

I N F - 3 9 8 1

M A S T E R ’ S T H E S I S I N

C O M P U T E R S C I E N C E

Efficient Intra-node Communication
for Chip Multiprocessors

Torje S. Henriksen

October, 2008

FACULTY OF SCIENCE
Department of Computer Science

University of Tromsø

I N F - 3 9 8 1

M A S T E R ’ S T H E S I S I N

C O M P U T E R S C I E N C E

Efficient Intra-node Communication
for Chip Multiprocessors

Torje S. Henriksen

October, 2008

Abstract

The microprocessor industry has reached limitations of sequential processing
power due to power-efficiency and heat problems. With the integrated-circuit
technology moving forward, chip-multithreading has become the trend, in-
creasing parallel processing power. The shift of focus has resulted in the vast
majority of supercomputers having chip-multiprocessors.

While the high performance computing community has long written par-
allel applications using libraries such as MPI, the performance-characteristics
have changed from the traditional uni-core cluster, to the current generation
of multi-core clusters; more communication is between processes on the same
node, and processes run on cores sharing hardware resources, such as cache
and memory bus.

We explore the possibilities of optimizing a widely used MPI implemen-
tation, Open MPI, to minimize communication overhead for communication
between processes running on a single node. We take three approaches for
optimization: First we measure the message-passing latency between the dif-
ferent cores, and reduce latency for large messages by keeping the sender
and receiver synchronized. Second, we increase scalability by using two new
queue-designs, reducing the number of communication queues that need to
be polled to receive messages. Third, we experiment with mapping a parallel
application to different cores, using only a single node. The mapping is done
dynamically during runtime, with no prior knowledge of the application’s
communication pattern.

Our results show that for large messages sent between cores sharing cache,
message-passing latency can be significantly reduced. Results from running
the NAS Parallel Benchmarks using the new queue-designs show that Open
MPI can increase its scalability when running more than 64 processes on a
single node. Our dynamic mapper performs close to our manual mapping,
but rarely increases performance.

We see from the experimental results, that the three techniques give per-
formance increase in different scenarios. Combining techniques like these
with other techniques, can be a key to unlocking the parallel performance
for a broader range of parallel applications.

iii

iv

Acknowledgments

I would like to thank my supervisors Otto J. Anshus, Lars Ailo Bongo and
Phuong Hoai Ha for the massive support I have received during the work
with this thesis. Special thanks goes to Otto for helping me find a subject
for my thesis and introducing me to Phuong and Lars for whom I have endless
respect and have enjoyed working with.

I also want to thank the people at the Department of Computer Science.
In particular Jan Fuglesteg for help with all kinds of formalities, Maria W.
Hauglann for help getting access to the Stallo cluster and Jon Ivar Kristiansen
for help with the smaller cluster at the university. Thanks to the HPC group
at UiT for donating CPU time at Stallo, and in particular Steinar Henden
for technical support.

The members of the Open MPI mailing list have helped me understand
the inner workings of Open MPI. My fellow students and friends have helped
me tremendously with comments and discussion, and most of all encourage-
ment.

v

vi

Contents

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1

2 Background 5

2.1 Intra-node communication . 5

2.1.1 NIC-based loopback 6

2.1.2 Kernel-assisted memory mapping 6

2.1.3 User space memory copy 7

2.2 Chip multithreading . 8

2.2.1 The evolution of CMP 9

2.3 Mapping . 10

2.3.1 Graph theory . 11

3 Related Work 13

3.1 CMT intra-node communication 13

3.2 Mapping . 14

3.3 Queues . 14

4 Research platform 15

4.1 Hardware . 15

4.1.1 Architecture of a Stallo node 16

4.2 Open MPI . 18

4.2.1 MPI Component Architecture 18

4.2.2 Message passing . 21

4.2.3 Moving the fragments 23

vii

5 Message passing latency 25
5.1 Evaluation . 26

5.1.1 Ping-pong benchmark 26
5.1.2 Results . 28
5.1.3 Discussion . 29
5.1.4 Conclusion . 29

5.2 Cache-aware message-passing 29
5.2.1 Results and discussion 30
5.2.2 Conclusion . 31

6 Queue designs 33
6.1 Design . 33

6.1.1 One Receiving Queue 34
6.1.2 Check only receiving queue 34

6.2 Evaluation . 35
6.2.1 Results and discussion 36
6.2.2 Conclusion . 38

7 Single node process-to-core mapping 39
7.1 Mapping to a subset of available cores 39

7.1.1 Results and discussion 40
7.1.2 Conclusion . 41

7.2 Static mapping . 42
7.2.1 Communication pattern 42
7.2.2 Results and discussion 44
7.2.3 Conclusion . 45

7.3 Dynamic mapper . 45
7.3.1 Design . 45
7.3.2 Evaluation of dynamic mapper 49
7.3.3 Conclusion . 50

8 Conclusion and future work 51

Bibliography 55

viii

List of Figures

1.1 Intra-node communication . 2

2.1 CMT evolution . 9

2.2 Current CPU offerings . 10

2.3 Three mapping scenarios . 11

2.4 Parallel application represented as a weighted graph 12

4.1 Two CPUs mounted on a single node 17

4.2 The three main functional areas of Open MPI 19

4.3 Open MPI layers . 20

4.4 Open MPI eager message . 21

4.5 Open MPI fragmentation . 22

4.6 Open MPI large message . 23

4.7 Number of queues for three processes. 24

5.1 Intra-node communication paths, with two quad core CPUs. . 25

5.2 Ping-pong message . 27

5.3 Time taken for ping-pong message pass 28

5.4 Message pass between to processes sharing L2-cache. 30

5.5 Standard vs stronger synchronization 31

6.1 Receiving queues for ORQ . 34

6.2 Structure keeping count of expected messages 35

6.3 Execution time for some of the NAS Parallel benchmarks using
different queue-designs. 37

7.1 The three cases for mapping four processes to cores. 41

7.2 Communication pattern of the CG benchmark 43

7.3 Static versus default mapping 44

7.4 Dynamic mapper. 48

7.5 Execution time for CG using the dynamic mapper. 49

ix

7.6 Execution time for two other NAS Parallel Benchmarks using
point-to-point communication 50

x

List of Tables

2.1 System calls and number of copies 8

4.1 Stallo hardware specifications 15
4.2 Quad-Core Intel Xeon Processor 5300 specifications 16

5.1 Resources shared between two processes 26

6.1 Benchmark results for 128 processes 36
6.2 Fastest and slowest component for 128 processes. 37

7.1 Execution time of the NAS Parallel Benchmarks utilizing 4
cores. 41

7.2 Possible mapping for the CG benchmark. 43
7.3 Static versus default mapping 44
7.4 Dynamic versus default mapping 49

xi

xii

Chapter 1

Introduction

Computational power that can currently only be delivered by supercomput-
ers, is needed in a wide specter of scientific areas, including environmental,
financial and medical research. However, the supercomputers available today
are not fulfilling their full potential, and a 70% processor utilization is con-
sidered very good [28]. The processors are limited by the relatively smaller
improvements in memory access latency and communication latency over the
last decade [1].

As the microprocessor industry has reached limitations in sequential per-
formance due to power consumption and heat, the advances in integrated
circuit technology is now used to increase parallelism for processors [4]. This
has resulted in chip-multithreading (CMT) technologies such as simultaneous
multithreading (SMT) and chip-multiprocessors (CMP).

According to the Top500 list (June 2008) [34], 80% of the supercomputers
are now clusters of workstations with CMP-technology. The typical cluster
node has two CPU-sockets, where each CPU has two or four cores. The nodes
are connected with Ethernet or high-speed interconnects such as Infiniband.

In addition to the general purpose CPU, we also have other highly par-
allel processors, such as graphical processing units and the Cell Broadband
Engine. The Cell is used along with general purpose Opteron processors
to create the world’s fastest supercomputer, the Roadrunner, performing at
1PFlops. GPUs also get attention from the scientific community, and both
nVidia and AMD/ATi are developing libraries and languages to allow gen-
eral purpose computing on GPUs (GPGPU or GPGP). Grid projects such as
Folding@Home [9] also explore the possibilities of Cell and GPU by having
clients specifically developed for those platforms.

According to [4], up to 50% of communication in general purpose of clus-
ters can be intra-node communication, referring to communication between
processes sharing memory. This indicates that improving performance of

1

Core 0 Cache Core 1CacheSystem memory

m0 m1 m2A

CPU 0 CPU 1

B

(a) Not sharing cache

Core 0 Cache

System memory

Core 1

m0

m1

m2

CPU 0

A

B

(b) Sharing cache

Figure 1.1: Intra-node communication. Two processes A and B, running at
different cores communicating through a shared memory queue. In a) A and
B do not share cache, while in b) A and B share cache.

intra-node communication can reduce overall execution time, and even more
so as the number of cores per node increases.

Intra-node communication is most often based on shared memory queues,
where the sending and receiving process sends and receives messages by ac-
cessing a queue residing in shared memory. In some hardware architectures,
such as the current generation of Intel Xeon processors, pairs of processor
cores on a node share not only memory, but also cache. Others share only
memory. Figure 1.1 illustrates a shared memory queue, where in a) the queue
is accessed through the memory bus, while in b) the processes share cache
and do not have to go through the memory bus. Shared cache is one exam-
ple of how the communication-path between cores can vary even on the same
node. Other shared resources such as the memory bus, can also affect the
performance of communication.

It has earlier been suggested that both operating systems and middleware
should be multi-core aware [4, 8], to better utilize shared resources such as
cache and memory bus. Work has been done to increase scalability in multi-
core systems, and a topology aware message passing protocol for intra-node
communication has also been suggested [6].

The Message Passing Interface (MPI) is a widely used standard for mes-
sage passing middleware. Common MPI implementations such as Open
MPI [26] and MPICH2 [21] support and differentiate between communication
over different interconnects such as Infiniband, Ethernet and shared memory,
but optimization for intra-node communication for specific hardware archi-
tectures is lacking.

We propose three approaches in order to optimize intra-node commu-
nication in CMP clusters. First we explore the performance of the differ-
ent communication-paths within a node. We then demonstrate a significant

2

performance increase for large messages sent between processes sharing L2-
cache. Second, the scalability of the message-passing queues is explored and
improved for many applications. Last the mapping of processes to processor
cores is explored, mapping communicating processes closer to each other,
using only a single node. The mapping is first done statically by manually
analyzing the application. Then we design and implement a dynamic map-
per, mapping applications during runtime, based on communication patterns
logged by MPI. To our knowledge, the possibilities for such a mapper, has
not earlier been investigated on the current generation of supercomputers.

Message passing latency is measured using a micro-benchmark, testing
all different communication-paths for intra-node communication. The NAS
Parallel Benchmark-suite [22] is used to benchmark the scalability of the
queues, by running up to 128 processes on a single eight core node. For
static mapping, we do a case study on the CG NAS Parallel Benchmark, and
use the CG, SP and BT for the dynamic mapper.

We find that performance of message-passing is highest between processes
sharing cache, but that care has to be taken to utilize the cache for large
messages. This is done by keeping the sender and receiver synchronized,
and significantly improves performance for large messages. The scalability of
the message-passing queues is significantly improved using two queue-designs
that limit the number of queues the receiver needs to poll when the number of
processes per node becomes high. We were not able to improve performance
of any of the NAS Parallel Benchmarks using static or dynamic mapping,
except for very few cases where we run more than eight processes on a single
node. In these specific cases, performance was improved by up to 10%, and
the dynamic mapper performed comparable to the static mapper.

Our experimental results show that we have improved performance for
some scenarios; when running more than 64 processes on a single node, send-
ing large messages between processes sharing L2-cache, or when running
applications behaving like the CG benchmark, being overdecomposed. To
minimize communication overhead in these situations, these techniques can
all be used. However, to unlock the parallel performance of today’s CMP
supercomputers, more techniques are needed. Component based communi-
cation middleware such as Open MPI can be a powerful tool to combine
optimizations, and if necessary apply the optimizations beneficial for the
current hardware and software at execution or even runtime.

The rest of the thesis is organized as follows. Chapter 2 gives a back-
ground overview of topics important to intra-node communication and map-
ping in chip multithreaded systems. Chapter 4 describes the architecture of
the hardware we run experiments on. The architecture of Open MPI is also
described, and components important for intra-node communication are de-

3

scribed in detail. In chapter 5 we explore the performance of message passing
latency in our research platform, and propose and implement improvements
for large messages sent between cores sharing cache. Chapter 6 describes two
queue-designs that improve scalability compared to the Open MPI standard
queues. The queues are then evaluated experimentally using the NAS Par-
allel Benchmarks. In chapter 7 we present the design of a dynamic mapper,
as well as experiments demonstrating how mapping of processes on a single
node can impact performance. We conclude the thesis and outline future
work in chapter 8.

4

Chapter 2

Background

To help understanding the work presented in the thesis, we will in this chapter
give an overview of the mechanics of intra-node communications and describe
the hardware of today’s CMT-systems found in workstations and high per-
formance computers. A short introduction to theory behind mapping is also
given.

2.1 Intra-node communication

By intra-node communication we refer to communication between threads
running on the same node. The node may have one or several CPUs, and
the CPUs may have one or more cores.

The communication can further be divided into communication between
threads running in the same process (sharing address space), or inter-process
communication (IPC). Communication between threads sharing address space
is an exercise in synchronizing the threads, not letting them write to the same
data at the same time. Communication between processes not sharing ad-
dress space requires data to be copied from one address space to another.
Splitting an application into several processes with their own address space
makes it easier to spread the application to several nodes, and is used by the
MPI-implementations. We will only consider inter-process communication
as we will work with MPI.

Chai et al. [5] classifies the different mechanisms of inter-process, intra-
node communication into three categories that we discuss briefly to get an
overview of the topic. The three proposed categories are:

• NIC-based loopback.

• Kernel-assisted memory mapping.

5

• User space memory copy.

The following three sections give an overview of these categories, and discuss
how they perform and their portability across platforms.

2.1.1 NIC-based loopback

The primitives used by inter-node communication such as TCP and UDP
sockets, can also be used by processes located at the same node. It is common
that the operating system provides a loopback interface, doing the message
passing without needing a physical network interface card (NIC). If a NIC
is available it can detect if the sender and receiver reside at the same node
(shared IP-address) and loop-back the message. By loop-backing, the latency
of the network is avoided as the message is never put on the network link.

An advantage of using NIC-based message passing is that there is no need
to distinguish between intra-node and inter-node communication, making
the implementation of user-applications and middleware simpler. However,
projects that focus on high performance computing will distinguish between
them to optimize intra-node communication where possible.

2.1.2 Kernel-assisted memory mapping

Kernel-assisted memory mapping utilizes features provided by the operating
system kernel to copy data from the address space of one process, to the
address space of another process. The kernel needs to be involved, as the
processes each have their own private address space out of limit of the other
processes. The advantage of doing a direct copy from one process to another,
is that it only takes one copy, compared to two copies needed when using
shared memory mapped in user space (described later). This reduces the
cache-pollution and can possibly reduce the latency of message passes. There
are different ways of doing kernel-assisted memory mapping, depending on
the operating system and version. Two possible approaches used in Linux
are Ptrace and Kaput that are both explored in [2].

Kaput lets a process register some of its memory and map it into kernel
space. Processes can communicate by doing put and get on this area, and
can copy directly to the address space of another process, as long as it is
registered by Kaput.

Ptrace is a system-call that provides the means to control one process from
another. The process in control is called the parent, while the controlled
process is called the child. This does however not mean that the parent
has to create the child. The Ptrace system-call is primarily used for writing

6

debuggers and tracking system calls, but also makes it possible for one process
to read and modify the memory of another process on the same node. This
can be used to copy data from one process’ address space directly to another
process’ address space.

There are however a few drawbacks. First, Ptrace is a system call which
increases latency as the kernel has to be involved. Another drawback is
that the process being controlled is frozen while the parent is controlling
it, making it harder to overlap communication with computation. A third
drawback is that the sender and receiver have to be synchronized. As the
sender will put the message directly into the address space of the receiver,
the receiver must have a receiving buffer ready, and also provide the sender
with the address of the buffer. This means that the sender needs to wait for
the receiver to do a receive call. It cannot just put the message in a shared
buffer and expect the receiver to fetch it when wanted.

2.1.3 User space memory copy

User space memory copy is a technique where the processes share some mem-
ory region that is used as a buffer or queue. When a process wants to send
a message, the message is copied into this shared memory. When the re-
ceiver process is ready to receive the message, it can fetch it from this shared
memory. If the sender has not sent the data when the receiver needs it, the
receiver has to wait.

The advantages of this technique are that the sending and receiving do
not require any system calls, and it is more portable across platforms than
the kernel-assisted memory mapping. It does however require primitives
for doing shared memory, and this can be done differently across operating
systems. The drawback is mainly the use of two copies, compared to one
copy when using kernel assisted memory mapping. The extra copy adds to
the latency and pollutes the cache by accessing the shared memory region
for both sending and receiving a single message.

Table 2.1 summarizes what methods require system calls for message
passing. The NIC-based loop-back can support one-sided copying reducing
the number of copies needed, but this is hardware dependent.

Now that we have covered some of the possible ways of doing inter-process,
intra-node communication, we will move on to describing the design of chip
multiprocessors found in most of today’s high performance computers.

7

Table 2.1: System calls and number of copies

Communication- System calls Number of copies
mechanics for message pass per message pass

NIC-based loop-back yes 2
User space memory copy no 2

Kaput yes 1
Ptrace yes 1

2.2 Chip multithreading

There are five abbreviations that are frequently encountered when reading
about chip multithreading. CMT is one of these, and is explained immedi-
ately along with the other four.

• SMT - simultaneous multithreading

• CMP - chip multiprocessor

• CMT - chip multithreading

• SMP - symmetric multiprocessor

• NUMA - Non-unified memory access

While superscalar processors allow multiple instructions from the same thread
to run in parallel, SMT allows for multiple instructions from multiple threads
to run in parallel. This can increase processor utilization when facing mem-
ory latencies and limited parallelism per thread. SMT [35] should not be
confused with multicore, where each core can execute threads in parallel.
The Intel Pentium 4 [13] and SUN’s Niagra [17] are examples of processors
that support SMT.

CMP [25] refers to implementing two or more processor-cores on the same
chip. Chip multiprocessors are also named multi-core processors. Each core
in an CMP can be designed to support SMT.

CMT is an expression that includes both SMT and CMP, referring to
processor-chips that support more than one simultaneous hardware thread
using either SMT, CMP or both.

Symmetric multiprocessor (SMP) refers to systems where two or more
processor cores reside on the same node, either at the same CPU (multi-
core) or at different CPUs.

8

NUMA is a technology developed to increase scalability of SMP systems.
Memory is shared between processors, but the memory access time depends
on the memory location relative to a processor. Keeping the data in memory
close to the process using it, is crucial for efficient use of NUMA systems.

To understand the performance of CMP systems, it is important to know
how they are designed. We will now describe the evolution of CMPs, so
that we can better understand the design of today’s CMPs and how it effects
performance. SMT and NUMA systems will not be covered in detail in this
thesis.

2.2.1 The evolution of CMP

Spracklen et al. [33] describe the evolution of chip multithreading in the
industry, using SUN’s [23] offerings as the representatives. The evolution is
divided into three generations, illustrated in figure 2.1.

The first generation is represented by Gemini and Jaguar dual-core deriva-
tives from the UltraSPARC-II [16] and UltraSPARC-III respectively. They
are identified by having no shared cache or other links between the cores.
They are practically two processors built on the same chip, sharing a mem-
ory bus.

The second generation is represented by the UltraSPARK-IV+ [14], where
the on-chip L2-cache and off-chip L3-cache were shared between the two
cores. A shared L2-cache allows for faster communication between running
threads, and also keeps the cache coherent. When the processor is used for
a just a single-threaded application, it has access to the whole cache.

The third generation is represented by Niagra. The entire design of Nia-
gra, including the design of the cores, is optimized for a CMT design point.

L2-cache

Memory controller

L2-cache

CPU0 CPU1

(a) 1st generation

CPU0 CPU1

L2-cache

Memory controller

(b) 2nd generation

L2-cache

Memory controller

4-
wa

y
SM

T
CP

U
4-

wa
y

SM
T

CP
U

4-
wa

y
SM

T
CP

U

4-
wa

y
SM

T
CP

U

4-
wa

y
SM

T
CP

U
4-

wa
y

SM
T

CP
U

4-
wa

y
SM

T
CP

U

4-
wa

y
SM

T
CP

U

(c) 3rd generation

Figure 2.1: CMT evolution. Figure is based on a figure in [33]

9

To put today’s quad core CMP offerings from Intel and AMD into the
context, Intel on one side is still at the second generation. Even the quad
core CPUs are built of two second generation dual-cores. AMD on the other
hand builds quad cores where the L2-cache is private for each core, while an
L3-cache is shared between all four cores. AMD refers to their quad core
to true quad core technology as the entire design is centered around CMT,
not derived from previous uni-core designs. The Intel and AMD offerings are
illustrated in figure 2.2.

Core 0

Core 1

Core 2

Core 3
L2-cache

Memory controller

L2-cache

(a) Intel Clowertown

Core 0

Core 1

Core 2

Core 3

Memory
controller

L3-cache

L2

HyperTransport

L2 L2 L2

(b) AMD Opteron

Figure 2.2: Current quad CPU offerings from AMD and Intel

Another difference between the Opteron 2.2 b) and Xeon in 2.2 a) is that
the Opteron utilizes HyperTransport to scale bandwidth to memory and be-
tween cores. While HyperTransport is an open standard, Intel has developed
their own technology named Common System Interface, often referred to as
Quickpath. This technology will be available on the next generation of Intel
CPUs.

2.3 Mapping

Mapping refers to the task of assigning processes to processing units. The
environment can be grid, clusters of workstations, massively multiple pro-
cessors or any parallel architecture. The applications have two attributes we
can base the mapping on:

• Communication-pattern

• Processing demands

Communication-pattern further has two attributes; number of messages and
size of messages. Processing demand refers to the amount of processing power
needed to finish the process. When mapping by processing demands, the goal

10

is to map processes to minimize turnaround time; the execution time of the
longest running process. Processes needing more processing power can be
scheduled to faster CPUs in heterogenous systems, or processes demanding
much memory can be scheduled across nodes to utilize more of the memory
in the system.

When mapping is based on communication pattern, the goal is to mini-
mize communication overhead. This can be done by mapping communicating
processes closer to each other. What is considered close depends on the hard-
ware architecture, but close generally means having a fast communication
channel (interconnect). In a grid environment where several clusters are con-
nected through the Internet, communication overhead can be minimized by
having as much as possible of the communication being intra-cluster (LAN),
as it is in general faster than inter-cluster communication (Internet). This
concept can also be used in multi-core clusters. Communicating processes
can be mapped close to each other by letting them run on the same node,
utilizing shared memory communication. Furthermore the concept applies
for intra-node communication, where it is possible that some cores are closer
to each other than others. For example two cores can share cache, provid-
ing fast communication. Figure 2.3 illustrates these three scenarios where
mapping can be applied to minimize communication overhead.

Node Node

Node Node

Cluster

Node Node

Node Node

Cluster

(a) Grid

CPU CPU

CPU CPU

Node

CPU CPU

CPU CPU

Node

(b) Cluster

Core Core

Core Core

CPU

Core Core

Core Core

CPU

(c) Node

Figure 2.3: Three scenarios where mapping can be applied to reduce commu-
nication overhead by mapping communicating processes close to each other.

How the process mapping can be done using a computer is covered in the
next section, where we focus on graph theory.

2.3.1 Graph theory

According to [11] mapping can be classified into three broad categories; graph
theoretic, mathematical programming and heuristic. The three categories
are further described as follows: Mathematical programming approaches the
problem by viewing it as an optimization problem and solved using mathe-
matical programming techniques. Heuristic methods provide fast but often
sub-optimal solutions within finite time, where an optimal solution cannot

11

50 1

5 20

5

41

2

1

Figure 2.4: Parallel application represented as a graph with weights for com-
munication and processing demands.

be obtained within finite time. We now look at graph theoretic mapping in
more detail, as we will use this approach. In graph theoretic mapping, the
parallel application can be seen as a graph where each process is a vertex, and
each edge is a communication path. The edges and vertices can be weighted.
The weight of a vertex refers to the processing demands, while weight on an
edge means the communication demands (message count, message size or a
combination). The edges can be directed if the direction of the communi-
cation is important. This can be the case in for example grids or clusters
having full-duplex network interface cards, enabling a certain bandwidth for
each direction. Figure 2.4 illustrates a parallel application represented as a
directed graph with weights both on the vertices and edges.

In chapter 7 we use Metis [19] as a tool to help us do single node mapping
based on intra-node communication, like case c) in figure 2.3. Metis is a
powerful library that can be used to partition graphs according weights on
vertices, edges or both.

12

Chapter 3

Related Work

This thesis touches several areas, where three areas stand out. Research
on intra-node communication in CMT systems, research done on mapping
techniques in different kinds of environments, and queues designed to scale
well. In the three following sections we present related work in these areas.

3.1 CMT intra-node communication

Chai et al. [5] have designed and implemented a high performance, scalable
MPI intra-node communication scheme for CMP and NUMA systems. By
differentiating between small and large messages, transfer overhead is mini-
mized for small messages, and memory usage is minimized for large messages.
Intra-node communication latency is improved both for CMP and SMP mes-
sages for small and medium sized messages. For large messages, CMP latency
goes up. The reason for the increase in latency is not explored, but left to
future work.

Chai et al. [6] further present a hybrid approach to intra-node communi-
cation, using kernel-assisted memory copy for large messages, and user-space
shared memory for small messages. The threshold for small and large mes-
sages depends on the case of intra-node communication. Using these topology
aware thresholds the performance of collective operations is increased by up
to 68%. In [4], a technique called data-tiling [15] is used. To fit data into the
L2-cache, it is divided in smaller chunks, so that data can fit in the L2-cache
and be sent to the neighbor, without going to system memory.

In [8] Fedorova et al. investigate how operating systems should be de-
signed to take advantage of chip multiprocessors for hiding memory latency
in workstations. They discover that the shared L2-cache is critical resource
in these systems, and propose a cache-conscious scheduling algorithm.

13

3.2 Mapping

In [18] Leng et al. did a case-study showing that different mapping-strategies
have a major impact on performance running the HPL [12] on a cluster of
SMP-nodes. Performance is increased by using communication frequency
and communication size to find an ideal process to node mapping.

Chai et al. examines the impact of multi-core architectures for cluster
computing in [4]. Using benchmarks such as HPL, NAMD [29] and NAS,
they find that an average of 50% of communication is intra-node commu-
nication in their cluster environment. It is also observed that cache and
memory contention can be crucial performance bottle-necks, and propose
that middleware and applications should be multi-core aware.

Gao et al. [11] describe and implement a graph-matching based task as-
signment methodology. The method is divided in two parts: First map
processes to nodes. When this mapping is done, the second mapping is done
on a per-node basis. The entire mapping is done statically, prior to execution
of the application. Metis is used to find to find the mapping to use.

3.3 Queues

Darius et al. [3] has presented Nemesis, a scalable, low-latency, message pass-
ing subsystem which is integrated with MPICH2 [21]. Scalability and latency
are improved by using a single queue for both intra-node and inter-node com-
munication, while intra-node communication is further optimized by using
buffers instead of queues.

A Simple, fast, and Practical Non-blocking queue based on compare-and-swap

is presented in [20], and is the inspiration for one of our queue-designs, where
only one queue is used (ORQ). compare-and-swap was introduced on the
IBM System 370, takes as arguments the address of a shared memory loca-
tion, an expected value, and a new value. If the shared location currently
holds the expected value, it is assigned the new value atomically. A boolean
return value indicates whether the replacement occured.

14

Chapter 4

Research platform

This chapter describes the research platform used for the experiments later in
the thesis. Two major topics are covered. The first is the hardware which we
will run experiments on. The hardware is important both for understanding
the results of the experiments, and for understanding the optimizations done.
The second major topic is Open MPI, which is the MPI-implementation we
will use as a reference, and also improve upon.

The operating system is Linux kernel 2.6.9 running the Rocks Linux dis-
tribution [30].

4.1 Hardware

In this section we describe the hardware our experiments run on. Knowing
the basic characteristics of the hardware is needed to maximize the perfor-
mance of our parallel applications, as well as understanding the results of the
experiments.

We will run all our experiments on Stallo located in Tromsø. Stallo is
currently the second fastest supercomputer in Norway, being rated number

Table 4.1: Stallo hardware specifications
Aggregated Per node

Peak performance 60 Teraflop/s 85.12 Gigaflop/s
Nodes 704 1
CPUs 1408 2
CPU cores 5632 8
Memory 12TB 16GB
Network Gigabit Ethernet + 384 Infiniband

15

Table 4.2: Quad-Core Intel Xeon Processor 5300 specifications
Number of L1-cache L2-Cache Front Side Bus

Processor Cores (per core) Frequency
4 32KB instruction 4MB shared per die 1333MHz

32KB data 8MB total

61 on the Top500 list June 2008 [34]. Stallo is a cluster of 704 nodes, each
having two 2.66GHz Intel Xeon Quad ”Clowertown” CPUs for a total of 5632
processing cores. The specifications of the cluster are summed up in table
4.1, and are found at the Stallo documentation homepage [24].

The architecture of Stallo is widely used. While clusters make up for 80%
of the Top500 list, the Xeon 51xx (18.2%), 53xx (18.4%), E54xx (23.2%) and
X54xx (7.8%) make up for a total of 67.6% of the entire Top500 list.

According to Notur [24], Stallo is intended for:

• Distributed-memory MPI applications with low communication require-
ments between the processors.

• Shared-memory OpenMP [27] applications using up to eight cores.

• Parallel applications with moderate memory requirements (2-4 GB per
core).

• Embarrassingly parallel applications.

Stallo is specifically targeted towards theoretical and computational chem-
istry to solve problems using Dalton [7] and ADF [31]. Scientific areas include
environmental and polar research.

According to [4] 50% of the communication in a parallel application can
be intra-node communication, even using only a two-way SMP cluster. The
performance of intra-node communication is therefore important. This thesis
focuses exclusively on intra-node communication. To eliminate all inter-node
communication, we will do all of our experiments using only a single node.
We look at the design of such a node in the following section.

4.1.1 Architecture of a Stallo node

Some hardware specifications of the Clowertown are summarized in table 4.2.
Each core has its own 32KB private L1-data cache, and L1-instruction cache.
The L2-caches that are shared between pairs of cores are 4MB, adding up to
a total of 8MB L2-cache per CPU.

16

As described in chapter 2, the Intel Xeon series of quad-core CPUs are
derived from the design of dual-core CPUs. Each quad-core CPU consists of
two dual-core CPUs merged together on one chip. As a result each processor
core shares cache with one other core, while not sharing any cache with the
remaining six cores. Figure 4.1 illustrates two processors residing on a single
node in the cluster. Each processor core is labeled by its core ID as reported
by the Linux kernel.

4

0
4MB
L2

6

2
4MB
L2

5

1
4MB
L2

7

3
4MB
L2

CPU 0 CPU 1

Figure 4.1: Two CPUs mounted on a single node. Each core is labeled as
reported by the Linux kernel via /proc/cpuinfo.

Performance-wise one can ask the question if such a node should be seen
as having two quad core CPUs, or four dual-core CPUs. Since each quad
core is designed by merging two dual-cores, one can argue that they perform
as four dual-cores.

Another shared resource is the memory bus. The nodes are equipped
with a dual independent bus (DIB) which allows each CPU to utilize the full
memory bandwidth, regardless of the activity on the other CPU. However,
the four cores residing on one CPU are all sharing memory bus. This means
each core shares memory bus with three other cores, while not sharing with
the remaining four cores.

It should also be noted that the processor cores do not support SMT.
In some of the experiments we will run more processes than we have cores
(more than 8 processes per node), and it is likely that SMT could have an
impact on these experiments. Now that we are fully aware of the design of
the quad core processors, we go on to describe the software relevant to our
experiments.

17

4.2 Open MPI

This section gives an overview of the design of Open MPI, and how it handles
intra-node, point-to-point communication. In the three following chapters
we will propose and evaluate modifications to Open MPI, and it is therefore
important to understand the default behavior. The description of Open MPI
in this chapter is based on the descriptions in [10, 36], but also reading source
code and doing experiments have been needed to get to know the inner details
of the modules.

Open MPI is a complete, open-source MPI-1.2 and MPI-2 implementa-
tion. It is the successor of LAM/MPI, and is influenced by experience from
the LAM/MPI, LA-MPI and FT-MPI projects. It is widely used in high
performance computers, and even ships with Mac OS X (since version 10.5).

Open MPI is designed around a component architecture that we will fur-
ther describe in the next section. Then we will look at how two of the stan-
dard components work together to handle intra-node, point-to-point commu-
nication.

In the later experiments, we use a default configuration of Open MPI
version 1.2.3 compiled with the --with-platform=optimized flag, recom-
mended in the installation instructions.

4.2.1 MPI Component Architecture

Open MPI’s component-based architecture is designed to be independent
of any specific hardware or software environment, and to make it relatively
easy to add support for new environments as they become available. To ac-
complish this, Open MPI defines an MPI Component architecture (MCA)
framework that provides services separating critical features into individ-
ual components, each with their own functional responsibilities. Individual
components can then be implemented as plug-in modules. Each module rep-
resents a particular implementation approach (e.g. blocking or non-blocking)
or supports a particular environment (e.g. TCP, shared memory, Infiniband
etc).

18

MCA
meta framework

Component
framework

Component
framework

Component
framework

Component
framework

Component framework

Module A Module B Module N...

Figure 4.2: The three main functional areas of Open MPI: MCA, component
frameworks and the modules for each framework. This figure is based on a
figure from [10].

Open MPI has three main functional areas as illustrated in figure 4.2.
The three areas are:

• MCA: The backbone component architecture that provides manage-
ment services for all other layers.

• Component frameworks: Each major functional area in Open MPI has
a corresponding back-end component framework that manages mod-
ules.

• Modules: Software units that export interfaces that can be deployed
and composed with other modules at runtime.

The MCA manages the component frameworks and provides services to them,
such as providing the ability to accept runtime parameters from mpirun and
forward them to the respective framework or module. This allows the user
to choose what modules to use at runtime, or specify parameters to tune
performance. Another task that the MCA handles, is to find components at
build-time and take care of the configuration, building and installation.

A module handles a specific task such as taking care of MPI semantics
for collective operations, or moving data between processes at a lower level.
The modules are managed by the component frameworks. For example is the
Bit Transfer Layer Manager (BML) responsible for choosing what module to
use for transferring fragments (messages) between processes. These modules
can be based on shared memory or TCP among others.

19

MPI

PML

BML

BTL TCP BTL SM

Network Linux/mmap

Parallel application

Figure 4.3: The layers involved in point to point communication. In this
example we can use the TCP module and the shared memory module (SM)
to move the fragments. Either way the semantics of message-passing are
enforced by the PML.

Figure 4.3 illustrates the layers involved when doing MPI Send or any
other point to point communication. We are now going to give a very short
description of the PML and BML before describing how a point to point
message pass takes place in the next sections.

• The MPI layer is doing optional parameter checking and down-calls to
the PML. MPI-semantic is not handled here.

• Point-to-point management layer (PML) handles all the semantics of
the point-to-point calls to MPI. This means fragmentation of messages,
ordering and re-assembling the messages. The PML can also distin-
guish between large or small messages, and handles the semantics of
the MPI-calls. For example will the PML make sure that a blocking
call such as MPI Send does not return to the application before the
message is delivered.

• Bit transfer management layer (BML) is unaware of any MPI-semantics,
and only handles transportation of fragments handed to it by the PML
module. The BML uses modules such as shared memory (BTL SM)
and TCP (BTL TCP). The modules managed by the BML are called
BTL-modules which means Bit Transfer Layer.

• The BTL TCP component handles sending of fragments over ethernet
networks using the TCP protocol.

20

• BTL SM handles intra-node communication using shared memory. Only
fragments are handled, just as the the other BTL modules. In Linux,
mmap is used to allocate shared memory regions.

In the following sections we go into the details of an intra-node message
pass in Open MPI. We assume the use of the standard modules PML OB11

for handling fragmentation of messages (and more), and the BTL SM for
transferring fragments between processes. These are the components that
provide the main functionality of point-to-point message passing using intra-
node communication. To modify this behavior these are the modules that
most likely have to change.

4.2.2 Message passing

This section covers how a message is sent from one process to another. We
first look at the protocol at a higher level (PML level), and then go down to
a fragment level (BTL).

The PML OB1 distinguishes between small and large messages. Small
messages are sent eagerly (at once) to reduce latency, while larger messages
are synchronized to minimize memory footprint. As the protocol is different
between small and large messages, we look at them separately, beginning
with eager messages.

Eager messages in Open MPI

0

Sender Receiver

ACK 0

Figure 4.4: Eager message pass between two processes. The sender sends the
message in one piece, then gets an acknowledgement in return.

A small message in Open MPI is referred to as an eager message. Using
the standard Open MPI configuration, a small message is a message of size
4KB or less. When the sender sends an eager message, the entire message is
immediately sent to the receiver. When the receiver receives the message, an

1Do not try to make sense of the name (OB1). According to the Open MPI mailing
list, the name is inspired from the Star Wars character Obi-Wan Kenobi. There are also
other Star Wars inspired names, such as the PML R2 and the BML D2 referring to R2-D2.

21

ACK is immediately sent back by the BTL component. The message pass is
illustrated in figure 4.4. The sender does not wait for the ACK to be received
before continuing execution of the program, but gets it the next time it is
waiting for a message to be sent or received.

The larger message-passes include synchronization and fragmentation,
and are covered in the next section.

Large messages in Open MPI

While the eager messages described in the previous section were sent in one
fragment, the larger messages are fragmented as illustrated in figure 4.5.
The first fragment is of the same size of the eager fragments (4KB), while
the remaining fragments are 32KB. The size of both eager-fragments and the
other fragments are configurable by using Open MPI’s MCA-parameters.

We will now look at a rendezvous-protocol used for synchronizing two pro-
cesses. One process is sending while the other is receiving. The rendezvous
protocol ensures that the processes communicating are synchronized when
the message-pass takes place. Synchronizing the message-pass reduces mem-
ory footprint and can prevent problems with resource exhaustion in large
cluster environments.

When a large message is to be sent, the sender begins by sending the first
small fragment to the receiver. The sender will then wait until the receiver
responds to this message with an acknowledgement (ACK). When the sender
receives the ACK, the sender will continue sending the rest of the fragments
without waiting for ACKs until the entire message has been transferred. The
receiver sends an ACK for each fragment received. The protocol is illustrated
in figure 4.6.

In chapter 5 we will see how the size of the message and the amount of
synchronization influence the performance of communication between cores

0 1 2 3

4KB 32KB Up to 32KB

Figure 4.5: A large message divided into four fragments. The first fragment is
of the eager message size, while the remaining fragments are of the fragment
size.

22

0

1

Sender Receiver

ACK 0

2

3

ACK 1

ACK 2

ACK 3

Figure 4.6: Large message-pass between two processes. The sender starts
by sending the first fragment of the message as an eager message. When an
ACK for that fragment arrives, the rest of the message is sent. The receiver
returns an ACK for each fragment.

sharing cache, and cores not sharing cache.
In the next section we move down to the BTL-layer where we look at how

fragments are passed between processes in Open MPI. We will in particular
look at the shared memory module that handles intra-node communication.

4.2.3 Moving fragments (BTL SM)

The shared memory module SM is a Bit Transfer Layer (BTL) module han-
dled by the Bit Layer Manager (BML). This means that this module will
only handle transfer of fragments from one process to another. The frag-
ments may hold a whole message or part of a message. In addition, another
module may be responsible for sending other fragments of the same message.
The BTL module has two tasks: send the fragments provided by the PML,
and reply with an ACK for each received fragment.

The shared memory module transfers fragments between processes using
queues stored in user space. In Linux the shared memory is allocated by
using the system call mmap which maps a file into memory, effectively mak-
ing a shared memory region for all processes opening this file. The mem-
ory mapped area is accessible in the same way as the private address space
belonging to the process. It does not require any system calls other than
creating and removing the memory region which is done at the initialization
and finalization of the application. In the following section we describe the

23

queues that are used for transferring fragments between processes.

Queues

How the queues are designed, is important for intra-node communication in
several ways. The latency of enqueuing and dequeueing data to and from
the queue adds to the latency of sending data. There are two important
properties of the queues used in BTL SM that we focus on.

The first is that the queues are lock-free, which removes the overhead and
complexity of using mutex and locks for protecting the queue when sending
and receiving.

The second important property is the number of queues. There are two
queues for each pair of processes running on a single node. This makes it
possible for several processes to send a message to the same receiver at the
same time, as they will write to different queues. In addition, this number
of queues allows for the reader and writer of a queue to read and write to
it at the same time without locking-mechanisms. Figure 4.7 illustrates the

0 1
1 to 0

0 to 1

2

1 to 2

2 to 1

2 t
o 0

0 t
o 2

Figure 4.7: Number of queues for three processes.

number of queues used for three processes. For p processes on a single node,
there will be (p− 1)× p queues; one receiving queue for each other process,
multiplied with the number of processes. This queue-design is similar to the
one described in [5].

When the BTL SM is to send a fragment, it will find the right queue
using its own and the receiver’s MPI-rank, then enqueue the fragment to the
queue. When the receiver waits for a fragment, it will spin-wait checking all
its p− 1 receive queues for fragments.

In chapter 6, we will see how changes in queue-design change the scala-
bility of Open MPI.

24

Chapter 5

Message passing latency

In chapter 4 the architecture of the Stallo-nodes was described. We noticed
that the hardware resources shared, varied between pairs of cores. Some cores
shared both L2-cache and memory bus. Other cores shared only memory
bus, while remaining pairs did not share any resources. In figure 5.1 we
have identified three different intra-node communication paths, depending
on hardware shared between cores. We have labeled the paths as ”intra-
die”, meaning cores share cache, ”inter-CPU” meaning nothing is shared
and ”inter-die” meaning memory bus is shared, but not cache.

System memory

0 2

4 6

L2-Cache

L2-Cache

1 3

5 7

L2-Cache

L2-Cache

inter-CPU

inter-die /
intra-CPU

intra-die

Figure 5.1: Intra-node communication paths, with two quad core CPUs.

In this chapter we measure the performance of these communication-
paths. We then demonstrate how performance of ”intra-die” communication
can be improved when sending large messages, and propose cache-aware mes-
sage passing to apply the optimal sending strategy for each of the communi-
cation paths. In chapter 7 we will also use the results from these experiments,
to improve the process to processing core mapping.

25

Table 5.1: Resources shared between two processes

Case Shared Not shared
1 Processing-time,

Memory-bus,
L1-cache, L2-cache

2 Memory-bus,
L2-cache

Processing-time,
L1-cache

3 Memory-bus Processing-time,
L1-cache, L2-cache

4 Processing-time,
Memory-bus,
L1-cache, L2-cache

5.1 Evaluation

We are now going to evaluate the performance of the intra-node communi-
cation paths illustrated in figure 5.1. We expect that the performance will
be different for four scenarios:

1. Processes run at the same core, sharing both processor-time, L1-cache
and L2-cache.

2. Processes run at two different cores at the same die, sharing 4MB L2-
cache.

3. Processes run at cores at same CPU but different dies, each having
4MB L2-cache.

4. Processes run at different CPUs.

The resources shared in the four different cases are summed up in table 5.1.
The performance will be evaluated by measuring message passing latency,
which we can do by using a ping-pong benchmark. We now describe our
ping-pong benchmark, before we evaluate the results of the experiments.

5.1.1 Ping-pong benchmark

To measure the performance of point-to-point message passing we have im-
plemented our own ping-pong micro-benchmark. The benchmark consists of

26

two processes; one sender and one receiver. The tasks of the sender and the
receiver can be described as follows:

Sender

1. Wait for receiver to be ready to
receive a message

2. Start timer

3. Send message

4. Receive message

5. Stop timer

Receiver

1. Wait for and receive message
from sender

2. Return message

Sender

B0

B1

Receiver

B0

B1

Figure 5.2: Ping-pong message

We have designed the benchmark so that the receiver is always ready to
reply to messages from the sender. The sender does both the start timestamp,
and stop timestamp, effectively measuring the latency of two message-passes.
As illustrated in figure 5.2 the receiver and sender both have two buffers:
one for receiving, and one for sending. Both are of the same size. Using two
buffers, allows for better benchmark two separate message passes. Using only
one buffer, the receiver will already have the reply-message in its cache, before
replying. To initialize the underlying Open MPI message passing system, we
need to warm up by sending a message before starting the benchmark. This
allocates the shared memory queues needed for the message passing.

The sender will always run at core 0, while the receiver will iterate over all
the cores from 0 to 7, to measure the latency of all possible communication-
paths.

27

(a) 0-2MB (b) 0-8MB

(c) 0-2MB (d) 0-8MB

Figure 5.3: Time taken for ping-pong message pass. All messages are sent
from core 0.

5.1.2 Results

The results for the ping-pong benchmark are presented in figure 5.3. Figure
a) and b) contain the results for the message pass from core ID 0 to all other
cores, ranging from 1 to 7. In a) we look at the message size from 0 to 2
MB, and b) the message size ranging from 0 to 8MB. Looking at both a) and
b), we can easily identify three groups that perform very similar. One group
consists of the cores 2 and 6, that can both be categorized as ”inter-die/intra-
CPU” when sending from core 0. The second group holds 1,3,5 and 7 that
all belong to the ”inter-CPU” communication path. The last group consists
of only core 4, which is the only core sharing cache with 0, and thereby uses
the ”intra-die” communication path.

The results for the three groups are illustrated in c) and d) for up to 2
and 8 MB respectively. Looking at performance of the three groups up to
a message size of 512KB, we see that ”intra-die” communication is clearly
the fastest, with the others performing at similar levels. From 512KB and
up, the ”intra-die”-latency increases rapidly relative to the other groups, and
also relative to its own latency for smaller message sizes. As the message size

28

increases above 1MB, the intra-die communication is slower than the other
groups, leaving the ”inter-CPU” communication as the fastest communica-
tion path as the message size increases.

5.1.3 Discussion

When sending large messages, the memory bus clearly becomes a bottleneck
for the intra-CPU and intra-die communication paths. For these commu-
nication paths the sender and receiver share memory bus. Seeing that the
intra-die communication is limited by the memory bus, is surprising as the
memory bus is not needed in the communication path; the shared L2-cache
should be used for communication in this case. The reason for the L2-cache
not being utilized might be explained by the receiver not being able to fetch
messages from the receiving-queue fast enough, resulting in the sender over-
filling the cache. If the sender overfills the cache, the receiver will have to
go to memory to fetch fragments. Remember that the receiver will fetch
the fragments in the order they are sent, it has no way of choosing to fetch
fragments residing in the cache. We will in section 5.2 present a cache-aware
message passing protocol, as a solution to this problem.

5.1.4 Conclusion

The results of the ping-pong benchmark show that there are two factors
important to the latency of message passing. First the location of the cores,
basically meaning the hardware shared between sender and receiver, clearly
impacts performance. In addition the best communication-path also varied
as the message size increased.

For messages less than 1MB, shared cache is the fastest communication-
path, while the intra-CPU communication path is fastest for larger messages.

5.2 Cache-aware message-passing

From the previous experiment we learned that the message-passing latency
increases faster when the message size reaches a threshold of 512KB for
processes sharing L2-cache. We conjecture that the latency increases faster
because of the sender overfilling the shared cache, making the receiver go to
system memory to fetch the fragments. This is illustrated in figure 5.4 where
a) is a message pass where two cores sharing cache are synchronized; the
receiver manages to retrieve fragments from cache before the sender overfills

29

Shared
L2-cache

Sender Receiver

Frag 5
Frag 4
Frag 3
Frag 2
Frag 1
Frag 0

System memory

enqueue

dequeue

(a) Synchronized

Shared
L2-cache

Sender Receiver

Frag 8
Frag 7
Frag 6
Frag 5
Frag 4
Frag 3

System memory

enqueue

dequeue

Fr
ag

 2
Fr

ag
 1

Fr
ag

 0

(b) Not synchronized

Figure 5.4: Message pass between to processes sharing L2-cache. In a) the
processes are synchronized and the system memory is never touched. In b)
The sender overfills the cache, forcing the receiver to go to system memory
to fetch fragments.

it. In b) the sender overfills the cache, and the receiver will have to go to
memory to fetch fragments.

In this experiment we will try to limit the increase in latency by tightening
the synchronization used when sending large messages. It is important to
notice that this is only true for processes sharing L2-cache. The goal is to
have the same latency-growth for messages larger than 512KB as for smaller
messages. However, a tighter synchronization requires a certain overhead
and we cannot expect to achieve the same performance.

Tightening the synchronization is simply enforced by splitting the mes-
sage into smaller messages, forcing the rendezvous-protocol described in
chapter 4 to synchronize for each 512KB sent. All messages smaller than
512KB are sent as one message. A 1MB message is sent as 2 messages of
512KB, while an 8MB message is sent as 16 smaller 512KB messages. Keep
in mind that the messages are still fragmented into 32KB fragments by the
PML. We divide the large messages into smaller messages to initiate the
synchronization-protocol several times during data transfer.

We evaluate the performance of all intra-node communication paths, and
compare them to the results from the last experiment.

5.2.1 Results and discussion

The results illustrated in figure 5.5 show that tightening synchronization can
reduce latency for large messages sent between processes sharing cache. For
processes not sharing cache, latency increases. This makes it important that
the message passing library can differentiate between processes sharing cache

30

(a) Intra-die (b) Inter-die

(c) Inter-CPU (d) Optimal

Figure 5.5: Standard vs stronger synchronization

and processes not sharing cache.
The results illustrated in figure 5.5 compares the results for standard

message passing in Open MPI, to our modified approach using stronger syn-
chronization. For shared cache a) we can see that the performance increase
dramatically by using the stronger synchronization. For the communication
paths not sharing cache, b) and c), the stronger synchronization only adds to
the message latency. In d) the best option for all communication paths are
illustrated. We observe that the intra-die is now the fastest communication
path for large messages as well as small messages, while it was the slowest
communication path without the synchronization.

5.2.2 Conclusion

Keeping the sender and receiver synchronized can reduce message passing
latency between processes sharing cache. Care should be taken not to add
an overhead to messages sent between processes not sharing cache. We have
done this in the benchmark application, but it can also be done in the mid-
dleware layer, making it transparent to application developers.

31

32

Chapter 6

Queue designs

In this chapter we explore the possibilities for improving scalability of the
standard Open MPI shared memory implementation. Up until recent years
clusters of workstations have mostly been two-way SMP systems, allowing the
shared memory queues to focus exclusively on reducing latency for message-
passes between two processes. As we see a shift in the industry towards
CMT, it is possible that the scalability of intra-node communication system
becomes more important than latency between two processes.

In section 4.2 we noticed that the receiver needs to check p − 1 queues
when waiting for a message, if p is the number of processes. This works well
for small scale SMPs where there are typically only two processes, leaving
only one queue to be checked. We want to see if it is possible to increase
scalability by reducing the number of queues that has to be polled.

We will now present two modifications to the standard Open MPI queues.
The first new component uses only one receiving queue per process, and is
called ”One Receiving Queue” (ORQ). The other is called ”Check Only Re-
ceiver” (COR) and uses the same number of queues as the standard Open
MPI component, but checks only queues where messages are expected to
arrive. From now on we will refer to the standard shared memory Open
MPI component as SM (the BTL SM component). After the new queue-
designs are described, they are experimentally evaluated using the NAS Par-
allel Benchmarks.

6.1 Design

In this section we describe the design of the COR and ORQ queues. The SM
design has already been described in the previous section 4.2. We start with
the ORQ, then move on to the COR.

33

6.1.1 One Receiving Queue

The ORQ component uses only one receiving queue per process as illustrated
in figure 6.1. Having only one receiving queue guarantees that the receiver
only checks one queue for messages, regardless of the number of processes
running at the node. The drawbacks however, are two-fold. When several
processes want to send a message to the same receiver (having only one
queue), they cannot send the message at the exact same time. The second
problem is very much related to the first problem; the queue has to be pro-
tected to ensure that the senders do not write to the queue at the same time.
The protection adds to the message-passing latency, even when running with
a low number of processes. To protect the queue, we have tried two ap-
proaches: using a spin-wait mutex, and to use compare-and-swap directly on
the queue pointer.

0 1

2

to 2

to 0 to
1

Figure 6.1: Receiving queues for ORQ

6.1.2 Check only receiving queue

The COR component is designed to prevent the senders from competing for
receiving-queues, but still keep the number of queues that has to be checked
to a minimum.

When doing point-to-point communication using MPI, the sender will
specify a receiver rank in the send-call, while the receiver specifies the sender’s
rank in its receive-call. This means that the receiver always knows from where
it expects messages, and does not have to check every queue for incoming
fragments. Using Open MPI, we must actually divide the functionality of
doing bookkeeping, and the functionality of checking queues according to the
MCA described in chapter 4.2. We divide them into following components:

34

0

2

1

0

1

2

Sender
ranks

Expected number
of messages

Figure 6.2: Structure keeping count of number of expected messages from
each other process.

1. PML COR - This is where we keep track of expected messages. This
adds to latency.

2. BTL COR - This is where we can use information provided by the PML
COR to only poll queues where we expect fragments.

In the PML the receiver can do this bookkeeping by keeping a one-dimensional
array of size p − 1. Each element in the array is initialized to 0 when the
application starts. Whenever a variation of a receive-call is made, a counter
in the array is increased. The sender is the index to the array, where the
array holds the number of messages expected. When a message is received,
the counter can be decreased. Figure 6.2 illustrates a structure holding the
message-counters.

In the BTL we can reduce the number of queues we have to pull, by only
polling the queues where the count is larger than 0.

There is however one MPI-feature that complicates the matter somewhat.
The MPI-standard allows the receiver (not the sender) to specify a wild card
(MPI ANY SOURCE) instead of a specific sender rank. This wild card means
that a message will be accepted from anyone. To deal with this, an extra
counter is made. If a message is expected from any source, this counter
is increased. Whenever a message is received, the any source counter is
decreased only if we did not expect a message from the sender.

The sender does no bookkeeping in any case, and behaves as in the stan-
dard SM implementation. In the next section we evaluate the three compo-
nents, SM, ORQ and COR.

6.2 Evaluation

We are now going to evaluate how the different queue-designs described in the
last section affect the performance of some of the NAS Parallel Benchmarks.

35

The queues we suggest are designed to improve Open MPI’s intra-node
scalability, and we will therefore do the experiment with a large number of
processes, up to 128. Using a single node, this means that each of the eight
cores will be running up to 16 processes each. The details of the nodes can
be found in chapter 4.

6.2.1 Results and discussion

Figure 6.3 illustrates the performance of the three different components,
for six of NAS Parallel Benchmarks. The first thing to notice is how the
execution-time decreases from 2-8 processes. This is because we have eight
available processor-cores that are utilized as we increase the number of pro-
cesses up to 8. When we further increase the number of processes (but not
the number of processing cores), the execution time increases.

Looking at the execution times for 128 processes, the ORQ and COR
components had the lowest execution-time in three benchmarks each. The
SM was never fastest. However, the ORQ component was slower than both
COR and SM in the IS-benchmark. Table 6.2 summarizes the count for
fastest and slowest for each of the components.

Table 6.1: Benchmark results for 128 processes

Bench- Execution time Performance increase
mark STD COR ORQ from slowest to fastest
CG 168.9s 115.62s 115.18s 31.81%
EP 18.33s 18.23s 18.27s 0.55%
FT 45.26s 39.82s 40.13s 12.02%
IS 3.89s 3.58s 5.16s 30.62%

MG 18.11s 13.32s 13.09s 27.72%
LU 179.6s 159.8s 156.6s 12.8%

Looking at table 6.1 we can see that the performance difference between
the fastest and slowest component was ranging from no improvement to 32%.
The biggest improvement was the CG benchmark that utilizes a high num-
ber of point-to-point communication. The smallest improvement was the
EP (embarrassingly parallel problem) that hardly communicates during the
runtime of the application.

36

(a) CG (b) EP

(c) FT (d) IS

(e) MG (f) LU

Figure 6.3: Execution time for some of the NAS Parallel benchmarks using
different queue-designs.

Table 6.2: Fastest and slowest component for 128 processes.

Component Fastest Slowest
SM 0 5

COR 3 0
ORQ 3 1

37

6.2.2 Conclusion

We have demonstrated that reducing the number of queues that need to be
polled, can greatly improve scalability of Open MPI, reducing execution-time
by certain applications by up to 30%. Observing that senders in ORQ must
compete for receiving queues, we suggest COR that reduces number of queues
to be polled, while avoiding conflict between senders.

By using knowledge of where messages are expected to arrive, we can
reduce the number of queues that need to be polled, without having senders
competing for receiver-queues.

38

Chapter 7

Single node process-to-core
mapping

We give an overview over mapping in various systems in chapter 2. In this
chapter we focus exclusively on mapping on a single node. The goal is to re-
duce execution time of parallel applications, by utilizing the shared hardware
resources. The architecture of the node used is described in chapter 4.

We will do three experiments in this chapter. The first is an experiment
where we map parallel applications that only utilize four of the node’s eight
cores. From chapter 5 we learned that communication is faster between cores
sharing L2-cache. In this experiment we want to see what gives the greater
performance benefits; sharing L2-cache for potentially faster communication,
or having more private cache.

The second experiment is a case study of the CG NAS Parallel benchmark.
The goal is to find a mapping where the communication overhead of the
benchmark is minimized. This means moving communicating processes to
cores sharing L2-cache. The mapping is static, and decided prior to running
the benchmark.

In the third experiment we try to achieve the performance benefits gained
with static mapping, without analyzing the applications communication pat-
terns prior to running the application. We design a dynamic mapper that
analyzes the communication pattern during runtime, and uses Metis to find
a good mapping for the application.

7.1 Mapping to a subset of available cores

In this experiment we explore how we should map a parallel application that
runs only on a single node, and uses only a subset of the available cores. In

39

chapter 5 we learned that message passing is faster between two processes
sharing L2-cache. We also know that processes sharing cache can pollute
each others cache and have to share a single memory bus. Mapping the
application to cores not sharing cache will give each process a private cache,
and can utilize both memory busses.

The main goal of this experiment is to examine if it is better to share cache
to reduce communication-time, or if it is better to have separate caches. In
addition to share cache or not, we see how the benchmarks perform when
sharing memory bus. We will use four of the eight available cores in this
experiment. As with the message passing latency, we have three choices
when mapping processes to cores:

1. Map all four processes to one CPU. Each pair of processes can com-
municate faster, but pollutes each others cache and utilize only one
memory bus.

2. Map each pair of processes to one die. Each pair of processes share
L2-cache, but have their own independent memory bus.

3. Use one core at each die. Each core gets a private L2-cache. We also
utilize both memory buses.

The grey cores in figure 7.1 illustrate the cores used in each of the three cases.

We will use the NAS Parallel Benchmarks as benchmarks in this experi-
ment, and in the next section we look at how they perform as we use different
mappings.

7.1.1 Results and discussion

Table 7.1 contains the execution times for the various NAS Parallel Bench-
marks run in the three different cases described above. The cases are identi-
fied by what cores they run at. 0,2,4,6 means that processes run at the same
CPU. 0,1,4,5 means that we run two pairs sharing cache, but at different
CPUs, and 0,1,2,3 means one process at each die.

For every benchmark run, we see that the lowest execution time is with the
case 3 mapping. The case 3 mapping means that each process has its own L2-
cache, and both memory buses are utilized. Only for the EP (embarrassingly
parallel problem) is the mapping not significant.

While case 1, where L2-cache and memory bus are shared, is the slowest
case, the performance jump between case 1 and case 2 is bigger than the jump
between case 2 and case 3. The only difference between these two cases, is

40

4

0
4MB
L2

6

2
4MB
L2

5

1
4MB
L2

7

3
4MB
L2

CPU 0 CPU 1

4

0
4MB
L2

6

2
4MB
L2

5

1
4MB
L2

7

3
4MB
L2

4

0
4MB
L2

6

2
4MB
L2

5

1
4MB
L2

7

3
4MB
L2

Case 1:

Case 2:

Case 3:

Figure 7.1: The three cases for mapping four processes to cores.

the memory bus; indicating that the memory bus is limiting performance
more than the shared L2-cache.

Table 7.1: Execution time of the NAS Parallel Benchmarks utilizing 4 cores.
Case 1 Case 2 Case 3

Benchmark (0,4,2,6) (0,4,1,5) (0,1,2,3)
BT 345.11s 310.25s 307.46s
SP 443.44s 313.80s 272.75s
CG 83.60s 63.35s 57.77s
EP 34.42s 34.47s 34.45s
FT 67.51s 55.34s 55.01s
MG 15.80s 10.31s 9.15s

7.1.2 Conclusion

The way a parallel application is mapped to a subset of the eight cores on a
single node, does influence the performance of applications such as the NAS
Parallel Benchmarks. All benchmarks have the shortest execution time when
mapped in such a way that each process has its own private L2-cache, and

41

both memory busses are used. Also the memory bus appears to be limiting
performance more than the L2-cache.

The Linux kernel identifies the cores in such a way that a round-robin
mapping should be the optimal for most applications. The exception is ap-
plications that can utilize the shared cache like we did in with the message
passing latency experiment in chapter 5.

7.2 Static mapping

In this experiment we explore the potential for reducing execution time for
a real life application, using what we have learned about the application,
communication and the cache:

• In chapter 5 we learned that communication can be faster between
cores sharing L2-cache.

• From section 7.1 we learned that real life applications utilizing four
cores, are better off not sharing cache and rather use the full memory-
bandwidth and twice the amount of cache.

Based on this we know that it might be possible to decrease communication
overhead by letting communicating processes run on cores sharing L2-cache.
This experiment is a case study of the CG NAS Parallel Benchmark. The CG
benchmark does a high amount of point-to-point communication [1], and has
a communication pattern that is easy to illustrate and reason about. Point-
to-point communication makes it easier to study the communication pattern,
and the lack of global communication also makes it more likely to find a good
mapping.

7.2.1 Communication pattern

The communication pattern of the CG NAS Parallel Benchmark is illustrated
in figure 7.2. Each process is represented by a circle and identified by its MPI-
rank. The communicating processes are connected by dotted or solid lines.
The solid lines represent a higher number of messages sent than the dotted
line. Focusing only on the solid lines, we can see that it is easy to partition
this application into four partitions.

As we know, each Stallo node has 8 cores. However, in this experiment it
is the number of shared L2-caches that is interesting. We want to partition
the communication graph in such a way that communicating processes are
mapped to cores sharing cache. We have four shared L2-caches which means

42

that we want each of the four groups mapped to cores sharing L2-cache.
Table 7.2 shows a possible mapping for process to cores. It is important that
we let each process use any of the two cores sharing the same L2-cache. If
we restrict each process to one core, we waste potential for increasing the
thread level parallelism (TLP).

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

1976 messages

6004 messages

Figure 7.2: Communication pattern of the CG benchmark using 16 processes
and size class B.

Table 7.2: Possible mapping for the CG benchmark.

Process groups Pairs of cores sharing L2-cache
(MPI-rank) (Core ID)

0,1,2,3 0,4
4,5,6,7 1,5

8,9,10,11 2,6
12,13,14,15 3,7

43

7.2.2 Results and discussion

The results in figure 7.3 and table 7.3 show that we are not able to reduce
the execution time of the application, by mapping communicating processes
closer to the same L2-cache when running one process for each core (8 pro-
cesses). When increasing number of processes per core to 2 and 4, we see that
the static mapping increases performance by up to 11%. When increasing
number of processes to 8 per core (64 per node), the performance improve-
ment is less than 5%. The reason that the improvement for 64 processes is
smaller than for 32 processes, is probably that the communication pattern
changes so that it does not partition as nicely to the four caches.

Figure 7.3: Performance of the CG NAS Parallel Benchmark using static
mapping versus default mapping

Table 7.3: Static versus default mapping

Processes Default Static Improvement
8 56.7s 56.4s 0.6%
16 68.6s 60.7s 11.6%
32 73.4s 67.4s 8.3%
64 100.1s 95.6s 4.5%

44

7.2.3 Conclusion

By analyzing the CG benchmark and finding a better mapping for it, we
managed to reduce execution time of the application when running more
than one process for each core, but not when running one process per core.
Since decomposing applications with one process per core is the standard
approach, and in this case also the fastest, doing mapping of applications
is not beneficial. When overdecomposing [1] the application, we are able to
increase performance by up to 11% for two processes per core, compared to
the default mapping.

7.3 Dynamic mapper

The goal of the dynamic mapper is to provide the performance-benefits of
the static mapper, without the disadvantage of static mapping. The disad-
vantage of static mapping is that the mapping has to be done manually by
someone who knows both the communication pattern of the application and
the underlying environment the application will run in.

The dynamic mapper should find a good mapping for any application
using knowledge of the hardware (configured by the system administrator)
and analyzing the critical traffic of the application during runtime. Even
though we do not need any prior knowledge of the application, we do need
some information about the system architecture. We need to know what cores
that can communicate faster between them. In our experiment running on
the Stallo-node, core-pairs [0,4], [1,5], [2,6] and [3,7] can communicate
faster between themselves as we discovered in chapter 5.

We also know that if the application does not utilize all cores, it should
be spread to utilize the memory bandwidth and cache.

In the next section we will look at the design of a dynamic mapper.

7.3.1 Design

When designing dynamic mapping for Open MPI, we need to answer the
following questions:

1. What data to log and base our mapping on?

2. Where and when to evaluate the mapping during runtime?

3. How to find a good mapping?

How we deal with these questions is described in the following three sections.

45

What data to log

All MPI-based communication is available for us to log in the MPI-layer.
This includes point-to-point messages as well as collective operations. In
addition we know the size of the messages being sent.

We use the message-passing count to decide which processes that com-
municate most, and ignore message size. In addition we have limited logging
to point-to-point communication.

Where and when to evaluate the mapping

There are three places this remap can take place:

1. In Open MPI’s progress function for one process at each node.

2. Spawning a mapper-process at each node, taking care of the mapping
at given time intervals

3. Make a new MPI-function (e.g. MPI Remap()), letting the application
developer decide when to remap the processes.

The two first alternatives are hidden from the application programmer, and
can actually be combined with the third option, the MPI-function.

The advantage of the first alternative, is that we do not need to spawn
another thread per node. The disadvantages are that it can be difficult to
predict when the progress function will invoke the evaluation of the mapping,
because the process might be doing other work. In addition the mapper would
be restricted to the core(s) that the process is running on.

The advantages of spawning a new process taking care of the mapping,
are that it is quite easy to predict when it will run, and it can run on any
available core. The disadvantage is oversubscribing the cores. However, the
mapping-process should be sleeping most of the time.

Making a new MPI-function puts the application developer in control of
when the mapping should take place. This way it is possible to combine
the application developer’s knowledge of the application, while using Open
MPI’s logged data.

Our dynamic mapper is run by spawning a mapper-process at each node,
taking care of the mapping. This way the mapping is transparent to the
application developer, and we can easily control how often the mapper should
run to re-evaluate the mapping.

46

How often to evaluate the mapping

By using an independent mapper process, we can use the sleep-primitive to
make the mapper run at certain time intervals. When the mapper wakes up,
we can analyze the data logged since last time.

How to find a good mapping

The theory of mapping is discussed in chapter 2, and a quick introduction
to graph-theory in mapping is given. In graph-terminology, what we want to
do is to partition the graph into partitions. Each partition should consist of
the processes communicating, and should run on the cores sharing cache.

There are several tools for doing this partitioning such as Metis and
Scotch [32]. We have decided to use Metis in this project as it provides
the functionality we need, and has been used earlier for doing static parti-
tioning. Metis provides the functionality to partition weighted graphs, taking
the graph as an argument along with the number of wanted partitions. The
return value is an array holding the optimal partitioning for the given graph.

Summary

Figure 7.4 describes the workings of the dynamic mapper process. At each
node (we only use one), a mapper-process is spawned by the process with the
lowest mpi-rank. This happens during MPI Init. All processes log all sent
point-to-point message passes (MPI Send and its variations) in a table stored
in shared memory. The mapper reads the table, and creates a graph that is
passed to Metis for partitioning. When Metis returns the partitioning, the
mapper enforces it with the sched setaffinity function.

47

0

1

2

Mapper

spawn

(a) One process at each node
spawns a mapper-process.

0

1

2

Message count
table

Mapper

Log messages

(b) The processes logs each
message-pass in a table shared in
memory.

Message count
table

Mapper

read

Metis
Library - Message count

- Number of L2-caches

(c) Mapper feeds Metis with
data read from message-count
table.

0

1

2

Mapper

Map

Metis
Library

Ideal
partitioning

(d) The mapper maps processes
according to Metis’ partitioning.

Figure 7.4: Dynamic mapper.

48

7.3.2 Evaluation of dynamic mapper

In this section we evaluate the performance of the dynamic mapper and
compare the results to the static mapping. We evaluate both the CG bench-
mark that was evaluated for static mapping, and in addition evaluate the
performance of the dynamic mapper used on the SP and BT benchmarks.

Table 7.4: Dynamic versus default mapping

Processes Default Dynamic Improvement
8 56.7s 56.4s 0.2%
16 68.6s 60.7s 10.5%
32 73.4s 67.4s 7.2%
64 100.1s 95.6s 3.6%

(a) CG (b) Static vs dynamic

Figure 7.5: Execution time for CG using the dynamic mapper.

The results in table 7.4 illustrated in figure 7.6 a) show that we can
achieve much of the benefits from static mapping shown in section 7.2 with-
out prior knowledge of the application’s communication patterns. In b) the
performance of the static and dynamic mapper are compared.

The results from other benchmarks shown in figure 7.6 illustrate that a
reduction in execution-time is very dependent on the application pattern, and
how well it maps to the preferred number of partitions. However, the mapper
does not seem to add a high overhead to the system, making it possible to
leave it running even when the mapping does not increase performance.

49

(a) BT (b) SP

Figure 7.6: Execution time for two other NAS Parallel Benchmarks using
point-to-point communication

7.3.3 Conclusion

Using dynamic mapping we can achieve most of the performance gain from
static mapping. This is done by configuring the dynamic mapper (in mid-
dleware) to the environment it runs in, regarding cores sharing cache. The
dynamic mapper is transparent to the user, and has a low overhead, making
it a good alternative to static mapping.

From the experiment using only four of eight cores in section 7.1 we
learned that parallel applications should be mapped to utilize all hardware
resources (all L2-caches and both memory busses). This should also be taken
care of in the dynamic mapper, so that it does not map processes close to
each other when the application should be spread to utilize all L2-caches and
both memory busses.

50

Chapter 8

Conclusion and future work

In this thesis we have examined performance-characteristics of the chip-
multiprocessors widely used in today’s supercomputers. We have identified
problems with the Open MPI implementation of MPI regarding scalability
and lack of optimization to the underlying hardware-architecture. We have
proposed improvements to increase scalability, introduced mapping of pro-
cesses to processor cores, and optimized message passes for messages sent
between cores sharing cache.

Intra-node communication depends heavily on the communication-path
(i.e. the amount of shared hardware). For small messages, communication
between processes sharing cache is fastest. For large messages, processes
using both memory busses are fastest. We increase the performance of large
messages sent between cores sharing cache by keeping the sender and the
receiver synchronized during the entire transfer. This enables the receiver
to access the receiving queue in cache, rather than fetch it from memory.
Using the improved protocol for shared cache, message transfer between cores
sharing cache is the fastest for both small and large messages. For processes
not sharing cache, the increased synchronization is an added overhead, so
care should be taken to only apply increased synchronization on messages
sent between processes sharing cache.

Scalability is improved by using two new queue-designs, reducing the
number of queues that needs to be polled when a high number of processes
run on a single node. For most applications, using only one queue (ORQ) is
the fastest, but we notice that using only one queue can reduce scalability
when senders have to compete for the queue. By doing bookkeeping (COR)
at the receiver side of message passes, we are able to reduce the number
of queues that needs to be polled, without having the senders compete for
queues. It should be noted that while the COR queue-design is good for
all NAS Parallel benchmarks, it will be no better than the standard queue-

51

design, if the MPI ANY SOURCE wildcard is used to receive messages from any
process. The receiver then needs to check all queues. Based on the NAS
Parallel benchmarks, the COR queue-design is the best trade-off between
checking fewer queues, and prevent competition when sending.

We were not able to improve performance of the CG benchmark when
doing manual mapping using one process for each core on a single node.
When increasing the number of processes per core to 2 and 4 (16 and 32 on
a node), our mapping performed up to 10% better than the default mapping
with the same number of processes. The best performance was still mea-
sured using one process per core, and any mapping. The dynamic mapper
performed comparable to the static mapper, increasing performance relative
to the default mapping when running 16 or 32 processes on a single node.
The dynamic approach to mapping is more attractive than the static, as it
performs comparable without needing to analyze the applications communi-
cation pattern before running the application.

The presented techniques have given performance increase in different
scenarios; the dynamic mapper for one application when oversubscribing,
the queues when running a high number of processes, and the cache-aware
message passing protocol for large messages. We can learn from this, that
minimizing intra-node communication overhead, as many other problems,
has to be approached from several angles. Each optimization must be care-
fully constructed not to increase significant overhead in the common cases.
Combining techniques similar to those presented in this thesis, with other
techniques, is necessary to benefit from the parallel hardware we have today
and in the future. Further more, component based communication mid-
dleware can be a powerful tool for optimizing performance to the available
hardware, as it can behave dynamically at execution or even during runtime.

Future work

All queue designs explored have a weakness; either by requiring the receiver
to poll many receiving queues, or to have the senders compete for queues.
The goal of a good queue-design is to find a balance between few queues
for the receiver to poll, and enough queues that the senders do not have to
compete to send messages. A variation of the ORQ component using more
than one queue, maybe combined with bookkeeping as in COR, can be a
good approach.

For communication between processes sharing cache, we managed to in-
crease performance by increasing synchronization. An approach where the
sender and receiver are synchronized with a smaller overhead would be de-
sirable. Having the sender keep track of number of fragments in the queue

52

might be another way of keeping synchronization with less overhead.
The dynamic mapper should be tested with more applications to see

whether it is possible to increase performance of applications when running
one process per core.

53

54

Bibliography

[1] L. A. Bongo, B. Vinter, O. J. Anshus, T. Larsen, and J. M. Bjørndalen.
Using overdecomposition to overlap communication latencies with com-
putation and take advantage of SMT processors. In proceedings of
ICPPW ’06: The 2006 International Conference Workshops on Parallel
Processing, pages 239–247, Columbus, OH, USA, August 2006. IEEE
Computer Society.

[2] D. Buntinas, G. Mercier, and W. Gropp. Data transfers between pro-
cesses in an SMP system: Performance study and application to MPI. In
proceedings of ICPP ’06: The 35th International Conference on Parallel
Processing, pages 487–496, Columbus, OH, USA, August 2006. IEEE
Computer Society.

[3] D. Buntinas, G. Mercier, and W. Gropp. Design and evaluation of Neme-
sis, a scalable, low-latency, message-passing communication subsystem.
In proceedings of CCGRID ’06: the Sixth IEEE International Sympo-
sium on Cluster Computing and the Grid, pages 521–530, Singapore,
May 2006. IEEE Computer Society.

[4] L. Chai, Q. Gao, and D. K. Panda. Understanding the impact of multi-
core architecture in cluster computing: A case study with Intel dual-core
system. In proceedings of CCGRID ’07: The Seventh IEEE International
Symposium on Cluster Computing and the Grid, pages 471–478, Rio de
Janeiro, Brazil, May 2007. IEEE Computer Society.

[5] L. Chai, A. Hartono, and D. K. Panda. Designing high performance
and scalable MPI intra-node communication support for clusters. In
CLUSTER ’06: Proceedings of the 2006 IEEE International Conference
on Cluster Computing, Barcelona, Spain, September 2006. IEEE Com-
puter Society.

[6] L. Chai, P. Lai, H.-W. Jin, and D. K. Panda. Designing an efficient
kernel-level and user-level hybrid approach for MPI intra-node commu-

55

nication on multi-core systems. In In proceedings of ICCP’ 08: the 37th
International Conference on parallel processing, pages 222–229, Port-
land, OR, USA, September 2008. IEEE Computer Society.

[7] Dalton. http://www.kjemi.uio.no/software/dalton/dalton.html.

[8] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Performance
of multithreaded chip multiprocessors and implications for operating
system design. In proceedings of ATEC ’05: the annual conference on
USENIX Annual Technical Conference, pages 395–398, Anaheim, CA,
USA, April 2005. USENIX Association.

[9] Folding@home homepage. http://folding.stanford.edu/.

[10] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Cas-
tain, D. J. Daniel, R. L. Graham, and T. S. Woodall. Open MPI: Goals,
concept, and design of a next generation MPI implementation. In pro-
ceedings of the 11th European PVM/MPI Users’ Group Meeting, pages
97–104, Budapest, Hungary, September 2004.

[11] H. Gao, A. Schmidt, A. Gupta, and P. Luksch. Load balancing for
spatial-grid-based parallel numeric simulations on clusters of SMPs. In
proceedings of EuroPDP ’03: the 11th Euromicro Conference on Par-
allel, Distributed and Network-Based Processing, pages 75–82, Genova,
Italy, February 2003. IEEE Computer Society.

[12] High Performance Linpack. http://www.netlib.org/benchmark/hpl.

[13] Intel. http://www.intel.com.

[14] Q. Jacobson. UltraSPARC IV Processors. In proceedings of the Micro-
processor Forum, San Jose, CA, October 2003.

[15] I. Kadayif and M. Kandemir. Data space-oriented tiling for enhancing
locality. TECS: ACM Transactions on Embedded Computing Systems,
4(2):388–414, May 2005.

[16] S. Kapil. UltraSPARC Gemini: Dual CPU processor. In proceedings of
the 15th annual Hot Chips Symposium, Stanford University, Palo Alto,
CA, August 2003.

[17] P. Kongetira. A 32-way multithreaded sparc procesor. In proceedings of
the 16th annual Hot Chips Symposium, Stanford University, Palo Alto,
CA, August 2004.

56

[18] T. Leng, R. Ali, J. Hsieh, V. Mashayekhi, and R. Rooholamini. Perfor-
mance impact of process mapping on small-scale SMP clusters - a case
study using high performance Linpack. In proceedings of IPDPS ’02: the
16th International Parallel and Distributed Processing Symposium, page
263, Fort Lauderdale, FL, USA, April 2002. IEEE Computer Society.

[19] Metis: Serial graph partitioning.
http://glaros.dtc.umn.edu/gkhome/views/metis/.

[20] M. M. Michael and M. L. Scott. Fast and practical non-blocking and
blocking concurrent queue algorithms. In proceedings of PODC ’96: The
15th ACM Symposium on Principles of Distributed Computing, pages
267–275, Philadelphia, PA, USA, May 1996. ACM.

[21] MPICH2. www.mcs.anl.gov/mpi/mpich/.

[22] NASA. NAS parallel benchmark suite homepage.
http://www.nas.nasa.gov/Resources/Software/npb.html.

[23] Niagra. http://www.sun.com.

[24] Notur. Stallo documentation homepage.
http://www.notur.no/hardware/stallo/.

[25] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang.
The case for a single-chip multiprocessor. In proceedings of ASPLOS-
VII: The seventh international conference on Architectural support for
programming languages and operating systems, pages 2–11, New York,
NY, USA, October 1996. ACM.

[26] Open MPI homepage. http://www.open-mpi.org/.

[27] OpenMP group. http://www.openmp.org/.

[28] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the missing su-
percomputer performance: Achieving optimal performance on the 8,192
processors of ASCI Q. In proceedings of SC ’03: The 2003 ACM/IEEE
conference on Supercomputing, Phoenix, AZ, USA, November 2003.
IEEE Computer Society.

[29] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kale, and K. Schulten. Scalable molecular
dynamics with NAMD. In Journal of Computational Chemistry, pages
26:1781–1802, 2005.

57

[30] Rocks cluster. http://www.rocksclusters.org/.

[31] Scientific computing and modeling. Amsterdam density functional pack-
age. http://www.scm.com/.

[32] Scotch. http://www.labri.fr/perso/pelegrin/scotch/.

[33] L. Spracklen and S. G. Abraham. Chip multithreading: Opportunities
and challenges. In proceedings of HPCA ’05: The International Sympo-
sium on High Performance Computer Architecture, pages 248–252, San
Francisco, CA, USA, February 2005. IEEE Computer Society.

[34] Top500 supercomputer sites. http://www.top500.org/.

[35] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithread-
ing: Maximizing on-chip parallelism. In proceedings of ISCA ’95: The
22nd Annual International Symposium on Computer Architecture, pages
392–403, Santa Margherita Ligure, Italy, June 1995.

[36] T. S. Woodall, R. L. Graham, R. H. Castain, D. J. Daniel, M. W.
Sukalski, E. Gabriel, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, P. Kambadur, B. Barrett, and A. Lumsdaine. Teg: A high-
performance, scalable, multi-network point-to-point communications
methodology. In proceedings of the 11th European PVM/MPI Users
Group Meeting, pages 303–310, Budapest, Hungary, September 2004.

58

