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Abstract

Change detection in earth observation remote sensing images can be used
to describe the extent of natural disasters, e.g., forest �res and �oods.
When time is of the essence, the ability to utilize heterogeneous images
is fundamental, i.e., images that are not directly comparable due to the
sensors used or the capturing conditions.

The recent advances in machine learning have dispersed into the �eld of
change detection in earth observation remote sensing images, and several
methods utilizing machine learning principles have been proposed.

One promising paradigm to approach heterogeneous change detection from
is paired image�to�image translation. If images captured with di�erent
sensors under varying conditions can be adequately mapped between their
respective imaging domains to compare them directly, can changes be high-
lighted.

Performing change detection in an unsupervised setting is crucial for the
current state of the art methods, as the inference models are trained to do
change detection on one particular dataset, i.e., the models do not have
generalization capabilities. A production system must thus be able to de-
scribe a current natural disaster without access to ground truth, i.e., it
must perform an unsupervised sample selection to train the image�to�image
translation maps.

Luppino et al. [2] proposed an unsupervised change detection method uti-
lizing a�nity norms, which was later improved in [1]. This a�nity norm
method was used to produce initial change maps (ICMs), used for sample
selection in the training of two convolutional neural network (CNN) archi-
tectures: ACE-net and X-net [1]. These image�to�image translation CNNs
were trained using a cross�domain loss term weighted with the ICM, and
a loss term that enforces cyclic consistency.

A�nity matrices describe neighborhood structures and are used in com-
puter vision to solve e.g., foreground�background separation problems. In-
spired by the use of a�nity matrices to produce initial change maps [2], we
had the idea that a�nity matrices could also be used during the training
phase of the image translation CNNs. The core realization is that for an
image X ∈ X mapped with an image translation CNN TX : X → Y to
produce Ŷ = TX (X), the a�nity structure should be retained, i.e., the
a�nity matrix of X and Ŷ should be similar.

Based on this realization, we herein propose an a�nity�guiding loss term
for training paired image�to�image translation maps.

The loss term is used to train the A�nity�guided X-net (AX-net), and its
performance is evaluated and compared to X-net [1] in an ablation study.
Ablation studies are crucial for deep learning research [3] and aim to identify
parts of a machine learning model that does not contribute to its inference.
This ablation study aims to isolate the contribution of the three loss terms
in the optimization of the CNNs.
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The experimental results indicate that the a�nity�guiding loss term is ben-
e�cial, but increases the optimization time signi�cantly. Speci�cally, the
a�nity�guiding loss term can replace the cyclic consistency term. If that
would be the case, one can consider simplifying the model by removing an
entire CNN as the ability to cycle the image translation is not any longer
needed.

Ablation studies are crucial for deep learning research

� François Chollet
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1. Introduction

This section describes the motivation of the thesis. It explains the societal
impact of change detection in heterogeneous remote sensing images for
earth observation and the added value of being able to utilize heterogeneous
images for this purpose. It also gives an overview of the technical challenges
that we are faced with in this endeavor. The main hypothesis to be tested
and the central research tasks are presented. An overview of the thesis is
laid out, and the main contributions are highlighted.

1.1. Motivation

Nature is in �ux, as natural and human�caused trends and events changes
the surface of the Earth. Change detection encompasses the quanti�ca-
tion of such temporal phenomena [4]. Observing and describing change on
the surface of the Earth have many practical uses such as environmental
monitoring including deserti�cation, deforestation and glaciers, landscape
monitoring including urban areas, forests and wetland, and monitoring of
natural disasters including forest �res, drought, �oods and landslides [5].
Change detection systems are designed to automatically identify changes
between satellite images captured in the same area at di�erent times.

For change detection after natural disasters the response time is of the
essence, and it is desirable to utilize images that are captured as close in
time to the event as possible. This often means using images captured
with di�erent sensors, i.e., heterogeneous images. This poses two technical
challenges, as the images cannot be directly compared, and no ground
truth is available to train the system, i.e, the system must be trained in an
unsupervised manner.

In the last decade, mapping of change phenomena in multi-source remote
sensing images has gained increasing attention, and the algorithmic break-
throughs in machine learning have accelerated this. Nevertheless, unsuper-
vised change detection in heterogeneous images is still very much an open
research topic, and several approaches based on image�to�image transla-
tion have been proposed [1, 2, 6�9] in the last couple of years.

A�nity matrices encode pixel-to-pixel similarities in images. It was re-
cently shown that a�nity information can be used to produce decent change
maps on its own, which have further been used as priors to guide unsuper-
vised training [1, 2]. The core hypothesis of this thesis is that a�nity
information can also be used more explicitly to directly guide the training
of image translation maps as part of the loss function. The core insight
motivating the proposed loss term is that the a�nity information should
be consistent through an image-to-image translation.
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1 � Introduction

1.2. Hypothesis

The hypothesis of this Master's thesis is:

It is useful to explicitly include a�nity information in the loss function
when training paired image-to-image translation models for change
detection in earth observation remote sensing images.

1.3. Research Tasks

Hypothetico-deductive method is used in an attempt to falsify this hypoth-
esis. In this process the problem has been decomposed into the following
research tasks:

• Introduce the di�erence of the a�nity matrices of the cross-domain
images as a loss term in the training of paired image-to-image trans-
lation networks;

• Use this a�nity�guiding loss term as part of the X-net model [1];

• Perform an ablation study to decompose the contributions of the var-
ious loss terms in the a�nity�guided X-net;

• Evaluate whether a�nity guiding is bene�cial. The desired improve-
ment is to increase the average κ-score without adding much variance
or greatly increase the time or memory complexity, compared against
X-net[1];

• Retain the relatively simple loss function in [1].

1.4. Organization of the Thesis

This thesis is organized in three main parts, which again are divided into
sections.

Part I o�ers a summary of background theory related to the proposed
a�nity�based image�to�image translation loss term and change detection
model. Change detection is de�ned in Section 2, and described in the
context of heterogeneous remote sensing in earth observation images. A
summary of related works is also provided, with emphasize on machine
learning methods. Section 3 provides de�nitions of proximity measures,
and a description of proximity graphs and a�nity matrices. Section 4
gives a brief introduction to the machine learning methodology necessary
to understand the proposed model and the related models presented in
Section 2.

In Part II is �rst the a�nity�guiding loss term proposed in Section 5. A de-
scription of X-net [1] and its a�nity�guided extension follows in Section 6,
which also contains a subsection with implementational details.
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In Part III is �rst the experimental setup for the ablation study presented
in Section 7. A description of the remote sensing earth observation datasets
used follows in Section 8. In Section 9 are results and observations from
the ablation study presented.

Part IV o�ers some concluding remarks and ideas for future work.

1.5. Contributions

My contributions through this thesis and my work with it includes:

• A considerable contribution in discussions on ongoing change detec-
tion projects in the research group.

• Formulation of the research questions for this thesis.

• Propososition of the a�nity�guiding loss term for image�to�image
translation problems.

• Implementation of the a�nity�guided X-net1 model.

• Proposition of an ablation study in order to understand the contribu-
tions of the loss terms in the proposed change detection model.

• Ported large parts of the code for the project from TensorFlow 1.04
to TensorFlow 2.0. It is now an extensive code-base with good doc-
umentation, which is used in several ongoing research projects in the
research group.

1The code is available at github.com/MadsAdrian/MastersThesis.
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Part I � Technical Background

2. Change Detection

Detecting changes in images is conceptually simple. Radke et al. [10] de-
scribes the goal of change detection as identifying pixels that are "sig-
ni�cantly di�erent" between a pair of images of the same scene taken at
di�erent times. Although this describes the algorithmic goal, it does not
describe the goal of the change detection process. The underlying assump-
tion is that some event has caused the scene or some object in it to change,
and the ultimate goal is to describe or quantify the extent of this change.
Furthermore, identifying pixel di�erences presuppose that the only signif-
icant di�erences between the images are caused by the event of interest,
which does not account for e.g. noise. Thus, there is a fundamental di�er-
ence between identifying changes in the pixels representing an object and
changes in the objects state. Singh [11] phrases change detection as the
process of identifying di�erences in the state of an object or phenomenon by ob-
serving it at di�erent times. This better captures the subtlety of the problem.
Inspired by these formulations, the following de�nition will be used for the
context of this thesis.

De�nition 1 (Change Detection) Assume that an object or scene is in one
state at time t1 and in a di�erent state at time t2. Given a representation of the
object or scene in domain X at time t1 and in domain Y at time t2, change
detection is the process of identifying the di�erences in the representations due
to the changed state of the object.

Identifying such di�erences can help describe the changed state of the ob-
ject. Change detection will herein be discussed in the context of remote
sensing for earth observation. The applications of change detection in im-
ages are not limited to remote sensing, but can also be relevant for e.g.
medical diagnosis and treatment, surveillance, civil infrastructure, under-
water sensing and driver assistance systems [10].

In remote sensing for earth observation, the scene is typically an area on
the surface of the Earth, and di�erent natural or anthropogenic2 events
or e�ects can cause changes in the scene. Changes can be dramatic and
abrupt, or more subtle and gradual, and change can thus be understood
either in a binary fashion or as a continuum [4].

The changed state of the object can be the result of sudden events such
as forest �res, drought, �oods or landslides [5]. It can also be the result
of di�use, long term e�ects causing changes in land-use and land-cover,
landscape, urban areas, forest or vegetation, wetland, or glaciers, or other

2Caused by humans
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Part I � Technical Background

environmental changes such as deserti�cation or deforestation. Change
detection is also used for crop monitoring and shifting cultivation monitor-
ing. Lu et al. [5] presents a comprehensive list of use-cases and references
to relevant articles.

2.1. Resolution

Methods and algorithms are a�ected by spatial, spectral, temporal and the-
matic constraints [4]. Depending on the event or e�ect of interest, di�erent
temporal, spatial and spectral resolutions are needed. Temporal resolution
refers to the length of the change interval t2 − t1, spatial resolution refers
to the area each pixel represents, and spectral resolution refers to which
electromagnetic frequency bands the sensor capture.

2.1.1. Temporal Resolution

There are limitations to the time resolution that can be achieved for remote
sensing data. The revisit period of the sensor determines how frequently
it is possible to acquire an image of a certain area. Weather conditions,
seasonal changes, and other temporal e�ects further in�uence whether the
event of interest can be observed in a pair of images captured at certain
times.

De�nition 1 considers bi-temporal change detection. This requires a pair
of images, and is more apt for exploring sudden changes, e.g. the e�ects
of natural disasters. For such scenarios, it is desirable that the images are
captured as close up to the event as possible. This ensures that the detected
changes are due to the event of interest, and not other factors.

Bi-temporal methods are generally indi�erent to what image was captured
�rst. "A change is a change", and without extra information it is not pos-
sible to determine which way the change happened. Semantic information
can in some cases determine what way the change happened, but can be
hard to incorporate into an automatic system. If a a forest �re is observed,
burnt forest will make it evident what image was captured �rst. It will
take years or decades for the forest to recover. For a �ooding event, this is
not as obvious, as the changes introduced by a �ood can be restored in a
matter of weeks.

Bi-temporal change detection can also be used to explore long term e�ects,
but has limited value for this use case, as it is not possible to describe the
rate of change. A related problem is trend detection or change trajectories,
which can be phrased as multi-temporal change detection. The methodol-
ogy and challenges are similar, but rather than a pair, a series of images is
used. This is more apt to explore long term e�ects, as the rate of change
can be described.

6



2 � Change Detection

The concepts of bi-temporal or multi-temporal also relates to whether
change is understood in a binary fashion or as a continuum. If change
is understood as a continuum, the extent of the change is quanti�ed on
pixel level, with a description of how much the pixel is changed rather than
if it is changed. This quanti�cation is easier in the multitemporal case, and
many multi-temporal methods can thus consider change as a continuum.
A continuous description of change can be thresholded to produce a binary
description.

For brevity, change detection will be discussed in the bi-temporal context
for the remainder of this chapter. The descriptions and reasoning can often
be extended to the multi-temporal framework, and trend detection can be
interpreted as a series of change detection problems.

2.1.2. Spatial Resolution

The change detection capabilities of any system are intrinsically limited
by the spatial resolution of the images [4]. The sensor must be able to
capture the required features to detect the desired changes. If the physical
extent/manifestation of a change is much smaller than the area a pixel
represents, the change might not in�uence the pixel enough to change its
value signi�cantly.

A too high resolution can complicate change detection, as small errors in the
registration3 becomes more notable, and pixel signatures are more a�ected
by the caption angle. In optical images can shadows cause issues, which is
more notable with a high resolution. A coarser resolution will smooth the
shadows.

Detecting e.g. deforestation of large forests can be done with a coarse reso-
lution. For other applications, can a �ner scale be necessary. A lower bound
on the error margins will be similar in order of magnitude to the scale of the
pixels. On change boundaries, residual misregistration at the below-pixel
level commonly degrades the assessment of the change event [4].

2.1.3. Spectral Resolution

Di�erent properties of the Earth's surface contribute to the re�ection of
energy in di�erent bands [12]. This holds true for both passive and active
sensors. Thus are there limitations to what changes can be detected with a
certain sensor. If the physical property changed by an event or e�ect is not
captured by the sensor, the change does not in�uence the representation of
the scene.

Speci�cally, if an area in a scene truly belongs to class a at time t1 and
class b at time t2, but the representation of a and b are indistinguishable
in domain X , the change cannot be detected by any system.

3Same pixel in both images representing the same location on earth. Same spatial resolution.
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2.2. Representation Domains

The homogeneity or heterogeneity of the representation domains X and Y
results in two main branches of change detection methodology. Homogene-
ity refers to both the kind of sensor used to capture the data, and the sensor
con�guration and physical conditions at the time of acquisition.

Homogeneous and heterogeneous change detection refers to change detec-
tion performed on homogeneous and heterogeneous data respectively. It
does not describe the method per se, but rather which data the method is
used on. Homogeneous change detection is the standard setup, but dur-
ing the last decade have heterogeneous setups become more common [13,
14].

2.2.1. Homogeneous Change Detection

Homogeneous refers to data captured by comparable sensors under similar
conditions. This can be understood as domains X and Y being the same, or
at least directly comparable. Despite not fully describing these assumptions,
unimodal4 is used synonymous with homogeneous.

Lu et al. [5] suggests that homogeneous data should be captured by the
same sensor with the same spectral and spatial resolution. Further, should
the acquisitions be (near) annual to handle e�ects from external sources
as Sun angle, and seasonal and phenological5 di�erences. These criteria
might be unnecessarily strict for the purpose of having comparable domains,
however they indicate what measures are required to be able to call the data
homogeneous.

These strong assumptions allows for fairly simple change detection meth-
ods. It is probably harder to make the data fully adhere to these strong
assumptions, than detecting changes if the assumptions are ful�lled.

Whether two images acquired at di�erent times can indeed be homogeneous
is a philosophical discussion. However, data have successfully been assumed
homogeneous with precise registration, radiometric and atmospheric cali-
bration, and normalization [5]. These measures can be su�cient to make
unimodal images homogeneous. This is probably the reason why the terms
are used synonymously.

For homogeneous data it is assumed that the images have similar statistical
characteristics [15]. This includes both the noise model and how each class
is represented in each image. Furthermore, the introduction of new classes
in one of the images could violate this assumption. For practical purposes,
the assumptions for homogeneous change detection can be summarized

4I.e. one image modality
5Related to periodic biological phenomena
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as the data being directly comparable after preprocessing. If the data is
unimodal, but the conditions for the two acquisitions are very di�erent,
preprocessing might not be su�cient. These cases should be considered a
heterogeneous problem.

2.2.2. Heterogeneous Change Detection

Heterogeneous data indicates that the domains X and Y are not directly
comparable. This can be the result of highly variable unimodal conditions,
or completely di�erent sensors that capture di�erent physical properties.
The latter case is also referred to as bimodal, multimodal, multisource,
multisensor, cross sensor, and information unbalanced data [2].

For unimodal images, it can be hard to preprocess away highly varying
conditions. Such cases can be considered as a heterogeneous problem to
alleviate the need for meticulous preprocessing. For multimodal images,
it is not possible to eliminate with preprocessing the fact that di�erent
sensors measures di�erent physical properties, and the representations lie
in di�erent domains.

Heterogeneous change detection is in general a much harder problem than
homogeneous change detection, and the two problems requires di�erent
conceptual solutions. In heterogeneous change detection, the local statistics
of the data can be radically di�erent [13], and the limited information
quality between heterogeneous images makes change detection di�cult to
accomplish [16].

Heterogeneous change detection have strong ties to domain adaptation, fea-
ture learning and image�to�image translation [1]. The dominant approach
is to somehow map one or both of the images to another domain where di-
rect comparison is possible. In this domain, homogeneous approaches can
be applied, as the representations are assumed directly comparable. This
involves obtaining maps either between the input domains, TX : X → Y
and/or TY : Y → X , or maps from the input domains to a common feature
space Z, SX : X → Z and SY : Y → Z.

The main motivation for heterogeneous methods is data availability. The
time resolution dictated by the revisit time of a given instrument may be
insu�cient in many applications. Data availability may be further con-
strained by for instance weather conditions (cloudiness preventing acqui-
sition of optical images) or by practical constraints such as con�icts in
acquisition scheduling due to other uses of the sensor. For sudden events,
it is desirable to use images acquired as close in time as possible before and
after the event [17].

For sudden events, it is important to exploit the �rst available acquisition
of the area, independent of its modality [14]. Synthetic Aperture Radar
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(SAR) images can be captured at night and with less sensitivity to weather
and atmospheric conditions. The images captured closest in time to the
event will thus often be taken with di�erent sensors, with the typical case of
one optical and one SAR image. Preevent optical images can be collected
from archives, while the �rst postevent images are SAR images for technical
reasons [13]. Thus is it desirable to compare images captured in di�erent
domains, and will typically have di�erent statistical behavior and di�erent
noise models.

2.3. Heterogeneous Change Detection Pipeline

The challenge of heterogeneous change detection is twofold; a) the di�erent
sensors provide di�erent descriptions of the same truth [18], and moreover
b) said truth changes.

The pipeline for change detection methods can roughly be divided into
three main steps:

a) preprocessing including calibration and registration,

b) change extraction including feature extraction, mapping between do-
mains as well as di�erence image computation, and

c) postprocessing, i.e. change map computation.

2.3.1. Preprocessing

Preprocessing is essential to achieve good change detection [4]. The goals
of the preprocessing process is to establish a more direct link between the
data and the biophysical phenomena it represents [4]. This can include the
steps image registration, removal of data acquisition errors and image noise,
aligning the noise models of the images (e.g. logarithmic transformation on
SAR images to obtain near-Gaussian class distributions) and/or normal-
ization. Other steps are masking of contaminated (e.g. cloudy) and/or
irrelevant (e.g. water bodies when looking at changes in vegetation) scene
fragments [4]. This can be summarized as preparing the data for change
detection by bringing the representations as close as possible to the truth
they represent. According to Lu et al. [5] the most important preprocess-
ing steps for change detection are multi-temporal image registration and
radiometric and atmospheric corrections.

Accurate image registration is absolutely essential [4], and misregistration
will most likely be detected as a change by many change detectors [14].

De�nition 2 (Image Registration) Image registration is the process of ge-
ometrically aligning two or more images of the same scene obtained at di�erent
times, from di�erent viewpoints, and/or by di�erent sensors [19].
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Zitová and Flusser [19] list four steps for typical image registration meth-
ods; feature detection, feature matching, transform model estimation, and
image resampling and transformation. Deep learning approaches to image
registration are increasingly common [20], and Dong et al. [21] propose a
Super Resolution CNN (SRCNN) approach which can be used to recover
spatial details from the higher resolution images after registration [22].

Other calibration steps attempts to align the images in the pixel feature
space because a common radiometric response allows quantitative anal-
ysis of more images [4]. Inherent noise will a�ect the change detection
capabilities of a system and can even create unreal change phenomena [4].
Absolute radiometric correction is not necessary for successfully change
detection, but the radiometric properties of the subject image need to be
adjusted to those of the reference image [4].

This thesis is mainly concerned with change extraction, and preprocess-
ing will not be covered in more detail. The required preprocessing of the
data used in the experiments are considered su�cient to solve the isolated
problems at hand.

2.3.2. Change Extraction

The goal of the change extraction process is to produce a di�erence image or
two images that can be reasoned about to produce the �nal change map.
In di�erence image approaches [23], homogeneous data allows for direct,
pixel-wise comparison of the images through pixel di�erence or ratio. For
optical multi-spectral images, comparison is usually performed with a pixel
by pixel, band by band image di�erence [14]. Due to the multiplicative
nature of speckle noise, the image ratio is more common when working
with SAR images [14].

For heterogeneous change detection, the change extraction process does in
general include transfering the images to a domain where they are directly
comparable. This domain can be either, or both, of the input domains,
as well as a common high dimensional or categorical feature space. Ap-
proaches to do this include feature extraction [9], image�to�image transla-
tion [1] and pixel distribution transformations [24]. After the pair of images
are brought to a homogeneous space, an image di�erence or ratio can be
performed to to produce a di�erence image or ratio image. This image is
the output of the change extraction process. The change map computa-
tion then involves thresholding the di�erence or ratio image to produce the
binary change map.

Reasoning approaches generally belong to the class of Post Classi�cation
Comparison (PCC) [16, 25, 26], where the pixels of each image are classi�ed
to produce a categorical feature space. Arithmetic operations in this feature
space is not suited to infer changes, and decision theory [27] is often used
to produce change maps from this space.
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2.3.3. Change Map Computation

Change detection techniques can, based on their output, be divided into
two groups [5]: a) techniques that output a binary change map, indicating
if a pixel is changed; and b) techniques that output a detailed 'from-to'
change map, indicating pixel class membership at both times, and thus
whether it is changed.

A from-to change map is higher order, and can be transformed into a binary
change map if the class information is not needed. The change extraction
process must provide the necessary information to produce the desired type
of change map, and from-to change maps are typically associated with post
classi�cation comparison schemes.

For di�erence image approaches, the change map computation can include
di�erent �ltering schemes to take neighborhood information into account,
and �nally thresholding of the �ltered di�erence image.

2.3.3.1. Threshold Methods
A myriad of image thresholding methods exist. The most well known is
probably Otsu's thresholding method [28]. The method aims at minimizing
the intra-class variance, and is commonly implemented as a search for the
midpoint between the modes of the pixel graylevel histogram.

Another common method is the Kittler-Illingworth threshold (KIT) [29],
which minimize the error assuming the pixel graylevels are normally dis-
tributed. Moser and Serpico [30] later generalized this method to account
for the non-Gaussian distribution of SAR amplitude ratio images, dubbed
Generalized Kittler-Illingworth threshold (GKIT).

Other thresholding methods include the algorithms presented in [31�35].
Melgani and Bazi [36] proposed an ensemble approach where a majority
vote of these �ve thresholding methods is used to determine the �nal change
map. Others have used this ensemble approach with a subset of the �ve
algorithms.

2.4. Related Work

There are several natural groupings of change detection methods. Methods
are designed a) for either homogeneous or heterogeneous data, b) from tra-
ditional signal processing, statistical, or machine learning principles, and
c) in a supervised or unsupervised fashion [1]. For brevity, only heteroge-
neous methods will be covered here. A relevabt assortement of supervised
and unsupervised techniques are presented in this section, and for each
paradigm, a selection of signal processing and machine learning methods
are summarized. Emphasis is put on unsupervised deep learning methods
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formulated for bitemporal multisensor images, as the methodology pro-
posed in this thesis is put in this setting.

Di�erent sensors provide di�erent representations of the same truth. These
representations are generally incomparable in the low-dimensional spaces
where they are observed. However, the same underlying truth indicate that
the multi-source data is comparable in some high dimensional feature space
in where the truth lies [8]. This insight motivates two di�erent approaches
to heterogeneous change detection;

a) map the multi-source data into a high dimensional feature space for
comparison. That is to construct maps SX : X → Z and SY : Y → Z
where Z is the common feature space which is similar to the space in
which the truth lie, or

b) use the assumption that this common feature space exists to construct
maps between the low-dimensional observation spaces for comparison.
The common feature space Z is implicitly or explicitly considered a
latent space for the maps TX : X → Y and/or TY : Y → X .

The goal is to transform the representations to a space where they can
be directly compared. When direct comparison is possible, methods for
homogeneous change detection can be used to extract the changes.

2.4.1. Supervised Methods

The �rst methods for heterogeneous change detection were supervised meth-
ods [2]. Under the assumption that some dependence exists between the
unchanged areas of two registered, heterogeneous images, Mercier et al. [14]
proposed a quantile regression approach to detect changes. Based on cop-
ula theory, the regression model aims at estimating the local statistics of
the �rst image as if it had been observed with the acquisition conditions of
the second image. In terms of De�nition 1, the method yields an estimate
of the local statistics of the image captured in X as if it was captured in
Y. A symmetric Kullback-Leibler-based [37, 38] comparison of these local
statistics is applied to de�ne a change measure.

Another approach that maps the images between the input domains is
the Homogeneous Pixel Transformation (HPT) method proposed by Liu
et al. [39]. This kernel regression scheme [2] consists of two operations;
a forward transformation TX : X → Y, and a backward transformation
TY : Y → X , which are trained in a supervised manner based on the un-
changed pixels. To achieve noise tolerance, a weighted sum of each pixel's
k-nearest neighbors is used to estimate the transformed pixel value. After
transforming X to Ŷ = TX (X) and Y to X̂ = TY(Y ), a di�erence image
D = ‖X̂ −X‖+ ‖Ŷ −Y ‖ is computed. Fuzzy C-Means (FCM) [40] is used
to cluster the pixels of the di�erence image into changed and unchanged
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pixels, and a �lter based on Dempster�Shafer theory [27] is used to up-
date the FCM result based on the assumption that changed pixels seldom
appear alone spatially.

A class of methods relying on a common feature space is post classi�cation
comparison. In this approach a segmentation6 is produced for each of the
representations in domain X and Y. Then a pixel-by-pixel or region-by-
region comparison is performed to detect changes between the representa-
tions. The classi�cation step can be interpreted as a categorical feature ex-
traction, which map the data to a low dimensional categorical feature space.
The representations are directly comparable in this categorical space. The
accuracy of the post-classi�cation comparison is totally dependent on the
accuracy of the initial classi�cations, and the �nal accuracy closely re-
sembles that resulting from multiplying the accuracies of the individual
classi�cation. This may be considered intrinsically low [4].

Di�erent classi�cation schemes have been used to produce the categorical
feature space. Camps-Valls et al. [42] proposed a family of kernel classi-
�ers. Further is Fuzzy C-Means (FCM) [40], and variations of it such as
Fuzzy Local Information C-Means (FLICM) [43] and Evidential C-Means
(ECM) [44], commonly used.

Liu et al. [16] propose a general multidimensional evidential reasoning (MDER)
approach to perform post classi�cation comparison. The framework is ag-
nostic to the classi�cation step, and is concerned with the change extrac-
tion in the categorical feature space. The approach builds on their previous
work on evidential reasoning in [25, 26], and can be considered as an exten-
sion [16] of the classical evidential reasoning frameworks Dempster�Shafer
Theory [27] and Dezert�Smarandache Theory [41].

Prendes et al. [17] propose a manifold learning approach using a sliding
window similarity measure. Based on a statistical model for homogeneous
areas in optical and SAR images, the marginal distributions of such areas
are de�ned. These marginals are used to derive the joint distribution for
multiple sensors in a homogeneous area, which again is used to de�ne the
distribution for multiple sensors in a sliding window. A mixture of C distri-
butions, where C denotes the number of pixel classes, is constructed, and
Expectation Maximization (EM) is used to optimize the parameters. This
mixture de�nes a no change manifoldM when the parameter estimation is
performed with only unchanged areas. A test statistic on the distance be-
tween an image patch and the manifold is used in the �nal change detection
step.

Prendes et al. [46] later extended this approach by introducing a Bayesian
nonparametric framework to deal with an unspeci�ed number of objects
and a Markov Random Field to account for spatial correlation between

6Classify each pixel or pixel region
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neighboring pixels. The statistically inclined reader is encouraged to further
study these thorough works.

Other approaches to supervised heterogeneous change detection include the
common meta-Gaussian distributed feature space approach of Storvik et al.
[24], the graph matching approach of Tuia et al. [47], and the approach of
Volpi et al. [48] using a kernel extension of canonical correlation analysis
(CCA).

Most of the supervised methods for heterogeneous change detection are not
supervised in the machine learning use of the term. Although a priori in-
formation about what pixels have changed is used, the changed/unchanged
labels are not used as training targets. Rather they guide what areas of
the images are used to train the maps between the domains, which can
be considered a higher order supervision or semi-supervision. Most of the
methods can be considered unsupervised or self-supervised if some scheme
for unsupervised sample selection, e.g. the approach of Gong et al. [18] or
Luppino et al. [2], is employed. The distinction between supervised and
unsupervised training is thus not as signi�cant for heterogeneous change
detection as for other problem domains.

2.4.2. Unsupervised Methods

The main challenge in unsupervised heterogeneous change detection is to
identify unchanged areas which can be used to de�ne maps or projections
between domains [2]. For many of the methods covered in this section,
the sample selection is done using an Initial Change Map (ICM). Di�erent
change detection algorithms have their own merits and no single approach
is optimal and applicable to all cases [22].

2.4.2.1. Signal Processing Methods
Gong et al. [18] propose an iterative coupled dictionary learning (ICDL)
approach for unsupervised heterogeneous change detection. The model
aims to establish a pair of coupled dictionaries SX : X → Z and SY : Y →
Z, where Z is a common feature space. The dictionaries produce sparse
codes for co-located image patches. As only unchanged patches are used
to training the dictionary atoms, the atoms of the two dictionaries can be
aligned by the one-to-one correspondence at each location. The training of
the dictionaries is done under an iterative scheme for unsupervised sample
selection to keep the purity of the training sample for the dictionaries.
Starting from a random initialization, the scheme selects unchanged pairs
of image patches based on the reconstruction error with respect to the
current dictionaries.

Touati and Mignotte [49] de�ne a similarity feature map with a set of lin-
ear equality constraints on each pixel pair. The feature map represents the
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di�erence between the multitemporal images. A nonlocal pairwise energy-
model is used to estimate the over-constrained problem de�ned by the
equality constraints. The estimation is based on a MultiDimensional Scal-
ing (MDS) [50] mapping technique, which achieves linear complexity. The
ensemble of �ve thresholding algorithms proposed by Melgani and Bazi [36]
is used to produce the �nal change map from the di�erence image produced
by the energy-model.

Touati et al. [51] propose a de-texturing approach using feature vectors
constructed from local histograms. The de-texturing map is constructed
based on the insight that two non-adjacent pixels with the same local tex-
ture should have the same intensity in the feature space. Each pixel is
characterized by a feature vector gathering the values of a coarse gray level
histogram and the values of a gradient magnitude histogram in four direc-
tions (vertical, horizontal, two diagonals). The histograms are computed
for a neighborhood of each pixel. For each image, the extracted features
are reduced to a one-channel, gray-level image using MDS. A double his-
togram matching [52] is done on these images to adjust for possible a scale
factor between them. A di�erence image is computed from these represen-
tations, and an ensemble of three thresholding methods [32, 33, 35] is used
to produce the �nal change map.

2.4.2.2. Machine Learning Methods
The advances in machine learning the last decade [53�60] have shifted the
focus of change detection methodology from statistical or signal process-
ing models towards (convolutional) neural network models [2]. The ma-
chine/deep learning approaches to change detection is mainly concerned
with domain adaptation, feature learning and image�to�image transla-
tion [1]. The most used models are AutoEncoders (AEs), Convolutional
Neural Networks (CNNs) and Generative Adversarial Networks (GANs).
These deep learning models are described in more detail in Section 4.

Autoencoders are mainly used for feature extraction. The notation UX :
X → X ′, where X ′ is the feature space, is used to refer to the encoder part
of an autoencoder throughout this section. It is optimized in conjunction
with a decoder, but only the encoder is used for the feature extraction.

Zhang et al. [22] propose a mapping neural network (MNN) TX ′ : X ′ → Y ′
to make heterogeneous images commensurable. One stacked denoising au-
toencoder is trained for each domain. These autoencoders, UX : X → X ′
and UY : Y → Y ′ are used for feature extraction. In the feature space, an
initial change map (ICM) is produced using the post classi�cation com-
parison scheme of Chen et al. [61]. A subset of the pixels in X ′ and Y ′

determined by the initial change map is used to train TX ′, and a feature
similarity analysis is done on Y ′ and Ŷ ′ using a cosine similarity metric to
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produce a change map. This change map is segmented using Fuzzy Local
Information C-Means (FLICM) [43] to produce the �nal change map.

Zhan et al. [62] propose an iterative feature mapping network (IFMN) to
make the images comparable. The feature mapping is trained to simultane-
ously minimize the the di�erence between unchanged pixels and maximize
the di�erence between changed ones. The scheme is threefold. First a fea-
ture extraction using one stacked denoising autoencoder for each domain,
UX : X → X ′ and UY : Y → Y ′, is performed. Then the IFMN TX ′ : X ′ → Y ′
is trained. The training scheme of the IFMN relies on two initial change
maps Pu(i, j) and Pc(i, j), which are binary functions indicating a belief
whether the pixel i, j is unchanged or changed respectively. The ICMs are
randomly initialized and later set based on thresholds α, β on the di�erence
between Y ′ and Ŷ ′. An iterative optimization of TX and (Pu, Pc) is used
to train the FMN in an expectation-maximization fashion. The third part
of the scheme is a hierarchical clustering component based on FLICM to
detect changes. An channel-wise angular distance metric [63] is used on
the pixels of the di�erence image to detect changes, and the hierarchical
structure allows detection of both major and minor changes.

Su et al. [64] propose a method where a ternary change map [65] which
categorizes pixels as one of H = {unchanged, positive changed, negative
changed}. This scheme also relies on feature extraction using one stacked
denoising autoencoder for each domain, UX : X → X ′ and UY : Y → Y ′.
An initial change map is produced by clustering Y ′ −X ′ with Fuzzy C-
Means (FCM), assigning an initial η ∈ H to each pixel. Then three maps

F
(η)
X ′ : X ′ → Y ′, one for each class in H, is trained to transform the pixels of

a optical image to the ones of a SAR image based on the pixel's initial class.
With these three maps, a di�erence image with three channels |Y ′ − Ŷ ′η|,
where Ŷ ′η = F

(η)
X ′ (X ′), is produced. The pixels of this di�erence image are

clustered using FCM to produce the �nal change map.

Zhan et al. [67] propose a method to detect changes between an optical
and a SAR image. The method is based on a joint feature extraction
using an autoencoder. The optical image and the log-transformed SAR
image is concatenated in the channel dimension, and a stacked denoising
autoencoder V(X ,Y) : (X ,Y) → (X ,Y)′ is trained. In the feature space, the
channels are split to again represent the images in X ′ and Y ′. An initial
change map is produced in the feature space using a post classi�cation
comparison scheme. The noise robust density-based clustering scheme of
Ester et al. [68] is used to separately classify the pixels of X ′ and Y ′, and a
di�erence image D = |1− LY ′/LX ′| is computed, where LX ′ and LY ′ denote
the classi�cation maps of the respective domains. This di�erence image
is used to produce an initial change map with FCM. The initial change
map have the classes H = {unchanged, changed, uncertain}. The set of
unchanged and changed pixel pairs are used to train a classi�er, that is
used to give a �nal label to the uncertain pixels.
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Liu et al. [9] propose a method using CNNs dubbed Symmetric Convolu-
tional Coupling Networks (SCCN). Two maps SX : X → Z and SY : Y → Z
are trained to bring the images to a common feature space Z. These maps
each contain one k×k convolutional layer and an arbitrary number of 1× 1
convolutional layers. The kernel size k and the number of convolution �lters
nf of the �rst layer should be the same for each map to achieve symmetry.
The 1 × 1 layers are dubbed coupling layers, and these components gives
the method its name. The number of coupling layers lX , lY is allowed to
vary to adapt to the di�erent properties of the input domains. The two
maps are pretrained as encoders in an autoencoder setting, and an ICM
is randomly initialized. Later the ICM is updated based on the di�erence
between the current outputs of the maps, as the maps are trained and the
ICM is updated in an alternating fashion. A variation of this approach was
proposed by Zhao et al. [69], slightly modifying the objective function and
the ICM updating procedure.

Gong et al. [8] propose a model dubbed CouPling Translation Network
(CPTN). The model combines concepts from Variational AutoEncoders
(VAEs) [70, 71] and Generative Adverserial Networks (GANs) [54]. It in-
volves two autoencoders with shared weights and a common code space,
which are trained with both a cyclic reconstruction term, a code space align-
ing VAE loss term, and an adversarial loss term aiming to distinguish in
which space the decoded images originated. An ICM computed on patch
level using the Generalized Kittler-Illingworth Threshold (GKIT) [30] is
used for sample selection.

Niu et al. [7] propose a conditional Generative Adversarial Network (cGAN)
based translation network that aims to translate an optical image with a
SAR image as a target, and an approximation network that approximates
the SAR image to the translated one by reducing their pixelwise di�erence.
Similarly to Gong et al. [8], GKIT is used to produce the ICM, and FMC is
used to cluster the di�erence image to produce the �nal change map.

Li et al. [6] propose a self-supervised CNN approach to heterogeneous
change detection. FCM is employed to produce an ICM which is used
in an sample selection scheme based on Spatial FCM [45]. The selected
samples are stacked in the channel dimension and used to train a classify-
ing CNN.

Luppino et al. [2] propose a method to produce an ICM based on a�nity
matrices. The ICM procedure is covered in detail in Section 3.6. The
proposed ICM is used for sample selection to train a selection of regression
functions including Gaussian process regression, support vector regression
and random forest regression.

Luppino et al. [1] propose an improvement of the a�nity based ICM. This
ICM is used to weight the cross domain loss terms in two image�to�image
translation networks.
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One of the methods, dubbed X-net [1], uses a pair of CNNs TX : X → Y
and TY : Y → X to translate the images between the input domains. The
two networks are trained with a cross domain loss term weighted by the
ICM and a cyclic loss term. The translation networks are used to map
the images between the domains to produce two di�erence images that
are averaged and thresholded with Otsu's method [28] to produce the �nal
change map.

The other method, dubbed Adversarial Cyclic Encoders Network (ACE-
Net) [1], uses two pairs of encoder�decoder CNNs (SX : X → Z, S ′X : Z →
X ), (SY : Y → Z, S ′Y : Z → Y)) to map both to a common feature space
Z and between the input domains. The four networks are trained with
a direct reconstruction loss term, a cross domain loss term weighted by
the ICM, and a cyclic reconstruction loss term. The architecture also uses
an adversarial loss term on the code space with a discriminator trying to
distinguish what input encoder produced the current code. The change
map computation is the same as for X-net.
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3. A�nities

An a�nity matrix is a generic matrix that describes how close, or similar,
two points are in some space [75]. The space can be a feature space or a
combined feature and spatial space, and the similarity between two points
(i, j) is typically encoded with an a�nity value aij ∈ [0, 1]. The a�nity
matrix is the matrix with these a�nities as elements, A = [aij], i, j =
1, . . . , n, where n denotes the number of data points. We shall use symmetric
a�nities, where aij = aji, hence the a�nity matrix is also symmetric. The
use of a�nity matrices is well-known from spectral clustering [76, 77], graph
methods [78], and computer vision [75, 79, 80].

An advantage of a�nity matrices is that their structure is independent of
the space or domain the described data points lie in. For similar spatial
structures in di�erent domains (that is, captured by di�erent sensors or
sensing parameters), the a�nity matrices should still be similar.

The main novelty proposed in this thesis is to utilize the information held by
such a�nity matrices for the training of deep neural networks for image�
to�image translation. A loss term comparing the a�nity matrices of an
image and its translated counterpart should enforce that the pixel similarity
structure is preserved in the transformation.

This section gives an introduction to proximity measures and a�nity ma-
trices from a graph-theoretical point of view.

3.1. Proximity Measures

Proximity measures are used to describe how similar and dissimilar two
points in a space are. This section follows the de�nitions from Theodoridis
and Koutroumbas [12]. D denotes a dataset {xi}ni=1 throughout.

De�nition 3 (Dissimilarity Measure [12]) A dissimilarity measure d
on D is a function

d : D ×D → R

such that for all x,y ∈ D

∃d0 ∈ R : d0 ≤ d(x,y),

d(x,x) = d0

and

d(x,y) = d(y,x).
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In words, a dissimilarity measure on a dataset D is a function d : D ×D →
R that is symmetric and has a lower bound d0 ∈ R achieved for equal
vectors.

If the measure adheres to the additional constraint that d0 is only achieved
for equal vectors and also the triangular inequality in (1), then the measure
is a metric dissimilarity measure. This gives

De�nition 4 (Metric Dissimilarity Measure [12]) A metric dissimi-
larity measure is a dissimilarity measure where for all x,y, z ∈ D;

d(x,y) = d0 if and only if x = y

and

d(x, z) ≤ d(x,y) + d(y, z) (1)

Similar de�nitions exist for similarity measures, which in a sense exhibit
inverse properties of dissimilarity measures.

De�nition 5 (Similarity Measure [12]) A similarity measure s on D is
a function

s : D ×D → R

such that for all x,y ∈ D

∃s0 ∈ R : s(x,y) ≤ s0,

s(x,x) = s0

and

s(x,y) = s(y,x).

Note that s0 is an upper bound. Further is

De�nition 6 (Metric Similarity Measure [12]) a metric similarity mea-
sure a similarity measure where for all x,y, z ∈ D;

s(x,y) = s0 if and only if x = y

and

s(x,y)s(y, z) ≤ [s(x,y) + s(y, z)] s(x, z)

Dissimilarity measures can be turned into similarity measures, and vice
versa, through a monotonic transform [12], i.e., a non-increasing func-
tion.
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3.1.1. Common Proximity Measures

The most common proximity measure [12] (for real valued vectors) is the
weighted Lp norm;

Lp(x,y) =

(
d∑
i=1

wi|xi − yi|p
)1/p

(2)

where xi, yi denote the d elements of x,y respectively and wi ≥ 0 is a
weight coe�cient. When wi = 1, i = 1, . . . , d, this is often referred to as the
unweighted Lp norm or simply Lp norm.

Variants of the weighted Lp norm include [12]

• the Manhattan norm; the (weighted) L1 norm,

• the unweighted Euclidean distance; the unweighted L2 norm,

• the Mahalanobis distance; the L2 norm weighted by the variance in
each dimension, wi = 1/σ2

i . This can further be generalized to the
form

d(x,y) =

√
(x− y)′ S−1 (x− y),

where S ∈ Rd×d
+ is the positive semi-de�nite covariance matrix. A

matrixM ∈ Rn×n is positive semi-de�nite if z>Mz ≥ 0 for all non-zero
z ∈ Rn.

• The (weighted) L∞ norm

L∞(x,y) = max
i=1,...,d

wi|xi − yi|

3.2. Graphs

A�nity matrices have strong ties to proximity graphs. The study of graphs
have ties to pure mathematics, set theory and computer science.

De�nition 7 A simple graph is an object consisting of two sets called its ver-
tex set and its edge set. The vertex set is a �nite nonempty set. The edge set
may be empty, but otherwise its elements are two-element subsets of the vertex
set. [82, De�nition 5]

A graph is denoted
G = {V , E} ,

where V and E denotes the vertex set and the edge set respectively. The
terms vertex and node are used interchangeably. Typically, the vertex set
is a set of integers

V = {1, . . . , n} ,
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where each element can be considered an index for the members of the
system or data the graph represents. The edge set is

E = {{vi, vj} : vi, vj ∈ V} ,

where an edge is represented as a set of vertices. A simple graph, as de�ned
in De�nition 7, is an undirected graph, where the relationship between vi and
vj is symmetric, which will su�ce for our discussion of a�nity matrices

A graph can be built from an arbitrary dataset, e.g., an image, where
each pixel is associated with a node, and edges are formed between all
pixels.

3.3. A�nity Matrix

The edges of a graph can be associated with an edge weight w to produce
a weighted graph. Each edge is associated with a weight wij which describes
the importance or strength of the individual connection. Normally, the
weights are positive and every edge is associated with a weight; that is
w : E → R+.

An a�nity matrix A ∈ Rn×n
+ of a weighted graph, with elements

A = [aij] i, j = 1, . . . , n,

encodes the similarity between each pair of node, e.g., it describes local
and global similarity structures or neighborhood structures.

Often, the weights are limited to aij ∈ [0, 1]. A zero entry in the a�nity
matrix indicates that there is no edge, that is aij = 0⇔ {vi, vj} 6∈ E .

An associated matrix is the degree matrix, which is the diagonal matrix with
the row sum of the a�nity matrix A for weighted graphs. The degree of a
vertex describes its total connection to the other vertices.

3.4. Proximity Graphs

Some types of data can naturally be represented by a graph structure, e.g.,
social networks and communication networks. For these data, the graph
nodes and edges are given directly from the system the graph represents,
and can often be weighted by some natural quantity in the data.

For other types of data, some design choice must be made to encode the
data in a graph. One example of this is image data, which can be repre-
sented as a graph by considering how close the pixels are to each other,
either in the feature space or in a composite space of the feature space and
the physical distance space. The feature space is typically the color cube,
and the graph can be built by assigning each pixel to a node and weight
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the edges between them by the pairwise distance of all the pixels in this
space. A more complex composite similarity measure, such as the one used
by Shi and Malik [83], can also be used. Here

wij = exp

(−‖f i − f j‖22
σ2
I

)
·

{
exp

(
−‖xi−xj‖22

σ2
x

)
, if ‖xi − xj‖2 < ε

0, else,

where f i denotes the intensity vector of pixel i, xi denotes the pixel position
of pixel i, σI and σX denotes bandwidth parameters, and ε is a threshold
for the distance in the pixel coordinate space.

Other choices can be made to build a proximity graph, by creating a fully-
connected graph, where all pairwise similarities are encoded. For a dataset
with n observations of dimension d, D ∈ Rn×d, each observation is associated
with a node and the complete graph is constructed. It is weighted by some
proximity measure which adequately describes the neighborhood structure
in the feature space, wij = d(xi,xj).

This complete graph is often processed further to make it sparser. Remov-
ing edges "across the feature space" makes the analysis of the graph easier.
Common processing steps include

• the ε-threshold graph, where edges

wij =

{
1, if d(xi,xj) < ε

0, else ,

• the k-nearest neighbor graph, where

wij = wji =

{
s(xi,xj), if xi ∈ kNN (xj) or xj ∈ kNN (xi)

0, else.

where xi ∈ kNN (xj) indicates whether xi is among the k closest points
to xj. Note that the nearest neighbor condition is not symmetric, and
this is the undirected version of the directed kNN graph.

• the mutual k-nearest neighbor graph, where

wij = wji =

{
s(xi,xj), if xi ∈ kNN (xj) and xj ∈ kNN (xi)

0, else.

This is a stronger condition than on the k-nearest neighbor graph,
and is generally sparser.

• Radial basis function graphs, most commonly with a Gaussian kernel

wij =

{
exp

(
−‖xi−xj‖22

σ2
x

)
, if ‖xi − xj‖2 < ε

0, else.
(3)

Note that all the proximity graphs described above are similarity graphs,
or a�nity graphs.
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3.5. A�nity Scheme Used Herein

While any of these a�nity measures could in principle have been used, we
have chosen to use a�nities computed with the very common Gaussian
kernel for this �rst assessment of the value of a�nity information in image-
to-image translation and heterogenous change detection.

Let h, w, and c denote the height, width and number of channels for an
image X. This corresponds to a dataset D ∈ R(hw)×c. Let each pixel be
associated with a node vi, i = 1, . . . , hw in a fully connected graph. The
a�nity matrix is constructed as in Equation (3).

The bandwidth σx of the Gaussian kernel is set using a kNN heuristic. For
each pair of datapoints is the distance dij = ‖xi − xj‖22 computed, and the
average distance to the kth neighbor is used to set the bandwidth. The
heuristic value k = 3

4
hw is set after observing empirically that the structure

of the a�nity matrix is more stable across image domains for high values
of k. This scheme is the same as in [1].

3.6. A�nity Norm Di�erence Image

Luppino et al. [2] proposed an a�nity�based method to produce a di�erence
image, for which an improvement was proposed in [1].

The rationale is that the edges of the pixel proximity graphs AX and AY of
the images X and Y should have a) similar weights for unchanged pixels,
and b) dissimilar weights for changed pixels.

These relationships can be described through the vertex degree of the prox-
imity graph AD = |AX −AY |. That is to say, the row sum of row i in AD

quanti�es a belief in whether pixel i is changed. A larger value indicates a
stronger belief that the pixel is changed. This is used to produce a di�er-
ence image D, where pixel i = 1, . . . , hw has the value of the vertex degree
of vi in AD.

The a�nity matrices A(·) are computed as described in Section 3.5 for
the the input images X and Y . Due to memory constraints must the
a�nity computations be performed on overlapping patches of size k × k,
and the values of D is averaged over the patches. For increased e�ciency
is the computation done with a stride ∆. The computation is done on
three scales to account for both highly local, local and global neighborhood
information.

Note that the di�erence image produced is not used as to produce the �nal
change map, but as an initial change map (ICM) to perform unsupervised
sample selection.
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4. Machine Learning

This section provides an introduction to the machine learning principles
central to understand the contributions of this thesis, as well as an overview
of the principles used in the more similar of the related methods presented
in Section 2.4.

The motivation to use machine learning for heterogeneous change detection
can be found in the Universal Approximation Theorem.

Theorem 1 (Universal Approximation Theorem [57, 84�86])
A feed-forward network with a linear output layer and at least one hidden layer
with any �squashing� activation function can approximate any Borel measurable7

function from one �nite-dimensional space to another with any desired nonzero
amount of error, provided that the network is given enough hidden units. The
derivatives of the feed-forward network can also approximate the derivatives of
the function arbitrarily well [84].

This lends that a feed-forward neural network with su�cient expressive
power is able to approximate any function f ∗. Although, it does not guar-
antee that any training algorithm is able to learn the appropiate parameters
of the neural network [57].

Considering the domains in De�nition 1 (Change Detection) on page 5:
If the representations in X and Y are captured at the same time t, i.e.
captured with no change, the two representations, although di�erent, would
represent the same, unchanged truth. Assuming there exists some perfect
map between the representation domains, the di�erence present in this case
would only be due to capturing noise. If such a perfect map could be found,
it would presumably be able to highlight true changes that have occurred
for images not captured at the same time. Under the assumption that such
a map between the domains X , Y exists, Theorem 1 motivates the use of
neural networks to �nd it.

4.1. Training Paradigms

There are several training paradigms in machine learning. The classical case
is supervised learning, where the samples presented in the learning process
are labeled, i.e. (manually) associated with the desired output. A sample
consists of a value x and a label y, and a collection of samples {(xi,yi)}

N
i=1

constitutes the training data. N denotes the cardinality of the training
data. The model is trained to reproduce the correct output from a given
input.

7"The concept of Borel measurability is beyond the scope of this [thesis]; for our purposes it
su�ces to say that any continuous function on a closed and bounded subset of Rn is Borel
measurable and therefore may be approximated by a neural network" [57].
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The other main paradigm is unsupervised learning, where the samples are
not associated with a label. The training data is just {xi}Ni=1, and the goal
is for the model to infer some structure in the data. The hope is that the
inferred structure is useful for solving the problem at hand.

There are several sub-paradigms, the most prominent being semi-supervised
learning where some labeled data {(xi,yi)}

N
i=1 and some unlabeled data

{xi}Mi=1 is combined, where in general N � M . The intuition is that the
labeled examples can guide the unsupervised process to converge faster and
also to solve the desired problem.

4.2. Neural Networks

Neural networks are the quintessential models in machine learning and deep
learning [57]. The goal of a neural network is to approximate some function
f ∗ : x → y by de�ning a mapping y = f(x; θ) and learn the parameters θ
that best approximates f ∗. A feed-forward neural network8 is associated
with a Directed Acyclic Graph (DAG) [57], where each computation node
of the DAG represents a layer in the network. Let L denote the number
of layers and

{
f (l)
}L
l=1

denote the set of computation nodes in the DAG.
The neural network f can then be represented by composing together these
layers as

f(x; θ) = (f (L) ◦ f (L−1) ◦ · · · ◦ f (2) ◦ f (1))(x), (4)

where ◦ denotes function composition, e.g. (f (2)◦f (1))(x) = f (2)(f (1)(x)).

Each layer f (l) can be interpreted as a vector-to-vector function. Underlying
is a set of vector-to-scalar computation nodes, or neurons, acting in parallel.
Each neuron produce one index in the output vector. Each layer is on the
general form

f (l)(x(l−1); θ(l)) = φ
(
Wx(l−1) + b

)
, l = 1, . . . , L (5)

where

• x(0) denotes the input vector and x(l−1) denotes the output of layer
l − 1;

• θ(l) = {W , b} denotes the set of trainable parameters for the layer;

• φ(·) denotes an vector valued activation function, see Section 4.2.1;

• W ∈ Rkl×kl−1 denotes the weight matrix, where kl denotes the number
of neurons in layer l; and

• b ∈ Rkl denotes a bias vector.

The input dimension and output dimension k0 and kL are governed by
the dimensions of the input and output data respectively. The internal or
hidden dimensions are set as part of the model speci�cation, and governs
the expressive power of the network. The number of layers L is referred to
as the depth, and largest kl is referred to as the width of the network.

8The information �ows in only one direction.
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4.2.1. Activation Function

The vector valued activation function φ(·) in Equation (5) is an important
part of the problem solving capabilities of a neural network. This non-
linear function is what takes the function composition in Equation (4)
from a linear transformation into a nonlinear one, and thus gives the neural
network the capability of assuming a nonlinear function.

The activation functions are typically non-linearities performed element-
wise. Common choices include

• the linear function φ(x) = x,

• the logistic sigmoid function φ(x; σ) = (1 + eσx)−1,

• the hyperbolic tangent function, φ(x) = tanhx, and

• the generalized Recti�ed Linear Unit (ReLU)

φ(x; α) =

{
x, x ≥ 0

αx, otherwise.

Special cases include [55]

· α = 0 which is the ordinary (i.e. non-generalized) ReLU,

· α = −1 which yields the absolute value φ(x) = |x|, and
· α ≤ 1 which is equivalent to φ(x; α) = max(x, αx).

4.2.2. Parameter Optimization

To learn the set of trainable parameters of the network θ = {θ(l)}Ll=1 such
that the network reach its goal, means of evaluating how well f(x; θ) ap-
proximate f ∗(x) is needed. A loss function is used to describe the problem
the network is intended to solve. Considering the supervised case, where
pairs of (xi,yi) are provided, the loss function E is typically some (met-
ric) dissimilarity measure between the target yi and the networks output
ŷi = f(xi),

E(yi, ŷi). (6)

The formal objective of the optimization process is to minimize the ex-
pected value of the loss function under the distribution of the training
data. Let J denote the objective function

J(θ) = EX [E ] .

The notation EX [·] is a convenient shorthand for EX∼pdata(x) [·], where pdata
is the distribution of the training data, and will be used throughout. The
optimal network parameters θ∗ are obtained by

θ∗ = arg min
θ
J(θ) (7)
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4.2.2.1. Loss Functions
Depending on the problem at hand, di�erent loss functions can be applied.
The most common option is probably the weighted Mean Squared Error
(wMSE)

E(yi, ŷi) = wi · ‖yi − ŷi‖22,

where ‖·‖2 denotes the L2 norm and wi ∈ R is a weight associated with
each training sample. With this loss function, the objective function be-
comes

J(θ) = EX [E(yi, f(xi; θ))] =
1

N

N∑
i=1

wi · ‖yi − ŷi‖22.

Other popular loss functions include the mean absolute error for continuous
network output and cross entropy loss for categorical network output.

4.3. Optimization Algorithms

Di�erent optimization algorithms can be used to solve the minimization
problem in Equation (7). The intuition on how to minimize J(θ) is to
follow its gradient ∇θJ(θ) towards the minimum.

A key element in the success of neural networks is the backpropagation algo-
rithm [89], which allows for simple and inexpensive computation of the gra-
dients [57]. The backpropagation algorithms applies the chain rule9, with a
speci�c order of operations that is highly e�cient [57]. The e�ciency of the
gradient computations is an integral part of the computational e�ciency of
the optimization procedure of a neural network. The details of the back-
propagation algorithm is out of the scope of this thesis, and the inclined
reader is referred to Chapter 6.5 in Goodfellow et al. [57] for a thorough
derivation.

4.3.1. Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) [90, 91] and its variations are the most
commonly used optimization algorithms for machine learning [57]. In SGD
is a proportion ε of the gradient g subtracted from the parameters θ that is
to be optimized, over many iterations. The proportion ε ∈ R>0 is referred
to as the learning rate.

Depending on the size of the network and the training data in conjunction
with the computational resources available, can the gradient g = ∇xJ(θ)
be computed for either a) several batches10, or b) the entire training set.
If the entire training set is used, there is no stochastic element in the

9Id est the chain rule of calculus.
10Subsets of the training set drawn at random.
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algorithm, and it is truly just the gradient decent algorithm. Otherwise
will the gradient be approximated for each batch.

The stop criterion in Algorithm 1 can be a limit on the number of epochs
e or the convergence of some metric tracking the training.

The learning rate ε is reliably one of the most di�cult hyperparameters to
set because it signi�cantly a�ects the model performance [57], and decay
strategies are commonly employed to increase the convergence speed [92].

Algorithm 1: Stochastic Gradient Descent (SGD) minimization up-
date [57]

Require Learning rate schedule ε1, ε2, . . . ; initial parameter θ.
e=1;
while not stop criterion do

Take a batch of m samples from {(xi,yi)}Ni=1;
Compute gradient estimate ĝ = 1

m
∇θ
∑m

i=1 E(yi, f(xi; θ));
Apply update θ = θ − εeĝ;
e++;

end

Several algorithms improving on SGD have been proposed [93], includ-
ing methods with a momentum term on the gradient, such as Momen-
tum SGD [94] and Nesterov Accelerated Gradient decent (NAG) [95], and
methods with an adaptive learning rate scheme, such as Adagrad [96],
Adadelta [97], RMSprop [98], Adam [99], AdaMax [99], and Nadam [100].
Luo et al. [101] recently proposed variations of some of these with a dy-
namic bound om the learning rate to achieve a gradual and smooth tran-
sition from the adaptive methods to SGD, and give a theoretical proof of
convergence.

4.3.2. Momentum Stochastic Gradient Decent

Stochastic Gradient Decent has trouble navigating ravines [93]. As depicted
in Figure 1 (a) can SGD end up alternating between the valley sides and
thus move more across than along the valley. A momentum term on the
gradient can be used to mend this issue. The intuition of momentum is that
under the assumption that the last update went in the right direction, it is
reasonable to keep moving in that direction. Thus is the momentum term
a decaying memory of the previous gradients. An algorithmic description
of MSGD is given in Algorithm 2.
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Algorithm 2: Momentum Stochastic Gradient Descent (MSGD) min-
imization update [57]

Require Learning rate schedule ε1, ε2, . . . ; momentum parameter α; initial
parameter θ; initial velocity v.
e=1;
while not stop criterion do

Take a batch of m samples from {(xi,yi)}Ni=1;
Compute gradient estimate ĝ = 1

m
∇θ
∑m

i=1 E(yi, f(xi; θ));
Compute velocity update v = αv − εĝ;
Apply update θ = θ − v;
e++;

end

(a) Without momentum: The SGD path
is bouncing between the walls of the
ravine.

(b) With momentum: The SGD path is
straighter towards the optimum. The
black arrows are the gradient at each
step.

Figure 1: Traversing a ravine with and without momentum. Figures from [57].

4.3.3. Adam

Adaptive moment estimation (Adam) [99] extends on the momentum idea,
and incorporates in its parameter update a bias-corrected �rst- and second-
order moment. This can be understood as introducing an individual adap-
tive learning rate for each parameter, based on estimates of the �rst and
second moments of the gradients [99]. See Algorithm 3 for a description of
the update scheme.

The learning rate ε here acts as an step size, i.e. as an upper bound on
the update ∆θ [99]. Kingma and Ba [99] suggest default values for the
hyperparameters ε = 1e− 3, ρ1 = 0.9, ρ2 = 0.999, and δ = 10−8.
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Algorithm 3: Adaptive moment estimation (Adam) minimization [57]

Require Step size ε; numerical stability constant δ; initial parameters θ.
Require Exponential decay rates for moment estimates ρ1 and ρ2 in [0, 1).
Initialize 1st and 2nd moment variables s = 0, r = 0;
t=0;
while not stop criterion do

Take a batch of m samples from {(xi,yi)}Ni=1;
Compute gradient estimate ĝ = 1

m
∇θ
∑m

i=1 E(yi, f(xi; θ));
t++;
Update biased 1st moment estimate s = ρ1s+ (1− ρ1)ĝ;
Correct bias ŝ = s · (1− ρt1)

−1;
Update biased 2nd moment estimate r = ρ2r + (1− ρ2)ĝ � ĝ;
Correct bias r̂ = r · (1− ρt2)

−1;

Compute update element-wise ∆θ = −εŝ ·
(√
r̂ + δ

)−1
;

Apply update θ = θ + ∆θ
end
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4.3.4. Generalizability

A central problem in machine learning is to make algorithms that will
perform well on new inputs, not just the training data [57]. The optimal
architecture can be de�ned as the one which minimizes the generalization
error [102]. Many actions can be taken during the training phase to increase
generalizability.

4.3.4.1. Weight regularization
Many regularization techniques are based on limiting the expressive power
of the model [57]. This can be done by penalizing the norm of the pa-
rameters θ by adding a norm penalty to J(θ), typically the L1 or the L2

norm. The L1 norm will penalize non-zero weights, encouraging sparse net-
works. The L2 norm will favor small weights over large weights, forcing the
solution to be closer to the origin of the parameter space, and thus be a
'simpler model'. The assumption is that a simpler model will have better
generalization properties.

4.3.4.2. Dropout
Dropout [103] is a strategy to prevent over�tting when training neural
networks. By leaving out a portion of randomly selected neurons during
training, complex co-adaptations in which a neuron is only useful in the
context of several other speci�c neurons can be avoided [103].

4.3.4.3. Data Augmentation
It is common to arti�cially increase the size of the training set by augment-
ing the data. For images is it common to �ip, rotate, or add noise [104,
105]. This will add variation to the training data, presumably increasing
the generalization properties of the network [106].

4.3.4.4. Batch Normalization
Batch Normalization [107] is a strategy to deal with the fact the distribu-
tion of each layer's input changes during training as the parameters of the
previous layers change. This e�ect is called internal covariate shift, and can
be mended by normalizing the input to each layer as

x′i =
xi − EB [xi]√

VarB[xi]
,

where x′i denotes the batch normalized xi, and EB [·] and VarB[·] denote the
expectation and variance under the distribution of the batch B.
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4.4. Convolutional Neural Networks

Convolutional Neural Networks is a class of networks for processing data
with a grid-like topology, such as regular interval time series or image
data [57]. A CNN is a neural network with some of the layers on the
form

f (l)(x(l−1); θ(l)) = φ
(
K ∗ x(l−1) + b

)
, (8)

where ∗ denotes convolution, K is a convolution kernel, b ∈ Rkl is a bias
vector, kl denotes the number of �lters in the convolution layer, θ(l) =
{K, b}, and the other symbols are as in Equation (5). The number of
dimensions of K, and thus also the convolution operator, depends on the
dimensions of the input data.

For image data organized as height, width, and channels, that is x(0) ∈
Rh×w×c, the kernel will have the shapeK(l) ∈ Rhl×wl×kl−1×kl. The convolution
operator is broadcasted across the last dimension ofK(l), which corresponds
to the number of �lters in the convolutional layer. That is for x(1) =
K(1) ∗ x(0), x(1) ∈ Rh×w×kl. The convolution will in this case be a three-
dimensional convolution, and for pixel (i, j) in x(0) will

x(1)(i, j, k) = (K(1) ∗ x(0))(i, j) =
∑
m,n,o

x(0)(i+m, j + n, o) ·K(1)(m,n, o, k),

where m =
⌊−h1

2

⌋
, . . . ,

⌊
h1
2

⌋
, n =

⌊−w1

2

⌋
, . . . ,

⌊
w1

2

⌋
, and o = 1, . . . , c. For brevity

are h1 and w1 here assumed to be odd numbers, but the operation can be
de�ned for an even kernel size. The broadcasting is done for k = 1, . . . , k1,
i.e. the convolution operator is applied for each kernel k to produce kl
output channels. The kernel size (hl, wl) and the number of �lters kl must
in the design of the network be speci�ed for each layer, l = 1, . . . , L.

An important construct in many CNN designs is pooling. A pooling func-
tion is a downsampling operation which outputs some statistic of the input
values [57]. An example is max pooling [108], which takes a neighborhood,
say an array of size 2 × 2, as input and outputs e.g. an 1 × 1 array with
the value corresponding to the maximum of the inputs. This operation is
computed in strides across the image, which downsamples and condenses
the information. Described in mathematical terms;

MaxPool

([
a b
c d

])
:= [max(a, b, c, d)] .

4.5. Autoencoders

An AutoEncoder (AE) [109] is an encoder�decoder pair (U, V ),

U : X → Z
V : Z → X ,
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trained with the target that (V ◦ U)(X) = X. Training an autoencoder
to minimize this reconstruction error is equivalent to maximizing a lower
bound on mutual information between the input space X and the code space
Z [109].

Autoencoders have proven capable of solving problems like feature extrac-
tion, dimensionality reduction, and clustering [1]. For an AE to solve such
problems must the expressive power of the encoder�decoder pair be su�-
ciently low to not allow an identity mapping. This is commonly done by
placing a bottleneck on the code space, i.e. limiting the dimensionality of
the code space, or L1 regularize the weights to enforce a sparse representa-
tion.

If the networks used for the encoder and decoder are deep and dropout is
used during training, it is an Stacked Denoising Auto Encoder (SDAE) as
proposed by Vincent et al. [109]. This is a really common case, and the
distinction is not always made.

4.6. Adversarial Discriminative Training

Adversarial discriminative training is inspired by game theory, with two
networks competing towards con�icting goals. One architecture, the gen-
erator, is generating the desired output, while the other, the discriminator,
attempts to identify whether its input is real data or generator output.

This scheme was introduced as Generative Adverserial Networks (GANs)
by Goodfellow et al. [54]. The goal is to train the generator to act as
a multidimentional sampler from a distribution preal given representative
samples from said distribution.

This can be formulated as a minimax game between the generator G and
the discriminator D:

min
G

max
D

V (G,D) = Ex∼preal(x) [log(D(x))] + Eu∼pfake(u) [log(1−D(G(u)))] ,

where u ∼ pfake(u) denotes the output distribution of the generator G. Vari-
ations of this algorithm, such as Least Square GAN [110] and Wasserstein
GAN [111], replace the negative log-likelyhood term, as it is unstable in
training [72].

The advantage of adversarial training is that the loss function for the
generator is learned [112]. One only needs to provide samples of the de-
sired output distribution. For generative problems, this is desirable com-
pared to conventional loss functions, which generally produce a blurry out-
put [112].
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4.7. Image�to�Image Translation

The idea of image�to�image translation is to translate one possible rep-
resentation of a scene into another [112]. The concept dates back to the
image analogies of Hertzmann et al. [113]. Examples of such translations
are from satellite images into the corresponding map, from grayscale im-
ages to color images, or from photos taken during the day to photos taken
at night [112]. Other examples are translation between photographs and
paintings, translating photographs between seasons, and object trans�gu-
ration such as making zebras appear like horses [114, 115]. The goal is to
retain the contents of the image, but transfer the style.

Herein, image�to�image translation is used to map remote sensing images
from one image domain to another. Two main training strategies are specif-
ically used in the training of neural networks performing the image�to�
image translation.

4.7.1. Cyclic Consistency

Using transitivity to regularize structured data has a long history [115].
The idea is that a pair of injective maps TX : X → Y and TY : Y → X
should have the property X = (TY ◦TX )(X). The maps can thus be trained
in a similar fashion to autoencoders, with the goal of reproducing the input.
This is a common part of the training strategy for many image�to�image
translation systems.

4.7.2. Adversarial Methods

Adversarial methods have been popularized with applications in image�to�
image translation, and are achieving state of the art performance.

One of the most popular models is the pix2pix model [112], which employs
a U-net [116] like architecture combined with a conditional GAN (cGAN)
training regime. In a cGAN the generator is trained to provide an output
conditioned on some input, rather than noise, e.g., an input image that
should be translated into another image domain.

Zhu et al. [114] achieved impressive results on unpaired image�to�image
translation problems, using cGANs in conjunction with a cyclic consistency
loss term [115].

Concerning change detection in remote sensing images, the works of Lup-
pino et al. [1] and Niu et al. [7] are using adversarial training to perform
image�to�image translation.
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4.8. Metrics

Di�erent metrics can be used to evaluate the performance of a neural net-
work. Change detection can be considered a binary classi�cation problem,
and a selection of metrics for binary classi�cation problems is presented
here. Some of these metrics are used to evaluate the change detection
model proposed in this thesis.

For the de�nition of the metrics, it is useful to consider a confusion matrix.
A confusion matrix is found in Table 1, where the rows encode the predicted
label while the columns encode the true label. The last row and column
contains the sum of the corresponding column and row respectively. All
elements contains the count of the elements of that type.

The �rst row of the table contains the true positives TP, the false positives
FP, and the predicted positives PP = TP + FP. The second row contains the
false negatives FN, the true negatives TN and the predicted negatives PN =
FN + TN. The third row contains the real positives RP = TP+FN and the real
negatives RN = FP+TN.

Real positive (+R) Real negative (�R)
Predicted positive (+P) TP FP PP

Predicted negative (�P) FN TN PN

RP RN N

Table 1: Binary confusion matrix [117]. The color scheme of the cells is consistent with the confusion
maps presented in Section 9

In the following, let y and ŷ denote a vector of true and predicted binary
labels respectively.

Let tpr = TP/RP denote the True Positive Rate11, and tnr = TN/RN the
True Negative Rate12. Further let tpa = TP/PP denote the True Positive
Accuracy13.

4.8.1. Accuracy

Accuracy (ACC), also referred to as Rand Accuracy, is the percentage of
correctly classi�ed elements [117]

ACC(y, ŷ) =
TP + TN

N

Accuracy is an intuitive metric, and is widely used for classi�cation, al-
though it is not appropriate when considering unbalanced cases [118].

11Also referred to as Recall
12Also referred to as Inverse Recall
13Also referred to as Precision
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4.8.2. F�measure

The F�measure, or F1 score, is the harmonic mean of the True Positive
Rate and the True Positive Accuracy:

F1(y, ŷ) =
2 · tpa · tpr
tpa + tpr

=
2 · Precision ·Recall
Precision + Recall

4.8.3. Cohen's Kappa

Cohen's Kappa Coe�cient (κ) [119] was introduced as a measure of agree-
ment between two judges in the �eld of psychology. It is a standardized
value in [−1, 1], where 0 represents the amount of agreement that can be
expected at chance [120]. It can be used in classi�cation to measure the
agreement between observed and predicted classes [118], and is de�ned
as

κ(y, ŷ) =
ACC(y, ŷ)− Pe

1− Pe
,

where Pe is the hypothetical probability of chance agreement [118]. For a
binary classi�cation problem [1]:

Pe =
PP · PN
N2

+
RP · RN
N2

.

4.8.4. Matthews Correlation Coe�cient

Matthews Correlation Coe�cient (MCC) [121] is a metric similar to Co-
hen's Kappa, de�ned as [118]:

MMC(y, ŷ) =
TP · TN− FP · FN√

(TP + FP)(FP + TN)(TP + FN)(FN + TN)
(9)

in the binary case.
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5. A�nity�Guided Image-to-Image Translation

The work presented in this thesis have strong ties to the work of Luppino
et al. [1]. The paired image�to�image translation approach to change de-
tection seems promising, especially with the explainability of the approach.
E�orts to explain the decisions of CNNs have come a long way [122�124],
and it is reasonable to assume that errors made in image translation net-
works can be explained. Also, when the images are mapped between the
input domains it is easier14 to understand why something failed, as these
representations are more or less human readable.

A core contribution of this thesis is the A�nity Guided Image�to�Image Trans-
lation (AGIT) loss term. The observation that inspired this approach is that
the a�nity matrices of one image in di�erent domains should be consistent
under certain assumptions on the a�nity computation and the physical
properties captured in the domains. This is true because a�nities are nor-
malized to the interval [0, 1], hence the a�nity matrix of an image is more
tied to the depicted object than to the domain-speci�c image representa-
tion.

This realization lead to the idea of minimizing the di�erence between the
a�nity matrices from each representation domain to guide the training of
the image�to�image translation maps.

Let TX : X → Y be a map from image domain X to Y, and gX : X → AX
and gY : Y → AY be functions computing the a�nity matrices of X ∈ X
and Y ∈ Y respectively. A(·) denotes the a�nity space of X and Y. Further
let AX = gX (X) and AŶ = (gY ◦ TX )(X) be the a�nity matrices of X and
Ŷ respectively. In mathematical terms can the a�nity consistency through
the image translation be described as AX ≈ AŶ .

The unsupervised a�nity guiding loss term is de�ned as

EA(X) :=
1

(hw)2

hw∑
i=1

hw∑
j=1

|a(X)
ij − a

(Ŷ )
ij |2, (10)

where a(·)ij are the elements of AX and AŶ respectively, whereas h and w
denote the height and width of X. A system diagram for the loss term is
depicted in Figure 2. The loss term can be employed similarly for a map
TY : Y → X .
The structure of the a�nity matrices AX and AŶ should be the same, as
they are computed from an observation of the same truth. Nevertheless, the

14Compared to code space approaches.
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AX JA(θ) AŶ

gX (X) gY(Ŷ )

X TX (X) Ŷ

Figure 2: System diagram for the JA loss term. This model is referred to as A--. See Equation (14) for
the de�nition of JA.

pro�le of the monotonous distance-to-a�nity mapping with e.g. a Gaussian
kernel will depend on the kernel bandwidth. In order to align the a�nities
of co-located pixels, it is desired to match these mappings in the respective
domains. Exact matching can be di�cult to accomplish, since the mapping
pro�les will also depend on the domain-speci�c noise model and statistical
characteristics.

The kernel bandwidth can be seen as a reference value for a character-
istic distance between data points that are relatively similar. This pa-
rameter scales or normalizes the distance and determines the pro�le of
the monotonous mapping from distance to a�nity. It should be used to
enforce a�nity matrices that are comparable across the domains, i.e. the
bandwidths must be adjusted such that the a�nity matrices are reasonably
aligned. Herein, it is assumed that using the same heuristic to choose the
bandwidth in the two domains is su�cient to achieve directly comparable
a�nity matrices AX and AŶ .

In a change detection system the main advantage of EA is that it incor-
porates a cross domain distance, but is not limited to learn from the un-
changed pixels. Preferably should the map learn to translate each pixel to
the corresponding pixel class representation in the other domain. If the
map learns to translate all pixels belonging to class ci in X ∈ X to the
corresponding class ci in Ŷ ∈ Y, changes between X and Y can be found
by comparing Ŷ and Y . The a�nity guidance should enforce this class
consistency, as the a�nity matrices would change if pixel memberships are
changed in the image transformation.

Another advantage of EA is that it is unsupervised, and thus does it not
require paired images as training data. The AGIT loss term might be
useful for general image�to�image translation systems, but herein is it only
tested in a change detection system.
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6. A�nity-Guided X-net

The application that inspired the a�nity-guiding loss term is change de-
tection. Training neural networks for this application can be hard, as there
are changes in the paired images used for training, i.e. the training targets
are noisy. The a�nity loss term is assumed bene�cial in this setting, as
the a�nity matrices of an image X and its translated version Ŷ should
be similar, irrespective of the changes that are present between X and Y .
The change detection model proposed herein is an extension of the X-net
change detection model proposed by Luppino et al. [1].

6.1. X-net

X-net [1] consists of two tandem image�to�image translation networks TX :
X → Y and TY : Y → X . The core idea is that the image translations
produce a representation in Y of what is observed in X , and vice versa,
such that changes can be extracted after the image translation. The details
of the image translation CNNs are presented in Section 6.3.1.

6.1.1. Evaluation Flow

The image translation networks are used to translate the images X, Y
to their respective other domain Ŷ = TX (X), X̂ = TY(Y ). Thus can the
image pairs (X, X̂) and (Y , Ŷ ) be compared directly. As depicted in Fig-
ure 3, two di�erence images are computed, one for each domain, and these
are averaged to produce the �nal di�erence image. This image is �ltered
and thresholded to produce the �nal change map. The details of these
operations are found in Section 6.3.3.

X TX (X) Ŷ DY = Ŷ − Y

Y TY(Y ) X̂ DX = X̂ −X

D = DX⊕DY Filter Threshold
Change
Map

Figure 3: Evaluation �owchart for X-net [1]. The details of these abstract operations are found in
Section 6.3.3.

6.1.2. Objective Function

A twofold objective function, depicted in Figure 4, with a weighted cross-
domain term and a cyclic term is used to optimize the image translation
CNNs.
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X TX (X) Ŷ TY(Ŷ ) X̃

Y JX(θ) Π

JC(θ)

Figure 4: One half of X-nets training scheme [1]. The de�nitions of JX and JC are found in Equa-
tions (11) and (12). This model is also referred to as -CX herein. A similar �ow can be
created starting from Y and going to Ỹ by swapping (X, Y ) and (X , Y) in the chart.

6.1.2.1. Weighted Cross-Loss Objective
Let EX denote the weighted cross-loss term, which compares (X, X̂) or
(Y , Ŷ ). Weighted mean square error is used for the comparison, and for
TX , is the objective function

JX(θ) = EX [EX(X,Y )] =
1

hw

h∑
i=1

w∑
j=1

πij‖yij − ŷij‖22, (11)

where πij ∈ Π is a weight indicating a prior belief on whether pixel i, j is
changed, and h,w denotes the dimensions of the images X and Y .

The cross-loss weights Π = 1 − C icm are computed from the initial change
map, and the same Π is used for both cross-terms in Equation (13). The
a�nity norm initial change map scheme [1], described in Section 3.6, is
used to produce C icm.

6.1.2.2. Cyclic Loss Objective
Let EC denote the cyclic loss term, which compares X̃ = (TY ◦ TX )(X) with
X and Ỹ = (TX ◦ TY)(Y ) with Y . Mean squared error is used for the
comparison, and for the image in Y the objective function is

JC(θ) = EY [EC(Y )] =
1

hw

h∑
i=1

w∑
j=1

‖yij − ỹij‖22, , (12)

which contributes to the optimization of both TX and TY .

6.1.2.3. Complete Objective Function
The cross-domain term is applied twice to in�uence the parameters of the
individual networks, and the cyclic term is applied twice, but in�uences
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the parameters of both networks. The combination of these loss terms
with the addition of L2 weight regularization yields the entire objective
function

J(θ) =λX · EX [EX(X,Y )] + λC · EX [EC(X)]

+λX · EY [EX(Y ,X)] + λC · EY [EC(Y )]

+λR · ‖θ‖22,
(13)

where λ(·) ∈ R>0 are hyperparameters to balance the contribution of each
term.

The data �ow of the loss terms EX [EX(X,Y )] and EX [EC(X)] is visualized
in Figure 4. A similar �ow can be created for the other pair of loss terms,
EY [EX(Y ,X)] and EY [EC(Y )] by swapping the symbols (X,Y ) and (X , Y)
in the chart. This holds true for all similar loss �owcharts throughout this
thesis.

6.2. A�nity-Guided X-net

In the X-net a�nity matrices are used to provide an initial change map,
which serves as a change prior on pixel level. Changes typically occur in a
region, which a�ects the semi-local a�nity structures. Thus, comparison
of the a�nity matrices of the input images can produce a decent change
map, which can also be used as an initial change map (ICM) [1].

During optimization of the networks, the pixels that are perceived as changed
in the ICM will contribute less to the cross-loss term. They will still con-
tribute in the cyclic loss term, which gives an indication of how a changed
pixel should be mapped into the other domain through the composite map-
pings X̃, Ỹ . The provision of more information on how a pixel should be
mapped between the domains, irrespective of changes between X and Y ,
is presumably useful in the training process.

The goal is to learn an image translation as if no change had occurred.
Under such a map should the a�nity structures be similar for an image
X and its transformed counterpart Ŷ . The suggested loss term EA does
enforce this class consistency in the image translation.

This holds true even for pixels that are changed, as the a�nity matrices are
computed for the same image in di�erent domains. Thus, changed pixels
are mapped to the appropriate class in the cross-image, even though the
pixels do not contribute to the cross loss-term due to the change prior. The
a�nity regularization could also amend errors made due to the fallibility
of the change prior.

The addition of a cyclic a�nity term comparing AX with AX̃ would not
add more information, as the image X̃ is directly comparable with X.
The information encoded in the di�erence between the a�nity of the input
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image and the cycled image would not help during training, as the infor-
mation is intrinsically the same as in the ordinary cyclic term. A cyclic
a�nity term would likely only add computational complexity, and is not
considered further.

These X-net models are directed acyclic graphs (DAGs) with multiple in-
puts and outputs. Further are the training and evaluation phases quite
di�erent. This increases the perceived complexity of the model, and intro-
duces some pitfalls in understanding and implementing it.

6.2.1. Objective Function

The objective function of the A�nity-guided X-net (AX-net) is the same
as for X-net, with the addition of two a�nity-guided loss terms.

6.2.1.1. A�nity Loss Objective
Assume that functions gX and gY for computing the a�nity matrix in the
domains X and Y respectively are available. Let EA, as de�ned in Equa-
tion (10), denote the a�nity loss term, which compares AX with AŶ and
AY with AX̂ .

For a dataset with a pair of h × w images of c1 and c2 channels each, the
a�nity-guiding objective function is

JA(θ) = EX [EA] =
1

(hw)2

hw∑
i=1

hw∑
j=1

|a(X)
ij − a

(Ŷ )
ij |2, (14)

where the image channels c1 and c2 are absorbed in the a�nity calculation,
since the scalar distances and a�nities are computed from multivariate
data.

6.2.1.2. Total Loss
Combining the loss terms from Equation (13) with the two a�nity terms
yields the objective function

J(θ) =λA · EX [EA(X)] + λA · EY [EA(Y )] (15a)

+λC · EX [EC(X)] + λC · EY [EC(Y )] (15b)

+λX · EX [EX(X,Y )] + λX · EY [EX(Y ,X)] (15c)

+λR · ‖θ‖22. (15d)

Half a system diagram for this objective function is shown in Figure 5.
The other half is the symmetric counterpart with the image domains ex-
changed.
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AX JA(θ) AŶ

gX (X) gY(Ŷ )

X TX (X) Ŷ TY(Ŷ ) X̃

Y JX(θ) Π

JC(θ)

Figure 5: System diagram for loss terms of the a�nity-guided X-net. This model is referred to as ACX.
See Equations (11), (12) and (14) for the de�nitions of JX, JC and JA.
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6.3. Implementation Details

The models was implemented in Python 3.6.8 using TensorFlow 2.0.0 [125].
The full code is available at github.com/MadsAdrian/MastersThesis. The
code was ported from the TensorFlow 1.4 implementation of Luppino et al.
[1] by me, and further developed and generalized in collaboration with Luigi
T. Luppino. The code that implement the models and run the experiments
is between 1000 and 2000 lines of code, depending on what is included in
the count. The code is object-oriented, and is currently used in several
other projects in the research group.

Many of the choices made in designing and training the image translation
networks build on standard choices. Most places, the default setting of the
used library is applied, because we had no motivation to deviate from the
standard.

The main contribution of this thesis is the A�nity-Guided X-net, with the
objective function de�ned in Equation (15). Fine tuning and elaborate
choices have been kept at a minimum, to focus on evaluating the overall
performance of the model. It is likely that minor or major �ne tuning could
improve the model performance on some metric.

The particular implementation of e.g. the image translation networks pre-
sented here must be considered separate from the loss term of the A�nity-
Guided X-net. Many network architectures and optimizing schemes can
be chosen, and it is likely that the one used for the experiments presented
herein is not the optimal con�guration.

6.3.1. Image Translation Network

The image translation CNNs TX and TY have the same structure as in
Luppino et al. [1]. As depicted in Figure 6, the number of �lters are
[100, 50, 20, c], where c denotes the the number of channels in the target
domain. The images are padded such that the input and output has the
same height and width.

The kernel size of the �lters is 3 × 3, and the �lters are initialized using
the truncated normal scheme of Glorot and Bengio [126]. Zero initialized
biases is used on all �lters. Both the �lter kernel and the biases are L2

regularized.

Leaky ReLU with α = 0.3 is used as activation function on all layers but
for the last one, where tanh(·) is used, as the images are scaled to [−1, 1].
A dropout rate of 0.2 is used during training.
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X 100 50 20 cy Ŷ

Figure 6: Visualization of the �lter bank used in the CNN that represents TX . The numbers indicates
the number of �lters in the layer, i.e. the number of output channels. The structure is likewise
for TX , but with cx rather than cy.

6.3.2. Training Details

6.3.2.1. Optimizer parameters
The Adam optimizer [99], described in Section 4.3.3, is used for the experi-
ments. The TensorFlow default values of ρ1 = 0.9, ρ2 = 0.999 and δ = 1e− 7
was used, which are the same values suggested by Kingma and Ba [99],
except for the numerical stability parameter δ = 1e− 8.

The learning rate ε was set to 10−4. For the experiments with an exponential
decay on the learning rate, a decay rate of 0.96 and a 10 000 step staircase
scheme was used:

εi = ε · 0.96bi/10 000c,

where i is increased for each batch.

In the optimization, all gradients were clipped to have a maximum norm
of 1. This was mainly done because of the small batch size, to stabilize the
training if e.g. two unrepresentative patches constitute one batch.

6.3.2.2. Computational Hardware
The experiments were run on a server cluster with di�erent CUDA GPUs,
each with more than 11GB VRAM. Each model was trained on single GPU
within the cluster.

6.3.2.3. Initial Change Map
The cross loss weights πij ∈ Π in Equation (11) are computed from an initial
change map C icm. The ICM C icm is computed using the Improved Prior
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Computaton scheme of Luppino et al. [1], which is described in Section 3.6.
The resulting ICMs are depicted in Section 8.

For the ICM computation was a patch size k = 20 and a stride ∆ = 5 used.
The computations was performed at the images original size, resampled at
half the size, and interpolated at double the sizes [1].

6.3.2.4. A�nity Computation
The functions gX and gY is used throughout to denote the a�nity compu-
tation in the domains X and Y respectively. This is done to emphasize
the fact that there exist no universally best a�nity computation, and that
it should be selected to describe the a�nity structure of the problem at
hand.

Herein are experiments conducted on multispectral images and log-transformed
SAR images. Therefore is it appropiate to use a Gaussian kernel a�nity
computation. The bandwidth of the kernel is set using the kNN scheme
described in Section 3.5. This scheme is adaptive on patch level, which
have empirically proven robust [1].

The objective function JA term requires that the a�nity matrices are aligned,
and this requirement is assumed ful�lled by using the same patch adaptive
bandwidth selection scheme in the two domains.

6.3.2.5. Limitations of the A�nity Computations
Computation of the a�nity matrices has a high memory requirement, O(c ·
(hw)2), where c, h and w denote the number of channels, height and width
of the image, respectively.

Due to memory constraints is the training of all models performed on
patches of the images. The the result of the memory requirement of the
a�nity computation is that the a�nity-guided models cannot process im-
age patches as large as the non-a�nity models.

To evaluate the e�ect of the smaller patch size, are two variations of the
a�nity computation included in the experiments: one where the entire
image patch is used to compute the a�nity matrices, and one where several
a�nity matrices from non-overlapping subpatches of the image patches are
computed and compared.

The latter variation consumes less memory, but the a�nity information is
also more local. For the a�nity loss term, this is equivalent to working
on larger batches of smaller images, which means that some longer-range
relational information is not exploited. Also the other loss terms may
be hypothesized to perform better with larger patches, which is why we
would like to examine the e�ect of patched a�nity computations and high-
light the potential trade-o� between computational speed and performance
gain.
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6.3.2.6. Training Data Sizes
The Patch Size (PS), Batch Size (BS), Number of Batches (NB) and A�n-
ity Patch Size (APS) for the three types of models is reported in Table 2.
The sizes are chosen within the bounds of the hardware (GPU memory)
such that the number of pixels presented to the networks per epoch is the
same for all the con�gurations. This patched a�nity model con�guration
lends that the a�nity matrices are computed on 16 subpatches of each
batch.

Table 2: Patch Size (PS), Batch Size (BS), Number of Batches (NB), A�nity Patch Size (APS) and
Pixels per Epoch (PE) for the three types of models.

Model PS BS NB APS PE
A�nity Models 64× 64 2 32 · 218

Non-A�nity Models 128× 128 2 8 · 218

Patched A�nity Models 128× 128 2 8 32 218

6.3.2.7. Data augmentation
For each batch are BS random patches of size PS×PS extracted. Each patch
is rotated 0, 90, 180 or 270 degrees with a 25 % probability, and horizontally
�ipped with a 50 % probability. These augmentations do not introduce any
artifacts in the images.

6.3.3. Evaluation Details

The evaluation phase, e.g., the change map computation, follows the one
of X-net [1] with minor adjustments. The �ow is depicted in Figure 3. The
speci�cs of the computation of the di�erence image, the �ltering and the
thresholding is as follows.

6.3.3.1. Di�erence Image
The computation of the di�erence image is twofold. First is a di�erence
image computed in each image domain. These computations are performed
pixel-wise like

DX = {d(X )
ij }

h,w
i=1,j=1, (16)

where d(X )
ij = ‖xij − x̂ij‖2. To handle outlier values is the mean µ and the

standard deviation σ of the dijs computed, and any value larger than µ+3σ
is set to this value. Then, the di�erence image is normalized to [0, 1].

Luppino et al. [1] combined the two domain di�erence images by averaging
them. We �gured that the average should be weighted by the number of
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channels in the domain the transformed image originated, to account for
the amount of inferred information.

D =
cx ·DY + cy ·DX

cx + cy
. (17)

The rationale is that the image translation should be easier when going from
e.g. 11 to 3 channels, than the other way around, as the �rst is a compression
problem and the latter an ill-posed inverse problem. Intuitively, it will be
an advantage to use the changes extracted from the domain with the fewer
channels, as this is an easier image translation problem.

6.3.3.2. Filtering
The �lter used for on D before thresholding it is a based on the fully con-
nected conditional random �eld model of Krähenbühl and Koltun [127]. It
de�nes a pairwise potential between each pixel to �lter the image using the
spatial context. See Luppino et al. [1] for more details. The hyperparame-
ters are set to 3 iterations and a kernel width of 0.1.

6.3.3.3. Thresholding
The �nal step of the evaluation phase is to threshold the di�erence image to
produce the �nal binary change map. To not introduce undue complexity,
and evaluate the performance of the image translation model as a mean
to change detection, is Otsu's thresholding [28] used. It is possible that
a more complex thresholding schemes, see Section 2.3.3, could yield some
improvement.
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7. Experimental Setup

The A�nity-Guided X-net (AX-net) proposed in Section 6.2 has a quite
complex loss function with three components. It seems inadequate to com-
pare the model to other methods that aims to solve similar problems with-
out understanding how the three loss terms works in conjunction. It is also
of interest to study whether loss terms have an isolated e�ect, or if their
e�ectiveness is synergetic. The main experiment conducted to evaluate the
model is therefore an ablation study [128] on the di�erent loss terms.

7.1. Ablation Study

Ablation is an experimental method to look into causality [3], and the aim
of an ablation study in machine learning is to identify parts of a model
that do not contribute to the inference the model performs. It is likely that
bits and pieces can be removed from many deep learning setups, without
substantial change in the performance [3]. The motivation for ablation
studies can be tied to the principle of Occam's razor, which can be phrased
as the assertion that an explanation of the facts should be no more complicated
than necessary [130].

The initial question in the experiment design was: "What can be removed
while the model still produces meaningful output?" This lends to explore
the hypothesis that the a�nity�guiding loss term can be useful for training
paired image�to�image translation networks. The ablation study, which
attempts to isolate the contribution of each individual loss term, is con-
structed to test this hypothesis.

Two experiments were conducted to better understand the a�nity loss
term. The �rst experiment is limited to ablate the loss terms, with all
other circumstances being equal. After the �rst experiment, several models
were excluded, as they did not produce meaningful output. In the second
experiment the e�ect of computing the cross-domain a�nities on smaller
patches is explored. The experiments are designed to justly compare the
di�erent submodels.

7.1.1. Naming scheme

The loss terms are indexed with A for the a�nity-guiding term, C for the
cyclic term, and X for the weighted cross-loss term, and referred to with
the respective three-character codes: A--, -C-, --X. When two or three loss
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terms are combined to train a model, the corresponding combination of
letters is used, e.g. -CX refers to X-net as visualized in Figure 4 and ACX to
the A�nity-Guided X-net in Figure 5.

All models are trained with an L2 regularization term on the weights. The
regularization term is thus not included in the naming scheme.

7.1.2. Metrics

Change detection can be considered a binary classi�cation problem, with
the classes changed or unchanged given to each pixel. The datasets used
for the experiments, presented in Section 8, contain 20 − 30 % changed
pixels. This should be considered an unbalanced classi�cation problem,
and appropriate metrics should be used.

Cohen's Kappa (κ) is designed to account for unbalanced classes, and is
used as the main metric. This allows for comparison with the performance
of X-net reported in Luppino et al. [1].

The performance according to κ is reported in box plots based on several
random initializations of the networks. The boxes are drawn from the 25th
percentile to the 75th percentile, with the median indicated with an orange
line. The whiskers are drawn at the 5th and 95th percentile.

Delgado and Tibau [118] argue that Cohens's Kappa should be used with
care, based on experiments with some quite extreme cases. To verify that
κ is a suitable metric, the F1 Score and Matthews Correlation Coe�cient
(MCC) [121] is reported for some of the models.

7.1.3. Loss Term Weights

The loss term weights λ(·) were set manually, aiming to balance the in�uence
of the main terms while keeping the impact of the regularization term lower.
The λ values reported in Table 3 were used for all the experiments.

Table 3: Loss term weights for the experiments. The symbol · indicates not applicable.
A-- -C- --X AC- A-X -CX ACX

λA 1.0 · · 0.8 1.0 · 0.8
λC · 1.0 · 1.0 · 1.0 1.0
λX · · 1.0 · 1.0 0.8 0.8
λR 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
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7.1.4. Experiment One � All Subsets of Loss Terms

To assess how each loss term contribute to the parameter optimization, it
is natural to remove the loss term to see how the optimization turns out
without it.

In this experiment all one, two and three line combinations of Equation (15)
are used to train the image translation networks. The regularization term
in Equation (15d) was used in all models. The models are:

• A--, corresponding to Equation (15a) and Figure 2;

• -C-, corresponding to Equation (15b) and Figure 7 (a);

• --X, corresponding to Equation (15c) and Figure 7 (b);

• AC-, corresponding to Equations (15a) and (15b) and Figure 7 (c);

• A-X, corresponding to Equations (15a) and (15c) and Figure 7 (d);

• -CX, corresponding to Equations (15b) and (15c) and Figure 4; and

• ACX, corresponding to Equation (15) and Figure 5.

To get decent performance statistics each method is initialized 15 times
and trained for 100 epochs. For each epoch are the networks presented
with 218 = 262 144 pixels, as presented in Table 2 for a�nity models and
non-a�nity models. The initial learning rate is set to ε = 10−4, and the
learning rate is decayed exponentially, as described in Section 6.3.2. The
loss term weights λ(·) are set as presented in Table 3.

7.1.5. Experiment Two � Patched A�nity Computation

Based on the results of Experiment One are the models -CX, A-X and ACX

selected for a more thorough analysis. The goal of this experiment is to
gain a deeper understanding of the models that performed better than the
deterministic baseline model described in Section 8.3.

Due to the memory consumption of the a�nity computation must the im-
ages presented to the a�nity models be smaller than the ones presented to
the non-a�nity models. To understand the e�ect this has on the other loss
terms, and to explore if smaller a�nity patches yields similar performance,
patched a�nity computation is introduced.

The patched a�nity computation divides an image patch into non-overlapping
sub-patches, and computes the a�nity of each sub-patch. This is equivalent
to computing the a�nity loss term for a larger batch of smaller patches,
but the other loss terms still get to work with the larger patch.

The dimensions of the training patches, a�nity patches, and batches are
as presented in Table 2. A constant learning rate ε = 10−4 is used. For
better statistics than in experiment one is each model initialized 35 times
and trained for 100 epochs. The loss term weights λ(·) are set as presented
in Table 3.
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Figure 7: The submodels used in the ablation study that are not described in Sections 5 and 6.
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8. Datasets

The two datasets used for the experiments are presented in the following.
The data is augmented and batched as described in Section 6.3.2.

8.1. Texas Dataset

The images in this dataset were captured before and after a forest �re in
Bastrop County in Texas during the months of September and October
2011 [1].

The Landsat 5 Thematic Mapper (TM) instrument acquired a multispectral
image with 7 image bands before the event, depicted in Figure 8 (a). The
Earth Observing-1 Advanced Land Imager (EO-1 ALI) acquired a multi-
spectral image with 10 bands after the event, depicted in Figure 8 (b). The
ground truth, provided by Volpi et al. [48], is depicted in Figure 8 (c).

The images are registered and cropped to 1520 × 800 pixels, and are dis-
played in false color. Some the spectral bands coincide, i.e. the land cover
signatures are partly similar [1].

8.2. California Dataset

An area in Sacramento County, Yuba County and Sutter County, California
was �ooded during January and February 2017 [1].

Landsat 8's Operational Land Imager (OLI) and Thermal Infrared Sensor
(TIRS) acquired a multispectral image with 11 image bands on January
5th 2017. The 11 bands cover the range from deep blue to long-wave
infrared. The RGB channels are depicted in Figure 9 (a). Sentinel-1A
acquired a Synthetic Aperture Radar (SAR) with polarizations VV and VH
on February 18th 2017. The image is augmented with the ratio between
the two intensities as the third channel [1], and is depicted in false color in
Figure 9 (b).

The images are registered at a 3500 × 2000 resolution, but resampled to
850× 500 to reduce the computation time. The ground truth, provided by
[2], is depicted in Figure 9 (c).

8.3. Deterministic Baseline

The initial change map used as weights in the cross�loss term is also used
as a deterministic baseline for the experiments. The ICM scheme [1] is
described in Section 3.6 and the implementation details is described in
Section 6.3.2. The ICM is �ltered and thresholded as described in Sec-
tion 6.3.3 produce a change map, which is evaluated alongside the other
models. In Figures 10 and 11 are qualitative results for the baseline on the
two datasets presented.
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(a) X, Landsat 5 image dis-
played in false colors.

(b) Y , EO1-ALI image dis-
played in false colors.

(c) Ground truth change
map [48].

Figure 8: Forest �re in Texas. Referred to as the Texas dataset.

(a) X, Landsat 8 image dis-
played in RGB.

(b) Y , Sentinel-1A image dis-
played in false colors.

(c) Ground truth change
map [2].

Figure 9: Flood in California. Referred to as the California dataset.
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(a) Initial change map. (b) Gaussian �ltered ICM. (c) Confusion map.

Figure 10: Qualitative results for the deterministic baseline on the Texas dataset.

(a) Initial change map. (b) Gaussian �ltered ICM. (c) Confusion map.

Figure 11: Qualitative results for the deterministic baseline on the California dataset.
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9. Results

9.1. Experiment One � All Subsets of Loss Terms

The �rst experiment was only performed on the Texas dataset, as this is
the easiest of the two [2]. For this initial experiment only a quantitative
analysis of the results is presented, as there are too many models whose
performance is close to a chance classi�cation for a qualitative study to be
viable. A box plot of Cohen's κ is found in Figure 12.

9.1.1. Models Without Sample Selection

With their 25th to 75th percentile spanning the range κ = 0 to κ = 0.2, it is
evident that the loss terms of the models A--, AC- and -C- are inadequate
to solve the image�to�image translation problem. They hardly perform
better than chance classi�cation compared to the ground truth.

It is not surprising that the cyclic term alone, i.e. -C-, is not able to train
the two translation networks to work together. The two halves of the
model (TY ◦TX )(X) and (TX ◦TY)(Y ) are optimized in parallel towards their
respective targets minθ‖X − (TY ◦ TX )(X)‖22 and minθ‖Y − (TX ◦ TY)(Y )‖22,
but there is no mechanism to pull the two optimization targets toward each
other. As can be seen from e.g. -CX in Figure 12, a much better solution
exists, but the loss term of -C- is not su�cient for the optimization scheme
to �nd it.

It is more surprising that the models A-- and AC- performs on par with -C-.
The data �ow is similar to --X and -CX, and one might expect performance
on par with these two models respectively. The underlying assumption is
that the a�nity matrices capture the structure of the two image domains
without changes, and that the guidance on how to translate this structure
can act as a mechanism to pull the two halves toward a common solution
during the optimization. This does not seem to happen.

The main explanation is probably the lack of a priori information. The
three models A--, AC-, and -C- do not include the cross-loss term --X,
which is weighted with the initial change map (ICM). Although noisy, this
underlying sample selection seems to be of major importance. There is a
clear di�erence between the methods with and without ICM-based cross-
loss, and it is safe to conclude that the models without this sample selection
are simply not able to solve the image�to�image translation problem.

It might seem peculiar that the a�nity loss term alone is not able to de-
scribe the same information as the initial change map, but although the
computation is based on similar principles, the data di�ers. For the ICM
the a�nity matrices of the two input images X and Y are computed and
compared. In the a�nity loss term the a�nity matrices of the input images
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X and Y are compared against the ones of the translated images Ŷ and X̂
respectively. This does not highlight change information to act as a sample
selection, but rather enforces that the a�nity structure of the transformed
image is similar to the input image.

For A-- is it likely that the image translation network learns something
resembling an identity transformation. There is nothing in the loss term
encouraging it to do otherwise. This might also be true for AC- and -C-.
It is possible that the image translation networks have too large expressive
power, and that there exists some parameter con�guration that allows for
an near-identity mapping through the composition of the two translation
networks.

9.1.2. Models With Sample Selection

The horizontal, red line in Figure 12 indicates the deterministic baseline.
The baseline is the ICM used to weight the cross-loss term --X, and it is
therefore surprising that --X perform consistently worse than it.

The baseline does not attempt to solve the image translation problem, so
a direct comparison of --X and the baseline is hard. However, they both
attempt to solve the same change detection problem, for which purpose
the baseline is superior. The confusion map of the baseline is found in
Figure 10, while the confusion map of the best15 --X model is found in
Figure 13 (h).

It seems like part of the explanation for the --X architecture's inferior
performance is that some local classes, e.g. the water bodies on the left
of the changed area and to the far north, are not translated well. These
are thus perceived as a change. This must be considered an artifact of the
image translation process, but ends up a�ecting the �nal change detection
performance.

There are also more false negatives (red) in the confusion map of --X,
mostly found in areas that the ICM indicates as changed. Part of the
explanation might be the class balance, as the changed area constitutes a
smaller part of the image. This theory is supported by the fact that the
confusion map of --X is much cleaner outside of the changed area.

The image pairs (a), (b) and (d), (e) in Figure 13, summarized by the
respective di�erence images in (c) and (f), indicate that that --X has a de-
cent performance on the image translation problem. It takes a skilled eye
to distinguish the original and translated images. Its change detection per-
formance is nevertheless inferior to the ICM, and the model is not included
in the further experiments.

15As judged by the κ value.
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The models A-X, -CX and ACX perform better than the baseline. This in-
dicates that the weighted cross-loss is the most important loss term, but
it needs to be combined with more information for the image translations
to perform well in a change detection system. These three models will be
explored in more detail in the other experiments.

A-- -C- --X AC- A-X -CX ACX

−0.2

0

0.2

0.4

0.6

0.8

Model

C
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en
s
κ

Figure 12: Cohen's κ for the di�erent models in the full ablation study on the Texas dataset. Each
model was trained for 100 epochs from 15 di�erent initializations. The red line indicates the
deterministic baseline as described in Section 8.3.
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(a) X (b) X̂ (c) DX

(d) Y (e) Ŷ (f) DY

(g) Cgt (h) Confusion map (i) Df

Figure 13: The best result for --X according to κ. Cropped at the bottom to �t the page.
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9.2. Experiment Two � Patched A�nity Computation

The second experiment was performed on both datasets, to explore how
the models perform also on the harder California dataset. Box plots of
κ for the Texas and California dataset is found in Figure 14 (a) and (b).
Note that the range on the y-axis is dramatically changed from Figure 12,
and that the x-axis position of -CX and A-X is swapped as -CX is used as a
reference point to argue whether a�nity�guiding is useful in training paired
image�to�image translation CNNs.

9.2.1. Non�A�nity Model

Even though the cyclic and cross�loss terms separately performed worse
than the baseline, their performance is signi�cantly better when combined.
An explanation for their combined performance is that the cross�loss term
indicates how unchanged pixels should be translated, while preventing the
cyclic term from utilizing identity-like paths through the networks.

At the same time does the cyclic term give indications on how both changed
and unchanged pixels should be translated through the composition of the
networks, and adds two contributions to each gradient update. That is, a
parameter θ ∈ θ associated with the CNN TX will be updated based on its
contribution to the di�erence between Ỹ = (TX ◦ TY)(Y ) and Y , as well as
its contribution to the di�erence between X̃ = (TY ◦ TX )(X) and X.

The combination of the two loss terms yields an synergistic e�ect. The two
loss terms complement each other, and their combined contribution to the
parameter updates become greater than the sum of its parts.

As -CX does not include the a�nity loss term, the architecture is not a�ected
by the a�nity patching, as seen in the subplots in Figure 14.. That is, the
two boxes for -CX in each subplot are visualizations of the distribution of
35 realizations of the same random variable. Some small variations can
be observed, but these are likely to be statistical �uctuations due to the
limited number of runs of each algorithm.

Indeed, the performances of the patched and the unpatched experiment
runs are reasonably similar, save from not so relevant shifts of percentiles
that could be attributed to statistical variations. Nevertheless, this in-
dicates that all box plots should be interpreted with some caution. An
analysis of statistical signi�cance of di�erences between the algorithms and
implementations is admittedly called for, but has not been conducted due
to time limitations.

As reported by Luppino et al. [1], -CX (X-net) performs well on the two
datasets, with a performance in terms of κ that is very consistent with the
one reported here.
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(a) Texas dataset.
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(b) California dataset.

Figure 14: E�ect of Patched A�nity Computation on Cohen's κ. Each model was trained for 100 epochs
from 35 di�erent initializations. The red line indicates the deterministic baseline as described
in Section 8.3.
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(b) F1 Score on Texas dataset.
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(c) MCC on California dataset.
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(d) F1 Score on California dataset.

Figure 15: E�ect of Patched A�nity Computation on MMC (left) and F1 Score (right). The legend
is the same as in Figure 14. Each model was trained for 100 epochs from 35 di�erent
initializations. The red line indicates the deterministic baseline as described in Section 8.3.
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9.2.2. Patched A�nity Models

For the patched models, indicated with yellow boxes in Figures 14 and 15,
the a�nity loss term is computed on 16 subpatches of size 32 × 32, while
the other loss terms are computed on patches of size 128× 128.

9.2.2.1. A-X Architecture
Neither the cross�loss nor the a�nity loss term did perform well alone,
but when combined in A-X they perform quite well, even for small a�nity
patches. This indicates that the intuition that lead us to propose the
a�nity loss term might be good.

The cross�loss term indicates how the unchanged pixels should be trans-
lated, while the a�nity loss indicates how these translations shall be dis-
persed to the changed areas by describing the desired neighborhood struc-
ture after the transformation.

The distribution of κ for the patched version of A-X on the Texas dataset
has a median on the same level as -CX, and a similar distance between
the 25th and 75th percentile. Unlike for -CX, the median is shifted towards
worse performance. Combined with the 95th percentile whisker being much
longer than the 5th percentile whisker, this gives a heavy tail towards better
performance. On the California dataset the performance of A-X is on par
with -CX, with a fairly symmetric distribution and the same number of
outliers.

Based on the performance in these experiments does A-X seem like an al-
ternative that is on par with -CX. If the heavy tail on the Texas dataset
is considered, it might even be preferred. One advantage with A-X is that
it can be used to train only one translation CNN, as the tandem network
setup is not required without the cyclic loss term. Such a single network
setup can be trained even with small a�nity patches.

9.2.2.2. ACX Architecture
With the good performance of -CX and A-X, it is expected that the joint
model should be at least as good. The combined e�ect of the weighted,
direct training targets of the cross�loss term, the dispersion e�ect of the
a�nity loss in the neighborhood around unchanged pixels, and the cyclic
consistency should yield solid performance.

With small a�nity patches on the Texas dataset, ACX has the highest me-
dian performance of the three models. It seems like substantial improve-
ment at �rst glance, but the distribution of κ has a heavy tail towards
worse performance. On the California dataset the ACX performs slightly
worse than the two other models. An explanation might be that the cyclic
and a�nity terms together overrule the cross�loss term, which seems like
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the most important term judging from experiment one. If this is the expla-
nation, then the lower performance of ACX is due to bad hyperparameter
settings.
From these experiments it seems like A-X should be favored over ACX for
small a�nity patches, especially if the worst case performance on the Texas
dataset is considered.

9.2.3. Unpatched A�nity Models

All loss terms are computed on patches of size 64 × 64, with an increased
number of batches to balance the number of pixels per epoch. These are the
same dimensions as in experiment one, and the performance is consistent
with what was observed there. These models are indicated with teal boxes
in Figures 14 and 15.
The performance of the two a�nity models with this experiment setting is
comparable on the Texas dataset. The performance is clearly better than
the -CX models.
On the California dataset the performance of A-X is clearly better, with
the worst outlier on par with the median performance of the other models.
The ACX model does not match our expectations, given a performance on
par with the patched version of A-X. The explanation can be the hyperpa-
rameter con�guration, which may cause the cyclic and a�nity loss terms
that did not work alone and together to overrule the cross�loss term.

9.2.4. Matthews Correlation Coe�cient and F1 Score

To verify that Cohen's Kappa is a suitable metric to compare the models,
the Matthews Correlation Coe�cient (MCC) and F1 Score were also com-
puted. These are reported in Figure 15. The range of the y-axis is static
for each dataset across Figures 14 and 15, although the plots for MCC and
F1 are compressed on the x-axis. Note that the F1 Score lies in [0, 1], while
κ and MCC lie in [−1, 1]. Thus is it to be expected that the F1 Score shall
be a bit higher than the other two metrics.
MCC and κ are similar measures, and coincide for a symmetric confusion
matrix [118]. Our general impression from conducting the experiments is
that the confusion matrices are not far from symmetric, i.e. the number of
false positives FP and false negatives FN are approximately the same. With
this in mind, is it expected that κ and MCC have similar values. This is
also the case, as can be seen from Figures 14 and 15 (a, b) and (a, c).
The F1 Score is a little higher than the two other metrics, but the shape
of the distributions are the same. The three metrics also have a similar
outlier structure. This indicates that κ is as good a choice as MCC or F1
Score to evaluate these experiments, and the performance descriptions in
Sections 9.2.2 and 9.2.3 would be more or less the same if MCC or F1 Score
was used as the main metric.
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9.2.5. Training Times

The average training times of the three models are reported in Table 4.
As expected, there is a signi�cant di�erence in the training time, since the
a�nity loss term is a major addition to the computational complexity.

The performance gain of the unpatched variation of A-X could justify the
increased training time. It should be noted that without the cyclic term
there is a potential to optimize only TX or TY , and still optimize it with
A-X. This would reduce the training time, as the number of a�nity com-
putations is halved. Furthermore, the a�nity matrices of the input images
can be precomputed, i.e., computed only once. This optimization would
presumably decrease the training time.

When considering training time, the time spent to compute the initial
change map also must be considered. For the Texas dataset it took 42
minutes, and for the California dataset it took 13 minutes as reported by
Luppino et al. [1].

Table 4: Average training times [mm:ss] for the three models, with unpatched (UP) and patched (P)
times for the models with the a�nity loss term.

-CX A-X ACX

P UP P UP
Texas 07:04 13:37 28:03 13:43 27:43
California 03:22 09:28 23:38 09:35 23:31

Note on the training time of the a�nity models: The a�nity mod-
els produce an error in an optimization scheme in the TensorFlow graph
compilation. The reports in the GitHub issue16 is that the occurrence of
this error impacts the performance. This may have impaired the training
time for these models, but there is no doubt that the a�nity models should
be slower to train given the extra O(c · (hw)2) computations17, where c, h, w
denotes the channels, height and width of the image respectively.

9.2.6. General remarks

The a�nity loss terms ability to disperse the information about unchanged
pixels to the neighborhood around can be seen as the introduction of con-
textual information to the loss term. The experiments indicate that this
might be bene�cial, both with smaller and larger a�nity patches. At the
least, the unpatched A-X is the model that performs best if the performance
on both datasets is considered.

The decreased performance from A-X to ACX on the California dataset might
be tied to the loss term weights λ. They were set manually, at an early

16https://github.com/tensorflow/tensorflow/issues/34499
17The batch size is negligible in this case.
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stage of the experiment timeline. It might be that the choice to set λC
higher than λA and λX was a bad decision, and that the cyclic and a�nity
term in conjunction overrules the cross�loss term in the training of ACX.
Another explanation might be that this harder dataset requires a simpler
loss function.

9.3. General Observations

The limited experiments conducted in the ablation study indicate that the
a�nity�guiding loss term might be useful in the training of image�to�image
translation networks used for change detection. Although, the proposed
model is only tested on two datasets, for which one has some overlapping
spectral bands.

Experiments should be conducted on many more datasets of di�erent com-
plexity in an further e�ort to falsify the hypothesis herein. A general issue
is the limited access to datasets with a ground truth, a well-known problem
in remote sensing and earth observation research. The proposed change de-
tection model is unsupervised. Nevertheless, there is a need for a ground
truth to �rmly evaluate the models performance.

In comparing A-X and -CX, the former o�ers one major bene�t, namely
that it can be used to train only one map, either TX or TY . This reduces
the number of parameters to optimize, which is bene�cial when working
with a small training set. Such a setup would reduce the training time of
the a�nity model, as the number of trainable parameters is signi�cantly
reduced. Another mean to reduce the computation time is to precompute
the a�nity matrices of the input images, either for the full image or as a
parallel process on the CPU during training on the GPU.

9.3.1. Critique of experimental setup

The experimental setup has several weaknesses and shortcomings, including
the following:

• Due to time restrictions, no hypothesis tests for the signi�cance of
changes in the value of κ were performed. This would be a natural
extension of this work.

• The values of the loss term weights λ(·) were set manually for the
experiments and remained �xed. This might have impacted the per-
formance of especially ACX. This illuminates another important per-
spective within ablation studies, namely to keep the number of hy-
perparameters to a minimum.

• The ablation study only removed loss terms. It is likely that the
network dimensions could have been trimmed without signi�cant loss
in performance.
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• The gradient clip norm was adapted from [1] without re�ection. This
is an element of the training scheme that might have been removed,
reducing the number of hyperparameters.

• No heuristic for early stopping was used. This would probably have
been bene�cial, as the models could conclude the training at will,
rather than at a �xed number of epochs.

• The e�ect of weighting the average in the di�erence image computa-
tion (introduced in Equation (17)) was not evaluated.
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10. Concluding Remarks

In this thesis, we have proposed a new loss function which e�ectively con-
tributes contextual information to the training process, which means that
it has the ability to retain the information contained in a pixel's neigh-
borhood. Whilst the other loss terms contain pixel-based di�erences, the
a�nity loss on the other hand explicitly uses contextual information en-
coded through the new graph-theoretic cross-domain distance. As such, it
can be compared to well-known contextual methods like random Markov
�elds and conditional random �elds, and notably o�ers a practical way of
incorporating it in the training.

The experimental results indicate that the a�nity loss term is useful when
training image�to�image translation networks for earth observation remote
sensing images. The extent of the experiments is not su�cient to claim
that the a�nity�guiding is bene�cial in an absolute and general sense.
Nonetheless, it is plausible that the a�nity-guiding loss term is bene�cial
for paired image�to�image translation.

The approach designed and developed in this work is not easily transfer-
able, as a new tandem of considered sensors requires a new training of the
proposed architecture, either from scratch or as a �ne-tuning of the set
of parameters of previously trained image translation networks. On the
contrary, latent-space approaches such as the ACE-Net [1] can be general-
ized by, for example, �nding a common latent space Z for all the possible
encoder�decoder pairs associated with each and every sensor, which allows
for comparison of any number of representation domains.

However, the main approach to machine learning for change detection at
the current is to use only one pair of images during training. That is, the
model is trained to be dataset speci�c. In fact, when dealing with a sudden
event it is more reasonable to train a model from scratch based on the �rst
available images rather than to adapt a previous model to �t the problem
at hand. For example, creating a model that can describe �ooding in a city
area given two sensors and also in a woodland area with other two sensors in
another season is probably not tractable, or even a relevant problem.

Moreover, the adversarial training paradigms are known to be unstable and
associated with di�cult hyperparameter tuning [54]. These algorithms are
also known to need a large amount of training data, which might not be
su�cient in the case of bi-temporal remote sensing imagery. Instead, the
A-X model has proven as simple as successful, and the scenario in which an
even simper model can work, where image translation is done in only one
direction, does not sound so absurd.
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10.1. Future Work

Ideas for future work with the a�nity loss term include:

• Test the model on more datasets.

• Explore how the a�nity-guiding loss term perform with other initial
change map schemes.

• Evaluate the performance of a�nity-guiding in other image�to�image
translation scenarios.

• Perform a �ne grid search of the hyperparameters and loss weights to
achieve the best performance across the di�erent datasets.

• Find a suitable scheme for early stopping of the training.

Ideas for future work on the a�nity computation include:

• Explore how small a�nity patches can be used for A-X to still perform
on par with -CX.

• Explore whether overlapping a�nity patches can be a good trade�o�
between computation time and performance.

• Use convolutional spatial propagation networks (CSPN) [79] to esti-
mate the a�nity matrices. This will likely yield a signi�cant decrease
in the computation time, while it is likely that it does not signi�cantly
decrease the performance [75, 80]. Although, this must be considered
an antithesis of the ablation study performed herein.
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