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Modulation of interspecies interactions by the presence of neighbor species is a key
ecological factor that governs dynamics and function of microbial communities, yet the
development of theoretical frameworks explicit for understanding context-dependent
interactions are still nascent. In a recent study, we proposed a novel rule-based inference
method termed the Minimal Interspecies Interaction Adjustment (MIIA) that predicts the
reorganization of interaction networks in response to the addition of new species such
that the modulation in interaction coefficients caused by additional members is minimal.
While the theoretical basis of MIIA was established through the previous work by
assuming the full availability of species abundance data in axenic, binary, and complex
communities, its extension to actual microbial ecology can be highly constrained in
cases that species have not been cultured axenically (e.g., due to their inability to
grow in the absence of specific partnerships) because binary interaction coefficients –
basic parameters required for implementing the MIIA – are inestimable without axenic
and binary population data. Thus, here we present an alternative formulation based
on the following two central ideas. First, in the case where only data from axenic
cultures are unavailable, we remove axenic populations from governing equations
through appropriate scaling. This allows us to predict neighbor-dependent interactions
in a relative sense (i.e., fractional change of interactions between with versus without
neighbors). Second, in the case where both axenic and binary populations are missing,
we parameterize binary interaction coefficients to determine their values through a
sensitivity analysis. Through the case study of two microbial communities with distinct
characteristics and complexity (i.e., a three-member community where all members
can grow independently, and a four-member community that contains member species
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whose growth is dependent on other species), we demonstrated that despite data
limitation, the proposed new formulation was able to successfully predict interspecies
interactions that are consistent with experimentally derived results. Therefore, this
technical advancement enhances our ability to predict context-dependent interspecies
interactions in a broad range of microbial systems without being limited to specific
growth conditions as a pre-requisite.

Keywords: microbial communities, microbial ecology, context dependence, network inference, interspecies
interactions

INTRODUCTION

The interactions between microorganisms often dictate
community-level functions and contributions to many
biogeochemical and ecosystem processes. Microbes interact with
plants, animals, and humans directly by building relationships
with hosts (Bordenstein and Theis, 2015; Hassani et al., 2018),
and/or by indirectly controlling the natural cycle of chemical
elements that make up living organisms (Falkowski et al., 2008;
Kirchman, 2018). Microbes perform these essential functions not
individually, but as communities of species that help or compete
with each other. Partnerships among members are typically
dynamic and can vary in response to environmental cues,
which gives rise to the concept of context-dependent interaction.
A fundamental understanding of context dependence has been
elusive to microbial ecologists because the way interactions
occur in most natural communities is typically too complex
to untangle. Thus, new theoretical frameworks that can use
tractable amounts of experientially derived measurements are
the key for the predicting context-dependent interactions, yet
advancements in this area remain nascent.

In principle, context-dependent interactions may be examined
by existing network inference methods (Song et al., 2014). For
example, the correlative relationships of species populations
across different environmental conditions or community
memberships generate distinct interspecies interaction networks,
the comparison of which may provide an idea of how interactions
are modulated by the impact of abiotic and biotic factors.
The success of this comparative analysis largely relies on
robust, accurate predictions of interaction networks and their
reorganization across conditions. However, comprehensive data
are rarely available for most of the microbial ecosystems that
are studied. Even for simple cases where context-dependent
interactions are not an issue, inference results are often
inconsistent among different similarity metrics (Faust and Raes,
2012). In a test using time-series community data, correlation-
based methods were also shown ineffective in inferring microbial
interactions (Coenen and Weitz, 2018). Aside from such
technical issues, correlation-based approaches do not provide
a fundamental understanding of how interspecies interactions
are modulated by dynamic environments and/or the presence or
absence of specific partners.

In a recent study, we proposed a computational approach
to predict how microbial interactions can be modulated by
the addition of new members to the community in ecological
systems (Song et al., 2019). Taking pairwise interactions in binary

communities as a basis, the approach enables predicting the
change in interactions in the presence of new members by
assuming that the resulting shifts will be minimal and is thus
termed Minimal Interspecies Interaction Adjustment (MIIA).
The resulting prediction showed a fairly good robustness against
noise in population data for complex communities. In this
initial development, however, the predictive capability of MIIA
was evaluated under conditions where all species can grow
independently and within binary partnerships. While useful for
the conceptual development, these conditions may be too strict to
cover symbiotic relationships including syntrophic interactions
between bacterial species which have been widely observed in
microbial communities in natural environments (Kouzuma et al.,
2015). For instance, mutual metabolic dependence of fatty acids
oxidizing bacteria and methanogens make them unable to grow
independently, but able to grow together as a community (Kato
and Watanabe, 2010). In these cases where organisms show
growth dependence on each other, axenic and binary population
data are not fully available, which can be problematic for the
MIIA approach because it becomes impossible to identify binary
interaction coefficients.

To overcome this limitation, we present an alternative
formulation and expansion of the MIIA approach so that it
can account for interspecies growth dependencies without being
constrained by the lack of the full availability of axenic and
binary culture data. Two key ideas presented herein include:
(1) model scaling (i.e., reformulation of model equations to
remove the effects of monoculture data) and (2) determination of
unknown interaction parameters through parameter sensitivity
analysis. Model scaling enables estimating binary interaction
coefficients even in the absence of axenic populations, if binary
growth data are available. Parameter sensitivity is required
when binary interaction coefficients are inestimable even with
model scaling due to the absence of both axenic and binary
growth data. Through case studies, we demonstrated how
this new formulation can reliably predict neighbor-dependent
interactions. Overall, our predictions showed a fairly good
agreement with experimental understanding, while additional
experimental analyses were required when no data is available
to estimate binary interaction coefficients. The proposed method
can guide new experimental designs in this regard. This
enhanced approach for predicting context-dependent microbial
interactions demonstrates a significant extension of previous
approaches and provides means to evaluate a wider range of
microbial systems, offering itself as a practically useful tool for
studying synthetic and natural microbial communities.
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MATERIALS AND METHODS

MIIA in a Nutshell
MIIA predicts pairwise interactions in multi-species
communities through the following two steps: (1) estimation
of interaction coefficients in binary cultures, and (2) prediction
of the shifts in interactions by additional members based on a
minimal adjustment hypothesis.

• Interactions in binary communities: Song et al. (2019) used
the following formula that estimates the effect of species j on i
in the binary culture (denoted by aBi,j):

xBi − xAi
xAi

= aBi,jx
B
j (1)

where the superscripts ‘A’ and ‘B’ represent ‘axenic’ and ‘binary’
cultures, respectively, and xi and xj denote the population
densities (i.e., abundance) of species i and j in stagnant phase
(i.e., at the end of growth phase) or in steady state. Song
et al. (2019) also showed that Equation (1) can be derivable
from a generalized Lotka–Volterra model (Wangersky, 1978)
under steady-state condition. The left-hand side of Equation
(1) represents per capita interaction strength (Paine, 1992).
• Shifts in interactions by additional members: The binary

culture model given in Equation (1) is extended to multi-
species communities as follows:

xCi − xAi
xAi

=

N∑
j=1, 6=i

aCi,jx
C
j (2)

where the superscript ‘C’ denotes ‘complex’ communities (that
include more than two species) and N indicates the number of
species including additional members. Interaction coefficients
cannot be uniquely determined from this single equation
that contains (N-1) unknowns (i.e.,aCi,j’s). In this case, there
exist infinite solutions that satisfy Equation (2), which form
a hyperplane in the (N-1)-dimensional space of interaction
coefficients (aCi,j, i 6= j). Based on the assumption that the
adjustment of binary interaction coefficients by additional
members (i.e., measured by Euclidean distance between aBi,j’s
and aCi,j’s) will be minimal, MIIA predicts the vector aCi,j’s as
the point on the hyperplane closest to the vector of aBi,j’s.
This solution is simply obtained by orthogonal projection of
aBi,j’s on the (N-1)-dimensional hyperspace formed by Equation
(2). Figure 1A illustrates how such orthogonal projection
occurs for the case of a three-member community. Modulation
of pairwise interactions by introducing new neighbors can
be quantified based on the difference between aBi,j and aCi,j.
As a special case, if the point of aBi,j’s happens to be on
the hyperplane, no modulation is predicted to occur by
additional members (because the distance of interaction
coefficients between binary and complex communities is zero).
For more details, the original paper by Song et al. (2019)
should be referred to.

Model Scaling
Species that have strong dependencies on partners may not
grow independently. Axenic population densities in this case
can be unobtainable, which limits the originally described MIIA
approach. In Equation (1), the values of aBi,j may explode for a
very low axenic density of species i (i.e., xAi � 1) and also for
a low population of its binary partner, i.e., xBj � 1; becomes
unidentifiable if the values of xAi and xBj are unavailable. In
this section, we provide an idea of handling the case where the
value of xAi is extremely low or unavailable; in the next section,
we will consider the case where the value of xBj is extremely
low or unavailable.

Without compromising generality, we reformulated the model
equations for binary and complex communities by multiplying
xAi on both sides of Equations (1) and (2), which results in

xBi − xAi = bBi,jx
B
j (3)

xCi − xAi =
S∑

j=1,6=i

bCi,jx
C
j (4)

where bBi,j and bCi,j are interaction coefficients scaled by xAi , i.e.,

bBi,j ≡ xAi a
B
i,j (5)

bCi,j ≡ xAi a
C
i,j (6)

The scaling above is always possible for any non-zero value of
xAi . Thus, it implies that we translate ‘no growth’ as a minor
presence – i.e., below the limit of detection – in place of absolute
absence. The minimal adjustment rule of MIIA still applies
to Equations (3) and (4) because the orthogonal relationship
between binary and complex interaction coefficients established
in the original space, remains valid on the new coordinates
rescaled with a constant factor xAi (Figure 1B). We termed this
extension scaled MIIA (s-MIIA).

The quantitative values of interaction coefficients predicted
by the s-MIIA are different from those by the original MIIA.
That is, what is determined with the s-MIIA is ‘scaled’ interaction
coefficients (i.e., bBi,j and bCi,j), rather than ‘absolute’ values (i.e.,
aBi,j and aCi,j). However, it should be noted that the resulting scaled
coefficients can also provide sufficient information required to
predict how interaction changes in response to the addition of
new neighbors, a primary question the MIIA aims to address.
Thus, when the scope of prediction is confined to ‘relative’
interaction changes, both the original version and the s-MIIA
generate the same result, i.e.,

1brel,B→C
i,j ≡

bCi,j − bBi,j
bBi,j

=

aCi,j − aBi,j
aBi,j

≡ 1arel,B→C
i,j (7)

or

1brel,C→B
i,j ≡

bBi,j − bCi,j
bCi,j

=

aBi,j − aCi,j
aCi,j

≡ 1arel,C→B
i,j (8)
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FIGURE 1 | A schematic illustration of the conceptual difference between original MIIA vs. the proposed approach that combines model scaling and sensitivity
analysis. (A) Prediction of interaction coefficients in a ternary community

(
aT

1,2, aT
1,3

)
through the orthogonal projection of binary interaction coefficients

(
aB

1,2, aB
1,3

)
,

(B) consistent orthogonality between the two vectors of interaction coefficients on the scaled coordinates where
(
bT

1,2, bT
1,3

)
=
(
xA

1 aT
1,2, xA

1 aT
1,3

)
and(

bB
1,2, bB

1,3

)
=
(
xA

1 aB
1,2, xA

1 aB
1,3

)
, (C) sensitivity of predicted interaction coefficients to the variation of bB

1,2, (D) sensitivity of predicted interaction coefficients to the

variation of bB
1,3. Superscripts A, B, and T denote ‘axenic’, ‘binary’, and ‘ternary’ cultures, respectively.

where 1areli,j and 1breli,j denote the relative changes in interaction
coefficients ai,j and bi,j that are predicted by the original
and scaled MIIA, respectively. The superscripts B→ C and
C→ B denote the interaction changes from binary to complex
cultures and from complex to binary cultures, respectively. From
Equations (7) and (8), therefore, it is clear that the predictions by
the original formulation and the s-MIIA are exactly the same with
respect to the relative changes in interaction coefficients.

Estimation of Binary Interaction
Coefficients Using a Sensitivity Analysis
While the scaling method above resolves the issue associated
with extremely low or non-measurable axenic populations,
identifying binary interaction coefficients is also dependent on
the availability of binary co-culture data. We considered eight
different growth scenarios in axenic and binary cultures and

showed when binary interaction coefficients are identifiable by
the original and scaled MIIA and when not (Table 1). For Cases
I and II, binary interaction coefficients can be estimated either
by the original formulation or the scaling method. Cases V
and VI highlight the situations that could not be handled by
the original formulation, but only by the scaling method. The
remaining cases (i.e., Cases III, IV, VII, and VIII) are challenging
scenarios, to which neither the original nor scaling method can be
naively applied. However, we exclude Cases III and VIII from our
consideration because these events might be rare if at all possible;
therefore, our focus for demonstration purposes is placed on
Cases IV and VII.

In order to estimate binary interaction coefficients for Cases
IV and VII, we take bBi,j as an adjustable model parameter with
an aim to determining its rational value or range based on
the sensitivity analysis and the comparison with experimental
evidence. The success of this parameterization strategy depends
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TABLE 1 | Comparison between the original MIIA and the model scaling in regard to the estimation of binary interaction coefficients in various possible growth scenarios
in axenic and binary cultures.

Case Axenic Binary Binary interaction coefficients

Species i (xA
i ) Species i (xB

i ) Species j (xB
j ) Estimation by the original MIIA Estimation by the scaled MIIA (s-MIIA)

I G G G aB
i,j =

(
xB

i − xA
i

)
/
(
xA

i xB
j

)
bB

i,j =
(
xB

i − xA
i

)
/xB

j

II G NG G aB
i,j = −1/xB

j bB
i,j = −xA

i /xB
j

III G NG NG UI UI

IV G G NG UI UI

V NG G G UI bB
i,j = xB

i /xB
j

VI NG NG G UI bB
i,j = 0

VII NG NG NG UI UI

VIII NG G NG UI UI

G, growth; NG, no growth; UI, unidentifiable; shaded rows = rare events.

on several factors: (1) what binary interaction coefficients are
unidentifiable, (2) what the complex community model [i.e.,
Equation (2)] looks like, and (3) the availability of experimental
evidence to determine ranges of parameters. Figures 1C,D
illustrate how the first and second factors affect predictions by
considering the following two scenarios: (1) bB1,3 were determined
but not bB1,2, and (2) bB1,2 was determined but not bB1,3. In the
respective case, bB1,3 and bB1,2 are chosen as adjustable parameters.
In the hypothetical scenario in Figures 1C,D, the prediction
of interaction coefficients in the ternary community bT1,2 and
bT1,3 is relatively less sensitive to the variation of the parameter
bB1,2 in comparison to bB1,3. This distinct sensitivity with respect
to bB1,2 and bB1,3 of course depends on the slope of the linear
ternary community model (lT). As such, the sensitivity analysis
evaluates the robustness of predictions and specifically shows
which predictions are sensitive and which need additional data
to reduce uncertainty.

Calculation of Variable Ratios From
Multiplicate Data
Estimation of binary interaction coefficients in MIIA (both
original and new formulations) (i.e., aBi,j’s and bBi,j’s) include the
ratio of variables as shown in Equations (1) and (3). A caution
is needed in calculating them from multiplicate data because the
mean value of ratio can be different from the ratio of means.
This so-called bias issue is fundamentally associated with the
small sample size (Cochran, 1977) and often arises in biological
experiments where the sample size is typically limited to 3 to 5.
To evaluate the impact of the variability in small-size samples on
the ratio estimation for the datasets used in our case studies, we
first accounted for all possible combinations of three replicates
of each variable, e.g., 27 combinations from three variables (xAi ,
xBi , and xBj ) and then compared estimated values of aBi,j’s and bBi,j
between the following two cases: (1) taking the mean of ratio and
(2) taking the ratio of means. For the Wang et al.’ (2017) data
used in the first case study (that shows relatively more significant
variation than the data of the second case study), we observed
only negligible differences between the two cases, i.e., <1.4% for
bBi,j; <2.8% for aBi,j .

RESULTS

To demonstrate how the MIIA can predict membership-
dependent interactions despite limited population data, we
analyzed two experimental datasets taken from published
literature: (1) three-member species derived from natural
microbial community in a paddy soil (Wang et al., 2017)
and (2) four-member species isolated from a cellulose-
degrading bacterial community enriched from a composting
process (Kato et al., 2008). The first example represents the
ideal case (corresponding to Case 1 in Table 1) when all
organisms can grow both in axenic and binary cultures,
as well as the ternary culture. This enables MIIA to use
the full estimation of binary interaction coefficients. We
chose this dataset to demonstrate the effectiveness of the
proposed model scaling method through the comparison
with the original formulation. In the second example, we
extend the analysis to a more challenging – yet realistic –
situation where some of the organisms cannot grow in
axenic and binary cultures. In this case, the original MIIA
becomes ineffective because only a subset of binary interaction
coefficients can be estimated, requiring the new method
proposed in this work.

Evaluation of the Scaling Method Using a
Bacterial Community for Which All the
Binary Interaction Coefficients Are
Estimable
The study published from Wang et al. (2017) provides population
data for three soil organisms that are known to grow in all
combinations of axenic, binary and ternary cultures. The three
bacterial species analyzed in their work include: Leuconostoc
lactis (LL), Janthinobacterium lividum (JL), and Lactococcus
piscium (LP). The copy number of the 16S rRNA genes – as
determined by quantitative PCR – has been used as a proxy
for the density of each species (see Supplementary Table S1
for the raw data retrieved from the original paper). We used
this consortium data as a technical proof-of-concept example
to illustrate how the scaled MIIA works and how to interpret
its predictions.
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FIGURE 2 | Shifts in interspecies interactions in binary and ternary cultures for the soil microbial consortium studied by Wang et al. (2017). (A) prediction of
interaction coefficients (ai,j ’s) by the original MIIA for binary (left) and ternary (right) cultures. (B) Prediction of interaction coefficients (bi,j ’s) by the scaled method for
binary (left) and ternary (right) cultures. In (A,B), the numerical value in the (i, j) entry of the matrices on the left and right denotes the estimation of ai,j or bi,j (i.e., the
effect of species j on i) in the binary and ternary cultures. Differences in interaction coefficients of the two matrices on the left and right represents the predicted
changes in pairwise interactions by the addition of a new member. (C) Relative changes in interaction coefficients predicted either from the original MIIA (1arel,B→T

i,j )

or the scaled method (1brel,B→T
i,j ). (D) Graphical representation of context-dependent interaction predicted either from the original MIIA or the scaled method (arrows

outside and inside the triangle denote interactions in binary and ternary communities). In ai,jand bi,j , i, j ∈ {LL, JL, LP}.

The original MIIA predicted absolute interaction coefficients
in binary and ternary communities (aBi,j and aTi,j) (Figure 2A),
while the s-MIIA estimated their scaled values (aBi,jx

A
i and aTi,jx

A
i ,

i.e., bBi,j and bTi,j) (Figure 2B). Both methods predicted sign
changes for some cases: interaction coefficients aLL,JL and aLL,LP
were positive (i.e., promotive) in binary cultures, but became
negative (i.e., inhibitory) in the ternary culture. This prediction
was consistent with the experimental observations in the original
paper by Wang et al. (2017).

It should be noted that the s-MIIA still allows us to assess
the changes in interactions in the ternary community because
the same constant (i.e., xAi ) was multiplied on both aBi,j and aTi,j.
As a critical difference from the original method, the prediction
of the s-MIIA is limited to relative comparison of interaction
parameters only for the same organism that is influenced by
others. That is, we can compare bi,j values across different
j’s along each row in the matrix of interaction coefficients
(Figure 2B), but not across different i’s because the values of
the scaling constant xAi are different among species. As expected,
predicted relative changes of interactions coefficients – e.g.,
defined in Equation (7) – were identical between the original

and scaled methods (Figure 2C). The plus and minus signs
in the table of Figure 2C denote the change of interactions
in the ternary community in positive and negative directions
relative to interactions in binary communities. In Figure 2D,
we illustrated how the relationships between two species can be
changed in binary and ternary communities. Wang et al.’s (2017)
data showed reasonably small standard deviations of population
densities for both axenic and binary cultures (from 0.006 to 0.069)
and the ternary culture (from 0.022 to 0.094) where standard
deviations were calculated using a multiplicative lognormal noise
function as described in Supplementary Table S1 as well as in
the previous paper by Song et al. (2019). The measurement error
in this range did not deteriorate the predictive power of s-MIIA
(Supplementary Figure S1; see also Song et al., 2019).

Analyzing Communities Composed of
Species That Cannot Grow
Independently
We extend our analysis to a more challenging case where
the full estimation of binary interaction coefficients by the
original MIIA is not possible due to the ineffective growth of
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some of the member species in axenic and binary cultures.
These datasets were obtained from defined mixed cultures
using four bacterial strains previously studied by Kato
et al. (2008): a cellulose-degrading anaerobe (Clostridium
straminisolvens CSK1), a saccharide-utilizing anaerobe
(Clostridium thermosuccinogenes FG4), a peptide- and acetate-
utilizing aerobe (Pseudoxanthomonas taiwanensis M1-3) and a
peptide-, glucose-, and ethanol-utilizing aerobe (Brevibacillus
agri M1-5), which are hereafter denoted by CS, CT, PT and
BA, respectively. A number of different types of interactions
such as trophic interactions, competition, and lethal inhibition
as well as growth promotion have been detected in these
bacterial communities (Kato et al., 2008; Yamamoto et al.,
2010). When cultured together, these four organisms formed
a stable consortium. With simpler memberships that do not
contain all four members, however, some of the organisms
could not grow as mentioned above. For instance, the growth
of anaerobe CS requires the presence of aerobes (such as PT
or BA) for the removal of oxygen; the anaerobe CT not only
depends on aerobes, but also on CS that can degrade cellulose
into saccharides. We summarized all interaction features below
and provided the raw data retrieved from Kato et al. (2008) in
Supplementary Table S2:

• In axenic cultures, PT and BA can grow, whereas neither CS
nor CT can grow alone.
• Out of the six possible binary combinations among four

species, two species can co-grow in the three pairs (CS-PT,
CS-BA, and PT-BA); only one species can grow in the
two pairs (CT-PT and CT-BA); none of them can grow
in the CS-CT pair.
• Out of the four possible ternary combinations, all three species

can co-grow in the three consortia (CS-CT-PT, CS-CT-BA, and
CS-PT-BA), but only two species (PT and BA) can co-grow in
the CT-PT-BA consortium.
• All four species can co-grow in the quaternary culture.

Strong growth dependency of CS and CT on other member
species led to the absence of population data derived from
axenic cultures and certain binary parings. Consequently,
the original MIIA identified only 33% (4 out of 12) of
the binary interaction coefficients (Supplementary Table S3).
With this partial identification of interaction coefficients in
binary communities, the original MIIA could not provide any
predictions for ternary and quaternary communities except the
CS-PT-BA consortium, the estimation of which was limited to
33% of interactions. The s-MIIA generated improved results
by estimating 66% of the binary interaction (8 out of 12) and
predicting 100% of interaction coefficients in the CS-PT-BA
consortium. Prediction for other multi-species communities was
limited however: only 16.7% in the CT-PT-BA consortium and no
predictions for all other communities (Supplementary Table S3).
This result shows that despite improvement, the scaling method
alone is not sufficient to handle the cases where organisms
cannot co-grow in binary communities (i.e., Cases IV and VII
in Table 1), therefore requiring additional analyses to overcome
this limitation.

Sensitivity Analysis of Unidentifiable
Interaction Parameters
While the scaling method provided expanded estimates of
binary interaction coefficients in comparison to the original
method, the datasets from Kato et al. (2008) still contain
several binary interaction coefficients that remain unknown.
These unknown binary coefficients (bBCS,CT , bBCT,CS, bBPT,CT ,
and bBBA,CT) are all associated with CT, which shows no
growth in the axenic or even binary cultures. Our strategy to
overcome this limitation is to take these four coefficients as
adjustable parameters to examine how MIIA predictions would
vary as their functions (see section Materials and Methods)
and to determine their most plausible values or ranges based
on the consistency between final model predictions with any
experimental observations.

No direct experimental evidences were available from Kato
et al. (2008) that can be used to decisively determine specific
values of the four unknown binary parameters. However, they
provided an interspecies interaction network for the four-
member consortium that could be used as a basis to inform
some of the unidentifiable binary interaction coefficients. This
interaction network was derived from a combined analysis of
three complementary datasets including those reported elsewhere
(Kato et al., 2004, 2005; Yamamoto et al., 2010). To summarize
their integrative analysis of experimental data: (1) they analyzed
substrate utilization profiles and metabolites of each member
under axenic culture conditions to propose exchange scenarios
among the members; (2) they examined how the growth of
a member in pure cultures can be promoted or suppressed
when a cell-free culture filtrate of another member was added
to the growth media; (3) they compared populations of a
member (e.g., CS) between in the presence and the absence
of another member (e.g., PT) to examine the effects of
one on others (in the above example, effects of PT on the
population of CS).

An overall interspecies interaction network among the four
species depicted by Kato et al. (2008) show various types of
interspecies interactions among member species (Figure 3A).
For demonstration purpose, we took this network as a
reliable specific interaction scenario, while it may not represent
true interactions in the quaternary community. Figure 3B
is the prediction of the s-MIIA obtained based on default
parameters, bBCS,CT = bBCT,CS = bBPT,CT = bBBA,CT = 0, i.e., by
assuming neutral interactions for unknown interactions in
binary communities. Surprisingly, this default prediction showed
no contradiction with the interaction network experimentally
derived by Kato et al. with respect to the positive and negative
effects among four species although providing two additional
interactions (dotted lines in Figure 3B) that were not seen in
Figure 3A. As to the magnitude of interactions, however, there
were some discrepancies between the two networks. In particular,
Kato et al. identified two stronger interactions, i.e., the promotive
effect of CS on CT and inhibitive effect of PT on BA (Figure 3A),
the former of which was however not captured in the default
network (Figure 3B). As addressed in the previous section, the
comparison of interactions predicted by the s-MIIA is relative
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FIGURE 3 | Interspecies interaction networks in the quaternary community.
(A) Interaction network derived from the data analysis by Kato et al. (2008),
(B) predicted interaction network by setting four binary interaction parameters
zeros, (C) refined network by adjusting the value of bB

CT,CS to 2.5 such that the
effect of CS on CT becomes relatively stronger, (D) the variation of interaction
coefficients in the quaternary community (bQ

CT,CS,bQ
CT,PT , and bQ

CT,BA) to the

change of bB
CT,CS, which provides justification for adjusting bB

CT,CS.

and therefore limited to the effects of different species for the
same species that is influenced. With this limitation in mind,
we tried to adjust unknown binary interaction parameters so
that interaction coefficients in the quaternary community are
consistent with the experimentally derived network. In this case,
we were able to obtain a stronger effect of CS on CT in the
quaternary network by increasing the value of bBCT,CS to 2.5 based
on the parameter sensitivity analysis. The resulting interaction
network and sensitivity profiles were shown in Figures 3C,D.

The sensitivity analysis was extended to all parameters
(Figure 4). Interaction coefficients in ternary and quaternary
cultures that show weak dependency on binary interaction
parameters indicate that these insensitive coefficients can be
robustly predicted regardless of assumed binary parameter
values. Similarly, this implies that the process for determining
interaction coefficients is sensitive to the assumed binary
parameters (including those that may change their signs) and that
additional experimental understanding on interactions in ternary
and/or quaternary cultures can be required.

Robust Predictions Despite Parameter
Uncertainties
While an appropriate value for bBCT,CS was determined by
integrating the parameter sensitivity analysis result and the
experimental understanding from Kato et al., we lack further data
or experimental observations that can be used to determine other
parameters, i.e., bBCS,CT , bBPT,CT , and bBBA,CT . In order to examine

the effects of the choice of these parameters, we considered the
following three cases:

• Case 1: bBCS,CT = bBCT,CS = bBPT,CT = bBBA,CT = 0
• Case 2: bBCT,CS = 2.5 and bBCS,CT = bBPT,CT = bBBA,CT = 0
• Case 3: bBCT,CS = 2.5, bBCS,CT = −0.5, bBPT,CT = 0.1, and

bBBA,CT = 2.5

As mentioned previously, Case 1 denotes default setting that
assumes neutral interactions; Case 2 is a simple adjustment of
a minimum number of parameters (i.e., bBCT,CS) in order to
match with experimental understanding. Case 3 represents an
example of alternative parameter setting that leads to the same
quaternary network as in Case 2, but different predictions in
ternary networks.

We provided graphical representations of binary interactions
for the three cases described above (Figure 5A). These three
scenarios equally predict the structure of the interaction network
in the quaternary community experimentally determined by
Kato et al. (Figure 5B). Despite variations of assumed binary
coefficients among three cases, predicted interactions in ternary
communities were fairly robust. Particularly, Cases 1 and 2
generated exactly the same ternary interaction networks (left
panel of Figure 5C). Overall, we found that out of 24 possible
interactions in ternary communities, 75% of interactions were
consistently predicted across three different parameter settings,
while 25% predictions were not. When binary and quaternary
communities were included, the portion of robust predictions
increased to 79% (i.e., 38 out of the 48 interactions in total
of binary, ternary, and quaternary communities). Therefore,
these results (including both case-independent and case-specific
predictions) can be used to inform the design of new experiments
for further validation.

Microbial Interactions Changing Across
Different Partnerships
We finally examined how interspecies interactions could be
modulated by the addition of new members or the loss of existing
members. Interaction networks predicted across binary, ternary
and quaternary cultures (Figure 5) showed that interspecies
interactions can be membership dependent, while specific
predictions were case-dependent. For example, predictions for
Cases 1 and 2 showed that CS and CT, who could not coexist in
the binary culture (Figure 5A), exhibit mutualism in the presence
of PT, but show antagonism in the presence of BA (the left panel
of Figure 5C) or both PT and BA (Figure 5B). By contrast, Case
3 predicted no such shifts, i.e., the relationship of CS and CT
remained antagonistic regardless of who are their neighbors (the
right panels of Figures 5A–C). Similar results were predicted for
the influence of CT on BA, i.e., Cases 1 and 2 showed strong
neighbor dependence of their interaction, but Case 3 did not.
Interestingly, the influence of CT on PT was predicted to be
membership dependent for all cases: the effect of CT on PT was
negative in the quaternary culture, but the same in binary and
ternary cultures was neutral in Cases 1 and 2, while positive in
Case 3. We quantified modulation of interactions across binary
and complex communities for Cases 1 to 3 (Figure 6). In all
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FIGURE 4 | Sensitivity of interaction coefficients predicted for ternary and quaternary communities bC
i,j against the variation of assumed binary interaction

parameters: (A) bB
CS,CT , (B) bB

CT,CS, (C) bB
PT,CT , and (D) bB

BA,CT . The coefficient bC
i,j means the effect of species j on species i, and the superscript C represents

complex communities composed of three- or four-member species as denoted on the top of each panel. The (i, j) pairs were provided to the right of each row.
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FIGURE 5 | Interspecies interaction networks for (A) binary, (B) quaternary, and (C) ternary communities of three different parameter settings. Normal arrows and
bar arrows describe the positive and negative influences, respectively. Black and red colors indicate the case-independent and -dependent interactions. Hollow and
filled circles respectively indicate if species can co-grow in the communities or not. See the detail values in Supplementary Table S4.

cases, we were able to predict considerable shifts in interspecies
interactions across binary, ternary and quaternary communities.

DISCUSSION

The MIIA is a new concept of network inference that uniquely
accounts for neighbor-dependent interactions in microbial
communities. The MIIA (both original and scaled formulations)
evaluates the effect of one species on another based on a simple
analysis of population data. That is, ‘species 1’ is interpreted as
playing a positive (or negative) role on the growth of ‘species
2,’ if ‘species 2’ increases (or decreases) its population density in
the presence of ‘species 1.’ This general interpretation of species
abundance data has been commonly used in the literature to
understand microbial interactions (e.g., Paine, 1992; Kato et al.,
2008). Equations (1) and (3) are an intuitive representation of
that rationale, while mathematically derivable from a gLV model
in steady state as shown in the original MIIA paper by Song et al.
(2019). As an advantage, the MIIA uses only one time point at
the end of growth (i.e., in the stagnant phase) without requesting
the temporal profiles of species abundances to strictly follow gLV
dynamics in toto.

While the original development was tested in ideal conditions
where all species can grow solely as well as with partners,
we proposed a new formulation to handle more realistic,
complex systems by relieving that assumption. Despite data
limitation, a synergistic combination of model scaling, parameter
sensitivity analysis, and data coupling enabled predicting virtually
all interaction networks across different memberships. This
development not only expands the scope of prediction, but
also contributes to creating a new understanding of interspecies
interplay in a community.

To handle unidentifiable binary interaction coefficients,
we parameterized them to perform sensitivity analyses
(i.e., to examine how sensitively inference outputs change
against their variations) and determine ranges or values
based on additional experimental evidence. While additional
knowledge employed in this work was based on traditional
data analysis, this challenge can be more effectively overcome
by integrating advanced experimental data including high-
throughput multi-omics profiles (Franzosa et al., 2015), stable
isotope labeling (Dumont and Murrell, 2005; Kanissery et al.,
2018; Sun et al., 2018), imaging and probing technologies
(He et al., 2010; Darch and Koley, 2018; Darch et al.,
2018) and others.
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FIGURE 6 | Predicted modulation of interactions in binary and complex
communities quantified by bC

i,j − bB
i,j

(
≡ mi,j

)
, a metric used in Song et al.

(2019). Plus (or minus) sign of mi,j does not necessarily mean that the sign
change in interactions occurs, but implies that the influence of species j on i is
shifted in a positive (negative) direction in the presence of new neighbors: left
panels: Cases 1 and 2, right panels: Case 3. T1 = CS-CT-PT community,
T2 = CS-CT-BA community, T3 = CS-PT-BA community, and
Q = CS-CT-PT-BA community.

When no additional data is available to determine
unidentifiable binary parameters, we suggest assigning zeros
as default values. While this initial assignment may not be
fully generalizable, it can still serve as reference for sensitivity
analysis. Interestingly, even without parameter tuning, our initial
prediction using these default parameters were quite consistent
with the interaction network experimentally determined from
Kato et al. (2008). This was surprising because we only used a
partial set of population data for this inference, while Kato et al.
(2008) had to perform comprehensive experimental analyses to
arrive at the same conclusion.

The sensitivity analysis not only allows to determine the
robustness of predicted interactions, but also provides interesting
biological insights into the effect of neighbors in microbial
communities. Analysis of the entire results in Figure 4 led
us to obtain the following two findings: (1) the correlations
between the assumed bBi,j’s and the predicted bCi,j’s (where the
superscript C = ternary or quaternary) are positive (as shown
by thicker lines in Figures 4A–D) and (2) the correlations
between assumed bBi,j’s and predicted bCi,k6=j’s are negative (as
shown by thinner lines). While magnitudes vary among cases, all
correlations between binary and complex interaction coefficients
followed these two patterns. The first rule is related to the
minimal adjustment hypothesis of MIIA because it means
that if the value of bBi,j increases (decreases), the value of
bCi,j will also increase (decrease) and that the gap between
those is adjusted to be toward being minimal. The second

rule implies that there may exist trade-offs in alterations of
interspecies interaction when the transition occurs from binary
to complex communities. This implies that for example, in a
ternary community, if the effect of species j on i is shifted in
a positive/negative direction in the presence of species k, the
effect of species k on i is shifted in a negative/positive direction
in the presence of species j. This trade-off may be one of the
mechanisms that potentially contribute to the formation of stable
communities because this indicates that species can continue to
exist in a community due to such compensatory effects among
neighbor species.

The s-MIIA proposed in this work is a complementary
method of the original formulation, rather than its replacement.
The scaled method extends the application to a wider range
of systems, but its prediction is limited to ‘relative’ changes
in interactions. By contrast, the original MIIA provides
absolute values of interaction coefficients, but cannot effectively
handle ecological communities containing member species
that are interdependent for growth. Such complementary
predictions make their integration synergistic. Integration of
the original and scaled MIIA makes the prediction more
convincing and is extremely useful to understand interaction
principles in diverse ecological perspectives, including the
membership-dependent interactions. The predictive capacity
of MIIA can solely allow us to identify the interaction
coefficients on the complex consortia and its changes in terms
of the introduction of new member species. In addition,
MIIA may be able to provide an intriguing initial set of
coefficients to incorporate with more computationally rigorous
inference methods.

Modulation of interspecies interactions by a third-party
species is a fundamental subject widely studied in community
ecology (Chamberlain et al., 2014). This knowledge is
particularly relevant not only for studying the effect of
species invasion in microbial communities in environment,
but also for designing synthetic consortia by partnering
platform organisms with new additional species (Lindemann
et al., 2016; Song, 2018; Song et al., 2018). Furthermore,
in view of a current innovative research trend that utilizes
compositionally simple model consortia for understanding
interactions in complex communities (Haruta and Yamamoto,
2018), prediction of the impact of additional species on existing
interactions is a critical step to bridge the gap between the
two systems.
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FIGURE S1 | Performance of s-MIIA against measurement error: The effect of
measurement error on the predictive capability of s-MIIA was tested for a
five-member community using simulated data generated by a generalized
Lotka-Volterra (gLV) model as described in Song et al. (2019). For the purpose of
comparison with the original MIIA, the gLV parameter values used in generating
simulated data are the same as those used in Song et al. (2019). Noisy data were
generated based on a multiplicative lognormal noise: xnoise = x exp[N(0, δA,B

noise)]

for species abundances in axenic and binary cultures; xnoise = x exp[N(0, δC
noise)]

for species abundances in complex cultures where x is the species abundance
obtained from the steady-state gLV model without noise; δ

A,B
noise and δC

noise
denote metrics for the level of introduced noise in axenic/binary and complex
cultures, respectively. The results show that the prediction of s-MIIA is
robust over a reasonable range of noise level (when δC

noise ≤ 0.1 and

δ
A,B
noise ≤ 0.01), which is comparable to the performance of the original

MIIA demonstrated in Song et al. (2019). SC is cosine similarity; bC is the
true interaction coefficient in a complex community; b̂C

noise is the
interaction coefficient in a complex community estimated under the
noise effect. (A) δ

A,B
noise = 0.0001, (B) δ

A,B
noise = 0.001, (C) δ

A,B
noise = 0.01, and

(D) δ
A,B
noise = 0.1.
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