Figs. 2 and 4 demonstrate how seemingly simi-

ar predictions can have different uncertainty estimates for the dif-

erent types of networks investigated in this work, and that er-

oneous predictions show distinctively different uncertainty esti-

ates than correct predictions. 

Fig. 3 displays how precision and recall is related to uncer-

ainty in predictions. It shows the overall precision and recall for

ach class on the Endoscene test dataset when pixel with a mean-

lass uncertainty above a certain threshold are excluded. The es-

imated uncertainty for each class have been normalized into val-

es between 0 and 1. Results in Fig. 3 (a) display how precision

ecreases as more pixel predictions with high uncertainty are in-

luded. This connection between precision and uncertainty agrees

ith the qualitative examples in Figs. 2 and 4 discussed above. Re-

ults in Fig. 3 (b) show how recall slightly increases for the polyp

lass at a low uncertainty threshold, but then remains unchanged

or both classes. The interested reader can find a similar experi-

ent on the MICCAI dataset in Appendix C . 

.4. Modeling input feature importance 

Figs. 2 (d) and 4 (d) show examples where Guided Backpropa-

ation has been used to analyze the FCN-8, SegNet and U-Net, re-

pectively. Pixels displayed in bright green are associated with pix-

ls that are important to the prediction of the model while pixels

isplayed in blue are associated with pixels that are less important

o the final prediction. 

Fig. 2 indicates that all models are considering the edges of the

olyp to make their prediction, where particularly the leftmost and

ottom edge of the polyp is highlighted as important by all mod-

ls. Fig. 4 , where all models fail to locate the polyp, displays more

isagreement between the models as to what pixels are important.

.5. Modeling uncertainty in input feature importance 

In order to focus on the new methodology we only use one

odel to evaluate our proposed method. The overall best perform-

ng segmentation model, FCN-8, was chosen to evaluate the pro-

osed methodology for estimating uncertainty in input feature im-

ortance and demonstrate its merit. Figs. 5–7 presents examples of

ncertainty estimation for input feature importance for the FCN-8

sing Monte Carlo Guided Backpropagation. These results are ob-

ained by sampling 10 gradient estimates from each model with a

ropout rate of 0.5. The figures display: (a) the input image; (b)

he ground truth; (c) prediction with uncertainty overlaid; (d) in-

ut feature importance; and (e) uncertainty in input feature im-

ortance. For the uncertainty in input feature importance results,

ixels colored green indicate that the features are important for

he prediction of polyps and that the model is certain of its impor-

ance. Pixels colored red indicate features that might be important

or the prediction of polyps but the model is uncertain of its im-

ortance. Examples shown in Figs. 5 and 7 are from the test set of

he MICCAI dataset while the example shown in Fig. 6 is from the

est set of the Endoscene dataset. Interested readers can find addi-

ional examples of uncertainty estimation for input feature impor-

ance in Appendix B . 

Fig. 5 displays an example where the FCN-8 makes a successful

egmentation. The interpretability map in Fig. 5 (d) indicates that

here are two regions of importance in the input image, one cor-

esponding to the polyp and one region towards the leftmost part

f the image. However, the uncertainty in the input feature impor-

ance map in Fig. 5 (e) shows that the model is uncertain of the

eftmost feature’s importance, while the features corresponding to

he polyp itself have a high degree of certainty. 
Fig. 6 shows another example where the FCN-8 makes a suc-

essful segmentation, but also highlight important input features

owards the leftmost part of the image, in addition to the polyp

tself. Fig. 6 (e) displays that the FCN-8 is highly confident in the

mportance of the features corresponding to the polyp itself, but

ndicate a high degree of uncertainty for the highlighted regions

owards the leftmost part of the image. 

Fig. 7 exhibits an example from the MICCAI dataset where the

CN-8 fails to locate the polyp present in the image, but instead

egments a large portion of the colon as polyp. While the inter-

retability maps in Fig. 7 (d) show large regions of important pix-

ls, it is evident from Fig. 7 (e) that none of the regions have

 high degree of importance. As the prediction with uncertainty

verlayed in Fig. 7 (e) also indicates regions of uncertainty, practi-

ioners would be wary to trust the model’s prediction in this case.

. Conclusion 

In this work we have demonstrated how DSSs based on deep

earning can be interpretable and provide uncertainty estimates

ith their predictions. Moreover, we presented a novel method

or estimating uncertainty in input feature importance and demon-

trated how this technique can be used to model uncertainty in

nput pixel importance. Our results demonstrate that the models

onsidered in these experiments exploit edge and shape informa-

ion of polyps in order to make their predictions and that uncer-

ainty differs significantly between false and correct predictions. 
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ppendix A. Network details 

In order to perform per pixel predictions, FCNs employ an

ncoder-decoder architecture and are capable of end-to-end learn-

ng. The encoder network extracts useful features from an image

nd maps it to a low-resolution representation. The decoder net-

ork is tasked with mapping the low-resolution representation

ack into the same resolution as the input image. Upsampling in

CNs is performed using a fixed upsampling approach, like bi-

inear or nearest neighbor interpolation, or by learning the upsam-

ling procedure as part of the model optimization via transposed

onvolutions. Learned upsampling filters add additional parameters

o the network architecture, but tend to provide better overall re-

ults ( Shelhamer et al., 2017 ). Upsampling can further be improved

y including skip connections, which combine coarse level seman-

ic information with higher resolution segmentation from previous

etwork layers. Due to the lack of fully connected layers, inference

an be performed on images of arbitrary size. 

1. FCN-8 

The FCN-8 was introduced by Shelhamer et al. (2017) and con-

ists of an encoder network and a decoder network, where the en-

oder network is based on the VGG-16 architecture ( Simonyan and

isserman, 2015 ) and consists of five encoders. The decoder net-

ork consists of three decoders. Dropout ( Srivastava et al., 2014 ), a

egularization technique that randomly set units in a layer to zero,

s included between all layers of the first decoder. Upsampling is
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Fig. A.8. An illustration of the FCN-8. Color codes description: Blue - Convolu- 

tion (3x3), Batch Normalization and ReLU; Yellow - Upsampling; Pink - Summing; 

Red - Pooling (2x2); Green - Soft-max. Dropout was included as proposed by 

Simonyan and Zisserman (2015) (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.). 

Fig. A.9. An illustration of the U-Net. Color codes description: Blue - Convolution 

(3x3), Batch Normalization and ReLU; Green - Soft-max; Yellow arrow - Upsam- 

pling; Black arrow - Concatenate; Red arrow - Pooling (2x2) (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.). 
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Fig. A.10. An illustration of SegNet, originally obtained from Badrinarayanan et al. (2017)

Green - Soft-max; Yellow arrow - Upsampling; Black arrow - Concatenate; Red arrow - Po

reader is referred to the web version of this article.). 
erformed using transposed convolutions at the end of each en-

oder and skip connections are included between the three central

ncoders and the decoders. Note that we have added Batch Nor-

alization ( Ioffe and Szegedy, 2015 ) in our implementation and

hat the encoder weights are initialized with pretrained weights

rom a VGG16 model ( Simonyan and Zisserman, 2015 ) that was

reviously trained on the ImageNet dataset ( Deng et al., 2009 ). 

2. U-Net 

One of the first networks to build upon FCNs was the U-

et ( Ronneberger et al., 2015 ), which is comprised of an encoder

etwork consisting of five encoders and a decoder network con-

isting of four decoders. U-Net introduced an alternative method

o recover the resolution of the data where the feature maps pro-

uced in the fifth encoder is upsampled by a factor of two using

ransposed convolution and concatenated with the feature maps

roduced by the fourth encoder. These combined feature maps are

assed into the first decoder, which in turn is upsampled and con-

atenated with the feature maps of the third encoder. This process

s repeated until the resolution of the input feature map is recov-

red. The final decoder is followed by a 1 × 1 convolutions that

aps the feature vector into the desired number of classes and a

oftmax function. Dropout is applied after each layer of the final

ncoder. We included Batch Normalization after each layer, except

or layers preceding a transposed convolution and the final layer. 

3. SegNet 

Both the FCN-8 and the U-Net rely on transposed convolutions

o recover feature maps with the same resolution as the input fea-

ures. SegNet ( Badrinarayanan et al., 2017 ), instead, presents an-

ther option and is made up of a symmetrically structured en-

oder decoder network, where the encoder network consists of five

ncoders based on the VGG-16 ( Simonyan and Zisserman, 2015 )

nd the decoder consists of five decoders. The decoder network is

dentical to the encoder network but with the max-pooling opera-

ion replaced by a max-unpooling operation. When a feature map

s downsampled the max-pooling indices are stored and used at

 later stage to perform non-linear upsampling, a procedure with

everal advantages. Firstly, it produces sparse feature maps that are

omputationally attractive and implicit feature selectors. Secondly,

t removes the need to learn additional filter for upsampling, thus

educing the number of parameters in the model. Dropout was

ncluded after the three central encoders and decoders inspired

y Kendall et al. (2015) . 
 . Color codes description: Blue - Convolution (3x3), Batch Normalization and ReLU; 

oling (2x2) (For interpretation of the references to colour in this figure legend, the 
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A

the Endoscene dataset for the FCN-8, SegNet and U-Net, respectively. 

E th, prediction, uncertainty map, and interpretability map. Results were 

o . 

nty in input feature importance for the FCN-8. These results are also 

o r. 

F

f

a

i

r

ppendix B. additional qualitative results 

Figs. B.11–B.13 display additional results on test images from 

ach row represents, from top to bottom, input image, ground tru

btained using the same procedure as described in the main paper

Figs. B.14–B.16 display additional results of estimating uncertai

btained following the same procedure described in the main pape
ig. B.11. Figure displays FCN-8’s predictions, the uncertainty map associated with the predictions, and the input features the network deems important. Each row represents, 

rom top to bottom, input image, ground truth, prediction, uncertainty map, and interpretability map. White pixels are classified as polyps and black pixels are classified 

s background class. For the uncertainty maps, dark blue pixels are associated with low uncertainty and bright green pixels are associated with high uncertainty. For the 

nterpretability maps, bright green pixels are considered important to the prediction of the network. (For interpretation of the references to colour in this figure legend, the 

eader is referred to the web version of this article.) 
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Fig. B.12. Figure displays SegNet’s predictions, the uncertainty map associated with the predictions, and the input features the network deems important. Each row rep- 

resents, from top to bottom, input image, ground truth, prediction, uncertainty map, and interpretability map. White pixels are classified as polyps and black pixels are 

classified as background class. For the uncertainty maps, dark blue pixels are associated with low uncertainty and bright green pixels are associated with high uncertainty. 

For the interpretability maps, bright green pixels are considered important to the prediction of the network. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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Fig. B.13. Figure displays U-Net’s predictions, the uncertainty map associated with the predictions, and the input features the network deems important. Each row represents, 

from top to bottom, input image, ground truth, prediction, uncertainty map, and interpretability map. White pixels are classified as polyps and black pixels are classified 

as background class. For the uncertainty maps, dark blue pixels are associated with low uncertainty and bright green pixels are associated with high uncertainty. For the 

interpretability maps, bright green pixels are considered important to the prediction of the network. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. B.14. Figure displays input image (a), ground truth (b), prediction with uncertainty overlaid (c), input feature importance (d), and uncertainty in input feature importance 

(e). For the uncertainty in input feature importance results, pixels colored green indicate that the features are important for the prediction of polyps and that the model is 

certain of its importance. Pixels colored red indicate features that might be important for the prediction of polyps but the model is uncertain of its importance. Best viewed 

in color. Input image originated from the MICCAI dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. B.15. Figure displays input image (a), ground truth (b), prediction with uncertainty overlaid (c), input feature importance (d), and uncertainty in input feature importance 

(e). For the uncertainty in input feature importance results, pixels colored green indicate that the features are important for the prediction of polyps and that the model is 

certain of its importance. Pixels colored red indicate features that might be important for the prediction of polyps but the model is uncertain of its importance. Best viewed 

in color. Input image originated from the Endoscene dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. B.16. Figure displays input image (a), ground truth (b), prediction with uncertainty overlaid (c), input feature importance (d), and uncertainty in input feature importance 

(e). For the uncertainty in input feature importance results, pixels colored green indicate that the features are important for the prediction of polyps and that the model is 

certain of its importance. Pixels colored red indicate features that might be important for the prediction of polyps but the model is uncertain of its importance. Best viewed 

in color. Input image originated from the Endoscene dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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A

m the MICCAI dataset for the FCN-8, SegNet and U-Net, respectively. 

R he main paper. Fig. C.19 displays how precision and recall is related to 

u xperiment described in Section 3.3 . 

F

t

F

t

ppendix C. Additional Qualitative Results on MICCAI dataset 

Fig. C.17 and C.18 display additional results on test images fro

esults were obtained using the same procedure as described in t

ncertainty in predictions on the MICCAI test data, similar to the e
ig. C.17. Figure displays the prediction, uncertainty map, and interpretability map for the FCN-8, SegNet and U-Net, for the input image from the MICCAI dataset shown in 

he leftmost column. Best viewed in color. 

ig. C.18. Figure displays the prediction, uncertainty map, and interpretability map for the FCN-8, SegNet and U-Net, for the input image from the MICCAI dataset shown in 

he leftmost column. Best viewed in color. 



18 K. Wickstrøm, M. Kampffmeyer and R. Jenssen / Medical Image Analysis 60 (2020) 101619 

Fig. C.19. Precision and recall vs uncertainty plot for background and polyp class on the MICCAI test set. 
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