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Abstract
In this thesis,we investigate the potential use of in-situ sea ice observations from
the Ice Watch database as ground truth data for an automated classification
algorithm of sea ice types from Sentinel-1 SAR data. The IceWatch database and
the Sentinel-1 data archive are searched for in-situ observations and satellite
data acquisitions in Extra Wide swath mode overlapping in both space and
time. Time differences of up to a maximum of 12 hours are accepted and
included in this investigation. The Sentinel-1 data is downloaded in Ground-
Range Detected format at medium resolution and thermal noise correction,
radiometric calibration and additional multilooking with a 3-by-3 window is
applied. Different ice types in the images are then classified with the Gaussian
IA classifier developed at UiT. The resulting image with ice type labels is geo-
located and aligned with the in-situ observation from the Ice Watch database.
A grid of 25-by-25 pixels around the location of the Ice Watch observation
is extracted. For data points with a large time difference between in-situ
observation and satellite data acquisition, a sea ice drift algorithm is applied
to estimate and correct for possible influence of ice drift between the two
acquisition times. Correlation and linear regression is investigated between a
total number of 123 observation and the classified area around the observation.
In addition, per class accuracy for the trained ice types in the classifier is
investigated. A medium to strong positive correlation is found between types of
ice and a weakly negative to no correlation was found for sea ice concentration.
“Second-/Multiyear ice” separation achieves the highest score with 93.8 % per
class accuracy. The second highest scoring class is “Deformed First-Year Ice”,
for which 48.1 % per class accuracy is achieved. The thinner ice performs
poorly due to the low number of representative of observations from these
classes. Based on the findings there is a relationship between the reported
observations from the Ice Watch database and the classified Sentinel-1 images.
The ability to separate the older and deformed ice types from younger level
ice is present.
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1
Introduction
1.1 Motivation
Global monitoring of earth has been an important scientific field in many
branches for the reason of keeping track of climate, meteorology, marine traffic,
environmental and more[36; 19; 9; 10]. Remote Sensing (RS) from space with
optical or radar sensors is by far the best method to continuously monitor large
area of the Earth surface.

To get a fully automated classification scheme that is able to separate and
classify different types types of ice without human interaction has been of
interest for many countries and organization for years, e.g. The Norwegian
Meteorological Institute (MET) and Canadian Ice Service (CIS). Researchers
and scientist can use SAR data from polar areas as an indicator in the global
climate monitoring[42]. At this point in time, there exist no such algorithm
with sufficient accuracy for operational use.

Classification of sea ice types from SAR data is difficult for many reasons.
The radar signal is influenced by both the radar parameters and the surface
parameters. Radar parameters include frequency, polarization and local inci-
dence angle. The general surface parameters are the surface roughness and
the dielectric properties of the surface. In the case of sea ice, the problem
is additionally complicated by seasonal variation causing the ice to change
characteristic, difference in the salinity in water due to geographical location,
mixed ice types, and error due to the incident angle of satellite sensor. All these
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factors influences the image.

Another challenge is the lack of training and validation data for a supervised
machine learning algorithm. These algorithms need an abundance of in-situ
observation called Ground Truth (GT). At the moment there are few such
observations of ice types since this requires that skilled analyst is at the actual
location of interest to measure the ice type. Collecting measurement is difficult,
time consuming and economically expensive in a vast area like the Arctic. Few
expeditions do this on a yearly basis.

1.2 Previous work in the field of supervised
classification of sea ice

To automatize the process of classifying SAR-images a variety of supervised
algorithms have been tested. There exist numerous studies with many combi-
nations of classifiers and different input features to these classifiers, as well as
a variety of sources for ground truth to train and validate the result.

Many investigation have been done to separate ice and water by the use of
(semi)automatic algorithm with SAR data[38; 20; 13; 17; 16].

Two popular machine learning algorithms that have been extensively used is
Artificial Neural Network (ANN)[34; 37; 4; 21; 45] and Support Vector Machine
(SVM)[43; 23; 18; 25]. These methods require prior knowledge of the under-
lying data, but with no information about statistical content. Other methods
often used are Bayesian classification[45; 39] and Maximum likelihood[30; 15].
These two latter mentioned method are based on prior statistical knowledge
of the distribution of classes.

Many papers does an extended feature analysis to separate good quality
features from the redundant ones. In [37] they investigate 18 polarimetric fea-
tures while in [43; 4; 23; 45; 39] they used texture feature, often in addition to
backscatter intensity which can be extracted from the grey level co-occurrence
matrix as done in [39; 34; 23; 39; 25]. Atmospheric parameters and Multisen-
sor Analyzed Sea Ice Extent [18] has also been tested as input to a machine
learning algorithm.

Often has manually drawn ice charts been used as ground truth[43; 21; 45; 18],
but have often been seen as a source that is subject to human interpretation and
therefore biased. In addition the lower resolution in drawn ice charts is a dis-
advantage when compared to Synthetic-Aperture Radar (SAR) sensors.



1.3 OBJECT IVE 3

Two reoccurring issues in many studies are the classification error of Extra
Wide swath mode (EW) images due to the incident angle effect[30; 37], and
the dynamic noise-floor pattern in Sentinel-1 (S-1) images due to aligning
different acquisition strips together. These problems are described in detail in
[11]

This is only a small portion of investigations conducted since the space born
SAR became a primary source of global monitoring of ice. A more extensive
and detailed overview of previous work in the field of classification of sea ice
can be further studied in article [44]

1.3 Objective
In this thesis the focus will be on sea ice monitoring with the use of SAR. More
specific: ice type classification in a supervised manner by the use of the Ice
Watch Database (IWD), and imagery acquired from S-1 in EW.

I will compare observations from this database with classified, near-time coin-
cident S-1 imagery, and investigate if the database can potentially be used as
ground truth for a classification algorithm. A conclusion regarding the useful-
ness of comparing this database with S-1 images will be presented.

The classifier used will be the “Gaussian IA Classifier” [26] developed at Uni-
versity of Tromsø - The Arctic University of Norway (UiT).

1.4 Overview of chapters/short description
Chapter 2 gives an overview of the theory needed to follow the investigations
conducted in this thesis. It starts with basic explanation of machine learning,
supervised learning and the importance of training data collection. Here, IWD
will also be discussed: what it is, why it potentially is a good source for training
data and how can observation be collected. A general introduction to SAR and
S-1 are given before the explanation of the preprocessing stages of satellite
images and the challenge with ”The incident angle effect” in EW mode is
stated. Well known techniques used and the chosen machine learning scheme,
”The Gaussian IA-classifier”, is also explained.

Chapter 3 goes through, in detail, how the IWD and S-1 imagery were pre-
pared, aligned and compared. Choices regarding parameters from IWD, criteria
for S-1 images and how the viewing distance and ice drift are dealt with.



4 CHAPTER 1 INTRODUCT ION

Chapter 4 yields the results from the investigation. From section 4.2 through
section 4.4 we follow the results from a single image pair. This for visual
impression and explanation of how the investigation for all image pairs are
conducted. Section 4.5 and 4.6 shows the general results when comparing IWD
with S-1 images. The remaining chapter is for discussion.

Chapter 5 summarizes the conclusions and an outlook for possible future work
is presented.



2
Theoretical background
2.1 Why Arctic?
The Arctic environment plays an important role in global weather and climate
systems. Energy in the atmosphere contributes to the weather systems and
how they are created[6]. The Arctic spans a huge area and sea ice acts as
reflector for radiation from space. When sea ice melts the reflection from sea
ice is changed to energy absorption in water. This decrease in albedo in water
versus ice leads to an increase in global temperature.

Less ice in Arctic areas has turned the eyes of the industry to look north.
Increased marine traffic and offshore operation amplifies the need for good and
reliable information about the ice condition for safe navigation and operation
in the area.

RS data is the best method to continuously monitor a vast area such as the
Arctic. In particular, SAR data is a preferred tool, because of its large spatial
coverage at relatively high resolution, and its all-day and all-weather capability
(see section 2.3.2)

5



6 CHAPTER 2 THEORET ICAL BACKGROUND

2.2 Supervised learning and training data
collection

In the machine learning world there are mainly two ways of solving a problem:
supervised and unsupervised. Both aims to recognize patterns in the dataset of
interest to segment them into subsets, popularly called classes. In addition, it
exists a hybrid branch between these two, namely called semisupervised.

If we have prior knowledge about the classes and training data (in our case GT
data), the task can be solved in a supervised fashion. GT can be observation at
the area of interest or other good quality measurement that can give us prior
knowledge and the “answer” for the challenge we wish to solve. In the other
way of solving a problem, namely the unsupervised, trained data is not available.
The latter technique can only group instances of similar attributes into groups
and have to be further investigated to give a physical meaning.

One of the great challenges in supervised classification of ice is the lack of
training data, which a supervised approach requires abundance of. For a Earth
Observation (EO) classification task this means that experts needs to be on
ground gathering in-situ observation which can be fed to the classifier. It does
not come as a surprise that for a vast remote area like Arctic this is a time
consuming and expensive affair. Few ships make trips to the Arctic on a yearly
basis. Even fewer have experts able to distinguish the many types of ice existing
to a satisfactory level. These factors in combination makes good quality ice
observation rare.

The Ice watch database is a database consisting of good quality ice observation
from experts and will therefore be investigated if it can be used as GT for
classification of S-1 images.

2.3 Two sources of information
2.3.1 Ice Watch database
From a scientific point of view, it is important to have a consistent framework
of gathering data within a field of study. To maintain good quality observa-
tions across seasons, geographic location and different observers, we need a
standardized way of gathering and processing the information retrieved from
the expedition of interest. The ice watch database is no different, and when
observations is collected for this purpose, [2] must be followed.
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[2] was published by the University of Alaska Fairbanks and has the intention to
standardise sea ice observations from ships with a protocol of how to conduct
such observations, and a software tool for entering and archiving data, called
”ASSIST”.

Ice Watch Assist was modeled after Antarctic Sea Ice Processes & Climate
(ASPEcTS) where the aim of this model was to understand the role of Antarctic
sea ice.

From November 2019, the database was transferred to, and is managed by,
MET who also recently has received funding from the European Space Agency
to develop this project further. IWD can now be accessed from their web site
[3].

Collection of sea ice observation
The backbone of sea ice characterization is the egg code, which is e.g. used
in ice type charts generated by the CIS. The ice in a region is classified in
three different categories based on the type of ice. From thickest to thinnest we
have Primary, Secondary and Tertiary ice types. A not so common practice is to
report additional, minor ice classes. For the three main types, the concentration,
stage of development, and the form of ice are reported. The ice watch manual
is built with the egg code in mind.

According to the manual, the observers should conduct their observation on
the bridge or on one of the ships upper decks. The optimal location is where
the observer have a 360 degree view. The ice is viewed with a radius of
approximately one nautical mile from the ship.

A watch can consist of several observers to cross compare their interpretation
of the site for the purpose of consistency. The standard procedure is to make
an observation every hour, on the hour, when the ship is making speed through
water. Observation should not be conducted when the ship has not moved
within the ice pack. It is recommended that it has moved at least three nautical
miles during a ten minute period between observations. This is to ensure that
the same ice is not recored several times.

For each observation the observer can fill in up to 113 parameters divided in
five different categories: General, Ice, Meteorology, Photos, and Comments.
However only five of these 113 parameters are mandatory:

• Primary observer
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• Observation date and time

• Latitude and longditude

• Total ice concentration

• Visibility

For a detailed description of all the parameters see [2].

2.3.2 Satelitte images
Synthetic aperture radar
This section about SAR is based on a review of chapter 7 in [7] and chapter 5
in [12].

There are mainly two types of sensors onboard a satellite: Active and passive
sensors. Active sensors transmits and receives their own signal while passive
sensors only receives energy emitted from the Earth’s surface. Synthetic aper-
ture radar is an active sensor, meaning transmitting its own electromagnetic
waves while receiving the backscattered fraction of echo from the illuminated
surface. There are many advantages with active sensors over passive sensors.
Since the sensor actively generates and transmits its own signal, the properties
of the signal are known in detail. Furthermore, no natural light source (sun)
is needed and data can be acquired independently of sunlight conditions. By
comparing transmitted energy with the received energy, active sensors are
capable of a precise interpretation of the surface.

One of the big advantages with SAR is the synthesizing of a long antenna.
All the period an object is illuminated by the transmitted wave, the complete
history of the reflection, from this object, is stored. Later reconstruction of this
history gives the same results as if it was received by one large antenna with the
size equal the distance travelled by the satellite. When an objects is “in front”
of a moving satellite it reflects an increased frequency from the transmitted
wave, compared to when it is “behind” the same satellite. This is known as the
’Doppler effect’. Prior information of the frequency shift, enables the system to
correctly position objects and to synthesize a large antenna, even though the
physical antenna is much shorter.

The wavelength of the electromagnetic wave in the microwave region is from 1
mm to 1 m and is therefore larger than particles in the atmosphere. As stated in
[12], “The advantage of the microwave imaging radiometer, relative to visible
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or near-infrared imager, is the fact that it acquires data all the time, even during
the long dark winter season during time of haze or cloud cover” (p. 172). The
atmosphere is almost completely transparent at microwave wavelengths and
data acquisition is thus not affected by cloud or weather conditions.

By measuring different properties of the backscattered energy, such as intensity,
polarization and phase, an image of the illuminated area can be interpreted
and formed.

Polarization
An electromagnetic wave is composed of both electric and magnetic field ori-
ented perpendicular to each other. The polarization of a radar signal reveals
the orientation of the electromagnetic energy transmitted and received by an
antenna. A sensor that sends and receives horizontally(or vertically) oriented
electromagnetic waves is called single polarized. If a sensor can receive hor-
izontally and vertically oriented waves it is called dual polarized. For single
polarized, the received signal is in the same polarization, yielding channel HH
or VV. Dual polarization transmits in H or V and receives in both polarization,
yielding channel HH/HV and VV/VH. If a satellite has quad polarization con-
figuration it transmits and receives on both polarization yielding the channels
HH/HV/VH/VV. Different surface properties may yield the same backscatter
in one channel, but different in others. When doing analysis, expert knowl-
edge and experience of the backscatter response in the different channels are
vital.

SAR and sea ice
The received echo from the transmitted wave is dependent on many factors:
polarization, incident angle, radar frequency and the retrieved backscatter
intensity from illuminated surface. These again are dependent of the surface
physical and dielectric properties[44; 10]. Ice thickness can not be seen directly
with the use of SAR and the stage of development is difficult to separate due
to the ambiguity in backscatter from ice[32]. Also backscatter from windy
waters can overlap with several ice types[28]. In addition, different locations
and seasons changes the characteristics of the ice surface and the signal-ice
interference due to differences in salinity and melting/freezing seasons[33; 6],
thereby making the separation of different types of ice, by the use of spacecrafts,
challenging.
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Sentinel-1
The use of SAR is an invaluable tool, and often the only source in monitoring
the Arctic environment. The need for covering such a huge area daily, sets
requirement to the sensor in use.

According to [1; 14] the S-1 mission consist of two near-polar, sun-synchronous
orbit C-band(microwave) SAR-sensors, operating day and night. Capable of
capturing images regardless of weather, these SAR-sensors deliver images in
four different modes, resolution down to 1.7x4.3 m for level-1 products and
coverage up to 400 km. The sensors have dual polarisation capability and
a short revisiting time. The mission is currently composed of two satellites:
Sentinel-1A and Sentinel-1B. Sharing the same orbital plane, but 180 degrees
phased making SAR-interferometry possible.

S-1 produces a consistent long term data archive built for application based on
long time series, making it a reliable source for EO data and monitoring of the
Arctic environment.

Images from this sensor can be freely accessed and downloaded via the ”Coper-
nicus sentinel open access hub”¹ and is the source for EO data used in this
thesis.

Preprocessing
Thermal noise removal
Thermal noise comes from properties of the sensor. Characteristic of the sensor
itself causes the measured signal in each imaging swath to focus around the
middle of the swath. For a multi-swath acquisition mode, like EW, this noise has
different intensity in each sub-swath. An effect of this is a sub-swath variation
from the middle of the swath to the outer boundaries[35]. This artifact in the
image can be reduced. Since this artifact comes from properties of the sensor
it is known and can be accounted for. For each product a denoising vector can
be applied to correct for thermal noise.

Radiometric calibration:
The raw data captured by the sensor is stored as digital numbers in the form
of integers values. These values need to be converted to physical units do get
a relationship to other images or to features on the ground. The radiometric
calibration corrects for the geometric viewing conditions, date dependency and
the distance from the sensor to the illuminated surface. It converts the digital

1. https://scihub.copernicus.eu/dhus/#/home
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numbers into radar cross-section[5]. This makes comparison from different
sensors, taken at different points in time, possible.

Multilooking
The process of multilooking reduces speckle noise(salt-and-pepper noise from
constructive or destructive interference between electromagnetic waves) and
thermal sensor noise. This is done either in the spatial domain or Fourier domain.
In spatial domain it is done by the use of an average running filter over a
neighborhood of adjacent pixels. By transforming the image to Fourier domain
the same can be achieved by splitting the image in the wanted number of looks
and then averaging over them. An effect by multilooking is a degradation of the
resolution in the sense that values in adjacent pixels are being mixed.

In this work we use S-1 data in EW mode in Ground-Range Detected format
at Medium Resolution (GRDM). This product has a pixel spacing of 40-by-40
m at an actual resolution of 93-by-87m. After multilooking the resolution is
closer to 120-by-120 m.

The incident angle effect in EW-swath mode
A side-looking sensor yields different incident angle on areas on the ground
within an image. The effect of this is a decay in intensity backscatter from near-
range to far-range across the image. This makes both human and statistical
interpretation a challenging task. Visually the image is brighter closer to the
satellites position than further away and the problem is increasing with a
greater incident angle range as in a satellite image acquired in EW mode. This
artifact is popular called ”The incident angle effect” and is visualized in Figure
2.1
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Figure 2.1: Incident angle effect and profile of digital values
Left: S-1 HH image over area with homogeneous ice. Right: Profile taken from
near-range to far-range, showing a decrease in backscatter digital value to
highlight ”The incident angle effect”. The profile is from row 300 in image to
the left.

From a machine learning point of view the decrease creates over-segmentation
and banding in the range direction, leading to a lower performance in real class
distinction. In addition, different surface properties gives different intensity
decay rates across range.

This has been dealt in the past by applying a global correction value for the
whole scene[41; 25] or a manual correction per class[24; 29] in the preprocess-
ing stage. For a global correction the results are improved, but leads to over
correction for some areas and under correction for others. The manual way
is tedious and time consuming and does not fit the frame for an automatic
classification scheme.

The classifier used in this thesis includes the IA correction directly in the
classification process. The method is introduced in [26] and explained in
section 2.5
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2.4 Standard techniques and theory
Section 2.4.2 is a review of chapter 2 in [40] and section 2.4.3 is a review of [8]
(p. 539-542) and 2.4.4 is from (p.169-170) from the last mentioned author.

2.4.1 Technical tools
Python programming language is a an interpreted, high-level, object-oriented,
cross-platform language and is consistently used throughout this thesis. In-
cluding, but not limited to, the use of search and download function for S-1
images(delivered by Centre for Integrated Remote Sensing and Forecasting for
Arctic Operations (CIRFA)), use of estimating ice drift calculation, extracting
and analysis of image information, statistical analysis, creation of figures in
thesis, and more.

Sentinel Application Platform (SNAP) is an EO processing and analysis soft-
ware, and in the combination with the S-1 Toolbox (S1TBX) is used for prepro-
cessing of the images listed in A.1

2.4.2 Bayesian decision theory
In Bayesian decision theory the goal is to classify patterns in the most probable
of classes.

A conditional distribution, p(x |ωi ), is describing a data set having affiliation
to class ωi , and P(ωi ) is the prior probability for the same class. By applying
Bayes theorem, given samples x, we can find the posterior probability

P(ωi |x) = p(x |ωi )P(ωi )
p(x) (2.1)

where p(x) is the probability density function of x.

For a multiclass problem withM classes(ω1,ω2, ...,ωM ) the task is to findwhich
class the sample x has the largest probability to belong to. Bayes classification
rule for a multiclass problem states

x ∈ ωi i f P(ωi |x) > P(ωj |x) ∀ i , j (2.2)
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In words, sample x is classified to class i if the probability for affiliation to class
i is bigger than the probability for affiliation to any of the other classes.

By inserting 2.1 in 2.2 and by acknowledging that p(x) is equal for all classes
the decision rule can be stated as

x ∈ ωi i f p(x |ωi )P(ωi ) > p(x |ωj )P(ωj ) ∀ i , j (2.3)

The intersection between the conditional probability functions is the decision
surface in the multidimensional feature space. Along this surface, classes (that
are adjacent to this surface) are equal probable to happen. In this case, instead
of working with probability, it is more mathematically convenient to work
with equivalent functions of them. More precisely, a monotonically increasing
functions called discriminant function, дi (x). Equation 2.3 is then written
as

x ∈ ωi i f дi (x) > дj (x) ∀ i , j (2.4)

If the a priori probabilities, P(ωi ), for each class is equal then equation 2.3 is
described as

x ∈ ωi i f p(x |ωi ) > p(x |ωj ) ∀ i , j (2.5)

and the result is the maximum likelihood classifier approach where

дi (x) = p(x |ωi ) (2.6)

When statistical parameters needs to be estimated, maximization of the likeli-
hood function is often used. This leads to whats known as “Maximum Likeli-
hood Estimation”. From this the underlying pdf, that describes our data, can
be built.

2.4.3 Simple Linear regression
Simple linear regression is an analysis of the functional dependence of one
variable on another variable. The data consists of n pairs (xi ,yi ), ..., (xn,yn),
observations.
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The relationship between the response variable, y, and the predictor variable,
x, can be described with the linear equation

yi = a + bxi (2.7)

The main purpose of regression is to predict the value of yi based on value of
xi and when writing equation 2.7, the relationship between them is assumed
to be linear, as the name of this section suggests.

a and bare unknown parameters and can be estimated with the following
equations

b =
Sxy

Sxx
and a = y − bx (2.8)

where Sxx is the sum of squares, Sxy is the sum of cross product and x and y
are the sample means to the corresponding variable. The n paired observations
will not settle exactly on a straight line, but the best fitted line will be the
outcome and is called the regression line.

2.4.4 Correlation and covariance
Sometimes the strength of a relationship between parameters is of interest. This
can be done by calculating the correlation coefficient, ρ, and is always in the
interval [-1,1]. The endpoints in this interval, -1 and 1, are indicating a perfect
linear relationship. If the correlation is positive it yields an upward trend,
meaning if the predictor variable increases, the response variable does also.
For negative correlation, an increase in response variable yields a decrease in
the predictor variable. The closer the coefficient is to the endpoint the stronger
the strength of relationship is. Coefficient that is zero indicate “no relationship”
and the variables can be seen as random relative to each other.

Relationship can also be confirmed with the covariance between the same two
variables, but does not directly give information about the strength. We still
need the covariance to calculate the correlation coefficient:

Cov(X ,Y ) = E((X − µX )(Y − µY )) (2.9)

In equation 2.9, X and Y are variables, µX and µY is the mean of X and Y
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respectively while E denotes the expectation. We can now find the correlation
of X and Y

ρXY =
Cov(X ,Y )
σXσY

(2.10)

where σX and σY in equation 2.10 is the standard deviation for X and Y,
respectively.

2.5 Gaussian IA-classifier
The Gaussian Incident Angle (IA)-classifier is a supervised classification scheme
that incorporates the IA variation across range. It does so by replacing the
constant mean vector with a variable linear mean vector in a bayesian classifier,
when a Gaussian distribution is assumed. The mean then becomes a linear
function, in the log-space, dependent on the IA, θ .

The correction for IA is no longer a part of the preprocessing stage, but is
incorporated in the training phase.

The “standard” Gaussian multivariate distribution
Every pixel intensity x is assigned to the most probable classωi . This is decided
by the decision rule described in equation 2.5 for the Maximum Likelihood
approach.

Here the p(x|ωi ) is assumed to be the Gaussian multivariate class-conditional
probability density function for ωi . This is described by a mean vector, µi, and
a covariance matrix, Σi. The equation for a multivariate Gaussian distribution,
with a constant mean vector, is

pi (x|ωi ) = 1

(2π )d2 |Σi | 12
e−

1
2 (x−µi)T Σ−1i (x−µi) (2.11)

where d is the dimensionality of x and T denotes the transpose operation for a
matrix.
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The “Gaussian IA-classifier” multivariate distribution
In the case of the Gaussian IA-classifier the mean vector, µi is replaced with a
linear variable mean vector µi(θ ) dependent on θ :

µi(θ ) = ai + bi · θ (2.12)

where intercept ai and the slope bi for each class is calculated during the
learning phase. By doing so the variation with IA is not longer an image
property, but is treated as a class property. By inserting equation 2.12 in 2.11,
the Gaussian multivariate distribution for the IA-classifier is written as

pi (x,θ |ωi ) = 1

(2π )d2 |Σi | 12
e−

1
2 (x−(ai+bi ·θ ))T Σ−1i (x−(ai+bi ·θ )) (2.13)

Covariance is now calculated as the mean squared deviation in respect to a
mean value dependent to IA. By replacing the global constant mean vector
with a linear variable mean vector we achieve a lower covariance.

By including equation 2.13 in the bayesian decision rule, described in equa-
tion 2.5, we get the Maximum Likelihood decision rule for the Gaussian
IA.classifier.

In the study that introduces the Gaussian IA classifier, a total number of 9
classes is introduced. These classes are based on manual interpretation of
overlapping optical and SAR data. For the work in this thesis, we use a version
of the classifier that has reliably been trained for only 6 of these 9 classes. An
overview of the classes is given in Table 2.1

Table 2.1: Implemented classes in the Gaussian IA-classifier

Class number Class name Implemented

1 Open Water(calm) No
2 Open Water(windy) No
3 Leads with Open Water/Newly Formed Ice Yes
4 Brash/Pancake Ice No
5 Young Ice I Yes
6 Young Ice II Yes
7 Level First-Year Ice Yes
8 Deformed First-Year Ice Yes
9 Second-/Multi-Year Ice Yes





3
Methods and techniques
This chapter describes how the IWD and S-1 images are prepared, aligned
and compared. Choices regarding viewing distance, ice drift and how the two
sources are merged before comparison are explained along with the statistical
analysis.

3.1 Preparing the two sources: Ice Watch
database and Sentinel-1 images

3.1.1 Ice Watch database
Observations from Ice watch database are open for everyone to use and can
be accessed online at MET’s web page¹. At the time the author of this thesis
started to prepare data from IWD there were 5696 observation divided in 52
registered cruises on the web page. Throughout the period, at least one new
cruise has been registered and is not included in this thesis.

All observation details, with its 113 parameters, were downloaded and com-
bined to one single csv-file. Empty observations were removed and the global

1. https://icewatch.met.no/
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Latitude/Longitude projection was converted to Arctic research projection².
This because the IA classifier projects the classified S-1 images to the latter
mentioned projection.

From the 113 parameters that can be registered in an observation, we have
manually selected 13, which are listed in Table 3.1. The selection is based on a
manual choice that allows for best comparison to the classes in the Gaussian
IA classifier.

Table 3.1: Parameters investigated from Ice Watch Database

Parameter Description

Date YYYY-MM-DD HH:MM:SS UTC
LAT Latitude decimal degrees
LON Longditude decimal degrees
TC Total Concentration
PT Primary Ice Type
PPC Primary Partial Concentration
Ptop Primary Topography Feature Type
ST Secondary Ice Type
SPC Secondary Partial Concentration
Stop Secondary Topography Feature Type
TT Tertiary Ice Type
TPC Tertiary Partial Concentration
Ttop Tertiary Topography Feature Type

The primary-, secondary- and the tertiary Ice Type are defined as “from thick-
est(Primary) to thinnest(Tertiary) ice” while their topography is recorded as
PTop, STop and Ttop, respectively.

The primary-, secondary- and the tertiary partial concentration is the con-
centration for the different ice types and should always sum up to the total
concentration. Ice types is listed as one of the types in Table 4.3 under ’Ice
Watch classes’

One single observation was divided into three sub-observation: (PT, PPC, PTop),
(ST, SPC, STop) and (TT, TPC, TTop). This division of observations was the
foundation used for statistical analyses when comparing IWDwith the classified
S-1 images.

2. WGS 84(EPSG:4326) positions were converted to WGS 84/North Pole LAEA Eu-
rope(EPSG:3575)
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3.1.2 Sentinel-1 images
The source for EO data was Copernicus Open Access Hub. 52 S-1 images were
downloaded, preprocessed and classified. The complete enumerated list of
images can be seen in Table A.1. Images used for InSAR calculation can be seen
in Table B.1 and B.2 under “InSAR pair”

The criterion for downloading images was that an observation from IWD
should be contained in two or more S-1 images within a timespan of +/- 12
hours. This criterion was set such that the InSAR capabilities could be used to
estimate the ice drift at a later point.

Thermal noise was removed from the images before radiometric calibration
and multilooking in the spatial domain was applied(within a 3-by3 neighbor-
hood). The last step was to convert the digital numbers to decibel value. The
preprocessing was achieved by the use of SNAP software. Theory of each
preprocessing step can be seen in 2.3.2

The preprocessed images were fed to the "Gaussian IA classifier", described
in section 2.5, which yielded the classified images with 6 predefined classes
as described in Table 2.1, and can be seen in Table 4.3 under “IA-classifier, Ice
type name”.

An example showing HH and HV intensity, a false-color composite (R-HV,
G-HH, B-HH) and the classified image is shown in Figure 4.3 Note that areas
with completely open water are misclassified, as they are not included in the
trained classes of the classifier. This does not affect the analysis in this work,
since we are mostly looking at areas with high sea ice concentration, where
open water should be captured by the“Leads" class.

For visual analysis and comparison, all images shown in this thesis are scaled
to the same dynamic range.

3.2 Aligning the sources
3.2.1 Viewing distance and viewing box
To define the distance the observer can visually see, and come to his or hers
decision regarding prevailing ice condition, a viewing distance had to be set.
In [2] it is stated: "Ice is viewed within 1 nautical mile from the ship during a
10 minute observation period" (p. 4) while according to the ASSIST/IceWatch



22 CHAPTER 3 METHODS AND TECHNIQUES

protocol³ the observation radius should be done around the ship for a radius of
1 kilometer. The latter mentioned distance is also the recommended distance
from MET.

For the purpose of this investigation, we decided to use a 2 by 2 kilometers box
around the observation. This is well within the area that should be considered
for the Ice Watch observation. Using Figure 4.4 as an example we can see the
location of the observation as a blue dot in the middle. The distance from the
blue dot to the top, bottom, left and right is approximately 1 kilometer. To the
corners the distance is 1.4 kilometers. The chosen viewing box will therefore
be a combination between the two sources for viewing distance

3.2.2 Estimating ice drift
By the use of InSAR capabilities of S-1 an estimate for drift could be calculated
for each observation. This is done by the use of NERSC’s sea ice drift from
Sentinel-1 software⁴. As stated it is a “computationally efficient, open source
feature tracking algorithm” written in the programming language Python 3.6
[22; 31; 27]

By comparing two S-1 images over the same geographical area, that only
deviates in time, the feature tracking algorithm is able to quickly and efficiently
estimate a first guess of ice drift in a few unevenly distributed key points, and
the pattern matching provide drift vectors on a regular or irregular grid. The
result is ice drift vectors as seen in Figure 4.8 and 4.9.

The ice drift vector closest to observation extracted from IWD was used as drift
estimate for that single observation. From this point two scenarios was tested:

Scenario 1: Use only observation that has ice drift less than 500 m in the
proximity. No drift is applied

Scenario 2: Use all observation regardless of ice drift distance. Drift correct all
observation

The 500 meter limit was chosen since this is half the viewing distance. With
this it is assumed that the drift can be disregard since most of the pixel in the
viewing box will remain the same.

Other sources for estimating ice drift was also considered. OSI-405-c and OSI-

3. https://icdc.cen.uni-hamburg.de/1/daten/cryosphere/seaiceparameter-shipobs/
4. https://github.com/nansencenter/sea_ice_drift
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407-a from OSI SAF⁵ is an option when investigating sea ice drift. The first
mentioned sensor is a passive microwave and gives a 62.5 km resolution with
48 hour window. The product is too coarse to give reliable result. The latter is
an optical sensor at 20 km resolution with 24 hour window. This will give a to
sparse results due to cloud cover.

The pattern matching algorithm was not applied due to that it only produced
invalid results. Investigating ice drift was not the main goal of this thesis and
was therefore not a priority. An estimate is achieved by the use of feature
tracking and the drift results can be seen in Table B.1 and B.2 under “Tot drift”
for the total ice drift for scenario 1 and scenario 2, respectively

3.2.3 Merging and shifting the sources:
To compare the observation from IWD with the classification result from the IA-
classifier these sources needed to be combined. IWD has 15 different ice types
defined in addition to ’Open Water’. These ice types are given a value between
10 and 85. The IA-classifier has nine classes where only six are implemented:
3, 5, 6, 7, 8 and 9, as seen in Table 2.1.

To compare the results from both sources, ice types from IWD is merged down
to six classes and shifted between the value of one to six. Classification results
are also shifted such that values are no longer between three and nine, but
also one to six.

Further the recorded topography from IWD is used to separate “Level-” and
“Deformed First-Year ice”. The First Year observations that did not contain
reports of topography were not possible to clearly separate between the two
classes 4 and 5. For statistical convenience this was set to class 4.5 with the
motivation that the sum of many observations, between these two classes, will
converge towards a value of 4.5. This way the statistical analysis would give
the most realistic image as possible.

Results of the merging and shifting are listed in Table 4.3 along with the expla-
nation to classes from both sources(class 4.5 is neglected from this table).

5. http://osisaf.met.no/status/
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3.3 Comparing the sources
The correlation was investigated between IWD and the classified S-1 images
to investigate if there is an association between these two sources and the rela-
tionship is modeled with linear regression as described in 2.4.3 and 2.4.4.

The thickest ice(Primary Ice Type) reported in IWD was compared to the
thickest class yielded by the classifier. The second thickest(Secondary Ice Type)
from IWD was compared to the second thickest class yielded by classifier.
The third thickest from IWD was compared to the third thickest class yielded
by classifier. This was done consistently and with no regards to the their
corresponding partial ice concentration.

When looking at correlation and linear regression for the ice types, all valid
sub-observations were used. But when investigating the concentration, only
sub-observations which had ice types correctly set by the classifier, according
to reported in IWD, was used. This since there was no reason to test for
correlation for something that had already been proven wrong.

Overall comparison of valid sub-observations of scenario 1 and scenario 2 is
shown in section 4.6.4. The reported observation from IWD and the result from
the classifier is presented in the same histogram for both scenarios. This gives
an impression how the class representatives for each class is spread throughout
the whole dataset before classification, as well as how they are mapped during
the classification process.



4
Results and discussion
The results of comparing IWD data with the Gaussian IA-classifiers results
are shown in this chapter. From section 4.2 through section 4.4 the InSAR
pair (34, 35) from Table A.1 and its corresponding observation is shown as an
example, but was not included in any of the scenarios. This is shown for visual
impression of how this investigation is conducted for all pairs listed in Table
B.1 and B.2.

4.1 Results of extracting observation from Ice
Watch database

As mentioned in chapter 3, IWD contains 5696 observation in the timespan 5.
of August 2006 to 1. of August 2019. The number of observations per year and
per month is shown in in Figures 4.1 and 4.2, respectively.

25
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Figure 4.1: Observations from Ice Watch database by year
Number of observations registered in the Ice Watch database between 2006
and 1. of August 2019 by year

Figure 4.2: Observations from Ice Watch database by month
Number of observations registered in the Ice Watch database between 2006
and 1. of August 2019 by month

The years with most observations were 2015 and 2018 with 1546 and 842
registered on IWD, respectively. The monthly timespan with the highest count
is from August to October, and holds a total of 4488 observations. The sea ice
minimummarks the end of themelting season andusually occurs in this period¹.

1. https://cryo.met.no/en/arctic-melt-2019
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This shows that most Arctic cruises that are conducting ice watch observations
are taking place in the summer months. Using the IWD as validation for ice
type classification may therefore be biased towards summer months, while at
the same time, most automated ice type classification algorithms are tuned for
winter/freezing conditions.

4.2 Classification results
Figure 4.3 shows subplots of example S-1 image 34 from Table A.1. “HH” and
“HV” are the preprocessed product acquired from S-1 in EW. The “False color
composite” is an RGB image consisting of HV in red channel and HH in both
green and blue channel. The result of the Gaussian IA-classifier is shown as the
“Labeled” sub-image.

Note that the Gaussian IA classifier in its current implementation disregards the
entire first swath EW1 of the S-1 image. The first swath is particularly affected
by the noise in the HV component, which may cause too much misclassification.
It is therefore not processed by the current version of the classifier.

S-1 images acquired in EW have a spatial extent of 400 km. A consequence
of this is that what looks like a blue dot is really two blue dots almost on top
of each other. These two represent the position where the observation from
IWD was reported. For a closer look at the area around the two observations
see Figure 4.4 and 4.5. The closeup area correspond to the viewing distance
explained in section 3.2.1
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Figure 4.3: Full scale image of HH, HV, False color composite and labels
Example of an S-1 image containing two observation within a timespan of
pluss/minus one hour. ”Timestamp” is the start-sensing-time for the S-1 image.
Top left: HH. Top right: HV. Bottom left: False color composite with HV in red
channel and HH in green and blue channel. Bottom right: Classification result
indicating different ice classes using the color code explained in Table 4.3
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Figure 4.4: Example observation one
Closeup of S-1 image (HH, HV, false-color, labels) around observation 1/2 from
Figure 4.3. The observation location is indicated by the blue dot and the images
is cropped to a 25-by-25 pixel region around it.

Figure 4.5: Example observation two
Closeup of S-1 image (HH, HV, false-color, labels) around observation 2/2 from
Figure 4.3. The observation location is indicated by the blue dot and the images
is cropped to a 25-by-25 pixel region around it.
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4.3 Comparing observations with classification
results

Figures 4.6 and 4.7 are the normalized histograms of the labeled sub-images
of Figure 4.4 and 4.5, respectively. The parameters used to distinguish the type
of ice and concentration from Table 3.1, for this particular observation, are
included in the top left corner. Concentration are given in tenths.

Figure 4.6: Example observation one - Histogram
Histogram of observation from labeled image in Figure 4.4. The box in the top
left corner is observation data from IWD. The x-axis shows the classes from
IA-classifier before shifting and merging. The y-axis is normalized.

Table 4.1: Comparing observation 1

Values from IWD and IA-classifier for observation corresponding to Figure 4.4
and 4.6. Concentration for IA-classifier is retrieved from the normalized
histogram and is rounded to closest tenth. This observation yields two

sub-observation.
Ice type and concentration Observer from IWD Classification results

Primary Ice Type Second Year(75) Level Ice(100) Second-/Multi-Year Ice(9)
Primary Partial Concentration 4

10
1
10

Secondary Ice Type First Year >120cm(80) with Ridges(500) Deformed First-Year Ice(8)
Secondary Partial Concentration 5

10
9
10

Tertiary Ice Type NaN Level First-Year Ice(7)
Secondary Partial Concentration NaN 0

10
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Figure 4.7: Example observation two - Histogram
Histogram of observation from labeled image in Figure 4.5. The box in the top
left corner is observation data from IWD. The x-axis show the classes from
IA-classifier before shifting and merging. y-axis is normalized

Table 4.2: Comparing observation 2

Values from IWD and IA-classifier for observation corresponding to Figure 4.5
and 4.7. This observation yields two sub-observation

Ice type and concentration Observer from IWD Classification results

Primary Ice Type First Year >120cm(80) with Ridges(500) Second-/Multi-Year Ice(9)
Primary Partial Concentration 5

10
4
10

Secondary Ice Type First Year, 70-120cm(70) Level Ice(100) Deformed First-Year Ice(8)
Secondary Partial Concentration 4

10
6
10

Tertiary Ice Type NaN NaN
Secondary Partial Concentration NaN NaN

4.4 Results of ice drift estimation
In Figure 4.8, the shown image and the red dotted box correspond to image
number 34 and 35 in Table A.1, respectively. The keypoints calculated with
the feature tracking algorithm can be seen as areas of red, scattered unevenly
where the two S-1 images overlap. The keypoints represents drift in the area
and are visualised as red arrows. A closeup around 2018-08-19 20:31:00 UTC
can be seen in Figure 4.9
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Figure 4.8: Drift calculation
Result after InSAR drift estimation by the use of feature tracking algorithm.
Observations plus/minus twelve hours are plottet. The two observations seen
in 4.3 correspond to date 2018-08-19 06:03:00 UTC and 2018-08-19 07:06:00
UTC. The red spots seen in the image are drift arrows indicating direction and
speed estimates. For a closeup see Figure 4.9.
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Figure 4.9: Drift calculation - Zoomed
Closeup near observation 2018-08-19 20:31:00 UTC from Figure 4.8. The red
arrows are drift vectors calculated by the feature tracking algorithm.

4.5 Results of merging and shifting Ice Watch
observations and classification results

Table 4.3 gives an explanation of how the shifting and merging of the data is
performed. Ice Watch classes which are marked with the same color is merged
to the same class and is given the “New merged class value.” IA-classifier labels
holding the same color are shifted to the same “Newmerged class value”.
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Table 4.3: Redefined classes after merging and shifting

Initial class values from Ice Watch database and IA classification class values
and how they are merged to “New merged class values” for comparison. To
separate class 4 and 5 in the “New merged class value”, topography of the ice
from ice watch database is used. This is seen as number 100(Level ice) or
500(Ridges) in parenthesis under “ice type value” for “Ice Watch classes”
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4.6 Results of comparing the Ice Watch Database
with classification results

Linear regression and the correlation between observations from IWD and
classification results for both scenarios are shown in this section. This is done
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for ice type and for ice concentration. Scenario 1 uses only observations that
have an estimated drift less than 500 meters in the time interval between
observation and S-1 sensing-start-time. The drift is not applied for this scenario.
Scenario 2 applies the estimated drift for all observations.

Many observations hold the same values and are therefore plotted on top
of each other. This is represented as numbers in plots, showing the amount
of observations overlapping each other. The values on the x- and y- axes
are described in section 3.2.3 and shown in Table 4.3 under “New merged
class values.” The new class values can be interpreted that it holds the same
ice type as IA-classifier ice type. E.g. the new class value 6 corresponds to
“Second/Multiyear” for both IWD observations and classification results.

4.6.1 Scenario 1: No drift comparison
Ice Type

Figure 4.10: Linear regression without drift - Ice type
Scatter plot of classification results versus observations from IWD. The shifted
IA-classifier ice type classes on the x-axis. The merged ice type classes from
IWD on the y-axis. Regression line between these two variables is drawn and
corresponds to y = -0.97 + 1.07x. The number placed next to the observation
show how many observations plotted on top of each other

Correlation matrix, Ice type

[
1 0.79696823

0.79696823 1

]
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Scenario 1 for ice types yields a regression line given by y = -0.97 + 1.07x.
The correlation between observations from IWD and classification results is
0.80.

From the correlation matrix we can see a medium/large positive associa-
tion(0.79696823) between IWD and classification result. High value observa-
tions in field corresponds to a high classification result and is confirmed by the
regression line. 28 of the 60 sub-observations are correctly set to the same ice
types according to IWD. This gives an overall accuracy of 46.7 %. Observation
details are given in Table B.1.

Table 4.4: Confusion matrix - Scenario 1

Confusion matrix for scenario
1 from Figure 4.10 Intermediate class 4.5 excluded. ACC is the per class accuracy.

Ice Watch database
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

IA
-c
la
ss
ifi
er

Class 1
Class 2 4
Class 3
Class 4 1
Class 5 1 1 2 13 1
Class 6 1 14 15

ACC 0 0 0 0 0.481 0.938

Table 4.4 shows the per class accuracy when the intermediate class 4.5 is
excluded. This gives 48.1 % accuracy for class 5 and 93.8 % accuracy for class
6. Class 1-4 have 0 % accuracy. When the intermediate class (class 4.5) is
excluded an overall accuracy of 52.8 % is achieved.

Sea ice Concentration
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Figure 4.11: Linear regression without drift - Concentration
Scatter plot of classification concentration versus concentration from IWD.
Concentration from classifier on the x-axis. Reported concentration from IWD
on the y-axis. Regression line between these two variables is drawn and
correspond to y = 0.50 - 0.18x. Only the 28 sub-observations correctly classified,
is used

Correlation matrix, Concentration

[
1 −0.22995975

−0.22995975 1

]

Scenario 1 for concentration yields a regression line given by y = 0.50 -0.18x.
The correlation between observations from IWD and classification results
is -0.23. The 28 correctly classified sub-observations are used in this calcula-
tion.

From the correlation matrix for concentration we can see a small negative
correlation between IWD and classification result. High value for concentration
in field correspond to a lower classification value for concentration.

4.6.2 Scenario 2: With drift comparison
Ice Type
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Figure 4.12: Linear regression with drift correction - Ice type
Scatter plot of classification ice type versus ice type from IWD. Ice type from
classifier on the x-axis. Reported ice type from IWD on the y-axis. Regression
line between these two variables is drawn and correspond to y = -0.32 + 0.93x.
The number placed next to observation shows how many observations plotted
on top of each other.

Correlation matrix, Ice type

[
1 0.66578677

0.66578677 1

]

Scenario 2 for ice types yields a regression line y = -0.32 + 0.93x. The correla-
tion between observation from IWD and classification results is 0.67.

From the correlationmatrixwe can se amedium positive association(0.66578677)
between IWD and classification result. high observation in field correspond to
a high classification result. 45 of the 123 sub-observation is correctly set to the
same ice types according to IWD. This yields an overall classification accuracy
on 36.7%. Observation details can be seen in B.2
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Table 4.5: Confusion matrix - Scenario 2

Confusion matrix for scenario
2 from Figure 4.12 Intermediate class 4.5 excluded. ACC is the per class accuracy.

Ice Watch database
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

IA
-c
la
ss
ifi
er

Class 1
Class 2 7 1
Class 3 1
Class 4 3 1
Class 5 3 3 2 7 19 4
Class 6 1 4 25 26

ACC 0 0 0 0 0.413 0.867

Table 4.5 shows the per class accuracy when the intermediate class 4.5 is
excluded. This gives 41.3 % accuracy for class 5 and 86.7 % accuracy for class
6. Class 1-4 have 0 % accuracy. When the intermediate class is excluded this
gives an overall accuracy on 42.1 %

Ice Concentration

Figure 4.13: Linear regression with drift correction - Concentration
Scatter plot of classification concentration versus concentration from IWD.
Concentration from classifier on the x-axis. Reported concentration from IWD
on the y-axis. Regression line between these two variables is drawn and corre-
spond to y = 0.38 + 0.00x. Only the 45 sub-observations correctly classified,
is used.
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Correlation matrix, Concentration

[
1 0.00140065

0.00140065 1

]

Scenario 2 for concentration yields a regression line given by y = 0.38 +
0.00x. The correlation between observations from IWD and classification
results is 0.00. The 45 correctly classified sub-observations are used in this
calculation.

From the correlation matrix for concentration we can see a neglectable small
correlation between IWD and classification result.

4.6.3 Correlation hour by hour for ice types

Figure 4.14: Overall correlation for ice types
Plot of the correlation between reported ice types from IWD and ice types
yielded from classifier when drift correction is applied. x-axis shows hours
between recorded observation and S-1 start-sensing-time. y-axis shows the
correlation. The red dot indicates the highest correlation for this dataset. This
occurs after 3.5 hours and the correlation is 0.848

Figure 4.14 shows that the correlation is increasing to a value of 0.848 after
3.5 hours before starting to drop to a value of 0.67. For 12 hours all the 123
sub-observations are included. When moving left towards zero time difference,
less observations are included.
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4.6.4 Overall comparison
In Figures 4.15 and 4.16 the complete data sets for scenario 1 and scenario 2
are shown, respectively. The classes are separated on the x-axis while y-axis is
normalized such that the total height of the bars from each source add up to 1
and can easily be interpreted as percentage.

Figure 4.15: Overall comparison - Scenario 1
Histogram of valid sub-observations from scenario 1 seen in Figure 4.10 and
Table B.1. Classes corresponding to Table 4.3 under “Newmerged class value” on
the x-axis. Normalized y-axis. “Ice Watch database” is the reported observations
from IWD. “Classification result” is the result yielded from the IA-classifier.

Figure 4.16: Overall comparison - Scenario 2
Histogram of valid sub-observations from scenario 2 seen in Figure 4.12 and
Table B.2. Classes corresponding to Table 4.3 under “Newmerged class value” on
the x-axis. Normalized y-axis. “Ice Watch database” is the reported observations
from IWD. “Classification result” is the result yielded from the IA-classifier.
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Both Figures 4.15 and 4.16 show low representation of sub-observations for
classes 1-4.5. Most of the observations reported in IWD are contained in class
5 and 6.

4.7 Discussion
In total, the 52 S-1 images used in this thesis contain 148 of the 5696 available
observations in the IWD. Most of these observations are from the years 2015
and 2018. These are also the two years with the most overall observations
within the IWD (see Figure 4.1).

Scenario 1: No drift correction

Ice type:
After removing observations with drift above 500 m,we are left with 76 observa-
tions. Five of these 76 were removed because they did not contain all required
parameters. Of the 71 remaining observations only 37 are still in the image after
the classifier has masked out the first swath EW1. Each of the 37 observations
have up to three sub-observations. Total numbers of sub-observations included
is 60.

After applying linear regression between IWD observations and classification
results the regression line y = -0.97 + 1.07x was obtained. The correlation
between these variables was 0.80.

The correlation gives a statistical medium to large positive association between
these two variables. This indicates that the relationship between IWD and the
result from the Gaussian IA-classifier is significant and not random. We can
expect that if an observer see thick ice in the field the classifier will yield thick
ice.

28 of 60 was correctly classified according to IWD which yields a total classifi-
cation accuracy of 46.7%. When not taking into account the intermediate class
4.5 in the confusion matrix, the overall accuracy increased to 52.8 %. This was
expected since class 4.5 only applies to IWD. A consequence of this was that
this class does not map to any classes in the IA-classifier and was therefore
removed from the confusion matrix, giving a higher true positive. Class 4.5 was
included for the sake of correlation and regression.

Sea ice concentration:
For sea ice concentration the correlation(-0.23) yields a weak negative cor-
relation. Looking at the regression line, y = 0.50 -0.18x, in Figure 4.11 we
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can see a decrease in the concentration yielded from classifier when the re-
ported concentration from IWD increases. This is the opposite of what was
expected.

Scenario 2: With drift correction

Ice type:
Eight of the totally available 148 observations for this scenario were removed
because they did not contain all required parameters. After removing all obser-
vations in swath EW1 as well, a total number of 75 valid observations remains.
The total number of sub-observations is 123.

The linear regression for scenario 2 gave the regression line y = -0.32 +0.93x
and the correlation between IWD and IA-classification result was 0.67.

Including the drift correction gave amedium positive association between these
two variables. In the same manner as for scenario 1 we can conclude that there
is a relationship, even after drift correction. However the relationship is weaker.
This is most likely due to that with drift correction we includemore observations
that has to be shifted geographically, and the time deviation is larger between
observation time and S-1 start-sensing time. The drift is assumed to be constant
in speed and direction no matter the time deviation. In reality this will vary
and is therefore a source for error which is not accounted for. E.g. one of the
observation for InSAR pair (13, 14) is drift corrected over 14 kilometers and the
time deviation is over 11 hours. For this particular observation the primary and
the secondary ice type did not match as seen in Table B.2. The advantage of
using drift corrected values, even though the correlation decreases, is that we
include more observations giving the scenario a higher statistical value.

45 of 123 was correctly classified according to IWD which yields a total clas-
sification accuracy of 36.7%. When not taking into account the intermediate
class 4.5 in the confusion matrix, the overall accuracy increased to 42.1 %. The
per class accuracy for class 5 and 6 was 41.3% and 86.7%, respectively. These
classes correspond to “Deformed First Year Ice” and “Second-/Multiyear”. A
slightly higher result was also achieved for scenario 1: 48.1% and 93.8% for
class 5 and 6. Again, this is expected due to incorporation of ice drift in scenario
2. For classes 1-4 the per class accuracy was 0% for both scenarios.

Sea ice concentration:
The regression line for ice concentration can be seen in Figure 4.13 and was y=
0.38 + 0.00x. The correlation was 0.00. No association was found between
concentration reported in IWD and concentration yielded by classifier when
including drift correction.
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Correlation hour by hour

Figure 4.14 shows that the correlation first increases with time difference and
reaches a value of 0.848 at 3.5 hours, before decreasing to a value of 0.67
after 12 hours. For 12 hours deviation we include more datapoint, but as the
time passes these points become more and more inaccurate. This is a trade-off
between larger numbers of data points and low time deviation. For this dataset,
the highest correlation is achieved after 3.5 hours. The value of 0.848 indicates
a strong positive correlation.

General discussion and summary

For both scenarios we achieved similar results. For ice types, the correlation is
achieved between IWD observations and results obtained from the IA-classifier.
Scenario 1 yielded a stronger correlation than scenario 2. The strongest associ-
ation occurred when including drift and observations within a timespan of 3.5
hours as seen in Figure 4.14.

Correlation for sea ice concentration was weakly negative for scenario 1 and
close to zero for scenario 2. The expectation was higher reports of sea ice
concentration in IWD yields higher sea ice concentration from classifier. The
result from scenario 1 was the opposite of the expected result, and the result
from scenario 2 is telling us that the values from these two variables seem
to occur by random from a statistical point of view. It can be difficult for
humans to assess the concentration of ice from distance when observation is
conducted at near-ground level. In addition, in the classification, the maximum
likelihood chooses the class with the highest probability for each pixel, thus
loosing the per-pixel fractions of ice. These factors may partially induce error
in the sea ice concentration results. In the case of classification, in future
investigation we can keep the per-pixel fractional likelihoods and calculate the
average over all the pixel in the viewing box, and then compare this result to
observations from IWD. This may improve the results regarding comparing
sea ice concentration.

From both scenarios, 0% per class accuracy are reported for classes 1-4. Only
class 5 and class 6 are partially set to the correct classes, as seen in Table 4.6.
Most of the observations are done in heavily ice infested areas, resulting in
fewer representatives for classes 1-4 from IWD. For scenario 1, classes 1-4 have
only 10 of 60 sub-observations, while class 5 and 6 contains the remaining 50.
The same can be said for scenario 2 with 31 sub-observations for classes 1-4
and 91 for class 5 and 6.

The best performing class was class 6 with a per class accuracy on 93.8 % and
86.7 % for scenario 1 and scenario 2, respectively. For class 5 it was 48.1 % and
41.3 % for scenario 1 and scenario 2, respectively. Even though classes 1-4 all
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Table 4.6: Per class accuracy - Overview

Per class accuracy from confusion matrix. Scenario 1 and scenario 2
Class Scenario 1 Scenario 2

1 0 0
2 0 0
3 0 0
4 0 0
5 48.1 % 41.3 %
6 93.8 % 86.7 %

ended up on 0 % accuracy. There were so few comparison points for these
classes that no statistically significant conclusions can be drawn. More data is
needed for classes 1-4.

When investigating the confusion matrix for scenario 1 for classes 5 and 6,
we can see that observations in field corresponding to “Second/Multiyear”
is mostly set to the same class by the classifier(15 of 16 observations) while
roughly half of the observations corresponding to “Deformed First-Year Ice” is
set to the correct class(13 of 27 observations). The same is true for scenario 2
where 26 of 30 observations from IWD are set correctly to “Second/Multiyear”
and 19 of 46 observations from IWD are set correctly to “Deformed First-Year
Ice.” This result is valuable for those who travel in heavily ice infested areas
where it is critical to separate the second year and multiyear ice from other ice
types. This could, for instance, be an icebreaker capable of traveling in lighter
ice condition but not the thicker ice types, industry that need reliable daily
information about the presence of second/multiyear ice. Or any ship or entity,
traveling in such area, wanting to avoid the risk of heavier ice for any reasons,
such as saving fuel, finding a low risk route, conduct research in the area, and
more.

The comparison for the statistical analysis was done in such a way that the
thickest ice from IWD was consistently compared to the highest class yielded
from the classifier, second thickest to second highest and third thickest to third
highest, as explained in section 3.3. When doing this, the assumption “The
classifier yields the same categories of ice as the observer” is drawn. This
is not always the case. For the second example observations seen in 4.2 the
Primary Ice Type from IWD is “First Year >120cm(80) with Ridges(500).” This
was coupled with highest class yielded by the classifier “Second-/Multi-Year
Ice(9)”. Consequently this sub-observation was a mismatch. It was compared
to class 6 while the right class would have been class 5 “Deformed First-Year
Ice.” In fact, the second thickest reported from the classifier was “Deformed
First-Year Ice”. Both sub-observations was mismatched in this example. By
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a closer investigation of this particular observation we could have coupled
the Primary Ice Type from IWD with the Secondary Ice Type yielded by the
classifier and achieved at least one match. This is not done in this thesis, but
performing such an investigation would increase per class accuracy, but not
necessarily correlation.

Another approach of comparing, which was not conducted in this thesis, could
be to merge the classes in Table 4.3 even more. Class 1 and 2 merged to class
1, class 3 and 4 merged to class 2, and class 5 and 6 merged to class 3. This
would reduced the resolution regarding class distinction, but could potentially
increased the accuracy for our “New class value” 1, 2 and 3. Class 1 representing
“Open water and Newly formed ice less than 15 cm”, class 2 representing “Level
First Year Ice/Young ice > 15 cm” while class 3 representing “Deformed First-
Year ice and Second-/Multiyear Ice”. The overall accuracy then becomes 78 %
for scenario 1 and 66 % for scenario 2. This could still be interesting for industry
and shipping in the Arctic area for getting a rough overview of ice condition
for area of interest.

Pixel size of S-1 images acquired in EW is 40-by-40 m. The preprocessing
applied on S-1 images in this investigation had multilooking as one of the
stages. This was done in the spatial domain with an averaging filter in a
3-by-3 pixel-neighborhood. The motivation for doing so is to remove noise,
but at the same time all pixel values in the neighborhood are being mixed
together, as explained in section 2.3.2 under “Multilooking”. A consequence is
that resolution for real class distinction is closer to 120-by-120 m. Often thinner
ice appear in narrow leads and may be mixed together with thicker ice in the
averaging process.

The IA-classifier yields one single class per pixel while observations from IWD
can contain a mixture of several classes within the same pixel area. By looking
at figure 4.10 and 4.12, the observations from class 1 in IWD “Leads with
open water/Newly formed ice” are being classified to the thicker classes 2, 4
and 5. The observations from IWD, belonging to the lower classes(1-4), are
“shifted” to the higher classes. This is partially an unwanted result from the
multilooking and partially a result that the observer on ground simply can give
a more detailed description of surface than the S-1 sensor. For both scenarios
it is also important to notice the difference in class representatives from the
IWD. Classes 1-4 has few observations while most observations is for class 5
and 6.

With a closer investigation of ice drift, a better result may be achieved. There
are mainly two sources that induces uncertainty. In this thesis the rough linear
estimation applied may be too inaccurate. Especially for values that deviate in
time and spatial extent in an extreme fashion. This can be solved by removing
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these outliers and only including observations that satisfy predefinedmaximum
conditions regarding time and distance. The second source for error is that even
though the time deviation is not extreme, observations that deviates equally in
distance, but not in time, have equal impact on the result. E.g. an observation
that has drifted 200 m the last 30 minutes is given equal importance as an
observation that has drifted 200 m the last 5 hours. Increase in time will
lead to a greater uncertainty. This could e.g. be solved with a weighted time
penalty.

When merging the classes from IWD, 15 classes in addition to “Open Water”
were reduced to six classes. This gives a lower resolution for the distinction of
classes regarding IWD. Most of the classes were for thinner ice and since most
of the observations were done in heavily ice infested areas this would have a
minor effect. The merging needed to be done in order to compare these two
sources. The shifting did not degrade the result.

Visibility was one of the mandatory parameters that must be registered when
doing an IWD observation. For all observations it was assumed that there
was good enough visibility so that the observation could be conducted within
a 2-by-2 km box. This is true for 50 of the 75 observations in Table B.2. The
remaining reported visibility below 1000 meters and will add some uncertainty
to the results.

All observations from IWD is done by human interpretation of the prevailing
condition of ice. In the database there is a total reported number of 213 different
primary observers. Different skills, expertises and experience will vary from
person to person and will include a bias to each observation. In addition, when
reporting observations to the ASSIST software, “sloppy fingers” occur. E.g. the
max value reported for the ships speed is 300 knots. This is highly unlikely. This
specific error is easy to reveal, but smaller errors that might seem reasonable
and logical can remain hidden in the dataset. In this thesis it is assumed that
for all observations the reported details are correct and no bias is appended to
any observers.

Regarding the ships speed, it is stated in the Ice Watch manual that an obser-
vation should be conducted during a 10 min period when the ship is in motion.
It seems like this criterion has not been a priority. Many observations does not
report ship speed. Many report 0 knots, indicating that observations are done
when drifting with the ice. If this is so, the consequence is that the same ice
is observed several times, despite this being discouraged by the manual. For
this investigation it does not inflict any degradation of the results since we are
comparing single observations to single geographical points. Nevertheless, it
is a weak indication that not all observations are done consistently.
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Many parameters are excluded from this study. For the parameters included,
there were other parameter describing them in more detail that also were
excluded. E.g. for the topography there exist parameters describing the con-
centration and height of the topography. This was not accounted for. Investi-
gating a different set or including more of the 113 parameters can improve the
results.

Other subjects not investigated/accounted for in this thesis

• Season variability: melting season vs freezing season

• Salinity variability and how it affects the dielectric properties of ice

• Geographical variability

• Different machine learning algorithms are not tested



5
Conclusion and future work
For this thesis, 52 Sentinel-1 images acquired in Extra wide swath mode were
downloaded, preprocessed and classified with the “Gaussian IA-classifier”, de-
veloped at the UiT. The classified images were compared to in-situ observation
from the Ice Watch database to investigate wether the database can potentially
be used as ground truth for a machine learning algorithm.

The results from the classified images were compared to 75 observations divided
in 123 sub-observations from IWD. Two scenarios were investigated:

1. Use only observations that have ice drift less than 500 m in the proximity.
No drift is applied

2. Use all observations regardless of ice drift distance. Drift correct all
observations

For both scenarios, the correlation, regression line, and the confusion matrix
were calculated.

In addition, overall comparison by investigating the correlation up to 12 hours
when drift correction was applied, was done.

49
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5.1 Conclusion
By the limitation and criteria set by this thesis a medium to strong correlation
between ice types from the classified S-1 images and IWD was found. This
is true for both scenarios. This indicates that there is a medium to strong
association between the reported ice types from IWD and ice types yielded
from the “Gaussian IA-classifier”. When investigating ice concentration, a weak
negative correlation for scenario 1 was found and no correlation was found for
scenario 2.

The classifier was able to separate “Second/Multiyear ice” and “Deformed First-
Year Ice”. The per class accuracy for “Second/Multiyear ice” scored highest
with 93.8% and 86.7% for scenario 1 and scenario 2, respectively. The per class
accuracy for “Deformed First-Year Ice” was 48.1 % and 41.3 % for scenario 1
and scenario 2 respectively.

The classifier lacked the ability to correctly set “Level first Year Ice”, “Young
Ice II”, “Young Ice I” and “Leads with open water/Newly formed ice”. More
observations, representing these classes, are needed.

Further more, the classifier segregates most of the “Second-/Multiyear Ice” and
partially the “Deformed First-Year Ice”. This is useful for industry, shipping and
other with interest in the Arctic area, that finds information of separation of
thicker ice from thinner ice, interesting.

The investigation performed in this thesis demonstrates the potential of the Ice
Watch database to be used as ground truth for a machine learning algorithm for
sea ice classification. Including more observations and re-grouping the trained
classes will give a coarser class distinction, but can be used to give an improved
overview of the entire Arctic region.

5.2 Future work
Implementing a classification scheme with equal classes as defined in [2] in
addition to including more parameters from the same manual would give a
more realistic mapping between IWD and SAR imagery.

S-1 images are strongly affected by noise, in particular in swath EW1. This leads
to many valid observations being removed. Trying to connect other sensors
where this is not an issue will give data more points for comparison and will
increase the statistical value of the investigation.
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EO data for S-1 is free to use andmore images and observations can be included
in the future to achieve more comparison points.

Comparing SAR images with high spatial resolution to IWD can “close the
gap” between the resolution difference between in situ and SAR observa-
tions.
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Table A.1: List of S-1 images

Enumerated list of Sentinel-1 images investigated in this thesis. Sorted by date.
Nr. Image name
1 S1A_EW_GRDM_1SDH_20150209T064622_20150209T064722_004543_00594C_4F01
2 S1A_EW_GRDM_1SDH_20150209T082436_20150209T082536_004544_005951_B2D9
3 S1A_EW_GRDM_1SDH_20150223T130146_20150223T130246_004751_005E31_51B1
4 S1A_EW_GRDM_1SDH_20150223T144029_20150223T144129_004752_005E35_6245
5 S1A_EW_GRDM_1SDH_20150307T062950_20150307T063050_004922_006256_63C3
6 S1A_EW_GRDM_1SDH_20150307T080804_20150307T080904_004923_006261_3B96
7 S1A_EW_GRDM_1SDH_20150310T065403_20150310T065503_004966_006374_D030
8 S1A_EW_GRDM_1SDH_20150310T083245_20150310T083345_004967_00637B_3F44
9 S1A_EW_GRDM_1SDH_20150314T062145_20150314T062245_005024_0064CB_E8FB
10 S1A_EW_GRDM_1SDH_20150314T075952_20150314T080052_005025_0064D2_1C85
11 S1A_EW_GRDM_1SDH_20150315T070245_20150315T070345_005039_00652C_1BA8
12 S1A_EW_GRDM_1SDH_20150315T084057_20150315T084157_005040_006532_D6F8
13 S1A_EW_GRDM_1SDH_20150601T061431_20150601T061531_006176_0080A7_F1E5
14 S1A_EW_GRDM_1SDH_20150601T075158_20150601T075258_006177_0080AF_B494
15 S1A_EW_GRDM_1SDH_20150615T140809_20150615T140909_006385_0086BC_D3DD
16 S1A_EW_GRDM_1SDH_20150615T154626_20150615T154726_006386_0086C2_68BA
17 S1B_EW_GRDM_1SDH_20161005T165711_20161005T165811_002374_00402B_55E9
18 S1A_EW_GRDM_1SDH_20161005T174612_20161005T174717_013358_0154E7_19C6
19 S1A_EW_GRDM_1SDH_20170519T063105_20170519T063209_016647_01BA0A_4D44
20 S1B_EW_GRDM_1SDH_20170519T071938_20170519T072038_005664_009EB7_BA79
21 S1A_EW_GRDM_1SDH_20170520T071215_20170520T071319_016662_01BA7C_1C51
22 S1B_EW_GRDM_1SDH_20170520T080029_20170520T080129_005679_009F28_5485
23 S1B_EW_GRDM_1SDH_20170523T064721_20170523T064821_005722_00A065_C371
24 S1A_EW_GRDM_1SDH_20170523T073655_20170523T073759_016706_01BBD4_AC95
25 S1B_EW_GRDM_1SDH_20180712T063622_20180712T063722_011774_015A91_551B
26 S1B_EW_GRDM_1SDH_20180712T081506_20180712T081610_011775_015A99_069B
27 S1B_EW_GRDM_1SDH_20180712T095329_20180712T095434_011776_015AA1_622E
28 S1B_EW_GRDM_1SDH_20180712T113117_20180712T113221_011777_015AAB_68F6
29 S1B_EW_GRDM_1SDH_20180715T101734_20180715T101838_011820_015C05_73C5
30 S1B_EW_GRDM_1SDH_20180715T115554_20180715T115659_011821_015C0F_1618
31 S1B_EW_GRDM_1SDH_20180803T083127_20180803T083232_012096_01645B_91CA
32 S1B_EW_GRDM_1SDH_20180803T100924_20180803T101028_012097_016463_A4AE
33 S1B_EW_GRDM_1SDH_20180803T114744_20180803T114849_012098_01646B_4CAB
34 S1B_EW_GRDM_1SDH_20180819T062101_20180819T062201_012328_016B86_BC6C
35 S1B_EW_GRDM_1SDH_20180819T075849_20180819T075953_012329_016B8E_DB71
36 S1B_EW_GRDM_1SDH_20180828T073625_20180828T073725_012460_016FA2_3346
37 S1A_EW_GRDM_1SDH_20180828T082604_20180828T082708_023444_028D45_DE96
38 S1A_EW_GRDM_1SDH_20180906T062303_20180906T062408_023574_02915D_FE1C
39 S1B_EW_GRDM_1SDH_20180906T071139_20180906T071239_012591_0173AF_1881
40 S1B_EW_GRDM_1SDH_20190711T074226_20190711T074331_017083_020246_4FFE
41 S1B_EW_GRDM_1SDH_20190711T105837_20190711T105941_017085_020255_D6AD
42 S1B_EW_GRDM_1SDH_20190713T040923_20190713T041023_017110_02030D_04F5
43 S1B_EW_GRDM_1SDH_20190713T054725_20190713T054825_017111_020313_75B4
44 S1B_EW_GRDM_1SDH_20190713T104220_20190713T104247_017114_020328_78B9
45 S1B_EW_GRDM_1SDH_20190713T122035_20190713T122139_017115_02032E_F345
46 S1B_EW_GRDM_1SDH_20190715T084743_20190715T084847_017142_0203F5_671B
47 S1B_EW_GRDM_1SDH_20190715T102552_20190715T102656_017143_0203FD_729A
48 S1B_EW_GRDM_1SDH_20190715T120412_20190715T120517_017144_020408_6846
49 S1B_EW_GRDM_1SDH_20190722T052255_20190722T052349_017242_0206DC_96A0
50 S1B_EW_GRDM_1SDH_20190722T070127_20190722T070231_017243_0206E3_487D
51 S1B_EW_GRDM_1SDH_20190722T083944_20190722T084049_017244_0206EE_EB9D
52 S1B_EW_GRDM_1SDH_20190722T115601_20190722T115705_017246_0206FE_A276
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Table B.1: Observations used in scenario 1

The 37 observations used in scenario 1. “InSAR pair” is the S-1 images used for
estimating ice drift and the numbers correspond to the numbers in Table A.1.
The 60 sub-observations used are marked with green cells and the discarded
are marked with red cells. “Time diff” is the time difference between the S-1
start-sensing-time for the second image in “InSAR pair” and the observation
date. “Tot drift” is the total drift from “LAT/LON” in the “Time diff” period.

Ice Watch classes Classification classes
InSAR pair Observation date LAT LON PT ST TT PT ST TT Time diff[h] Tot drift[m]
(1, 2) 2015-02-09 07:34:00 UTC 82.4183 18.2404 6 5 nan 6 5 nan 0.86 78.6
(3, 4) 2015-02-23 13:55:00 UTC 82.8333 29.8667 5 2 nan 6 5 4 0.77 344.4
(3, 4) 2015-02-23 14:56:00 UTC 82.7833 29.6667 5 3 nan 6 5 4 0.24 13.8
(3, 4) 2015-02-23 18:15:00 UTC 82.6333 29.3000 2 nan nan 6 5 4 3.56 40.6
(11, 12) 2015-03-15 07:52:00 UTC 82.9 20.9667 6 5 5 6 5 nan 0.83 224.9
(11, 12) 2015-03-15 09:11:00 UTC 82.9167 21.0667 6 5 5 6 5 nan 0.48 108.9
(13, 14) 2015-06-01 06:58:00 UTC 81.3256 17.2792 4.5 nan nan 6 5 4 0.92 114.5
(15, 16) 2015-06-15 14:52:00 UTC 82.213 7.3033 4.5 nan nan 5 4 nan 0.92 262.7
(19, 20) 2017-05-19 10:04:00 UTC 79.6983 8.0707 4.5 nan nan 5 4 nan 2.72 47.0
(25, 26) 2018-07-12 10:02:00 UTC 85.1262 51.6167 5 nan nan 6 5 4 1.76 12.6
(25, 26) 2018-07-12 11:03:00 UTC 85.3622 52.0357 5 nan nan 6 5 4 2.78 188.2
(26, 27) 2018-07-12 08:35:00 UTC 84.8512 51.5925 5 nan nan 6 5 4 1.33 79.7
(26, 27) 2018-07-12 10:02:00 UTC 85.1262 51.6167 5 nan nan 6 5 4 0.12 5.5
(26, 27) 2018-07-12 11:03:00 UTC 85.3622 52.0357 5 nan nan 6 5 4 1.14 13.5
(26, 27) 2018-07-12 12:30:00 UTC 85.712 52.3420 5 nan nan 6 5 4 2.59 280.5
(27, 28) 2018-07-12 08:35:00 UTC 84.8512 51.5925 5 nan nan 6 5 2 2.96 276.9
(27, 28) 2018-07-12 10:02:00 UTC 85.1262 51.6167 5 nan nan 6 5 nan 1.51 462.8
(27, 28) 2018-07-12 11:03:00 UTC 85.3622 52.0357 5 nan nan 6 5 nan 0.49 76.6
(27, 28) 2018-07-12 12:30:00 UTC 85.712 52.3420 5 nan nan 5 4 nan 0.96 75.7
(27, 28) 2018-07-12 15:50:00 UTC 86.1078 52.1027 5 nan nan 6 5 4 4.29 356.1
(29, 30) 2018-07-15 12:23:00 UTC 85.0867 49.9633 5 nan nan 6 5 nan 0.43 30.8
(29, 30) 2018-07-15 13:19:00 UTC 84.8495 50.0170 6 5 nan 6 5 4 1.37 45.2
(31, 32) 2018-08-03 14:18:00 UTC 84.735 51.9800 6 5 1 6 5 nan 4.13 95.3
(32, 33) 2018-08-03 07:01:00 UTC 83.4117 52.0633 6 5 1 6 5 2 4.80 399.2
(32, 33) 2018-08-03 09:19:00 UTC 83.921 51.6933 6 5 1 6 5 4 2.50 272.4
(32, 33) 2018-08-03 10:06:00 UTC 84.0933 51.6800 6 5 1 6 5 2 1.71 276.5
(32, 33) 2018-08-03 10:48:00 UTC 84.2267 51.7683 6 5 1 6 5 2 1.01 85.0
(32, 33) 2018-08-03 14:18:00 UTC 84.735 51.9800 6 5 1 6 5 nan 2.49 86.5
(32, 33) 2018-08-03 15:03:00 UTC 84.9053 52.0188 6 5 1 6 5 2 3.24 199.7
(40, 41) 2019-07-11 05:00:00 UTC 83.6033 62.7800 5 nan nan 6 5 4 5.99 133.3
(40, 41) 2019-07-11 08:24:00 UTC 84.2612 64.0427 4 nan nan 5 4 nan 2.59 345.8
(40, 41) 2019-07-11 14:29:00 UTC 84.59 65.9613 6 5 nan 6 5 4 3.49 201.2
(40, 41) 2019-07-11 15:10:00 UTC 84.5217 66.0967 6 4.5 nan 5 4 nan 4.17 323.6
(44, 45) 2019-07-13 03:24:00 UTC 83.1563 59.5433 4 nan nan 5 4 nan 8.96 235.1
(46, 47) 2019-07-15 12:50:00 UTC 82.4433 58.0167 6 4.5 nan 6 5 4 2.38 130.7
(47, 48) 2019-07-15 08:52:00 UTC 83.615 59.8300 6 4.5 nan 6 5 4 3.22 105.5
(47, 48) 2019-07-15 10:15:00 UTC 83.3028 58.5758 6 4.5 nan 6 5 4 1.84 194.0



59

Table B.2: Observations used in scenario 2

The 75 observations used in scenario 2. “InSAR pair” is the S-1 images used
for estimating ice drift and the numbers correspond to the numbers in Ta-
ble A.1. The 123 sub-observations used are marked with green cells and
the discarded are marked with red cells. “Time diff” is the time difference
between the S-1 start-sensing-time for the second image in “InSAR pair”
and the observation date. “Tot drift” is the total drift from “LAT/LON” in
the “Time diff” period. “LAT2/LON2” is the new drift corrected coordinate.

Ice Watch classes Classification classes
InSAR pair Observation date LAT LON LAT2 LON2 PT ST TT PT ST TT Time diff[h] Tot drift[m]
(1,2) 2015-02-09 07:34:00 UTC 82.4183 18.2404 82.4180 18.2451 6 5 nan 6 5 nan 0.86 78.6
(3, 4) 2015-02-23 07:03:00 UTC 82.6167 29.5000 82.6155 29.5366 5 1 nan 6 5 4 7.64 542.8
(3, 4) 2015-02-23 07:58:00 UTC 82.7500 29.6333 82.7422 29.8935 4 4 nan 6 5 nan 6.72 3777.7
(3, 4) 2015-02-23 09:09:00 UTC 82.8833 29.8333 82.8776 30.0078 5 1 nan 6 5 nan 5.54 2501.7
(3, 4) 2015-02-23 13:55:00 UTC 82.8333 29.8667 82.8326 29.8906 5 2 nan 6 5 4 0.77 344.4
(3, 4) 2015-02-23 14:56:00 UTC 82.7833 29.6667 82.7833 29.6677 5 3 nan 6 5 4 0.24 13.8
(3, 4) 2015-02-23 18:15:00 UTC 82.6333 29.3000 82.6332 29.3028 2 nan nan 6 5 4 3.56 40.6
(3, 4) 2015-02-23 21:02:00 UTC 82.9000 28.0000 82.8958 28.1234 5 1 nan 6 5 4 6.34 1768.6
(3, 4) 2015-02-23 23:52:00 UTC 83.0000 27.4000 82.9913 27.6886 nan 2 nan 6 5 4 9.18 4056.7
(11, 12) 2015-03-15 07:52:00 UTC 82.9000 20.9667 82.9001 20.9830 6 5 5 6 5 nan 0.83 224.9
(11, 12) 2015-03-15 09:11:00 UTC 82.9167 21.0667 82.9167 21.0746 6 5 5 6 5 nan 0.48 108.9
(13, 14) 2015-06-01 06:58:00 UTC 81.3256 17.2792 81.3255 17.2724 4.5 nan nan 6 5 4 0.92 114.5
(13, 14) 2015-06-01 13:55:00 UTC 81.2806 17.1301 81.2802 17.0895 4.5 3 nan 6 5 nan 6.03 690.6
(13, 14) 2015-06-01 17:25:00 UTC 81.3198 18.3182 81.3158 17.7411 4.5 nan nan 6 5 4 9.53 9767.5
(13, 14) 2015-06-01 18:58:00 UTC 81.1800 17.1600 81.1749 16.3359 4.5 2 nan 6 5 4 11.08 14169.6
(15, 16) 2015-06-15 09:38:00 UTC 82.2083 7.4757 82.2083 7.4281 4.5 nan nan 5 4 nan 6.16 722.3
(15, 16) 2015-06-15 13:22:00 UTC 82.2111 7.3536 82.2112 7.2382 4.5 nan nan 5 4 nan 2.42 1750.8
(15, 16) 2015-06-15 14:52:00 UTC 82.2130 7.3033 82.2130 7.2860 4.5 nan nan 5 4 nan 0.92 262.7
(19, 20) 2017-05-19 10:04:00 UTC 79.6983 8.0707 79.6983 8.0730 4.5 nan nan 5 4 nan 2.72 47.0
(19, 20) 2017-05-19 11:01:00 UTC 79.8293 7.6667 79.8286 7.6942 4 nan nan 5 4 nan 3.67 550.6
(19, 20) 2017-05-19 12:03:00 UTC 79.9750 7.2911 79.9739 7.3394 6 5 nan 5 4 nan 4.71 951.6
(19, 20) 2017-05-19 13:01:00 UTC 80.0287 7.1343 80.0270 7.2094 5 nan nan 6 5 4 5.67 1469.8
(19, 20) 2017-05-19 14:08:00 UTC 80.0504 7.0759 80.0479 7.1844 4 nan nan 6 5 4 6.79 2120.4
(19, 20) 2017-05-19 15:16:00 UTC 80.0690 7.0344 80.0655 7.1863 4.5 4.5 nan 6 5 4 7.92 2961.5
(19, 20) 2017-05-19 16:01:00 UTC 80.0786 6.9712 80.0742 7.1654 4 nan nan 6 5 4 8.67 3783.0
(19, 20) 2017-05-19 17:01:00 UTC 80.1007 7.0108 80.0953 7.2483 6 4 nan 6 5 4 9.67 4618.6
(19, 20) 2017-05-19 17:56:00 UTC 80.1163 7.0839 80.1096 7.3743 4 6 nan 6 5 4 10.59 5639.3
(19, 20) 2017-05-19 19:00:00 UTC 80.1380 7.0727 80.1299 7.4234 6 4 4 6 5 2 11.66 6795.5
(25, 26) 2018-07-12 10:02:00 UTC 85.1262 51.6167 85.1262 51.6154 5 nan nan 6 5 4 1.76 12.6
(25, 26) 2018-07-12 11:03:00 UTC 85.3622 52.0357 85.3629 52.0166 5 nan nan 6 5 4 2.78 188.2
(25, 26) 2018-07-12 12:30:00 UTC 85.7120 52.3420 85.7064 52.3942 5 nan nan 6 5 2 4.23 761.9
(25, 26) 2018-07-12 15:50:00 UTC 86.1078 52.1027 86.1055 52.0298 5 nan nan 6 5 4 7.56 611.2
(25, 26) 2018-07-12 17:31:00 UTC 85.9830 50.2617 85.9698 50.2655 5 nan nan 6 5 nan 9.25 1477.1
(26, 27) 2018-07-12 08:35:00 UTC 84.8512 51.5925 84.8506 51.5970 5 nan nan 6 5 4 1.33 79.7
(26, 27) 2018-07-12 10:02:00 UTC 85.1262 51.6167 85.1262 51.6170 5 nan nan 6 5 4 0.12 5.5
(26, 27) 2018-07-12 11:03:00 UTC 85.3622 52.0357 85.3621 52.0367 5 nan nan 6 5 4 1.14 13.5
(26, 27) 2018-07-12 12:30:00 UTC 85.7120 52.3420 85.7101 52.3638 5 nan nan 6 5 4 2.59 280.5
(26, 27) 2018-07-12 15:50:00 UTC 86.1078 52.1027 86.0988 52.1943 5 nan nan 6 5 4 5.92 1225.4
(26, 27) 2018-07-12 17:31:00 UTC 85.9830 50.2617 85.9498 50.6230 5 nan nan 6 5 4 7.61 4672.2
(27, 28) 2018-07-12 08:35:00 UTC 84.8512 51.5925 84.8494 51.6112 5 nan nan 6 5 nan 2.96 276.9
(27, 28) 2018-07-12 10:02:00 UTC 85.1262 51.6167 85.1232 51.6500 5 nan nan 6 5 2 1.51 462.8
(27, 28) 2018-07-12 11:03:00 UTC 85.3622 52.0357 85.3617 52.0414 5 nan nan 6 5 nan 0.49 76.6
(27, 28) 2018-07-12 12:30:00 UTC 85.7120 52.3420 85.7115 52.3484 5 nan nan 5 4 nan 0.96 75.7
(27, 28) 2018-07-12 15:50:00 UTC 86.1078 52.1027 86.1054 52.1335 5 nan nan 6 5 4 4.29 356.1
(27, 28) 2018-07-12 17:31:00 UTC 85.9830 50.2617 85.9684 50.4528 5 nan nan 6 5 2 5.98 2217.6
(29, 30) 2018-07-15 07:36:00 UTC 85.9818 48.6758 85.9852 48.6051 6 5 1 6 5 2 4.35 673.6
(29, 30) 2018-07-15 08:32:00 UTC 85.8048 49.9783 85.8169 49.7503 6 5 1 6 5 4 3.42 2301.3
(29, 30) 2018-07-15 11:01:00 UTC 85.4622 50.3605 85.4662 50.2983 6 5 1 6 5 4 0.93 708.2
(29, 30) 2018-07-15 12:23:00 UTC 85.0867 49.9633 85.0868 49.9604 5 nan nan 6 5 nan 0.43 30.8
(29, 30) 2018-07-15 13:19:00 UTC 84.8495 50.0170 84.8497 50.0130 6 5 nan 6 5 4 1.37 45.2
(31, 32) 2018-08-03 14:18:00 UTC 84.7350 51.9800 84.7347 51.9887 6 5 1 6 5 2 4.13 95.3
(31, 32) 2018-08-03 15:03:00 UTC 84.9053 52.0188 84.8918 52.2157 6 5 1 6 2 nan 4.88 2469.9
(32, 33) 2018-08-03 07:01:00 UTC 83.4117 52.0633 83.4093 52.0862 6 5 1 6 5 2 4.80 399.2
(32, 33) 2018-08-03 08:14:00 UTC 83.6908 51.8467 83.6852 51.9120 6 5 1 6 5 2 3.58 1018.0
(32, 33) 2018-08-03 09:19:00 UTC 83.9210 51.6933 83.9199 51.7138 6 5 1 6 5 4 2.50 272.4
(32, 33) 2018-08-03 10:06:00 UTC 84.0933 51.6800 84.0919 51.6995 6 5 1 6 5 2 1.71 276.5
(32, 33) 2018-08-03 10:48:00 UTC 84.2267 51.7683 84.2262 51.7742 6 5 1 6 5 2 1.01 85.0
(32, 33) 2018-08-03 14:18:00 UTC 84.7350 51.9800 84.7357 51.9761 6 5 1 6 5 nan 2.49 86.5
(32, 33) 2018-08-03 15:03:00 UTC 84.9053 52.0188 84.9071 52.0156 6 5 1 6 5 2 3.24 199.7
(38, 39) 2018-09-06 10:55:00 UTC 78.8383 -5.4817 78.8394 -5.4551 nan nan nan 5 4 1 3.71 590.8
(38, 39) 2018-09-06 11:41:00 UTC 78.8400 -5.5000 78.8417 -5.4576 6 nan nan 5 4 1 4.47 941.7
(38, 39) 2018-09-06 15:05:00 UTC 78.8367 -5.4883 78.8404 -5.3981 6 nan nan 6 5 4 7.87 2000.6
(38, 39) 2018-09-06 16:55:00 UTC 78.8683 -5.0167 78.8759 -4.8201 5 nan nan 5 4 1 9.71 4341.5
(38, 39) 2018-09-06 18:06:00 UTC 78.9100 -4.7633 78.9203 -4.4900 5 4 nan 6 5 4 10.89 6005.1
(40, 41) 2019-07-11 05:00:00 UTC 83.6033 62.7800 83.6041 62.7718 5 nan nan 6 5 4 5.99 133.3
(40, 41) 2019-07-11 08:24:00 UTC 84.2612 64.0427 84.2632 64.0193 4 nan nan 5 4 nan 2.59 345.8
(40, 41) 2019-07-11 14:29:00 UTC 84.5900 65.9613 84.5912 65.9473 6 5 nan 6 5 4 3.49 201.2
(40, 41) 2019-07-11 15:10:00 UTC 84.5217 66.0967 84.5237 66.0745 6 4.5 nan 5 4 nan 4.17 323.6
(44, 43) 2019-07-13 03:24:00 UTC 83.1563 59.5433 83.1544 59.5362 4 nan nan 5 4 nan 8.96 235.1
(46, 47) 2019-07-15 12:50:00 UTC 82.4433 58.0167 82.4438 58.0088 6 4.5 nan 6 5 4 2.38 130.7
(47, 48) 2019-07-15 08:52:00 UTC 83.6150 59.8300 83.6142 59.8351 6 4.5 nan 6 5 4 3.22 105.5
(47, 48) 2019-07-15 10:15:00 UTC 83.3028 58.5758 83.3014 58.5850 6 4.5 nan 6 5 4 1.84 194.0
(49, 50) 2019-07-22 13:02:00 UTC 84.8350 59.3150 84.8448 59.2067 6 4.5 nan 6 5 4 5.99 1540.8
(51, 52) 2019-07-22 00:09:00 UTC 82.2187 52.2110 82.2259 52.1569 6 5 nan 6 5 4 11.80 1147.1
(51, 52) 2019-07-22 11:11:00 UTC 84.4308 58.9383 84.4357 58.8934 6 4.5 nan 6 5 4 0.77 732.2
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