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landscape with permafrost occurring both in mountains and lowlands. Freezing and thawing of the active layer
causes seasonal frost heave and thaw subsidence, while permafrost-related mass-wasting processes induce
downslope ground displacements on valley sides. Displacement rate varies spatially and temporally depending
on environmental factors. In our study, we apply Satellite Synthetic Aperture Radar Interferometry (InSAR) to
investigate the magnitude, spatial distribution and timing of seasonal ground displacements in and around
Adventdalen using TerraSAR-X StripMap Mode (2009-2017) and Sentinel-1 Interferometric Wide Swath Mode
(2015-2017) SAR images. First, we show that InSAR results from both sensors highlight consistent patterns and
provide a comprehensive overview of the distribution of displacement rates. Secondly, two-dimensional (2D)
TerraSAR-X InSAR results from combined ascending and descending geometries document the spatial variability
of the vertical and east-west horizontal displacement rates for an average of nine thawing seasons. The remote
sensing results are compared to a simplified geomorphological map enabling the identification of specific
magnitudes and orientations of displacements for 14 selected geomorphological units. Finally, June to December
2017 6-day sampling interval Sentinel-1 time series was retrieved and compared to active layer ground tem-
peratures from two boreholes. The timing of the subsidence and heave detected by InSAR matches the thawing
and freeze-back periods measured by in-situ sensors. Our results highlight the value of InSAR to obtain landscape
scale knowledge about the seasonal dynamics of complex periglacial environments.

1. Introduction

Michalowski, 2015). On slopes, mass-wasting processes create various
creeping landforms (e.g. rock glaciers, solifluction lobes/sheets) de-

Permafrost is defined as subground material remaining at or below pending on climate, topography, ground material, water content, etc.

0 °C for at least two consecutive years (French, 2007). It exists in ap-
proximately 24% of the terrestrial land areas of the Northern Hemi-
sphere (Zhang et al., 2003). The uppermost part of the ground above
the permafrost, which thaws in summer and refreezes in winter, is the
active layer (Shur et al., 2005). During this seasonal freezing and
thawing, the water-ice phase change in the ground can induce cm-scale
heave and subsidence (Harris et al., 2011; Romanovsky et al., 2008).
The magnitude of such displacements varies spatially depending on the
active layer thickness (ALT), the amount and availability of water and
the frost-susceptibility of the ground, which is largely controlled by
grain size (Harris et al., 1995; Matsuoka et al., 2003; Zhang and

(Haeberli et al., 2006; Matsuoka, 2001).

Climate change impacts the properties and distribution of frozen
ground (Nelson et al., 2002), and changes of the ground thermal regime
can modify the distribution, magnitude and timing of ground heave,
subsidence and creep. Moreover, the seasonal freeze/thaw cycles affect
slope stability (Blikra and Christiansen, 2014) and infrastructure
(Harris et al., 2009). Thus, measuring ground dynamics in permafrost
landscapes is important. Various monitoring networks exist that docu-
ment ALT (Shiklomanov et al., 2012), permafrost thermal state
(Romanovsky et al.,, 2010) and creep behaviour in rock glaciers
(Delaloye et al., 2010), but these measurements are typically sparse and
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unevenly distributed.

Satellite remote sensing provides a valuable tool to explore large
and hard-to-access periglacial areas, allowing the Earth's surface to be
imaged at high spatial and temporal resolution. Permafrost, as a sub-
surface condition, cannot be directly observed from satellites, but its
impact on the surface can be documented by remote sensing (Bartsch
et al., 2016; Trofaier et al., 2017). The use of Synthetic Aperture Radar
(SAR) satellites is especially suitable in the Arctic as SAR imaging is
independent of solar insolation and meteorological conditions. Repeat-
pass Differential SAR Interferometry (InSAR) can detect ground dis-
placements at millimetre to centimetre scales along the radar line-of-
sight (LOS) and has been proven valuable for geoscience applications
(Gabriel et al., 1989; Massonnet and Feigl, 1998).

InSAR in permafrost landscapes can measure creep on slopes and
heave/subsidence in low-relief areas. Kenyi and Kaufmann (2001) and
Rignot et al. (2002) used InSAR to measure rock glacier surface motion.
Recent studies exploited the regional coverage of SAR satellites for in-
ventorying creeping landforms (Barboux et al., 2014, 2015; Delaloye
et al., 2007; Strozzi et al., 2004) or investigating temporal variations of
velocity using long time series (Strozzi et al., 2010; Eriksen et al.,
2018). The first cases of vertical seasonal displacements detected by
InSAR in Alaska were documented by Rykhus and Lu (2008) and Wang
and Li (1999). InSAR has then been used to map seasonal thaw sub-
sidence, to identify terrain stability issues (Short et al., 2014; Wang
et al., 2017; Wolfe et al., 2014) and to estimate ALT over large areas
(Liu et al., 2012; Schaefer et al., 2015). Recent research modelled the
relationship between InSAR displacements and climatic factors (Zhao
et al., 2016), evidenced the importance of ground water content (Daout
et al., 2017) and documented the inter-annual ground surface changes
(Rudy et al., 2018; Strozzi et al., 2018). These studies show that InNSAR
is a promising technique for documenting slope movement processes
and studying seasonal landscape dynamics related to ground freezing
and thawing. However, little research has focused on landscapes com-
bining high-relief and lowland permafrost-related processes. The cap-
ability of InSAR to inventory individual landforms based on their dis-
placement patterns, and to contribute to geomorphological
investigation in such complex environments, still needs to be in-
vestigated.

Here we study to what degree InSAR can identify seasonal frost- and
thaw-related ground displacements in Svalbard. Based on pre-existing
InSAR techniques, the novelty of our study is to combine the spatial and
temporal measurement capability of complementary SAR datasets to
provide new insights into the seasonal dynamics of the Svalbard land-
scape. Our study objectives are to (1) analyse the spatial distribution of
2D InSAR results documenting thaw subsidence and creep at the
landscape scale, and study the variability of the displacement patterns
for different geomorphological units; (2) investigate the temporal var-
iations in InSAR displacements and compare the results to in situ ALT
ground temperature measurements; (3) discuss the complementarity of
two SAR sensors and the value of Sentinel-1 for studies of periglacial
landscape dynamics.

2. Study area

The study area is centred in Adventdalen valley and adjacent parts
of central Nordenskiold Land, on the Spitsbergen Island, in the Svalbard
archipelago (Fig. 1). The landscape has complex topography with
mountain tops over 1000 m a.s.l. and glacially eroded — now perigla-
cially dominated — valleys extending down to sea level (Norwegian
Polar Institute, 2014a). The large-scale geomorphology is dominated by
mountain plateaus with a sub-horizontal stratification of sedimentary
bedrock (Dallmann et al., 2001; Major et al., 2001).

Following regional deglaciation, the landscape has been modified
by weathering, local glaciation and periglacial processes (Gilbert et al.,
2018; Hartel and Christiansen, 2014; Sgrbel et al., 2001; Tolgensbakk
et al., 2001). Bedrock is exposed mainly on rock noses in the upper
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steep part of the slopes composed of the resistant Firkanten formation
of Tertiary sediments (Dallmann et al., 2001; Major et al., 2001). The
plateaus are covered by extensive blockfields. The lower and central
parts of Adventdalen and the neighbouring valleys (Fig. 1, right) are
characterized by fluvial, alluvial and eolian (loess) deposits with typical
permafrost-related landforms, such as ice-wedge polygons and pingos
(Serbel et al., 2001). The valley slopes are covered by allochthonous
weathered material, colluvium and alluvial fans, that have been further
reworked by mass-wasting processes, such as by debris-flows (André,
1995), solifluction (Harris et al., 2011), snow avalanche activity
(Eckerstorfer et al., 2013), and talus-derived rock glaciers (Humlum,
2000).

Svalbard is characterized by a polar-tundra climate (Koppen-Geiger
classification, Peel et al., 2007) and has continuous permafrost with a
thickness varying from < 100 m in valley bottoms and coastal areas to
500 m in the mountains (Humlum et al., 2003). Gilbert et al. (2018)
highlighted the complex Holocene history of sedimentary infilling and
permafrost aggradation in Adventdalen, suggesting that permafrost is
predominantly epigenetic. Considering the period 1912-2011, air
temperature records show an increase by 2.5 °C at the Svalbard airport
meteorological station. During the last decades, the average increase
reached 1.0-1.2 °C per decade, but 2-3 °C per decade during the winter
season (Fgrland et al.,, 2011). Ground temperature monitoring in
boreholes since 2008 indicates that the permafrost has warmed from
0.06 to 0.15°C/year (Isaksen et al., 2019). ALT increased by 0.6 cm/
year in lower Adventdalen (UNISCALM monitoring site) based on
2000-2017 measurements (Isaksen et al., 2019). Modelling for the
twenty-first century suggests future increases of ground temperatures
and ALT (Etzelmiiller et al., 2011; Isaksen et al., 2019). However, the
intra- and inter-annual meteorological variability, as well as the influ-
ence of local conditions (water content, ground characteristics, snow
cover, vegetation) are not negligible (Christiansen and Humlum, 2008;
Christiansen et al., 2013; Harris et al., 2011; Schuh et al., 2017). ALT is
generally in the range of 100 to 200 cm (Isaksen et al., 2019) and the
amount of ice in the upper permafrost has high spatial variability
(Cable et al., 2018; Christiansen et al., 2010).

The study area corresponds to the overlap of the available SAR
datasets and the geomorphological map (see Section 3). The processed
SAR areas were chosen to maximize the comparable area. The north-
eastern part of the geomorphological map is not covered by the Ter-
raSAR-X scenes in ascending geometry leading to a slightly reduced
overlap area (Fig. 1, right). The size of the geomorphologically mapped
area is approximately 331 km?, and the overlap area is about 297 km?.

3. Data and methods
3.1. SAR data

SAR datasets from the TerraSAR-X (TSX) satellite (2009-2017) and
the Sentinel-1 (S1) satellites of the European Union's Copernicus
Programme (2015-2017) were used to compare the results and to ex-
ploit their complementary radar wavelengths, spatial coverages, spatial
resolutions, revisit times and data availability. We selected snow-free
scenes from TSX in StripMap (SM) mode in ascending and descending
geometries, and from S1 in Interferometric Wide Swath (IWS) mode in
ascending geometry only (before 2018, IWS mode in descending geo-
metry was not available over Svalbard). Characteristics of the datasets
are further described in Table 1.

3.2. InSAR processing

InSAR results were obtained using the NORCE GSAR software
(Larsen et al., 2005). Parameters used for InSAR processing are sum-
marized in Table S1 (Supplementary material). We co-registered and
multi-looked single-look complex (SLC) images using a range/azimuth
multi-looking factor of 5 X 5 (TSX) and 8 x 2 (S1), providing a ground
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Fig. 1. Left: Location of the study area on Spitsbergen Island in the Svalbard archipelago. Black square: extent of the map shown in the right part of the figure. Right:
Extent of the processed areas and the geomorphological map (blue rectangle: TerraSAR-X ascending; red rectangle: TerraSAR-X descending; solid black rectangle:
Sentinel-1 ascending; dashed black rectangle: simplified geomorphological map). The common area of both TerraSAR-X geometries is shown in light yellow. The
overlap with the geomorphological map is shown in light blue. The arrows indicate the line-of-sight (LOS) orientations (label 6;: incidence angles). The red dots mark
the location of two boreholes continuously monitoring ground temperature (ADV: Adventdalen, END: Endalen). Backgrounds: shaded relief from 20 m resolution
Digital Elevation Model (Norwegian Polar Institute, 2014a) and topographical map (Norwegian Polar Institute, 2014b). (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

resolution of approximately 15 x 15m (TSX) and 40 X 40 m (S1). Due
to the large variety of processes under study and the high velocity ex-
pected on several landforms (e.g. rock glaciers, debris-covered gla-
ciers), interferograms were generated with a maximal temporal base-
line of 22days (TSX) and 24 days (S1) to preserve coherence and
minimize phase ambiguities. Aliasing occurs when the displacement
rate exceeds a quarter of the wavelength during the time interval of the
generated interferograms, i.e. 0.78 cm in 11-22days for TSX and
1.39 cm in 6-24 days for S1. The detectable LOS velocities in this spe-
cific study are thus 0.4-0.7 mm/day for TSX and 0.6-2.3 mm/day for
S1. The spatial baseline has not been restricted; the effective maximal
values being clearly under the critical baseline limit (Table S1, column
4). For TSX, the interferogram stacks in both geometries include SAR
combinations during the thawing periods (June to September

Table 1
Characteristics of SAR datasets from TerraSAR-X and Sentinel-1 satellites.

2009-2017). For S1, we focused on two different periods, processed
using different INSAR methods (Table S1, column 2). First, we included
SAR combinations during the thawing periods (June-September
2015-2017) for comparison with TSX results. Secondly, we used scenes
from June to December 2017 to document the thawing period (June to
October) and the start of the freezing period (October to December). We
ended the series in December because snowfall later in winter leads to
decorrelation. The noise-level was reduced in all interferograms by
applying a spatially adaptive coherence-dependent Goldstein filter
(Goldstein and Werner, 1998; Baran et al., 2003). Strongly decorrelated
interferograms were removed and pixels affected by layover were
masked out. The contribution from the stratified atmosphere was mi-
tigated by a data driven approach where we fit a linear relation be-
tween residual phase and topography (Cavalié et al., 2007) using a

SAR sensor  SAR mode/geometry Frequency band Revisit time Number of Observation period (first-last selected LOS (orientation/
selected scenes scenes) incidence angle)
TerraSAR-X  StripMap (SM) X 11 days 67 22.08.2009-28.09.2017 70.9°
Ascending (A: 3.11cm) 37.9°
TerraSAR-X  StripMap (SM) X 11 days 65 14.07.2009-03.10.2017 297.5°
Descending (A: 3.11 cm) 27.2°
Sentinel-1 Interferometric Wide Swath  C 12 days until 46 14.08.2015-01.12.2017 69.5°
(Iws) (A: 5.55cm) 25.09.2016 37.3°
Ascending 6 days after
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Fig. 2. Simplified geomorphological map. Based on map from Hértel and Christiansen (2014) and Tolgensbakk et al. (2001). Black squares indicate the location of
the areas shown in Fig. 4. The black crossed circles mark the location of two boreholes (ADV: Adventdalen, END: Endalen). Background: topographical map
(Norwegian Polar Institute, 2014b). Location of the 3000 selected InSAR pixels per geomorphological unit is shown in Fig. S5 (Supplementary material).

Digital Elevation Model (DEM) at 20 m resolution (Norwegian Polar
Institute, 2014a). Based on a redundant set of interferograms, we fur-
ther solved for the stratified delay per scene using a network-based
approach (Lauknes, 2011). Pixels affected by noise were removed by
applying a coherence filter (coherence above 0.3-0.48 in 50% of the
interferograms depending on the dataset, Table S1, column 6). The
interferograms were unwrapped using the SNAPHU software (Chen and
Zebker, 2002) and we performed a second manual quality check of the
unwrapped interferograms to remove those affected by major un-
wrapping errors. For the S1 processing based only on June to December
2017 scenes, we additionally corrected the interferograms by averaging
all pairs centred on common acquisitions and using the redundancy to
iteratively estimate the atmospheric contribution of each scene
(Tymofyeyeva and Fialko, 2015). Different reference points were tested
and a common reference for all datasets was chosen in an area assumed
to be stable on the main building of Svalbard airport (Table S1, column
7; black star in Figs. 3, 5 and 6). All InSAR results are spatially relative
to this reference point. Sets of 71-99 selected interferograms, de-
pending on the dataset, were used to retrieve ground displacement
information (Table S1, column 5 and Figs. S1-S4 in Supplementary
material).

Using maximal temporal baselines of 22 days (TSX) and 24 days
(S1), the multi-year datasets include gaps during the winter periods. To
take advantage of the large stacks of interferograms from disconnected
subsets, we applied a multi-year averaging technique (stacking) based
on interferograms from the thawing periods (2009-2017 for TSX and
2015-2017 for S1). The applied stacking is a simple averaging of all
selected interferograms weighted by the temporal intervals between the
scenes. InSAR stacking reduces the atmospheric effects, assuming
temporally uncorrelated tropospheric effects (Lyons and Sandwell,
2003; Peltzer et al., 2001; Sandwell and Price, 1998). Using S1 inter-
ferograms, we selected a temporally connected set of interferograms

between June-December 2017 and we estimated displacement time
series using the Small Baseline Subset (SBAS) method (Berardino et al.,
2002). The phase inversion was performed using a L1-norm-based cost
function, which is more robust than L2-norm with respect to unwrap-
ping errors (Lauknes et al., 2011). For the atmospheric filtering, we
used a spatial filter of 500 m spatial filter and a temporal filter of
12 days. All results were geocoded using a DEM at 20m resolution
(Norwegian Polar Institute, 2014a).

InSAR stacking results for each dataset (TSX ascending, TSX des-
cending, S1 ascending) correspond to one-dimensional (1D) displace-
ment rates along the LOS (Table 1, column 7), based on several years.
All maps based on stacking results highlight the average multi-year
displacement rates during the 4-month thawing periods (June—-
September), expressed in mm/summer. The results from ascending and
descending geometries were combined to estimate 2-dimensional (2D)
vectors in the plane spanned by the ascending and descending LOS
directions (Eriksen et al., 2017). The results were decomposed into
vertical (upwards-downwards) and horizontal (eastwards-westwards,
E-W) components. 2D InSAR results were retrieved for TSX dataset
only, due to unavailability of S1 IWS in descending geometry before
2018. It should be noted that the radar is still blind to movement or-
thogonal to the LOS plane, which leads to an underestimation of the
displacement rates in case of a large horizontal component in the north-
south (N-S) direction. To avoid misinterpretation when comparing
InSAR to geomorphology, we masked out pixels in areas where a sig-
nificant horizontal component towards N or S is expected (Eckerstorfer
et al., 2018). The mask consists of areas with slope angles over 5° and
azimuth angles = 22.5° around 360° (N) and 180° (S) (337.5-22.5° and
157.5-202.5°%). All areas with slope angles below 5° were included as-
suming that they are mainly affected by vertical displacements. To keep
a large amount of pixels for the comparison between InSAR and geo-
morphology, we included areas with NE, NW, SE and SW aspects
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Table 2
Information about boreholes, their monitoring instrumentation and the temperature data used in this study.
Borehole Coordinates (UTM 33N) and  Slope angle and Geomorphological unit  Total Temperature measurements and additional information
altitude orientation depth
ADV N 8680294 0.4° Eolian sediment 3m Sensor spacing: every ~0.25m until 2.5 m depth
E 522504 293.7° (WNW) Data logging: every hour
16.7m a.s.l. Missing data in November—-December 2017
END N 8679744 8.0° Solifluction 20m Sensor spacing: every ~0.25m until 10 m depth, every 2-4 m until
E 517857 85.8° (E) 20m
49.6m a.s.l. Data logging: every 6 h

The ground surface has subsided 0.25 m since 2008, exposing the upper
sensors closer to the ground.

assuming that they have a significant E-W displacement component. As
a drawback, some areas may be affected by underestimation if the
displacements also include a significant N-S component.

The S1 SBAS results provide time series of LOS displacements
temporally relative to the first scene of the set (10.06.2017) and spa-
tially relative to the reference point (Table S1, column 7). Based on
ground temperature data and onset of frost heave on InSAR time series,
we estimated an average initiation date of ground freezing
(02.10.2017) used to map separately the ground displacements of the
thawing period (102 days between June and October 2017) and the
start of the freezing period (60 days between October and December
2017). In practice, the onset of frost heave varies spatially, but a unique
date was chosen to present the results in a homogenous way.

3.3. Comparing 2D InSAR to geomorphology

The TSX 2D InSAR displacement rates were compared to a detailed
geomorphological map available for this area (Hartel and Christiansen,
2014), which is the most updated version of a geomorphological and
quaternary geological map in Adventdalen (modified from Tolgensbakk
et al., 2001). Geomorphological units were extracted, simplified and
partly renamed from the existing maps to allow for direct comparison
with InSAR (Fig. 2). Punctual (e.g. individual boulders or forms) and
linear (e.g. gullies or ridges) forms were discarded. Initially separated
units ‘Weathered material, autochthonous’ and ‘Weathered material,
allochthonous’ were merged into ‘Regolith’, just as ‘Fluvial material,
recent’ and ‘Fluvial material, pre-recent’ and ‘Braided-river plain’ were
merged into ‘Fluvial sediment’. The classes ‘Sea and lake’, ‘Foreshore
flat’ and ‘Glacier’ are not taken into account (unselected, dark grey in
Fig. 2) as InSAR provides no relevant information on these surfaces. The
units ‘Alluvial fans’ and ‘Talus cones’ are not differentiated and are
displayed according to their sediment type ‘Alluvial sediment, recent’,
‘Alluvial sediment, pre-recent’ or ‘Colluvium’ respectively. For statis-
tical reasons (too few comparable pixels), the units ‘Organic material’
and ‘Pingo’ were not taken into account (unselected, dark grey in
Fig. 2). Solifluction is defined as surficial material in the original maps
despite that it is a landform, not a material type. It is called ‘Solifluc-
tion’ in the simplified map. The final simplified map is composed of
14 units including 11 corresponding to natural sediments and bedrock,
two corresponding to landforms (‘Solifluction’ and ‘Rock glacier and
protalus rampart’) and one corresponding to artificial surficial material
(‘Anthropogenic material’).

The 14 units have large differences in spatial extent, from approxi-
mately 1km? of ‘Rock glacier and protalus rampart’ to approximately
158 km? of ‘Regolith’. In addition, the coverage of InSAR maps is not
continuous due to low coherence and layover/shadow areas that have
been masked out. This causes high variability in the distribution of
InSAR pixel numbers corresponding to the different geomorphological
units. For further comparison, we randomly selected 3000 2D InSAR
pixels per unit following the methodology described by Eckerstorfer
et al. (2018). The location of the selected pixels is shown in Fig. S5
(Supplementary material). For each unit, the median, first and third

quartiles, inter-quartile range, maximal/minimal values were calcu-
lated. Significance tests (F-test of Fisher and Welch two sample t-tests)
were performed to compare the variance and mean of each geomor-
phological unit and estimate if they significantly differ. The pixel fre-
quency per class of 10 mm displacement rate was analysed for the
vertical and horizontal components separately and scatter plots com-
bining the two components were created to visualise the 2D behaviours
of each single pixel.

3.4. Comparing InSAR time series to ground temperature

The S1 InSAR time series was compared to ground temperature data
from two boreholes in the central part of the study area: Adventdalen
(ADV) and Endalen (END) (Figs. 1 and 2). ADV is located north of the
river flowing in Adventdalen (Adventelva) in a flat area covered by
eolian sediment. END is located on the north-western slope of Endalen
affected by solifluction. Information about the boreholes is summarized
in Table 2. The analysis consists of a comparison of timing and trends
between InSAR and temperature time series. Due to the intrinsic dif-
ferences of physical measures and data properties (unit, temporal
sampling, spatial resolution, etc.), the analysis is based on a visual in-
terpretation of the respective trends.

4. Results
4.1. InSAR results

The results of the multi-year InSAR stacking for each SAR dataset
provide a spatial overview of the average LOS displacement rates based
on three (S1) to nine (TSX) thawing seasons (Fig. 3). Fig. 4 shows de-
tailed results for three smaller areas. For comparison, we focus on TSX
and S1 results both in ascending geometry, expressed in average dis-
placements (mm) along their respective LOS during the 4-month
thawing periods (summer). The results from TSX descending stacking
are available in the Supplementary material (Fig. S6). Positive values
show an increase of the sensor-to-ground distance (displacements away
from the radar), whereas negative values show a decrease of the sensor-
to-ground distance (displacements towards the radar). As indicated in
Table 1 and with black arrows in Figs. 3 and 4, the LOS is quite similar
for both datasets.

At a regional scale, the main patterns on both maps are similar, both
in terms of magnitude of displacements and spatial variations. Thanks
to its C-band sensor and 6-day revisit time, S1 provides a better spatial
coverage in fast moving and moist ground in Adventdalen due to higher
coherence. The sediments on the terraces surrounding the Adventdalen
braided river are largely settling due to the phase change from ice to
water in the active layer. Maximal average values are up to ca 230 mm/
summer (Fig. 4, area 3), but the results highlight spatial variations
partly following the delineation of geomorphological units. In the ad-
jacent valley bottoms (Longyeardalen, Endalen, Todalen) and in low
flat areas such as in the north-western part of the study area (Svalbard
airport area), displacement rates are generally lower. On west-facing
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Fig. 3. Multi-year InSAR stacking LOS displacement rates during the 4-month thawing periods (June to September). A. Results from TerraSAR-X stacking, StripMap
Mode, ascending geometry. B. Results from Sentinel-1 stacking, Interferometric Swath Mode, ascending geometry. Note that the observation period is not similar
(2009-2017 for TerraSAR-X, 2015-2017 for Sentinel-1) and that the colour scale is saturated for visualisation. Black arrows: LOS orientations (label 6;: incidence
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building). Background: land/sea masks and 50 m contour lines (Norwegian Polar Institute, 2014b).

slopes, little displacement is detected due to the unfavourable or-
ientation compared to the ascending LOS. Some areas show a decrease
of sensor-to-ground distance highlighting a horizontal component to-
wards the radar. The most obvious example is located in Ugledalen
where a debris-covered glacier is moving towards the radar with
maximal average values up to ca 370 mm/summer (Fig. 4, area 2). On
east-facing slopes, more active areas are mapped due to the more fa-
vourable slope orientation compared to the LOS. These displacements
away from the radar can be associated with rock instabilities on rock
noses, regolith and colluvium in upper parts of the slopes, and creep

processes on solifluction sheets, rock glaciers and protalus ramparts in
the middle and lower parts of the slopes (Fig. 4, areas 1-3). The most
obvious example is located in Longyeardalen and corresponds to a rock
glacier moving towards east (away from the radar) with maximal
average values up to ca 320 mm/summer (Fig. 4, area 1). Areas without
any InSAR result (grey in Figs. 3 and 4) are either affected by significant
changes in surface properties due to e.g. moisture, snow or fast dis-
placements (coherence under chosen thresholds), or by layover or
shadow (see Section 3.2). The differences between TSX and S1 results
are related to intrinsic differences between the sensors and datasets
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show the location of time series presented in Fig. 7.

(observation periods, temporal and spatial resolutions, sensor wave-
lengths, LOS, etc.) and are further discussed in Section 5.1.

Fig. 5 shows the results of the vertical (upwards-downwards, Fig. 5,
A) and horizontal (eastwards-westwards, Fig. 5, B) decomposition
based on the combination of TSX ascending and descending InSAR
stacking. The map of the magnitude of 2D vectors is available in the

Supplementary material (Fig. S7). The steep incidence angle of the
descending geometry (Table 1) induces extensive layover on slopes
facing the radar, which unfortunately leads to a reduced common 2D
InSAR area on east-facing slopes. As explained in Section 3.2, N-S slopes
affected by rate underestimation are masked out (black mask, Fig. 5).
The results show settlement caused by thaw subsidence at variable rate
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over flat areas and the combination of vertical and horizontal dis-
placement components on slopes. As expected, flat areas in valley
bottoms, on mountain plateaus and on the lowland raised marine de-
posits have a low horizontal component of displacement.

The S1 SBAS time series retrieved between June and December
2017 highlights the change from subsidence to heave in beginning of
October in most of the flat areas (Fig. 6). Between June and beginning
of October, the sensor-to-ground distance generally increased on flat
areas (Fig. 6, A) due to thaw subsidence, while it generally decreased
from September to December due to frost heave (Fig. 6, B). On the
slopes, the time series does not necessarily follow the same subsidence
and heave pattern due to gravity-driven processes and their impact on

the detected displacements with respect to the LOS. Lower subsidence
and heave amplitude can also be explained by less frost-susceptible
coarse material and lower water content as it drains downhills and
accumulates in valley bottoms. It should be noted that even after having
masked out low coherence pixels, the quality of the results on the top of
the plateaus is variable. Especially in the south-western part of the area,
large variations of values at short intervals in space and time indicate
that pixels may be affected by noise most likely related to changes in
surface properties due to snow and moisture. This is further discussed in
Section 5.1.

S1 2017 time series on selected sediments and landforms (Fig. 7)
shows clear seasonal variability in the movement pattern. The
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comparison of four neighbouring pixels shows the consistency of the
displacement patterns and the magnitude of the spatial variability for
an 80m x 80m window. Located on slopes with 10-14° angles, the
rock glacier and the debris-covered glacier (Fig. 7A, graphs 1 and 2) are
mainly controlled by gravity-driven processes. The velocity varied
during the measurement period (Fig. 7B, lines 1 and 2) but no clear
trend related to the active layer thawing and freezing can be high-
lighted due to the superimposed downslope creeping process. LOS
displacements reached 80 to 120 mm in 6 months (away from the radar
for the rock glacier in Longyeardalen due to its eastward orientation,

towards the radar for the debris-covered glacier due to its westward
orientation). For the solifluction sheet (Fig. 7A, graph 3), creep is also
expected due to the 8.8° slope angle at this location, but the subsidence
and heave related to the active layer thawing and freezing are large
enough to dominate the measured displacement pattern. Velocity was
at its maximum during the initial thawing period from mid-June to
early July (Fig. 7B, line 3). It then decreased and stayed relatively stable
through the summer before it increased again between the end of
September and mid-October. Graphs 4-6 (Fig. 7A) show examples of
different sediments in the bottom of Adventdalen. Due to the nearly flat
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topography (slope angles: 0.4-1.5°), the measurements are clearly
dominated by thaw subsidence and frost heave at different magnitudes.
At its maximum, the detected subsidence reached 60 mm in alluvial
(Fig. 7A, graph 4) and eolian sediments (Fig. 7A, graph 6), but only
30 mm in fluvial sediment (Fig. 7A, graph 5). For all subsidence/heave-
dominated time series (Fig. 7B, lines 3-6), velocity was high in June
and early July and decreased later in the summer. The ground surface
was generally stable in September, and the heave started quickly at the
beginning of October before slowing down in mid-November. Even if
the different landforms highlight a similar trend, the magnitude varies
significantly depending on the location. The identification of specific
displacement rates for different geomorphological units highlights the
need for more detailed investigation of the InSAR spatial variability,
presented in Section 4.2. Further interpretations of the temporal var-
iations are presented in Section 4.3.
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4.2. Comparing 2D InSAR to geomorphology

Statistics of the 2D InSAR average displacements during the thawing
seasons 2009-2017 are analysed for each of the 14 selected geomor-
phological units (see Section 3.3). Three main observations show that
there is a relationship between the magnitude of the 2D InSAR dis-
placements during the thawing periods and the geomorphological units
(Fig. 8): (1) the median value per unit varies between 4.5 mm/summer
and 29.5 mm/summer, with minimum values in ‘Marine and beach
sediment’ and ‘Anthropogenic material’ and a maximum value in ‘Eo-
lian sediment’; (2) ‘Rock glacier and protalus rampart’, ‘Terminal and
medial moraine’, and ‘Eolian sediment’ have a median > 5mm/
summer over the median of all pixels, while ‘Marine and beach sedi-
ment’ and ‘Anthropogenic material’ have a median > 5 mm/summer
below; (3) the interquartile range (IQR) varies between certain units:
‘Terminal and medial moraine’ and ‘Eolian sediment’ have an IQR at
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Fig. 8. Magnitude of 2D vectors from TerraSAR-X multi-year stacking for each geomorphological unit during the 4-month thawing periods (June-September
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the median of all pixels. IQR values are the interquartile range for each unit. Note that the bedrock is exposed mainly in rock noses in the upper steep part of the

slopes. As some of these areas are unstable, high displacement rates are expected.

least 5mm/summer higher than for the overall pixel average. ‘Re-
golith’, ‘Alluvial sediment, recent’, ‘Marine and beach sediment’ and
‘Anthropogenic material’ have an IQR at least 5 mm/summer lower.

Results from significance tests show that the hypothesis of no dif-
ference between the means of all pairs of geomorphological units can be
rejected in most cases, confirming that the displacement rate differs
significantly depending on the geomorphology (Fig. S8 in
Supplementary material). Despite these differences, there are large
overlaps in the 2D value ranges for most of the units and statistical
similarities are found between some of them. P-values are over 0.05
between ‘Regolith’ and ‘Colluvium’, ‘Alluvial sediment, pre-recent’ and
‘Fluvial sediment’, and ‘Glacio-fluvial sediment’ and ‘Fluvial sediment’.
P-values are over 0.01 between ‘Regolith’ and ‘Solifluction’, ‘Colluvium’
and ‘Solifluction’, and ‘Alluvial sediment, pre-recent’ and ‘Glacio-fluvial
sediment’ (Fig. S8).

The vertical and horizontal components provide more information
(boxplots in Figs. S9-S10 in Supplementary material), and can also be
analysed by studying the pixel frequency per class of 10 mm/summer
displacement rates (Fig. 9 and magnitude of 2D vectors in Fig. S11 of
the Supplementary material). Four main observations highlight the
value of the 2D InSAR decomposition: (1) for low values of displace-
ment rates (0 to +20 mm/summer for the vertical component, —10 to
+10 mm/summer for the horizontal), all geomorphological units are
represented with a frequency between 3 and 15% of the pixels; (2) for
higher positive rates for the vertical component (over 50 mm/summer
downwards), ‘Alluvial sediment, pre-recent’, ‘Terminal and medial
moraine’ and ‘Eolian sediment’ represent over 80% of the pixels; (3) for
higher absolute displacement rates for the horizontal component (over
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30 mm/summer), ‘Rock glacier and protalus rampart’, ‘Terminal and
medial moraine’ and ‘Anthropogenic material’ represent over 60% of
the pixels; (4) vertically, the presence of low negative rates (upwards,
min: —6.5 mm/summer) mainly for ‘Marine and beach sediment’ and
‘Anthropogenic material’ can be attributed to a slight shift due to
subsidence at the reference point (further discussed in Section 5.1).
The limitation of this histogram analysis is that it artificially sepa-
rates vertical and horizontal components that can, if analysed in com-
bination, provide further information about the orientation of the dis-
placements. To visualise the 2D behaviour of each single pixel, results
are presented as scatter plots. Six of the most widespread geomorpho-
logical units are shown (Fig. 10). The remaining results are available in
the Supplementary material (Fig. S12). The variability of the 2D InSAR
results highlights the control of the topography. On slopes, gravity-
driven processes induce downslope movement combining vertical and
horizontal components. ‘Solifluction’ (Fig. 10, plot A) is affected both
by horizontal (up to 32 mm/summer) and vertical displacements (up to
50 mm/summer). The vertical component is overall higher than hor-
izontal component, which fits with field measurements (Harris et al.,
2011). ‘Rock glacier and protalus rampart’ (Fig. 10, plot B) has a higher
horizontal component (up to 50 mm/summer, mainly westwards due to
the overrepresentation of west-facing slopes) combined with high ver-
tical components (up to 53 mm/summer). In the lowlands, the hor-
izontal component is negligible due to low slope angles. ‘Fluvial sedi-
ment’ (Fig. 10, plot C) and ‘Eolian sediment’ (Fig. 10, plot D) are mainly
distributed along the vertical axis with high subsidence rates up to 40
and 60 mm/summer respectively, but characteristically without much
horizontal movement. Measured low horizontal rates can, however, be
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Magnitude of 2D vectors is shown in Fig. S11 (Supplementary material).

due to creep on low-angled slopes and the slight shift towards negative
values is again due to an overrepresentation of west-facing slopes. The
difference of magnitude between ‘Fluvial sediment’ and ‘Eolian sedi-
ment’ can be related to the ground porosity, the frost-susceptibility of
the material, as well as the water content and availability. The sand-
gravel portion in fluvial sediment constrains both the porosity and frost-
susceptibility. Fine-grained eolian sediment is more favourable to
cryosuction, which controls the supply of water at the freezing front
and thus enable ice segregation and ice lens formation (French, 2007;
Smith, 1985), lifting the ground surface during freezing. ‘Terminal and
medial moraine’ (Fig. 10, plot E) shows a core of values with rather low
rates, but a large number of outliers with extreme rates in both com-
ponents (up to 187 mm/summer horizontally and 102 mm/summer
vertically). These areas are highly dynamic as they are located at the
front or on the edges of retreating land-terminating glaciers. InSAR
documents several potential processes going on in these landforms:
mass-wasting, thawing of ice-cores, or creep of glaciers that are debris-
covered but have been mapped as moraines. For ‘Anthropogenic ma-
terial’ (Fig. 10, plot F), two different patterns are highlighted: vertical
displacements at low rates over infrastructure in lowlands (mainly
below 20 mm/summer), and higher rates including a large horizontal
component corresponding to mining deposits located on valley slopes.
This indicates that some mining piles are moving downslope. Composed
of coarse material and located on steep slopes (> 30°), the behaviour of
these artificial landforms can be compared to natural permafrost creep
process.
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4.3. Comparing InSAR time series to ground temperatures

The S1 InSAR time series between June and December 2017 high-
lights clear seasonal variations (Fig. 7) that can be compared to in situ
temperature measurements between the ground surface and 2 m depth
at the Adventdalen (ADV) and Endalen (END) boreholes (see Section
3.4).

Due to loss of coherence on snow and wet surfaces, the InSAR results
potentially miss the start of the thaw subsidence and more importantly
part of the frost heave when the ground gets snow-covered. Thus, the
results are not able to provide the absolute magnitude of the subsidence
and heave through a one-year cycle. In addition, InSAR time series
correspond to displacements along LOS, regardless of the slope angle
and orientation. Consequently, we focus on the timing and the relative
changes of trends rather than on the absolute displacement values. The
analysis provides information about the temporal variations of move-
ment, compared to the field-measured ground temperatures.

The time series documents the summer thawing, the autumn
freezing and the start of the winter cooling, as described in Zhao et al.,
2000. In Fig. 11, the match between the ground temperature variations
and InSAR displacement is obvious during four time periods: (1) Sub-
sidence starts at — or rapidly after — the beginning of the ground
thawing, when SAR scenes become snow-free and exploitable for InNSAR
analysis. The first acquisitions can, however, be affected by noise and
phase ambiguities attributed to moisture or too fast movements (be-
tween 10.06.2017 and 22.06.2017 at END). Fast subsidence due to the
quick thawing of the top active layer is measured during approx. two
months. (2) From beginning of August, a second period is characterized
by slower subsidence, when surface and shallow temperature starts
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Fig. 10. Scatter plots showing the horizontal (x-axis) and vertical (y-axis) displacement rates of the 3000 randomly selected pixels for six geomorphological units
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for comparison, so pixels with large rates are not visible. In Fig. S12 (K in Supplementary material), the limits of the axis have been doubled to see all values.

decreasing but the deeper active layer slowly still develops. The second
period lasts approx. two months. (3) Short transition from subsidence to
heave recorded by InSAR matches the initiation of the active layer
freeze-back period, which occurs between the end of September and the
beginning of October at both sites. (4) Even short-term temperature
fluctuations appear to have a halting impact on ground displacements;
for example in beginning of November at ADV and more clearly in the
middle of November at END, the heave slows down before speeding up
again, corresponding to a short-term ground surface warming.

The seasonal evolution of the ground surface dynamics resolved into
subsidence and heave correspond to patterns documented in previous
studies also based on in-situ and remote sensing measurements (Daout
et al., 2017; Harris et al., 2011; Smith, 1985; Strozzi et al., 2018).
Modelling the variations of the thaw/freeze depths based on the Stefan
function (Nelson et al., 1997) and proportionally relating the depth of
the thawing/freezing front to displacements caused by the phase
change of ground water (Hu et al., 2018) have shown that the cyclic
elevation changes are primarily controlled by the thermal response of
the active layer to atmospheric forcing. In Adventdalen and Endalen,
we show that the high temporal resolution of S1-based InSAR results
can be used as an indirect tool for monitoring active layer temperature
changes in permafrost environments. This is further discussed in
Section 5.3.
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5. Discussion
5.1. Multi-sensor and multi-geometry complementarity

Our results highlight the complementarity of multi-sensor and
multi-geometry InSAR. At the regional scale, the patterns detected on
stacking results based on ascending geometries from S1 and TSX sensors
are consistent overall (Fig. 3). However, several differences related to
the intrinsic properties of the two sensors and datasets highlight the
value of taking benefit of their respective advantages. The C-band
wavelength and 6-days revisit time of S1 provide less decorrelation and
better coherence on wet and fast moving surfaces, compared to X-band
and 11-days revisit time of TSX (e.g. valley bottom, Fig. 4, area 3), as
also discussed by Antonova et al. (2018) and Strozzi et al. (2018).
Comparison between S1 SBAS time series and ground temperatures
shows the value of the S1 short revisit time to document seasonal
patterns. The scene coverage of 250 km (swath wide) and the open data
policy of the Copernicus Programme are valuable for upscaling the
investigation of periglacial landscapes and make possible the develop-
ment of operational monitoring services. On the other hand, the 15m
spatial resolution of TSX after multilooking (compared to 40 m for S1)
allows for more detailed investigation of small-scale landforms (e.g.
rock glaciers and debris-covered glaciers, Fig. 4, areas 1 and 2). Com-
parison between TSX 2D InSAR results and geomorphology shows the
value of the availability of two geometries allowing for 2D InSAR de-
composition. Until the end of 2017, no descending image was available
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Fig. 11. 2017 ground temperature and Sentinel-1 SBAS displacement time series during summer thawing, autumn freezing and start of winter cooling at borehole

locations. Left: Adventdalen (ADV) borehole. Right: Endalen (END) borehole. A.

Temperature from the ground surface down to 200 cm depth. B. Ground surface

temperature. C. InSAR displacements at the four neighbouring pixels closest to the two boreholes. The vertical dashed lines and circled numbers correspond to the
four identified matching time periods. Grey areas: acquisitions affected by noise. Information about the two boreholes is summarized in Table. 2 and their locations

are shown Figs. 1, 2 and 6.

for S1 Interferometric Wide Swath mode in the study area. Other dif-
ferences may be related to the different observation periods, spatial and
temporal resolutions and LOS.

Error sources and uncertainties in InSAR results have to be taken
into account. Large scale unwrapping problems have been mitigated by
manually discarding affected interferograms. However, some local un-
wrapping errors can be expected, especially on small areas isolated by
non-coherent ones (e.g. south-western part of the study area, Fig. 3).
The mitigation of the tropospheric effect is performed by stacking
(averaging) of interferograms or using a network-based approach for
SBAS. The standard deviation of the retrieved velocity depends on the
number of interferograms (71-99) and the maximum temporal baseline
(22-24 days) used for the processing. Using Eq. 11 from Emardson et al.
(2003) and assuming a standard deviation of 5mm per interferogram
due to the atmosphere, the standard deviation of the stacking results in
Adventdalen is estimated to 2.5-3.5mm/summer. Other unwanted
phase change components related to changes of surface properties
(vegetation, snow, moisture) can also have an impact on the accuracy of
the results, but are unfortunately difficult to assess quantitatively.
Seasonal change of ground moisture is most likely the main error source
in this study. It induces differential propagation of the electromagnetic

wave into the ground, leading to a biased detection of sensor-to-ground
change of distance (De Zan et al., 2014). The bias of the phase mea-
surements due to ground moisture variability increases with the radar
wavelength and can reach 10-20% of the wavelength (Zwieback et al.,
2017). Thus, S1 results are more susceptible to this effect than TSX. The
bias typically corresponds to an overestimation of the subsidence
during the thawing season (due to a decrease of the wave velocity as the
ground gets moister). Though the magnitude of the detected displace-
ments, the consistency of the patterns from both sensors (Fig. 3) and the
clear inversion from subsidence to heave fitting the timing of ground
thawing and freezing (Figs. 7, 11) tend to indicate that our results are
overall robust, this issue would definitely benefit from further research.
As discussed by Zwieback et al. (2017), the sensitivity of InSAR to
ground moisture can in addition become valuable if this phase con-
tribution can be isolated. Finally, due to the highly dynamic Svalbard
environment, finding a stable reference point is not easy. Some upward
values over flat areas on the stacking results based on the thawing
periods may indicate an upward shift of the mean velocity (< 7 mm/
summer) due to slight subsidence at the pixel chosen as reference point.
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5.2. InSAR contribution for geomorphological investigation

Our results highlight that vertical and horizontal displacement
patterns in and around Adventdalen vary for different geomorpholo-
gical units. On slopes, InSAR results provide good delineation of
creeping landforms (e.g. rock glaciers, debris-covered glaciers, soli-
fluction sheets). The landforms combine vertical and horizontal com-
ponents of displacement at variable rates controlled by the involved
processes. Over low-relief areas, vertical displacements naturally
dominate and the seasonal amplitude is particularly large in fine-
grained frost-susceptible materials (e.g. eolian sediment) and areas as-
sumed to have good water availability (e.g. outer part of alluvial fans).
This confirms the findings of Daout et al. (2017) who highlighted that
seasonal ground displacements are largely controlled by ground prop-
erties and water content in the sedimentary basins of the Tibet Plateau.
For example, in Adventdalen, some outer and drier parts of the river
terraces, with an eolian cover, do not exhibit the same magnitude of
seasonal subsidence and heave as the lower parts of the fans/terraces
(Figs. 3, 4 and 6). This makes sense, as the water content is generally
lower in the outer river terraces than in the lower alluvial fans (Cable
et al., 2018).

The 2D InSAR displacement rates for different geomorphological
units overlap significantly (Fig. 8), which makes direct classification
impossible, as also discussed by Eckerstorfer et al. (2018). The effect of
the different spatial resolutions, the georeferencing inaccuracy, the
simplification of the geomorphological units and the mapping scale
partially explain the overlaps. For example, the delineation of ‘Alluvial
sediment, pre-recent’, ‘Alluvial sediment, recent’ and ‘Fluvial sediment’
units in highly dynamic valley bottoms is subject to inaccuracies.
‘Terminal and medial moraine’ also includes debris-covered glaciers
and ‘Anthropogenic material’ includes both infrastructure in valley
bottoms and mining deposits creeping on slopes. In addition, the
complex behaviours under investigation imply that different processes
can have similar displacement rates, or that similar processes under
variable environmental contexts can have different rates. Jointly ana-
lysing vertical and horizontal components determined from the 2D
InSAR method allows, however, for more valuable information to dif-
ferentiate sediments, bedrock and landforms (Figs. 9, 10 and S12).
Without additional information, a completely automatic processing of
InSAR displacements for mapping geomorphology remains unfeasible,
but the findings highlight the potential of using InSAR to refine the
inventory and delineation of specific landforms on existing maps, or as
a supporting tool for geomorphological or geocryological mapping, as
the spatial distribution of InSAR displacements is related to the dis-
tribution of frost-susceptible sediments and the variability of water
content available for ground ice formation in the active layer. When
used in combination with other environmental information such as
topography, geology, climate, vegetation and/or hydrology, InSAR may
also be valuably integrated into statistically-based geomorphological
distribution modelling (Hjort and Luoto, 2013).

5.3. InSAR contribution for investigation of ground thermal conditions

With the increase of repeat-pass frequency of recent SAR satellites
such as S1, InSAR can be used to monitor the temporal variations of
ground displacements at seasonal scale. This has direct applications like
in geohazard studies, but can also provide indirect findings. Our results
show that there is a clear correspondence between active layer thermal
regime and the InSAR measured displacements at the location of two
boreholes, with the timing of the subsidence and heave onsets matching
the observed ground surface and active layer thawing and freezing
(Fig. 11). This confirms that InSAR can be a valuable tool for the in-
direct monitoring of active layer dynamics over landforms dominated
by subsidence and heave patterns, as in the flat bottom of Adventdalen
or on gentle solifluction slopes in Endalen. In high-relief contexts where
the processes are mainly gravity-driven, InSAR can provide information
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about the temporal variability of the creep velocity (Fig. 7), but the
time series have to be interpreted carefully due to the complex or-
ientation of the real displacements and their relations with the LOS
measurements.

In the lowlands, previous research has studied and modelled the
relationship between InSAR time series and active layer dynamics,
often with the objective of exploiting InSAR for ALT retrieval. The
Stefan equation (Stefan, 1891) allows for a simple calculation of the
development of thaw depth through the season, based on the accu-
mulated thawing-degree days derived from air temperature. Assuming
homogenous ground, a defined amount of ground ice and that all pore
ice turns into water during the thawing, the InSAR-measured sub-
sidence can be converted into thaw depth (Liu et al., 2012). More recent
models combine the use of thawing and freezing indices to more rea-
listically depict short term variations and take into account eventual
transient summer freezing (Hu et al., 2018) or investigate how other
climatic factors such as precipitation affect the ground surface dy-
namics (Zhao et al., 2016).

These models can perform well in homogenous areas and their
simplicity is valuable for upscaling investigations in permafrost areas,
where little additional data is available. However, they also have some
limitations. Major elements besides climatic variables are often ne-
glected. Our results show that the displacement magnitude and timing
are geomorphologically-controlled, largely determined by the sedi-
ment, bedrock or landform types, and thus cannot be explained only by
climatic variables. Other variables have to be considered, such as the
heterogeneity of the ground properties and the water available for
ground ice formation in the active layer (Shiklomanov et al., 2010), as
well as the presence of different ice types in the ground (e.g. pore and
segregated ice) and the factors controlling ice lens formation (Rempel,
2007). Both elements impact the ground thermal regime (e.g. due to
porosity, thermal conductivity, release/absorption of latent heat of fu-
sion of water) and how the surface is affected by a phase change (e.g.
due to melting of ice lenses vs. pore ice only). Comparing InSAR results
to field data, Daout et al. (2017) showed that the magnitude and timing
of the ground displacement patterns are controlled by ground proper-
ties and water availability. Their conclusions from the Tibet Plateau
concur with our findings which suggest that, especially in complex
periglacial landscapes encompassing a wide range of topographical,
geomorphological and hydrological conditions, InSAR is a valuable tool
for the investigation of freeze and thaw processes at large scale, but
may benefit from further combination with in situ data and modelling
techniques.

6. Conclusion

Our study demonstrates the value of multi-sensor and multi-geo-
metry InSAR for investigating complex permafrost landscapes con-
taining both high-relief and lowlands. The analysis of the spatial
variability of ground displacement rates based on decomposed vertical
and east-west horizontal TerraSAR-X InSAR results compared to a
simplified geomorphological map show that it is possible to identify
specific 2D displacement patterns for different geomorphological units.
In the flat valley bottoms, thaw subsidence is detected and the mag-
nitude varies according to the water availability and frost-susceptibility
of the sediments. On valley slopes, downslope displacements combining
vertical and horizontal components are detected and their magnitude
varies depending on the involved creep process. Based on 6-month
continuous time series from Sentinel-1 in June-December 2017, we
were able to correctly identify ground displacement variations related
to active layer thawing and freezing over flat or low-inclined slopes,
where the seasonal change from thaw subsidence to frost heave dom-
inates the displacement pattern. Through comparison with in situ
ground temperature measurements in the active layer, we show that the
timing of the InSAR seasonal subsidence and heave patterns matches
the ground thawing and freezing periods measured in two boreholes.
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The identified spatio-temporal relations between ground surface dis-
placements and environmental variables evidence the potential for
further exploitation of InSAR technology for understanding, mapping
and monitoring the dynamics of remote periglacial landscapes. The
findings support the development of more advanced models to remotely
and indirectly retrieve variables related to permafrost such as active
layer thickness, which is one of the two Essential Climate Variables for
permafrost.
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