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Abstract

When working with sensitive data in a distributed setting, secure multi-party
computations(SMC) protocols aims to preserve the privacy of participants. A
core aspect of any SMC protocol is secure communication between participants.
Based on the NOOP and SNOOP middleware with a combination of secret key
and public-key cryptography we design and implement a public key infrastruc-
ture(PKI) to share signed certificates containing a participants credentials and
public key. Components of the PKI support signing and verification of certifi-
cates, public-key encryption supports signing and verification of communica-
tion between participants. Our tools provide high-level security programming
abstractions to support the development of SMC protocols.
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Chapter 1

Introduction

Patient related health data are typically located at different general practices
and hospitals. When processing and analyzing such data, the provided infras-
tructure and toolset has to take into consideration legal, security and privacy
issues. In the SNOOP[2] project the combination of secure multi-party compu-
tations (SMC) algorithms, encryption, public key infrastructure (PKI), certifi-
cates, and a certificate authority (CA) is used to implement an infrastructure
and a toolset for statistical analysis of health data. In a previous project[4] we
implemented a set of crypto-primitives in SNOOP (capstone project autumn
2018). SNOOP is an adaptive middleware for secure multi-party computations
(SMC). SNOOP is an extension of the adaptable component based middleware
NOOP[1]. It combines support for secure multi-party computations, encryption,
public key infrastructure (PKI), certificates, and certificate authorities (CA).
SNOOP and the deployment of SNOOP applications have to take into consid-
eration legal, security and privacy issues involved in statistical analysis of such
data. SNOOP tries to support a wide range of possible SMC algorithms and
computing graphs. It provides high-level programming abstractions that adapt
to the current run-time environment at deploy time. Contracts are provided to
match the application requirements with available run-time functionality and re-
quirements. Current SNOOP (and NOOP) prototype is implemented in Python.

In this project we will focus on high level security programming abstractions
based on the crypto primitives, a more robust implementation of the primitives,
and the development of a simple PKI for experimentation with the high level se-
curity programming abstractions. We will demonstrate how these programming
abstraction can be used to describe and implement different security protocols
and systems with high level of abstractions.The project includes analysis and
decisions on available crypto primitives, programming abstractions, message for-
mats, file formats. During the first half of the projects additional functionalities
will be considered. This includes timestamps, message numbering, generation
and use of nonce, implementation of high-level programming abstractions for
digital signing and verification and a set of test applications.
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Chapter 2

Related work

2.1 SECUREMULTI-PARTY COMPUTATIONS

The problem introduced by Yao[15] was stated as ”Two millionaires wish to
know who is richer; however, they do not want to find out inadvertently any
additional information about each other’s wealth. How can they carry out
such a conversation?” Suppose you want to compute the value of a function
f(x1, x2, ...xn) where participant pi only knows the value of xi and no other x.
How do you compute the value of f without learning the value of any one x. In
the case of the millionaire the number of participants n = 2, the computation
would output who was richer and not the combined wealth as you could easily
reveal the other participants value. This is the problem of secure multi-party
computations (SMC).

SMCs involves multiple participants (nodes) jointly performing some compu-
tation. Each participant contributes with its private input to the computation,
but the private input must remain hidden from other parties or any third party.
Participants an SMC may lack trust between each other. The SMC algorithm
must preserve the privacy of all parties involved. SMC studies introduce the
concepts of ideal and real models[16]. In an ideal model the parties of an SMC
are joined by a trusted third party who receives input from each participant
through a secure channel, computes the function and shares the output with
each participant. In a real model participants are mutually untrusted, there
exists no trusted third party and the participants compute the function among
themselves. A protocol in the real model aims to simulate the environment of
the ideal model, where no participant receive any input of other participants. A
real model protocol is said to be secure if no participant can learn about other
participants more than it could in an ideal model.

Security must be preserved even with adversarial behavior by one or many
participants. An adversary can be semi-honest or malicious. A semi-honest
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adversary is a participant who follows the protocol properly, but provides false
input or attempts to learn about other participants input in some way. A ma-
licious adversary will may attempt to disrupt the execution of an SMC. Not
following protocol, false input, not starting the execution, suspending execution
or aborting at any time. Adversarys may collude to learn about honest partici-
pants.

With security in the context of SMC we mean security of communication, that
any data we want hidden is inaccessible by any eavesdroppers. Privacy in an
SMC is the privacy of a participants input, an honest participant should have
the privacy of their input preserved. Privacy is preserved by SMC protocols.

2.2 PUBLIC-KEY INFRASTRUCTURE

A PKI is a trusted third party with a set of components that binds public keys
to an entity through the use of digital certificates. The purpose of the PKI is to
provide services for identification, verification and authentication of users and
their public keys. A user of a PKI is not necessarily a person, but can be any en-
tity, e.g a server, application, component of a system, etc. We will mainly refer
to users as entity. The main components of a PKI are the certificate authority
and registration authority (RA). The PKI enables sharing and authentication of
public keys through certificates to preserve privacy of exchanged data between
users. A digital certificate is digital document containing an entities credentials
and public key. The registration authority is a management entity where a node

CA

Node

Verify()

CRT
CSR

Generate()RA

Figure 2.1: Public key infrastructure model

can make itself known to the CA. The RA manages nodes, verification of cre-
dentials, and certificate sign requests. Verified requests are forwarded to a CA
who generates and issues a signed certificate. The responsibility of a CA is to be
a trusted node that generates certificates signed by its own private key, which
nodes can use to enable trust among each other through verifying the CA’s
signature with the CA’s own certificate. The CA maintains a list of certificates
available so other nodes can get them. A revocation list may also be used if a
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node is compromised and can not be trusted before a certificate expiration is
due. The CA stores each issued certificate to allow nodes to request another
nodes certificate issued by the CA. Figure(2.1) shows the components of a PKI
with the steps of a node acquiring a certificate from a CA.

PKI is a hierarchical centralized model of trust. The root CA certificate (high-
est level trusted entity) is self signed.Otherwise a CAs certificate is issued and
signed by a higher level CA in the PKI. If we trust a CA, we also trust any
higher level CA in the PKI. Figure(2.2) shows a hierarchy of trusted entitys in
a PKI, the number specifies the trust level with 0 being the most trusted(root)
CA.

0CA

1CA1CA

2CA 2CA 2CA 2CA

Figure 2.2: Hierarchy of trust in a PKI

2.2.1 X509 CERTIFICATE

x.509 (v3) is a format standard for digital certificates described in RFC5280[5].
A certificate contains information about the identity of the owner(subject) and
identity of entity who generated and signed it (issuer). The issuer signs the
certificate with their own private key. Components defined in the x.509 speci-
fications are certificate authority (CA), registration authority (RA), end entity
(node, user/subject of certificates), certificate revocation list (CRL) issuer, and
repository (system that stores certificates and CRLs, and distributes these to
end entities). The purpose of the certificate is best described by directly quoting
the specifications[5].

“Users of a public key require confidence that the associated private
key is owned by the correct remote subject (person or system) with
which an encryption or digital signature mechanism will be used.
This confidence is obtained through the use of public key certificates,
which are data structures that bind public key values to subjects.
The binding is asserted by having a trusted CA digitally sign each
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certificate. The CA may base this assertion upon technical means
(a.k.a., proof of possession through a challenge- response protocol),
presentation of the private key, or on an assertion by the subject.
A certificate has a limited valid lifetime, which is indicated in its
signed contents. Because a certificate’s signature and timeliness can
be independently checked by a certificate-using client, certificates
can be distributed via untrusted communications and server systems,
and can be cached in unsecured storage in certificate-using systems.”

Certificates are used in a wide range of applications to enable trust and secure
communication. In this thesis we follow the x509 specification for certificates
and a hierarchical public-key infrastructure model.

2.2.2 PEM

Privacy Enhanced Mail (PEM)[8] is a base64 encoded file format used for x509
files. The format is based on a set of standards defined in [9]. The file is
prefixed with a ”–BEGIN ... —” and ends with a ” –END ... —” line. In
NOOP, asymmetric keys and certificates are encoded as PEM to be stored on
disk or represented in bytes format. When later referring to bytes representation
or serialized keys or certificates, the objects are encoded in the PEM format and
given as bytes.

2.3 NOOP

NOOP is an experimental platform for developing distributed applications. To
introduce type safety, interfaces, and a component model in Python, NOOP in-
troduces a type language and a way to apply typing to functions (and methods).
This type system is used to create interfaces and a software component model
for distributed applications. NOOP is designed to provide adaptive high-level
programming abstractions support the development of complex distributed ap-
plications. These high-level programming abstractions include support for a set
of security functions based on symmetric and public-key crypto systems.

NOOP provides features for type checking through the Signature decorator,
periodically running a method through the Activity module, communication
through sockets with tcp and ip modules, and crypto operations with asym-
metric, symmetric and certificate modues. The signature decorator allows us
to type safe method arguments, return values and exceptions. Along with type
checking NOOP introduces the types constructors opt, one and whatever. These
are used for the signature decorator to extend python types.

NOOP has a Timer module for timing the execution of a piece of code.
When the execution is finished the timer prints the result to a given output
(defaults to standard output i.e command line). In a previous project [4] we
extended the module to allow for multiple iterations to display not just a single
time of execution, but number of timed exectutions, average and total execution
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Table 2.1: NOOP extended types.

opt(t), optional value, of type t or no value.
one(t1, t2) one value of type t1, t2, . . . ., or tn.
whatever a value of any type.

Listing 2.1: Timing execution of code with NOOP

t imer = Timer ( )
with t imer ( ” foo bar” )

f oo ba r ( )
t imer . f i n i s h ( )

time. This was added with storing each timer call and a finish method to finalize
the timing. Listing(2.1) shows example usage of the timer module. The code
in the with statement is timed, the string argument given is a name to identify
what is being timed and accessing the timed data. The identifier (”foo bar” in
example) allows us to time multiple different executions with unique identifiers
before calling finish.

Socket communication is implemented in NOOP as the tcp and ip modules.
Ip provides an IPaddr class for managing host name, port, and other socket ar-
guments. While tcp implements the socket operations for accepting, connecting,
sending and receiving data built on the information provided by IPaddr. Com-
bined these allow for minimal socket management by the user. The tcp module
provides functions tcpsend and tcpreceive, these are called with an IPaddr ob-
ject and will setup the socket connection (or reuse if already opened). Example
of these functions are shown in Listing (2.2). Both functions sets the address as
the servers (host, port) pair. Data is sent as bytes, therefor must be encoded
before sending.

NOOP adds crypto operations built on the cryptography python package[7].
The implementation provides abstractions for easy to use crypto operations,
with default values to avoid detailed options such as key size and public ex-

Listing 2.2: NOOP tcpsend and tcpreceive

Server s i d e :
a = IPaddr ( node=<host>, port=4576)
msg = t cp r e c e i v e ( a ) . decode ( ” utf−8” )
tcpsend (a , ( ”Received : ” + msg) . encode ( ” utf−8” ) )

C l i en t s i d e :
a = IPaddr ( node=<host>, port=4576)
tcpsend (a , ”He l lo world ! ” . encode ( ” utf−8” ) )
msg = t cp r e c e i v e ( a ) . decode ( ” utf−8” )
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Listing 2.3: NOOP cryptography

New key :
pr ivkey = RSAPrivKey ( )
pubkey = pr ivkey . getpubkey ( )

From di sk :
pr ivkey = RSAPrivKey(pem=keybytes )
pubkey = pr ivkey . getpubkey ( )

Key ope ra t i on s :
c iphe r = pubkey . encrypt ( ” h e l l o world” . encode ( ) )
p l a i n = pr ivkey . decrypt ( c iphe r )

s i g = pr ivkey . s i gn ( c iphe r )
i f pubkey . v e r i f y ( s i g ) :

p r i n t ( ” v e r i f i e d ! ” )

ponent for keys, and padding schemes for key operations (encrypt, decrypt,
sign, verify). For symmetric encryption Advanced Encryption Standard (AES)
is implemented, and for asymmetric (or public-key) NOOP implements RSA.
These keys can be converted to a bytes format for storing on disk or for sharing.
Keys can be initialized from an existing key in bytes format or if no argument
given a new key is generated. We can also create an empty key class with a
nokey boolean flag when initializing. Data must be given in bytes format before
encrypting or decrypting.

2.4 SNOOP

SNOOP is an adaptive middleware for secure multi-party computations (SMC).
It combines support for secure multi-party computations, encryption, public key
infrastructure(PKI), certificates, and certificate authorities (CA). It is used to
perform statistical analysis of electronic health record(EHR) data. SNOOP is
a middleware built to support the constructions, deployment and execution of
applications performing statistical analysis of EHR data. It is an extension of
NOOP.

In SNOOP the distribution of work in an SMC is managed by a coordinator
node and a set of sub-processes. The coordinator generates a computing graph
for the SMC algorithm and each node in the graph is a sub-process. Each nodes
have an address and a unique public/private key pair.

8



Chapter 3

Design & Implementation

We design and implement a simple public key infrastructure (PKI) for secure
communication and sharing of data between nodes. The core functionality of
a PKI is generating and issuing trusted certificates. To do this we need secret
and public-key crypto functionality, node to node communication, and bytes
data management. This is realized by expanding the NOOP certificate module,
implementing a message format, and data management modules.

Table 3.1: Notation

{m} some bytes m
{mn} some bytes m belonging to node n

s{m} encrypt m with secret key(aes) s
{m}p encrypt m with public key(rsa) p
{m}n m signed by node n
{m}np m signed by node n, encrypted by p

A− > B : {m} send message containing m from A to B

3.1 SIMPLE PKI

We implement a simple PKI for managing and generating certificates, the CA
absorbs the responsibility of the RA. We do not require heavy authentication in
the context of our use of a PKI and we focus on the generation of certificates and
verification of the trusted CA’s signature. To implement the PKI we expand on
NOOPs crypto modules for certificates. We require the use of certificate sign
requests and certificates to share public keys. These will be shared between
nodes and must be serializable and deserializable. For our version of a simple
PKI we want to focus on session based verification of key ownership, certificates
that are valid for a short time. In our context a session is an execution of a SMC
protocol. We require that a node can act as a trusted CA through generating
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and signing certificates for other nodes, so that we can verify the certificate was
issued by the trusted CA using the CA’s own self signed certificate.

Node

Verify()

CRT CSR

Generate()CA

Figure 3.1: Simple public key infrastructure model

The CA must do some verification on a nodes credentials, we are not focus-
ing on the authentication part of a PKI so this is handled by verifying correct
message format and signed messages by a node. Communication is implemented
using NOOPs tcp and ip modules for socket operations and messages formatted
as JSON strings. Nodes communicating with each other will share their certifi-
cates, which they verify with the CAs certificate. Any message with a signature
not matching the public key from their certificate issued by the CA is discarded.
A node in our PKI is launched with a set address for the CA, this means that
any nodes communicating must have the same node set as a CA.

3.2 CERTIFICATE

We use certificates to share public keys and related information such as various
attributes (name, address, etc) about owner (subject) and node that generated
the certificate (issuer), expiration date, and a signature from the issuer private
key. This signature allows us to trust a certificate from an otherwise untrusted
node, by verifying the signature with the public key from the trusted nodes
certificate (which is usually self signed).

NOOP supports cryptography operations and encryption keys built on the
python cryptography[7] package. To implement certificate features we build on
existing NOOP modules, and add certificates as a module in the NOOP pack-
age. The module implements x509 digital certificates for RSA keys only. The
module features certificate sign request (CSR) and certificate (CRT) objects,
and methods for generating, representing the objects as bytes, and verifying
signatures.

Both CSR and CRT inherit a base class for shared functionality and static
variables, and are initialized with the same parameters. All paremeters are
optional, however methods may fail unless certain variables are set. CSR requres
subject name attributes while CRT additionally require issuer name attributes.
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CSR is generated with a private key, and CRT is generated with a public key.
Parameters include key, subject, issuer and pem. If pem is given as parameter
the other fields are irrelevant as they will be loaded from the pem bytes.

Subject and issuer contains name attributes and is an object of the class
x509.name from the cryptography[7] package. The certificate module includes
a helper function set x509 name to simplify generating these name attributes.
Attributes include:

COUNTRYNAME,
STATE OR PROVINCE NAME,
LOCALITY NAME,
ORGANIZATIONNAME,
COMMONNAME.

This helper function has default values set if no parameters are passed or if a
default parameter is set to True. The attributes tells us information about the
certificate subject and issuer. COMMON NAME represents the host name of
the certificate owner and should match the host address, e.g ”localhost.com”.
For the CSR class key is of type RSAPrivateKey, and only subject is necessary
to generate the CSR. For Cert, key is of type RSAPublicKey, both subject and
issuer are necessary to generate the certificate. To generate the certificate a
RSAPrivateKey needs to be given, this key should belong to the issuer. The
key given for a CSR is a private key as the CSR is self signed when generated
and the associated public key stored in the CSR. Unlike a certificate where the
private key signing does not need to be associated with the certificates public
key.
To use the certificate module, we first need an RSA keypair.

Listing 3.1: RSA keys

pr ivkey = RSAPrivKey ( )
pubkey = pr ivkey . getpubkey ( )

We can then set up and generate the certificate or csr object.

Listing 3.2: Certificate generation

c s r = CSR( sub j e c t=subject , key=pr ivkey )
c s r . generate ( )

c r t = Cert ( sub j e c t=subject , i s s u e r=i s su e r , key=pubkey )
c r t . generate ( pr ivatekey )

Listing(3.3) shows how to get bytes representation of the objects, and how to
load the objects from bytes. These methods are necessary when sharing CRT
and CSR data with other nodes.

Listing 3.3: Certificate bytes

c s rby t e s = bytes ( c s r )
c r tby t e s = bytes ( c r t )
c s r = CSR(pem = cs rby t e s )
c r t = Cert (pem = ce r tby t e s )
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Public keys stored in a certificate can be accessed from the key variable or
getkey method. The key variable holds an RSAPrivateKey object from the
cryptography package and getkey method returns a NOOP RSAPrivKey object.
Verifying a certificates signature is done by giving a RSA private key. This
separation of key object types is a design choice as the certificate object makes
no use of the NOOP RSA key object methods, but when extracting the public
key from the certificate we want to perform encrypt and verify operations from
the NOOP implemtation. The general use is therefor the getkey method when
extracting a public key from a certificate. Example in Listing(3.4) shows using
keys and verifying a signature using a CA certificate public key.

Listing 3.4: Certificate public key

pubkey = CAcrt . key
pubkey = CAcrt . getkey ( )
i f c r t . v e r i f y ( pubkey )

p r i n t ” v e r i f i e d ! ”

3.3 MESSAGE

The message module provides methods for building, loading, signing and ver-
ifying messages. A message is built as a JSON formatted string. One of the
goals when designing a message format, was for it to be to easy expand on. A
JSON formatted string is easy to read for humans, which is useful for debugging,
it is easy to generate and parse, and it is simple to add new fields to the message.

Below is a sample message showing the various fields used and their expected
data type.

msg = {
”message” : {

”meta” :
{
”method” : s t r ,
” args ” : s t r ,
” id ” : s t r ,
”message id ” : int ,
” timestamp” : s t r ,
” payload type ” : s t r ( type ( payload ) ) ,
” ext ra ” : whatever
} ,

” payload” : one ( s t r , bytes )
}

” s i gna tu r e ” : s t r
}

A message consists of two primary fields meta and payload. The payload can
be of any type support by python JSON, if the type is byte the payload must
be encoded to work with JSON. In this implementation we convert the bytes
to a hex string. The payload type is added to the meta field so the recipient
knows how to handle the payload, and which conversion (if any) is required.
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Meta fields consists of method, args, id, message id, and extras. Timestamp
is an automatic field set when the message is built, it is a string generated from
date and time. Method is a string identifier for the message type, an example
message type in our PKI implementation for requesting another nodes certificate
is ”get/crt”. Args is a string of additional optional arguments. There are two
fields for identification, one for the message sender and one for the message
itself. Message sender means the node that generates the message, and will be
the nodes id. Message id is optional and can be used if message numbering is
required. Extras is a field to put any other additional metadata, the type must
be compatible with JSON. Extra meta data can for example be information
about file contents when sharing a file, such as size and name.

The message string is signed when building the message if a private key
is given, and the signature is encoded and added to the message (see above
example format). If no key is given the signature field will be empty. We sign
the entire message string to ensure validity of the message. To accomplish this
we must first build the message JSON string, encode it as bytes to sign it, and
build a new JSON string with the message and signature.
Listing(3.5) is an example of how we use the module when building and loading
a message.

Listing 3.5: Message usage

Bui ld ing a message
m = Message ( key=pr ivatekey , i d e n t i f i e r=”node 1” )
msg = m. bu i ld ( ” post ” , ” h e l l o world” )

Loading a message
m = Message ( )
payload = m. load (msg)
i f m. v e r i f y ( pubkey ) == True

do something

As can be seen above, loading a message returns the payload. All base fields can
be reached from same name variables in the message object, such as m.id,m.args,m.extra
and so on. When verifying the signed message we need to ensure the string we
verify is identical to the string signed. As our message is built with a nested
JSON string, loading requires two JSON load calls. One for the full message
and one for the nested message containing meta and payload. We found the
multiple load calls necessary as the message field was represented as a string
rather than a dictionary when loading once.

3.4 BLOB

Blob is a bytes data management module designed to simplify encrypting and
decrypting any size data. Data can exist on disk or in memory, and we want
blob operations to work seamlessly regardless of size of data or where it exists.
The module features operations for storing, loading, encrypting and decrypting
bytes. In a blob, data is stored in memory or on disk depending on initial
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parameters and size of data. A blob object points to this data, with a variable(in
memory) or a file path(on disk), operations on the blob does work on the data
the blob points to. We treat all data pointed to as bytes. A blob can be
initialized with bytes data, path, and a secret key (AES), as well as boolean
variables ondisk and clean. If ondisk is true, we store data on disk (this is true
by default), and if false we keep it in memory. If clean is set true, we remove old
files after encrypt and decrypt operations (default is false). If no path is given
and we store data on disk, a random name is generated where we will store the
data. A user of a blob is responsible for management and any file stored on
disk (even from random generated name) will exist until a blob delete method
is called.

Blob.set() is a method used to update the blob content and info, where all
parameters are optional. Any excluded parameters are ignored in the update.
This method is called when initializing the object and after encrypt and decrypt
operations. It can also be manually called to set update info, set a new key, or
even reuse the object for new data. If path is given we point the blob to the
new path and generate any directories if necessary, if data is given we overwrite
the data of the blob. Size of data the blob points to and a exists tag is also set.
Blob operations can not function if data does not exist. Set can also be used
to update the blobs secret key, with either the key bytes or an instance of the
NOOP AESKey class.

3.4.1 FILE I/O

Blob has methods for loading and storing data, which can also be done on a
partial pieces of the data with store part and load part methods. Working on
parts of data are useful when dealing with large files where we can not hold it
all in memory at once or when we cant work on too large data, such as when
encrypting and decrypting, or sending bytes to another node. We load or store
a part by the parameters pos or n, and size. pos is the specific byte position to
start from, n is the n’th chunk of bytes in the data, size is the size in bytes to
store or load. The size of a chunk is determined by a blob variable chunksize
if the size parameter is not given. All parameters for loading and storing are
optional, but one of pos or n is required for it to work.
The example in Listing(3.6) shows two ways of working on parts of blob data.
Both examples copies blob data back to the same file on disk, essentially doing
nothing.

Listing 3.6: Blob partial data

f o r n in range ( blob . chunks ) :
part = blob . l oad pa r t (n=n)
blob . s t o r e p a r t ( data , n=n)

f o r pos in range (0 , blob . s i z e , chunks ize )
part = blob . l oad pa r t ( pos = pos , s i z e=chunks ize )
blob . s t o r e p a r t ( data , pos = pos )
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3.4.2 ENCRYPT & DECRYPT

Encrypt and Decrypt methods were adapted from a previous capstone project[4]
where we implemented a model for end-to-end encryption of cloud storage data.
We encrypt or decrypt data by loading a set limit of data at a time defined by a
chunksize variable, and append the result to an output. For files the output is a
same name file with an added (encrypt) or removed (decrypt) ”.AES” extension,
for data in memory we discard the input data with the output.
Examples:

Listing 3.7: Blob usage

Data on d i sk
blob = Blob ( path=” foobar . txt ” , c l ean=True )
blob . encrypt ( )
blob . decrypt ( )

Data in memory
blob = Blob ( data=b” h e l l o world” , ondisk=False )
blob . encrypt ( )
c iphe r = blob . load ( )
blob . decrypt ( )
p l a i n = blob . load ( )

When a blob is encrypted or decrypted, the blob points to the new data. For
crypto operations we can give an optional output path. If a file already exists
on the output file path a number is added next to the file name, e.g ”lorem.txt”
becomes ”lorem(1).txt”

When a blobs use if expended, we can call a delete method. This will remove
the file from disk and empty the blobs path to clean blob variables. We have
a flag clean, where if false will not remove the file from disk when delete is
called. This is useful when iterating a list of blobs but some might be files you
do not want removed, such as blobs initialized from disk file paths, while blobs
initialized from bytes with a random generated name stored on disk should most
likely be removed.

3.5 COMMUNICATION

NOOP implements a tcp socket module, this module is however limited to a
single socket connection per host/port pair and does not support concurrent
sockets. While this is sufficient in many cases for communication, we want the
ability to concurrently receive messages from multiple nodes. This has been
implemented to work with our node message handling. We want an address
connecting to a remote address to function as before, only one socket handle
is required on an outgoing connection. For incoming connections we want to
handle all connections even if some are still open. We also want to ensure that
any code previously written using TCPsocket module will not be affected by
the changes.
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3.5.1 SOCKET

NOOP TCPsocket implements bind, listen and accept as a single accept method
that closes the listening socket after a connection has been accepted. To handle
concurrent connections we re implement the accept method to not close listening
socket after each accepting a connection. Accept will attempt to accept the first
valid connection similar to the old implementation and return an instance of a
new TCPcon class. This class contains an id and a socket handle for receiving
or sending.

Listing 3.8: TCPsocket usage

Old :
s = TCPsocket ( addr )
s . accept ( )
m = s . r e c e i v e ( )
s . send ( ” h e l l o world” . encode ( ) )

New:
s = TCPsocket ( addr )
con = s . accept ( )
m = con . r e c e i v e ( )
con . send ( ” h e l l o world” . encode ( ) )

3.5.2 SERVER

We also implement a TCPserver class using the updated TCPsocket with TCP-
con. The server is started in a thread, and each accepted connection is threaded
for concurrency. The accepted connection is passed to a thread to receive the
initial message, before being forwarded to a handler method. The handler is
called with the received message and TCPcon given as an arguments. When
the handler is complete we close the socket and remove the TCPcon. A server
is launched with an IPaddr and a handler method, with an optional int n for
number of connections accepted before shutting down. Server stop can be called
before the number of accepts have been reached.

Listing 3.9: TCPserver usage

s e r v e r = TCPserver ( add=adr , handler=handler method )
s e r v e r . s t a r t (n=10)
s e r v e r . stop ( )

The server thread can be stuck on waiting to accept a connection. If a call
to stop the server is made the server will wait for one more connection to be
established before shutting down. To handle this we implement a timeout. If a
connection is not established within a timeout t, the server loop continues and if
a shutdown is called we break the loop and join the remaining handler threads.

The sample code in Listing(3.10) shows how a server thread operates to
handle concurrent connections and a timeout for graceful shutdown of the server.
A timeout float value is set and if a connection is not established in this time we
jump to the next iteration of the loop. When we finish using a node, we can call
a clean method for shutting down the server, removing certificates and blobs.
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Listing 3.10: TCPserver loop

s = TCPsocket ( addr )
s e l f . running = True
i=0
whi l e s e l f . running :

i f i>=s e l f . n and s e l f . n != 0 :
break

try :
con = s . accept ( timeout =1.0)

except TimeoutError :
cont inue

t = thread ing . Thread ( t a r g e t=s e l f . r e c e i v e , a rgs=(
con ) )

t . s t a r t ( )
i = i + 1

This will call a server shutdown on the node, a delete on the nodes tcpsocket to
close all open sockets, and a delete on all blob objects for certificates and blobs.
Python garbage collection should take care of closing remaining sockets, but we
still do it when cleaning the node in case of errors.

3.6 NODE

A node is a sub-process that is part of a network with a unique private/public
key pair and certificate. The module provides node to node communication
methods for securely sharing certificates and data. The features provided by
the Node are implemented using the NOOPs crypto and tcp/ip modules, and
the message and blob modules described above. It is designed with the intention
of designing specific node types extending the functionality, such as handlers for
more messages, and doing work on received blob data. The node does not keep
track of other nodes itself.

Each node has a unique identifier. This is used to name data about the node,
such as certificates. We get the identifier by hashing the string representation
of the nodes ip/port pair, this has the benefit of checking for an existing certifi-
cate before an operation. As those attributes are unique to a node, it ensures
the identifier is also unique. The identifier is included in every message and
allows recipient node to look up the certificate if it exists locally, then do some
encryption or verification of signature.

A node has a host name, port, RSA keypair, an optional certificate, optional
path, a list of blobs for this node, and a list of certificates(as blobs) shared with
this node. A certificate is required to communicate with other nodes, apart from
receiving their certificates. Path is the nodes root where it stores any blobs, this
root path is set as the nodes identifier if not given. The node message server
can be run for a set number of messages received, if not given will run until a
stop is called.
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Listing(3.11) is an example of two nodes where one requests the certificate of
another, the server expects one message and will stop after it is received.

Listing 3.11: Nodes

L i s t en ing node
node = Node ( host=” l o c a l h o s t ” , port=4576)
node . s e r v e r run (n=1)

Request ing node
node = Node ( host=” l o c a l h o s t ” , port=4578)
adr = IPaddr ( node=” l o c a l h o s t ” , port=4576)
node . g e t c e r t i f i c a t e ( adr )

The module is designed with basic features that any entity of a multi-party
computation requires with the intention of expanding additional features for
specifics node types, such as CA or RA nodes, or the coordinator node from [2].
Additional features may include certificate revocation lists and certificate sign
request authentication of the subjects credentials. In our base node a certificate
sign request is accepted if the request message is signed with the private key
associated with the attached public key.

3.6.1 MESSAGE HANDLING

Table 3.2: Message types

get/crt Get certificate from node.
get/csr Get a new certificate generated and signed by node.
post/crt Post own certificate to node.
post/blob Post a blob to node.

When receiving a message a handler is called by removing non a-Z characters
from the message method field, and calling a function node.handle method. for
example ”get/crt” handler would be node.handle getcrt. A message handler
takes the message string as input, aswell as the socket handle for the connection,
the handle is required as some methods use multiple messages to and from a
node to complete. The node method on the sender side is implemented with
try, except, finally. We first try to establish a connection, build and send the
message, then receive response (if any, or multiple), if any exception is raised
we abort execution. In the finally clause we clean up and close the connection
to recipient node. Default message types handled by the base Node are shown
in Table(3.2).
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3.6.2 SHARING CERTIFICATE

The first step to securely share a blob, is to exchange node public keys. Public
keys are store in certificates, so we send a request for the nodes certificate. We
use the message module to build a request. To share certificate with a node
we send a post/crt. To get a nodes certificate we send a get/crt, the response
message will then contain the nodes certificate.

Get certificate can also function as a certificate exchange. The get/crt mes-
sage payload can be empty or contain a certificate, the message signature is
verified with the attached certificate. This saves us from building, sending and
handling an additional message for posting a nodes certificate when preparing
for securely sharing data. For clarity we separate the exchange into post and
get certificate when describing operations.

Table 3.3: Operations for get certificate.

n1− > n2 : {m}n1 message m signed by n
n2− > n1 : {r, crt2}n2 response containing certificate signed by n

Table 3.4: Operations for post certificate.

n1− > n2 : {crtn2
}n1 m signed by n

Requests for a certificate in a nodes list of certificates can be sent if the
receiving node is acting as a CA. This is similar to getting the nodes certificate
except the message contains args for node id. The handler will look up the
certificate with that node id in their list of certificates and return that instead
of their own. If the certificate is not found we return an error response instead.

3.6.3 CERTIFICATE FROM SIGN REQUEST

If node n1 wants a certificate signed by a another node n2, usually a CA, we
use the message method ”get/csr”. Node n1 generates a certificate sign request
containing subject name attributes about n1 and a public key . Node n2 will
then generate a certificate based on this info and sign it with their own private
key. This means that any node can function as a certificate authority, along
with the issuing nodes certificate we can verify the certificate was generated by
a specific node or CA.

Table(3.5) shows the messages for sending a certificate sign request from
node n1 and generating a certificate signed by node n2.
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Table 3.5: Operations for get certificate sign request

n1− > n2 : {m, csrn1
}n1 send sign request from node 1 to node 2

n2− > n1 : {m, crtn2
n1
}n2 return message with node 1 certificate signed by node 2

3.6.4 SHARING BLOB

When sharing a blob we first send share request which contains information
about the blob, such as encryption key, blob name, and blob size. The secret
key is encrypted and sent as the message payload, blob name and size are added
to the message extra field. If the blob share request is accepted the next message
will be the encrypted blob bytes. On the receiving end the bytes are then written
to disk and the blob is added to the nodes’ list of blobs. The key is decrypted
using the nodes own private key, we set it as the blobs key and it can now be
decrypted.

Table 3.6: Operations for post blob.

n1− > n2 : {m, {s}p2}n1 message with secret key s encrypted by node 2 public key
n2− > n1 : {r}n2 response message signed by node 2
n1− > n2 : {b}s blob bytes encrypted by secret key

3.7 TEST APPLICATIONS

With these core modules we can now design example applications that builds
on our implementation to achieve secure data sharing between nodes. When
implementing test applications using our modules, it is important to keep in
mind blob functionality with what we store on disk and where we store it.
As you usually will do multiple executions of the same tests which with each
execution will store data either in the form of some bytes or certificates, we
should clean up any on disk blobs after each execution. While certificates will
be overwritten, they should still be removed as if any operation fails during
generation or sharing of certificates, it still exists which can (but should not)
lead to any unwanted behavior where the nodes old public key from previous
execution will not match their new private key.

3.7.1 SHARING DATA BETWEEN NODES

If we have 3 nodes {n1, n2, n3}, and n1 wants to share some data {d} with the
other nodes. n1 must then make a post call for each node it will share data
with. Sharing data requires the recipient nodes to have their servers running to
accept messages. The sender must have the certificates of each recipient nodes
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(to encrypt the secret key used), and the recipients must have the senders cer-
tificate(to verify message signature).

Listing 3.12: Share data multiple nodes

node = Node ( host , port )
node . g e t c s r (CAaddr)
f o r n in nodes :

node . g e t c e r t i f i c a t e (n)
node . p o s t c e r t i f i c a t e (n)
node . pos t b lob (n)

3.7.2 SECURE MULTI-PARTY COMPUTATION

Using these modules we can implement secure multi party computation pro-
tocols. The nodes share keys through certificates and encrypts data shared
between nodes. Data is sent as bytes and the user must control converting data
type between nodes. We begin with an example where we have multiple worker
(participant) nodes and a trusted third party CA node to issue certificates and
compute the function, this example follows the ideal SMC model mentioned
earlier. The worker nodes communicate their input to the trusted CA node to
compute a function of the combined inputs. This is a simple example to show-
case how our PKI and data management design can support a setup for securely
sharing data in a network of nodes. Simply put each node provides input, and
must receive final output.

Figure(3.2) visualize the example with 5 participant nodes, the lines and ar-
rows represent the direction of which node establish communication (we do
expect messages in return). We can see that no participant nodes communicate
with each other, and the trusted node is the only node to receive data. This
preserves the privacy of input for participants.

First we launch a node that acts as certificate authority. The CA node gen-
erates a self signed certificate, and starts a server to listen for messages. We
then launch the worker nodes that will compute something on combined input.
Each worker node must do the following operations as shown in Listing (3.13)
and the trusted CA node shown in Listing(3.14). First we generate a certificate
sign request which we send to the CA node to get a certificate signed by the CA.
In this example we could create self-signed certificates instead of requiring the
CA to generate them, as each node only communicates with the CA anyway.
But to show how it would be used in a real SMC implementation that makes
use of a PKI we still do it here.
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Figure 3.2: CA and participant nodes in ideal model

Listing 3.13: Setup certificates

CAcrt = node . g e t c e r t i f i c a t e (CAaddr)
node . g e t c s r (CAaddr , sub j e c t )
node . s e r v e r s t a r t ( )
node . pos t b lob (CAaddr , CAcrt , input )
whi l e l en ( node . b lobs ) < 1 :

#wait f o r r e s u l t
r e s u l t = node . b lobs . pop ( )

The trusted CA node must then wait until it receives data from participants
before it can continue, in our example we loop until the length of the list of blobs
is non zero. We can then pop a it from the list. Depending on the function to
compute we either wait for all inputs or do part of the computation whenever
input is received. In this example each participants input is a number, and the
output is the sum of all inputs. Therefor we do not need to wait until all inputs
are received. We convert received data to correct data type and add it to the
total sum, this is repeated until we reach the expected amount of inputs.
After the sum is computed we share the result with each participant node.

Listing 3.14: Trusted third party

f o r i in range (0 , n )
whi l e l en ( ca . b lobs ) < 1 :

#wait f o r input
blob = ca . b lobs . pop ( )
data = from bytes ( blob . load ( ) )
r e s u l t = r e s u l t + do something ( data )

f o r node in pa r t i c i p an t s :
ca . po s t b lob ( node , nodecrt , r e s u l t )

This example shows that our implementation enables securely sharing data be-
tween nodes. Expanding on this we can design systems for managing nodes and
distribution of work to preserve the privacy of any nodes input in a real model
SMC protocol with no trusted third party node.
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Chapter 4

Evaluation

With our design implemented and test applications to show it works as intended,
we can now evaluate the performance and correctness. First we look at the
system as a whole and then separate the components for individual testing. In
capstone project[4] we did a benchmark of NOOP crypto operations and we
will refer to those results when discussing performance. All tests are ran on a
single machine using python 3.7. The machine runs Windows 10 educational
64-bit operating system, with i5-9400 2.9GHz CPU and 16gb RAM. Each node
is launched as a thread with a unique port and name to avoid collision of node
identifiers and server sockets. Any benchmark or timed execution is done using
NOOPs Timer module.

4.1 PERFORMANCE

Our design revolves around nodes and node operations, and we want to eval-
uate the performance of these nodes. To benchmark the nodes performance
we separate tests into the receiving node and sending node. On the receiving
end we benchmark the node servers request handling, on the sending side we
benchmark the node operations. There are some factors we can disregard, or
are limited by based on design choices for implementing certain features (such
as standard python modules). We communicate through python sockets and we
are not concerned with the transfer speed of the network and socket. We also
work with file io for blob management, which although appears non existant
to the user, is still a factor in performance of the system. What we mainly
want to evaluate with performance is the overhead of our design with additional
execution time and memory usage.

4.1.1 TCPSERVER

The node server is built with NOOPs tcp sockets, and each connection is han-
dled in a separate thread. Our performance is therefor limited by pythons socket
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and thread implementation. Each thread handling a request may also open files
for reading/writing through the use of blobs, file operations are limited by op-
erating systems. Blobs are implemented to not keep file handles open for more
than each method call (load, store). In the context of our usage with PKI and
SMC we should not hit these limitations until we use a high number of nodes
simultaneously connecting to a single node (e.g CA), or when running a high
number of nodes as threads on a single machine. New blobs on each node are
stored in a separate directory for that node only, so blobs should not perform
file operations on the same file simultaneously. The only case would be if two
or more nodes on the same machine initializes a blob from a file in a shared
directory, and operates on the blob content simultaneously.

To find a rough reference number where we hit the limitation on number of
nodes for our system we run a PKI test where we launch 1 CA node and n
worker nodes, this is essentially a test to find the number of concurrent con-
nections supported by our TCPserver implementation. The worker nodes all
generate a CSR and requests a certificate from the CA. Each worker node per-
forms the operations get/crt (to receive CAs certificate) and get/csr (to get
a certificate generated by the CA). We incrementally increase the number of
worker nodes n until failure to find the limitations of our implementation.

Listing 4.1: PKI test

de f t e s t ( ) :
n = 150
CAnode = Node ( host , port )
CAnode . s e r v e r s t a r t ( )

f o r i in range (1 , n+1) :
t = thread . Threading ( t a r g e t=worker , a rgs=(host ,

port+i , CAnode . addr ) )
t . s t a r t ( )

time . s l e e p (10)
CAnode . s e r v e r s t op ( )

de f worker ( host , port , CAaddr) :
node = Node ( host , port )
node . g e t c s r (CAaddr)
node . g e t c e r t i f i c a t e (CAaddr)

With up to n = 150 worker nodes the test runs smoothly with no errors or
warnings, with n > 150 we start getting warnings from the NOOP tcp module,
the warning tells us that more than one connection is available to be accepted,
we found this warning to be a non issue. With this amount of nodes there is a
queue for accepting socket connections and the first valid connection is accepted
(next connection in queue will be accepted next server iteration). With n = 200
we find that connections are being rejected, this is likely because the default
number of sockets allowed to queue is set to 1 in NOOPs tcp socket implemen-
tation. This is confirmed by increasing the queue number on the TCPservers
accept call from default(1) to 10, and we find that this allows us to successfully
run the test with up to n = 300.
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In our example of the ideal model SMC, we can handle as many number of
participants as a single node can take simultaneous requests from, as described
above. The limitation of the number of participants we can support in a SMC
comes from node communication. To allow for more participants we would have
to spread out the timing of requests.

4.1.2 BLOB

When working with potentially large files for encrypting and decrypting it is not
always feasible to hold the entire file in memory at once, especially if multiple
nodes run on the same machine. This means that depending on file size we
often work on parts of the file at a time. When working with parts of a file, we
need to decide on the size of this part. In [4] we found that the performance
when working with bytes in python depends on the size of data. Execution time
when reading and encrypting bytes varies based on size. This directly affects
our blob implementation as we (mainly) store data on disk, and read before
encrypting/decrypting this data.

A Graph for these results are shown in Figure (4.1). We measure the time
(in seconds) to read and encrypt a file. The X axis shows the chunk size of
data we work on at a time(part of total size) and Y axis is time to perform
the operation (in seconds). We re-do the test from [4] on python read and
NOOP encrypt method with a larger range of chunk sizes, with size ranging
from 210 to 228 (1 Kilobyte to entire file) , we ran the test with various file
sizes and all showed the same results. The encrypt method in blob will both
read and encrypt data. We do not time the execution of the blob methods, but
the execution of operations in the blob methods. Code example in listing(4.2)
shows the separation of operations and timing of execution using NOOPs timer
module.

Listing 4.2: Timed execution of Blob operations

f = open ( ” p a t h t o f i l e ” , ” rb” )
key = AESKey( )
t imer = Timer ( )
with t imer ( ” f i l e read ” ) :

data = f . read (SIZE)
with t imer ( ” encrypt data” ) :

c iphe r = key . encrypt ( data )
t imer . f i n i s h ( )

The graph displays peaks in performance with the same chunk size for both
file sizes, this tells us that the optimal (at least on our system) chunk size with
any file is between 216 = 64KB and 218 = 256KB. Interestingly as both read
and encryption operations follow the same curve, while one reads from disk and
one from memory. From this we can tell that the performance is limited by how
python manages bytes, and not by the operating systems file I/O.
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Figure 4.1: Blob operation performance with varying chunk size

Blobs are implemented to not keep file handles open outside methods calls,
e.g load/store. This was done for multiple reasons; First is the potential of a
large amount of blobs active on a single system. The operating system limits the
total number of file handles open at a time, and with potentially multiple nodes
with multiple blobs on a single machine at a time this becomes an issue. Second,
multiple nodes on a single machine can potentially set a blob with the same path.
This is however a user concern as we do not lock a path to an initialized blob,
but we aim to avoid any I/O conflict in our blob implementation. This design
has the side effect of performance when using load and store part methods.
For each call we open a file handle and seek to the position given by method
arguments. On method call we seek from start of file, instead of continuing
where we last read from ( and potentially avoiding seek ).
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Chapter 5

Discussion

We have designed and implemented tools for a simple PKI enabling secure
sharing of data in the context of multi-party computations. We have shown
that we can use the tools to implement SMC protocols that preserve privacy for
parties involved.

With the node module we provide abstractions for communication and data
sharing. Our goal was to provide methods for securely sharing data between
nodes with minimal effort of the user. The user of the node need only provide
a host, port and subject attributes (which we could base of host name if not
provided) to use a PKI or to share data. With this design we can fully focus on
the real implementation of an SMC protocol, or any other system using secure
sharing of data.

Communication is done with NOOP tcp module for sockets. tcp provides the
tcpsend and tcpreceive functions only requiring an address. We found that these
were limiting performance as they store opened sockets in a dictionary requiring
lookup in each function call. These functions are not designed to be used with a
high number of nodes and multiple simultaneous open connections, but for quick
and simple communication. In our design we opted for working directly with
the socket classes and implementing a server rather than the provided functions
to maintain full control over connections for communication and cleanup. This
proved crucial when running multiple nodes on a single machine and to scale
the design to handle higher number of concurrent connections, where the lists
of open connections can take long to search.
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5.1 OPTIMIZATION

There are some clear areas in our design that can be optimized. For clarity we
implemented certain operations as separate rather than as a single programming
abstraction(sharing blob). Receiving and accessing a blob is also implemented
in an inconvenient way for the user of our tools.

In our communication implementation with sockets there are some areas we
can optimize with increased robustness.

5.1.1 ABSTRACTIONS

When discussing the performance of a protocol in a distributed system, an im-
portant factor is number of messages required to complete an operation. In our
design we set up secure communication by generating and exchanging certifi-
cates. For each node a certificate is generated, and for each recipient certificates
are exchanged. These operations are only required one time (unless certificate is
revoked or expired). When sharing data the operation requires three messages;
sending request, receiving response, sending actual data. For correctness we
should also send a response if the blob was successfully received, however this
is not implemented.

Generate certificate, exchange certificates, and share blob operations are also
not done on the same connection. For each operation we connect the socket,
send, and close the socket. This was intentional for the purpose of designing
and implementing these operations for a clear separation of the steps required
to establish secure communication. It does have clear potential for optimiza-
tion. In a single method we can check if our own certificate exists (if not, get
it generated/issued), check if we have recipient nodes certificate (if not, ask for
it), and send our own certificate along with the share blob request message.
This abstraction would hide the use of certificates from a user of our tools, and

Listing 5.1: Abstraction of share operation

de f share ( data , nodeAddr )
i f not s e l f . c e r t i f i c a t e :

s e l f . c e r t i f i c a t e = s e l f . g en c s r (CAaddr)
i f not node c r t :

nodeCrt = s e l f . g e t c r t ( nodeAddr )
s e l f . po s t b lob ( data )

only require us to establish one connection to achieve secure sharing of data.
The only requirements to setup secure communication would be initializing the
node object with address and port(and optionally CA address), and provide
the recipient nodes address. If no CA address exists in a node object we can
assume that we generate self signed certificate instead, this could however be
a security risk without proper authentication. To complete these operations as
one we would need to re implement the node methods to not close the opened
socket for both sending and receiving.
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When receiving and accessing a blob, the current solution without added ab-
straction is to loop until length of the node blob list is a certain length. For
added programming abstraction we can add this to a node method. Example in

Listing 5.2: Abstraction of receive blobs

de f r e c e i v e (num: i n t ) −> l i s t :
s e l f . s e r v e r s t a r t ( )
b lobs = [ ]
i = 0
f o r i in range (0 , num)

whi l e l en ( s e l f . b lobs < 1)
#wait

b = s e l f . b lobs . pop ( )
b lobs . append (b)

s e l f . s e r v e r s t op ( )

re turn blobs

Listing(5.2) shows how we can implement a method for receiving a fixed num-
ber of blobs. The method returns a list of blobs. Wait is usually implemented
with a time.sleep to preserve processing usage. The example method starts and
stops a server to only receive the specified number of blobs. We can also add a
timeout in the case of failure at other nodes we expect to receive from.

5.1.2 ENCRYPTION OPERATIONS

In a previous project[4] we implemented bundling of encrypted secret keys for
multiple recipients in the same operation. First encrypting some data s{d} with
secret key s, then encrypting s with each recipient nodes public key {s}pn . We
can adopt this in our design. We add a list (with node id as key) of these
encrypted secret keys to the post blob message, replacing the single secret key
payload with the list of secret keys as the payload. Each node would then find
the secret key encrypted by their public key by their node id.

Another solution is to instead build a new message for each recipient to
maintain the single key payload, this would keep the recipient parsing process
the same as if it is the only receiving node of this data. While this method
would increase amount of data transferred for a post blob by increasing the
size of the message, it would significantly reduce the number of encryption
operations required for the sender node as we only use one secret key, this is
especially relevant for large files. This approach is useful when sharing results of
an SMC where there might be multiple recipient of the same data. Listing(5.3)
shows how these encrypted secret keys would be bundled in a single message,
the same message would be sent to each recipient. The example is reduced to
only showing the message field names, not the contents.

Listing 5.3: Secret key bundling for multiple recipients of same Blob
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msg = {
”message” : {

”meta” :{} ,
” payload” : {

”node 1” : ,
” node 2” : ,
” node 3” :
}

}
” s i gna tu r e ”
}

In our example test application of an ideal SMC protocol, the input of each
participant is an integer. The input of a participant can be any data type. We
can provide some support for this when sharing data through the use of NOOPs
one type. The input argument for share blob can then be one of the types set
in the function definition. If type of data given is not bytes we can perform
some conversion or encoding. The type of the blob data must then be added
to the post message to handle conversion on the recipient side back to original
data type. We could implement this support for standard data types (int, float,
string) or objects with a bytes method.

5.1.3 SOCKET

If we find the limit in our implementation for concurrent socket connections to
be insufficient, we can redesign our communication methods to try again should
a connection be rejected by the remote node. The throughput of a socket server
would remain the same but this would allow us to manage a higher number of
clients without failure.

5.2 PKI

In our simple PKI trust is built between nodes from a shared trusted node. Our
PKI follows a centralized hierarchical model of trust. Public keys are shared
through public-key certificates signed and issued by the trusted node. The
trusted node is in a higher level in the hierarchy or trust. In our implementa-
tion there is only one level of trusted nodes, the certificate authority as a root
node in the PKI, the root node generates a self signed certificate with itself as
both subject and issuer. Secret keys are shared by encrypting the secret key
with recipient nodes public key. A new secret key is generated for every blob
shared. Certificates are stored on disk in the PEM format when not in use.
Asymmetric key pairs are generated (or loaded from disk) when initializing a
new node.

Another model of trust is the decentralized web of trust used in the pretty
good privacy (PGP)[22] software developed by Phil Zimmerman. As there is
no central trusted node each node have to choose who they trust. Each node
builds a collection of signatures from trusted nodes who vouch for the validity of
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Figure 5.1: Web of trust

a node, building indirect trust in a web of nodes, this grows into a web of trust.
Figure(5.1) shows a web with direct and indirect trust displayed as directed
lines. Green lines means trust and yellow lines means indirect trust. Compared
to the hierarchical model from Figure(2.2) where one node (CA) signs a nodes
certificate, the web of trust has potentially multiple signatures to vouch for the
trust of a node.

In the context of building trust for participating nodes in a single execution
of a SMC protocol, it makes sense to use a shared trusted node and a central-
ized model. When all nodes in a network are mutually untrusted, there is no
initial trust to begin building a web of trust.

5.3 SECURITY & PRIVACY

We provide secure communication through the use of public-key cryptography.
Public keys are stored and shared through certificates. Certificates are trusted
by verifying the signature of the certificate, signed with the issuers private key.
The issuer is a trusted entity in a PKI. We do not perform extensive authentica-
tion on the entity requesting a certificate from the CA, apart from verifying the
signature of the request message. While any data shared is encrypted between
nodes, any node can receive a signed certificate and any node with a signed
certificate (by shared CA) can share blob with other nodes. We also sign the
full message when communicating, this provides security from injected messages
by malicious adversaries. Secret key and blob data is encrypted before sent to
another node, providing security from eavesdroppers. Message fields and cer-
tificates are not encrypted for transmission. Message fields should not contain
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any sensitive information. In our implementation we include original file name
and file size in the message, changing the file name is a non issue as the primary
purpose is to preserve the correct file extension after transfer.

An important factor that relates to our implemented tools is the existence of
semi-honest and malicious adversaries. If our implementation can be used in a
way that negatively impacts security, we can not securely support the execution
of a SMC algorithm. Our design is simple and naive in that any node following
protocol and message format is trusted and can get a certificate issued and
signed by a CA. This was a design choice as we expect any full implementation
of a protocol using the PKI and tools provided may also do some authentication
on the nodes requesting an issued certificate. The node is designed as a base
to expand further functionality such as authentication and additional message
handling.

Privacy in the context of SMCs is preserved by the protocol used. It is there-
for not guaranteed by our tools, but by how our tools are used. Given a privacy
preserving protocol, our tools should preserve the security of communication
between nodes. Any sensitive data is encrypted for transfer and the protocol
decides what data is transferred. Papers with protocols referenced shows proofs
on how their protocol preserves privacy with the presence of adversaries and
will not be discussed here.

5.4 SUPPORT FOR SMC

As we have implemented tools to support the execution of SMC protocols, we
want to discuss how we can achieve this with a real example. In the intro-
duction we stated that our work was in the context of analysis on electronic
health records. We can separate this context into two domains of SMCs[13],
data mining[20] and statistical analysis[12], both of which are relevant in the
context of electronic health records. Secure multi party computations are about
preserving the privacy of involved parties.

With data mining we mean each party has their own database where we wish
to run some algorithm on the union of those databases, without allowing any
participant to view another participants database. With statistical analysis we
mean running some analysis algorithm on private data sets of each participant.
An example being correlation between age and salary where one party has a
data set of age and another has data set of salary. The difference of these two
domains are that with data mining we find some data from a query on the com-
bined database of all participants, and statistical analysis we learn something
based on the data input.

As already mentioned we provide programming abstractions for SMCs to share
data between participants, but a protocol must be implemented to decide what
is shared and how we handle what is shared.

In SNOOP[2], the execution of SMC protocols are supported by a coordi-
nator node who prepares the computation and generates a computing graph of
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the participating nodes. The graph is an overlay network with directed edges
as messages sent between nodes participating in the algorithm. SNOOP is an
extension of NOOP, which supports contract based deployments of software
components. In SNOOP the contract is used to specify data, services and re-
sources available at a node. The contract maps implementation to names in
it namespace, such as encryption and communication methods. Combined the
coordinator node and contracts provide a middleware for secure multi-party
computations.

In our design we aim to support the development of SMC protocols by ex-
tending the functionality of the base Node class. We can extend it to add
further abstractions for sharing and receiving data, supporting specific SMC
algorithms. We can similarly to SNOOP add methods for deployment of nodes
at remote systems. The blob module supports the management of data of any
size, this is relevant when working with SMC protocols in the context of data
mining databases.

5.5 SMC PROTOCOLS

We want to mention some protocols in the domain of statistical analysis and
data mining, with what they want to learn from the computation. We will not
discuss proof for security or privacy from the computation, that is found in ref-
erenced articles.
Protocols for statistical analysis[12]. For statistical analysis the goal of the
computation might be to learn of the mean, variance, or regression line of the
combined data set of inputs from each participant. This is usually achieved with
some circuit evaluation protocol, an example being 1-out-of-N oblivious transfer
by Goldreich[16].
Protocols for data mining[20][21]. There are two classic settings for privacy-
preserving data mining. First, data mining algorithms on the union of partic-
ipants databases without letting any party view another participants private
database. Second, analysis on some statistical data from the database which
should still preserve privacy while being able to obtain meaningful results from
data mining algorithms.
Protocols based on homomorphic encryption[23][18][19]. Homomorphic
encrypryption is an interesting field with regards to SMCs. With homomorphic
encryption we can perform operations on encrypted data without decrypting it
first, preserving the privacy of input. In a SMC protocol with homomorphic
encryption, each participant encrypts their input, then perform the computa-
tion on the ciphertext inputs, and finally a distributed decryption on the final
ciphertexts to get the results.

33



34



Chapter 6

Conclusion

Based on requirements for secure multi-party computations we have designed
and implemented a set of tools based on the NOOP and SNOOP middleware
to enable secure communication of participants and preserve the integrity and
privacy of data exchanged. This is achieved through the use of secret key and
public-key encryption, and a simple PKI to generate and issue signed certificates
containing the credentials and public key of a node. Certificates signed and
issued by a trusted certificate authority enables trust between participant nodes
of an SMC by verifying the certificate authorities signature. Combined with
secret key encryption and public keys shared through certificates we can securely
share data between nodes.

We evaluate and discuss some limitations to our design and implementation
and potential optimizations for future work. Higher level programming ab-
stractions are suggested to hide the use of cryptography and certificates when
communicating with other nodes and sharing data. Our work is in the context
of electronic health record data, and we discuss the type of secure multi-party
computation protocols relevant to this domain and how our implementation can
support an example protocol.
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