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Abstract— We address the problem of state feedback trajec-
tory tracking of the underactuated quadrotor platform in the
dual quaternion framework through a PD+ tracking controller.
The control law negates the need of generating a desired
attitude trajectory as the translational error is mapped directly
onto the rotational actuators through a virtual frame. More
precisely, we show uniform practical asymptotic stability of
the equilibrium points for the closed-loop system without the
presence of disturbances. Simulation results demonstrate the
performance of the control law and highlight future work.

I. INTRODUCTION

Pose control of a rigid body in three dimensional space
is an important challenge with broad impact to a num-
ber of mechanical systems including, but not limited to;
satellites, autonomous underwater vehicles, unmanned aerial
vehicles and robot manipulators [1]. The commonly used
Newton-Euler equations completely describe the motion of
a rigid body in six-degrees-of-freedom (6-DOF), however
the rotational and translational movement is often considered
separately, thus control algorithms are designed separately.
Concurrent position and attitude control is especially relevant
in applications such as formation flying, aerial towing, near-
earth environment inspection and spacecraft rendezvous and
docking. 6-DOF control design often utilize homogeneous
transformation matrices, however, dual quaternions is the
most compact and efficient way to express motion in three
dimensional space [2], [3] and the re-normalization of the
unit quaternion is easier than that of the rotation matrix. The
main disadvantage is that the unit dual quaternion group is
endowed with a double representation of every pose in the
configuration space, and control laws designed neglecting
this fact will excibit the unwinding phenomenon [4]. This
may be countered through a hybrid control scheme [4]
or alternativly using the intermediate quaternion approach
desccribed in [5]. Quadrotor trajectory tracking has during
the last few years received much attention and control design
approaches can, for the most part, be separated into two main
categories [6]; hierarchical controllers and dynamic extension
controllers. Hierarchical controllers rely on an assumption on
time-scale separation between the rotational and translational
dynamics; one outer controller solves the “slow” translational
dynamics by defining the desired attitude trajectory while
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an inner controller solves the “faster” rotational dynamics
aligning the body with the desired thrust direction -cf. [7].
Dynamic extension controllers rely on an assumption of a
simplified dynamic model allowing for exact linearization
of the translational dynamics through differentiation [8]. As
it is noted in [6]; the former approach suffers a singularity
when the desired thrust direction vanishes, resulting in loss of
controllability. The latter approach involves implementation
challenges due to the fact that the control input relies on
the angular acceleration and jerk of the motors, thus making
it necessary to take into account the motor’s dynamics in
control design. The recent years have seen the emergence
of numerous applications of the dual quaternion framework
to trajectory tracking purposes, especially in the field of
spacecraft trajectory tracking -cf. [9] and references therein.
Despite this, exploitations of the framework for underactu-
ated systems are few; in [10] dual quaternions is used for
modeling and control of an unmanned aerial manipulator
consisting of a quadrotor serially coupled with a three-link
manipulator, however, dual quaternions are only used for
kinematic control and quadrotor dynamics in terms of dual
quaternions is not considered. In [11] and [12] the authors
present a hierarchical control law for quadrotor stabiliza-
tion and aerial manipulator tracking. The dual quaternion
logarithm is used to generate the desired force vector and
subsequently the desired attitude trajectory, however, they do
not consider Coriolis acceleration or centrifugal acceleration
in their dynamics model.
Applying the classic PD+ controller [13] we develop a state
feedback nonlinear control law based on the dual quaternion
framework that neither takes the hierarchical form nor relies
on dynamic extension to solve the tracking problem for
an underactuated system. Utilizing the compact structure-
preserving way dual quaternions express rigid body config-
uration we impose a virtual structure on the system. This
allows it to track a desired position trajectory without the
explicit construction of a desired attitude trajectory as with
the hierarchical form. The approach is inspired by [14] and
reminiscent of the work in [15] where a similar approach is
used to cancel out unwanted zero dynamics. We show that
the origin of the system in closed-loop with the proposed
control law is uniformly practically asymptotically stable.

II. PRELIMINARIES

A. Notation and reference frames

Scalar values are denoted in normal face, vectors in
lowercase boldface while matrices are written in capital
boldface letters. The time derivative is denoted as ẋ = dx

dt , the



Euclidean norm is denoted as ‖·‖ while the supremum norm
is denoted as |·|∞. Note that In×n denotes an n×n identity
matrix while 0n×m denotes an n×m matrix of zeros. Vectors
are decomposed in different reference frames denoted by
superscripts; Fb is the body frame defined with its x-axis
pointing outwards between two of the quadrotors motors,
the z-axis is pointing downward and its y-axis completing
the right-hand system. Fd denotes the desired frame and
Fn is the standard North-East-Down (NED) frame which is
assumed to be inertial. The rotation matrix from Fb to Fn

is denoted as Rn
b ∈ SO(3), where

SO(3) := {R ∈ R3×3 : R>R = I3×3,det(R) = 1} (1)

is the special orthogonal group. In this work we use unit
quaternions to parametrize SO(3), and the equivalent attitude
quaternion representing rotations from Fb to Fn is denoted
as qn,b. The set of quaternions is defined as H := {q =
[η ε>]> : η ∈ R, ε ∈ R3} with η and ε denoted as the scalar
and the vector part of the quaternion respectivly. The set of
unit quaternions is defined as Hu := {q ∈ H : ||q|| = 1}.
Vectors in R3 can be represented using pure quaternions,
q ∈ Hp = {q ∈ H : η = 0}, by a trivial isomorphism. Unit
quaternions topologically form the 3− sphere S3 in R4,

S3 := {q ∈ R4 : ‖q‖ = 1}. (2)

The homogeneous transformation matrix from Fb to Fn is
denoted as Hn

b ∈ SE(3), where

SE(3) :=

{
H∈R4×4 :H=

[
R p

01×3 1

]
,R∈SO(3),p∈R3

}
(3)

is the group of proper Euclidean motion in three dimensional
space. In this work we will use unit dual quaternions to
parametrize SE(3), and the equivalent pose dual quaternion
is denoted q̂n,b. The set of dual quaternions is defined as
DH := {q̂ = qp + εqd : qp,qd ∈ H} where qp and qd is
denoted as the primary and dual part respectively while ε
is the dual operator associated with dual numbers, i.e. ε :=
{ε 6= 0, ε2 = 0}. The set of unit dual quaternions is defined
as DHu := {q̂ ∈ DH : qp ∈Hu,qp⊗q∗d + qd⊗q∗p = 0} and
vectors in R6 can be represented using pure dual quaternions,
q̂ ∈ DHp = {q̂ ∈ DH : qp,qd ∈ Hp}. Unit dual quaternions
form the group S3 n R3 under multiplication which double
covers SE(3), such that

S3 nR3 := {q̂ ∈ R8 : qp ∈ S3,qd ∈ R4}. (4)

Angular velocity is generally denoted ωa
b,c ∈ R3, ie. the

angular velocity of Fc relative Fb referenced in Fa. For any
arbitrary vectors v1, v2 ∈ R3, we denote the cross-product
operator as S(v1)v2 = v1 × v2. A function α : R0≤ →
R0≤ is of class K if α is strictly increasing, continuous and
α(0) = 0. Moreover, α is of class K∞ if, in addition, it is
unbounded.

B. Quaternions and dual quaternions

We briefly state some useful concepts for quaternions and
dual quaternions, a more comprehensive presentation can be

found in literatur -c.f. [9], [16], [17]. The product of two
quaternions, p and q, is defined as

p⊗ q :=

[
ηpηq − ε>p εq

ηpεq + ηqεp + S(εp)εq

]
, (5)

while the quaternion conjugate is given as q∗ := [η −ε>]>.
The rigid body attitude kinematics is modeled by the differ-
ential equation

q̇n,b = T(qn,b)ω
b
n,b (6)

where q̇n,b ∈ R4, ωb
n,b ∈ R3 and T(qn,b) ∈ R4×4 is defined

as

T(qn,b) :=
1

2

[
−ε>

ηI3×3 + S(ε)

]
. (7)

For two pure quaternions, v,u ∈ R4, the cross product is
equal to the cross product between the vectors in R3, such
that

q× p =

[
0 01×3

03×1 S(εp)

]
q := Sq(p)q. (8)

The product of two dual quaternions is calculated as

q̂⊗ p̂ = qp ⊗ pp + ε(qp ⊗ pd + qd ⊗ pp) (9)

while the dual quaternion conjugate is defined as1 q̂∗ = q∗p+
εq∗d. For two pure dual quaternions, v̂, û ∈ R8, the cross
product is defined as

v̂× û = vp × up + ε(vp × ud + vd × up)

=

[
Sq(vp) 0
Sq(vd) Sq(vp)

]
û := Ŝ(v̂)û.

(10)

III. MAIN RESULT

In this section we present the main result of this work.
For the sake of brevity explicit statements on the use of
isomorphisms between R6 and R8 has been omitted.

A. Modelling

The quadrotor is assumed to be a rigid body, thus the pose
of the quadrotor may be represented by an attitude quaternion
and a translation vector using the compact dual quaternion
framework as

q̂n,b = qn,b + ε
1

2
pn ⊗ qn,b = qn,b + ε

1

2
qn,b ⊗ pb (11)

where pn,pb ∈ Hp is the quadrotor position expressed in Fn

and Fb respectively. The quadrotor kinematics can then be
modeled in the dual quaternion framework by the differential
equation

˙̂qn,b = T̂(q̂n,b)ω̂
b
n,b (12)

where ˙̂qn,b ∈ R8, ω̂b
n,b ∈ R6 is the dual velocity of the

quadrotor, and T̂(q̂n,b) ∈ R8×6 is defined as

T̂(q̂n,b) :=

[
T(qp) 04×3
T(qd) T(qp)

]
(13)

1There excists several conjugates for the dual quaternion [9], only one of
which we use in this work.



with T(·) defined in (7). The dual velocity of the quadrotor
is defined as

ω̂b
n,b = ωb

n,b + εvb (14)

where vb ∈ R3 is the translational velocity expressed in Fb.
Expressing the dual momentum, i.e. the co-screw consisting
of linear and angular momentum -cf. [9], as a element of R6

the dynamic model of a rigid body can be derived as

M̂
b ˙̂ωb

n,b = f̂
b
− Ŝ(ω̂b

n,b)M̂
b
ω̂b

n,b (15)

where
M̂

b
=

[
03×3 mI3

Jb 03×3

]
(16)

is the dual inertia matrix and Jb = diag{Jxx, Jyy, Jzz} is
the inertia matrix assumed to be diagonal. The variable f̂

b

is the dual forces acting on the rigid body. In this work we
consider that f̂

b
= f̂

b

u + f̂
b

g , with f̂
b

g = q∗n,b ⊗ fng ⊗ qn,b + ε0
being the gravitational force and

f̂
b

u = fbT + ετb =

0
0
T

+ ε

τxτy
τz

 (17)

defined as the actuator forces, where T is the quadrotor thrust
and τx, τy, τz are the actuator torques.

B. Problem formulation

The tracking control problem can be stated as; let q̂n,d :
R≥0 → R8 be a feasable, two-times continuously differen-
tiable bounded time-varying desired trajectory, such that

max{|q̂n,d|∞, |ω̂
d
n,d|∞, | ˙̂ωd

n,d|∞} ≤ βd. (18)

Define the tracking error in dual quaternion coordinates as

q̂e := q̂∗n,d ⊗ q̂n,b = qe + ε
1

2
qe ⊗ pb

e

:= qe,p + εqe,d =

[
ηe
εe

]
+ ε

[
ηed
εed

] (19)

and, due to the double cover S3 nR3 of SE(3), define

q̂e± :=

[
(1∓ ηe)
εe

]
+ ε

1

2
qe ⊗ pb

e (20)

with error kinematics and dynamics

˙̂qe± = T̂e(q̂e±)ω̂b
e

M̂
b ˙̂ωb

e = f̂
b

u + f̂
b

g − Ŝ(ω̂b
n,b)M̂ω̂b

n,b − M̂
b ˙̂ωb

n,d

(21)

where ω̂b
e = ω̂b

n,b − ω̂
b
n,d and

T̂e(q̂)=

[
T±(qp) 03×4
T(qd) T(qp)

]
, T±(qp)=

1

2

[
±ε>

ηI3×3+S(ε)

]
. (22)

Then, design a feedback control law, f̂
b

u, that stabilizes the
origin for the system (21).

Remark 1: q̂n,d is a function of a desired translational
trajectory, pnd , and a desired attitude trajectory generated by
a desired body frame yaw angle, ψd.

Remark 2: Constructing the desired quaternion from a
desired yaw angle infact imposes that the system track

six degrees of freedom which strictly speaking makes the
problem ill defined for an underactuated system. Under this
formulation, practical stability of the equilibrium points is
the best result achivable.

Remark 3: Following [18], we define two sets q̂e+ ∈
S3
e+ nR3 := {[1− ηe, ε>e , q>e,d]> : ηe ≥ 0, q̂e ∈ S3 nR3}

and q̂e− ∈ S3
e−nR3 := {[1+ηe, ε

>
e , q>e,d]> : ηe ≤ 0, q̂e ∈

S3nR3}. Thus, q̂e± ∈ S3
e+nR3∪S3

e−nR3 = S3
e nR3 :=

{[1− |ηe|, ε>e , q>e,d]> : q̂e ∈ S3 nR3}.

C. Controller design

In order to deal with the challenge of underactuation we
introduce two virtual reference frames Fv and Fc, both
represented by dual quaternions as

q̂b,v = qI + ε
1

2
∆b ⊗ qI , q̂v,c = qv,c + ε

1

2
qv,c ⊗ 0 (23)

where 0 ∈ Hp is the zero vector as a pure quaternion and
∆b ∈ Hp is a constant displacement vector defined as ∆b =
[0 0 0 ∆]>. Using Fv and Fc we compose an augmented
system, q̂n,c, defined as

q̂n,c = q̂n,b ⊗ q̂b,v ⊗ q̂v,c = qn,c + ε
1

2
pn
c ⊗ qn,c (24)

and derive its kinematics

˙̂qn,c =
1

2
q̂n,c ⊗ ω̂

c
n,c (25)

with ω̂c
n,c = ω̂c

n,b + ω̂c
b,v + ω̂c

v,c. Taking the derivative of the
composed system dual velocity we find

˙̂ωc
n,c = q̂∗b,c ⊗ ˙̂ωb

n,b ⊗ q̂b,c + Ŝ(ω̂c
n,b)ω̂

c
b,c + ˙̂ωc

v,c (26)

which after inserting the dynamics of (15) becomes

˙̂ωc
n,c =q̂∗b,c ⊗ (M̂

b
)−1(̂f

b

u− f̂
b

g−ω̂
b
n,b × M̂

b
ω̂b

n,b)⊗ q̂b,c

+ Ŝ(ω̂c
n,b)ω̂

c
b,c + ˙̂ωc

v,c.
(27)

Isolating and examining the control dual force of the quadro-
tor, transformed into Fc, one finds

q̂∗b,c ⊗ (M̂
b
)−1f̂

b

u ⊗ q̂b,c =


q∗b,c ⊗ (Jb)−1τb ⊗ qb,c

q∗b,c ⊗

 ∆τy/Jyy
−∆τx/Jxx
T/m

⊗ qb,c

 .
The last equation shows that the quadrotor torques have been
mapped to produce a force in the new composed system,
thus the body will pitch and roll according to the desired
acceleration of Fc.

Remark 4: The addition of the second virtual frame is
used to cancel any pitching/rolling motion made by the
quadrotor, which enables the use of the dual quaternion
framework for the underactuated tracking problem.



We now proceed to define a control screw for the composed
system

ûc =


ω̇c

v,c + q∗b,c ⊗

 0
0

τz/Jzz

⊗ qb,c

q∗b,c ⊗

 ∆τy/Jyy
−∆τx/Jxx
T/m

⊗ qb,c

 (28)

and restate equation (27) as

˙̂ωc
n,c =ûc − q̂∗b,c ⊗ (M̂

b
)−1(̂f

b

g + ω̂b
n,b × M̂

b
ω̂b

n,b)⊗ q̂b,c

+ Ŝ(ω̂c
n,b)ω̂

c
b,c + δ̂(ûc)

(29)

where

δ̂(ûc) =

q∗b,c ⊗

τx/Jxxτy/Jyy
0

⊗ qb,c

0

 . (30)

As can be seen in equation (28) the composed augmented
system q̂n,c is fully actuated with regards to the configuration
space SE(3), with four real and three virtual actuators. Due
to the fact that two rotational actuators have been mapped to
the translational error and any rotational motion is cancelled
by the virtual frame leaves the system without damping
for these two degrees of freedom and damping need to be
inserted. In a similar fashion as the way we augmented
the original system we augment the desired trajectory q̂d.
Defining another virtual frame, Fz , similarly as in (23)

q̂d,z = qI + ε
1

2
∆d ⊗ qI (31)

where ∆d := ∆b. The new desired trajectory can be
composed and augmented as

q̂n,z = q̂n,d ⊗ q̂d,z = qn,z + ε
1

2
pn
z ⊗ qn,z

ω̂z
n,z = q̂∗d,z ⊗ ω̂

d
n,d ⊗ q̂d,z

˙̂ωz
n,z = q̂∗d,z ⊗ ˙̂ωd

n,d ⊗ q̂d,z.

(32)

Now we state the tracking error as

q̂e = q̂∗n,z ⊗ q̂n,c := qe + ε
1

2
qe ⊗ pc

e (33)

with error kinematics and dynamics

˙̂qe± =T̂e(q̂e±)ω̂c
e

˙̂ωc
e =ûc−q̂∗b,c⊗(M̂

b
)−1(̂f

b

g+ω̂b
n,b ×M̂

b
ω̂b

n,b)⊗q̂b,c

+ Ŝ(ω̂c
n,b)ω̂

c
b,c + δ̂(ûc)− ˙̂ωc

n,z

(34)

where ω̂c
e = ω̂c

n,c − ω̂
c
n,z .

The following proposition formalizes the outlined control
strategy

Proposition 1: Let the pose of the augmented system be
composed as in (24) and the desired trajectory be augmented
as in (32). Further, let the error system be defined by (33) and
(34) and assume that the body frame has bounded angular
velocities, i.e. ||Lωb

n,b|| ≤ γ1, with L = diag{1 1 0} and

γ1 ∈ R. Then, asymptotically stabilizing the origin of the
system (34) is equivalent to asymptotically stabilizing the
ball of radius γ around the origin of system (21).

Proof: Consider the equilibrium point of the system,
i.e. (q̂e±, ω̂

c
e) = (0, 0). When the system (34) is stabilized,

the primary part of the dual quaternion error (33) is equal to
the identity quaternion. This implies

qn,c = qn,z ⇒ qn,b ⊗ qv,c = qn,d (35)

given qb,v = qd,z = qI . As mentioned in Remark 1, qn,d is
generated by a desired yaw angle ψd. Using this and the fact
that any unit quaternion representing a rigid body’s attitude
is composed as the product of three quaternions generated
by the roll, pitch and yaw angles of that body, we restate
(35) as

qn,b(ψ)⊗ qn,b(θ, φ)⊗ qv,c = qn,d(ψd) (36)

As mentioned in Remark 4, qv,c is used to cancel out any
rolling and pitching motion made by the quadrotor, leading
to

qv,c = q∗n,b(θ, φ)⇒ qn,b(ψ) = qn,d(ψd). (37)

This implies that the body yaw angle is the desired yaw
angle, and further the attitude error between Fd and Fb can
be stated as

q∗n,d ⊗ qn,b = q∗v,c. (38)

For the dual part of the dual quaternion error in (33), q̂e,d =
0,implies

pn
c = pn

z

pn + qn,b ⊗∆b ⊗ q∗n,b = pn
d + qn,d ⊗∆d ⊗ q∗n,d

pn − pn
d = qn,d ⊗∆d ⊗ q∗n,d − qn,b ⊗∆b ⊗ q∗n,b

(39)

which, after inserting relation (37) and the definition of ∆d

becomes

pn
e =qn,b(ψ)⊗∆b ⊗ q∗n,b(ψ)− qn,b ⊗∆b ⊗ q∗n,b

=∆b − qn,b ⊗∆b ⊗ q∗n,b
=||∆b||(e3 − qn,b ⊗ e3 ⊗ q∗n,b)

(40)

where e3 = [0 0 1]> and we have used the fact that ∆b

is invariant under yaw rotation. Thus, it can be seen that
||pn

e || will be less than or equal to 2||∆b|| depending on the
orientation of the quadrotor body frame. Further, considering
the dual velocity error when the system (34) is stabilized, we
have that

ω̂c
n,c = ω̂c

n,z

ω̂c
n,b + ω̂c

v,c = q̂∗e ⊗ ω̂
z
n,z ⊗ q̂e

ω̂b
n,b = q̂b,z ⊗ ω̂

z
n,z ⊗ q̂∗b,z − q̂b,c ⊗ ω̂

c
v,c ⊗ q̂∗b,c.

For the primary part

ωb
n,b = q∗d,b ⊗ ωd

n,d ⊗ qd,b − qb,c ⊗ ωc
v,c ⊗ q∗b,c

ωb
d,b = −qb,c ⊗ ωc

v,c ⊗ q∗b,c
(41)

and from (38) we have the relation ωb
v,c = ωb

n,d−ωb
n,b thus

ωb
d,b = ωb

d,b, which is consistent with reference to Remark



2 and the mention earlier about the lack of damping. Finally
for the dual part we have

vb =qb,d ⊗ vd ⊗ q∗b,d + Sq(ωb
n,b)(∆

b + pb
e)

− Sq(ωb
n,b)∆

b
(42)

which after rearranging gives

vb
e = −Sq(ωb

d,b)pb
e. (43)

Consider now that qv,c = [ηc ε
>
c ]>, then, when the system

(34) is stabilized, we have with reference to the original
system (21)

q̂>e±q̂e± = (1∓ ηc)2 + ε>c εc +
1

4
(pb

e)
>pb

e

≤ 2 + ||∆||2 := γ2

(44)

and

(ω̂b
e)
>ω̂b

e = (ωb
d,b)
>ωb

d,b + (vbe)
>vbe

≤ (γ21 + 2γ1βd + β2
d)(1 + 2||∆||2) := γ3

(45)

Defining γ = γ2 + γ3 concludes the proof.
Under Proposition 1 the problem formulation in III-B can
be restated to designing a feedback control law, ûc, that
stabilizes the origin of (34).

Remark 5: The assumption on boundedness of the body
frame angular velocities in Proposition 1 is due to the fact
that there is no damping in the system for the angular
velocities. As the derivative of the body frame angular
velocities is directly mapped to the translational error this
assumption can readily be meet through (46) and starting
sufficiently close to the desired trajectory.

Remark 6: Under the condition of boundedness of the
original desired trajectory, (18), the augmented desired tra-
jectory (32) will also be bounded, i.e.

max{|q̂n,z|∞, |ω̂
z
n,z|∞, | ˙̂ωz

n,z|∞} ≤ βz. (46)

We omit the proof for brevity, but the result is readily found
by direct computation.

Before presenting our main result we present some technical
lemmas that will be used later:

Lemma 3.1: Let T̂e(q̂e±) be defined in (22), further let
qe± be defined as in (20). Then, it holds that

q̂>e±T̂e(q̂e±) =
1

2

[
±ε>e 1

2 (pb
e)
>] :=

1

2
ε̃> (47)

The proof can be found in Appendix A.
Lemma 3.2: Let T̂e(q̂e±) be defined as in (22), qe± be

defined as in (20) and let ω̂c
e be the error velocity satisfying

(34). Define Ξ = [q>e±T̂e(q̂e±)]>, then

0 ≤ ‖Ξ‖2 ≤ q̂>e±q̂e± (48)
The proof can be found in Appendix B.

We are now ready to present our main result, which
establishes uniform asymptotic stability of the closed-loop
augmented system under a modified PD+ controller.

Proposition 2: Let q̂eq ∈ S3
e n R3 and sgn(ηe,p(t0)) =

sgn(ηe,p(t)) for all t ≥ t0
2, let the desired trajectory, q̂n,z ,

satisfy (46). Then the equilibrium points (q̂e±, ω̂
c
e) = (0, 0)

of the system (34), in closed-loop with the control law

ûc = q̂∗b,c ⊗ (M̂
b
)−1(̂f

b

g + Ŝ(ω̂b
n,b)M̂

b
ω̂b

n,b)⊗ q̂b,c
− Ŝ(ω̂c

n,b)ω̂
c
b,c − δ̂(ûc) + q̂∗e ⊗ ˙̂ωz

n,z ⊗ q̂e + Ŝ(ω̂c
n,z)ω̂c

e

− Kpε̃− Kdω̂e

(49)

where Kp,Kd are positive feedback gain matrices, are uni-
formly asymptotically stable (UAS).

Proof: In the following we only consider, without loss
of generality, the positive equilibrium point, i.e. q̂eq = q̂e+

and T̂e(q̂eq) = T̂e(q̂e+). The closed-loop kinematics and
dynamics, resulting from inserting (49) into (34), is

˙̂qeq = T̂e(q̂eq)ω̂c
e

˙̂ωc
e = −Kpε̃−Kdω̂

c
e

(50)

Consider the radially unbounded Lyapunov function candi-
date

V (q̂eq, ω̂
c
e) = q̂>eqKpq̂eq +

1

2
(ω̂c

e)
>ω̂c

e. (51)

We show that there exist functions α, α ∈ K∞ such that
α(x) ≤ V (x) ≤ α(x). Defining χ = [q̂>eqT̂e(q̂eq) (ω̂c

e)
>]>

and utilizing Lemma 3.2, we obtain

pm‖χ‖2 ≤ V (q̂eq, ω̂
c
e) ≤ pM‖χ‖2 (52)

for some pM > pm > 0. Thus choosing α(q̂eq, ω̂
c
e) =

pm‖χ‖2 and α(q̂eq, ω̂
c
e) = pM‖χ‖2 ensures the existence

of such functions. Evaluating the time derivative of V along
the closed-loop trajectories generated by (50) yields

V̇ (q̂eq, ω̂
c
e) =2q̂>eqK̂pT̂e(q̂eq)ω̂c

e

+ (ω̂c
e)
>(−K̂pε̃− K̂dω̂

c
e)

=(K̂pε̃)
>ω̂c

e − (ω̂c
e)
>K̂pε̃− (ω̂c

e)
>K̂dω̂

c
e

=− (ω̂c
e)
>K̂dω̂

c
e ≤ 0.

(53)

We conclude, by Theorem 4.8 in [19], that the equilibrium
point (q̂eq, ω̂

c
e) = (0, 0) is uniformly stable and the solutions

are uniformly bounded.
To show uniform asymptotic stability we invoke Ma-

trosov’s theorem, as stated in [13], by introducing the aux-
iliary function

W (q̂eq, ω̂
c
e) = ε̃>ω̂c

e = 2q̂>eqT̂e(q̂eq)ω̂c
e (54)

which is continuous in both arguments and depends on time
through the bounded reference function q̂d∗. Differentiation
of the auxiliary function yields

Ẇ = 2 ˙̂q>eqT̂e(q̂eq)ω̂c
e + 2q̂>eq

˙̂Te(q̂eq)ω̂c
e + ε̃> ˙̂ωc

e (55)

2This assumption can be relaxed by employing a hybrid control strategy
for the controller, this is however not the main focus of this work.



and after inserting (50) one can varify that on the set E =
{V̇ = 0} = {ω̂c

e = 0},

Ẇ = −ε̃>Kpε̃ (56)

That is, Ẇ is non-zero definite on E. Thus all conditions
of Matrosov’s theorem are satisfied, and (q̂e±, ω̂

c
e)→ (0, 0)

asymptotically. The proof for the negative equilibrium point,
q̂eq = q̂e− and T̂e(q̂eq) = T̂e(q̂e−) is performed in the same
way. It follows that the dual equilibrium points q̂eq ∈ S3

enR3

are UAS.
Remark 7: By proposition 2 the control law in (49)

uniformly stabilizes the error system (34), which under
proposition 1 implies that the original error system (21) is
uniformly stabilized to a ball of radius γ around the origin.

IV. SIMULATIONS

In this section, simulation results for a underactuated
quadrotor tracking a trajectory are presented to demonstrate
the performance of the presented control law in Proposi-
tion 2. The quadrotor model is based upon the UiTRotor
quadrotor that have a mass of 1.3kg, and moments of given
as J = diag{0.04 0.04 0.5}kgm2. The control gains is
given as Kp = diag{1 1 1 1 1 0.1 0.1 0.1}, Kd =
diag{1 2 2 2 1 0.4 0.4 2}. The initial condition for the
quadrotor system is

q̂n,b(t0) = q̂I + ε
1

2
q̂I ⊗ [0 0 5 − 5]>

ω̂b
n,b(t0) = [0 0.1 0.2 0 0 0 0 0]>

and the virtual frames are initialized standstill at

q̂b,v(t0) = q̂I + ε
1

2
q̂I ⊗ [0 0 0 − 1]>

q̂v,c(t0) = q̂I + ε
1

2
q̂I ⊗ [0 0 0 0]>.

We employ a straight-line trajectory with a constant angular
velocity reference, similar to that found in [7], defined as

pn
d (t) = [0 ((75/4)− (3/4)t) 1 − 10]>

ωd
nd(t) = [0 0 0 0.2]>

with initial condition qn,d = qI . Figure 1 shows a side by
side comparison of the dual quaternion error of system (34)
on the left and (21) on the right, while Figure 2 shows
a side by side comparison of the dual velocity error of
system (34) on the left and (21) on the right. The simulations
demonstrate the results of propositions 1 and 2 where it can
be seen that the augmented system converges to the desired
trajectory within roughly 25 seconds while the original
system converges to a ball of radius γ around the origin.
Note that the attitude error and angular velocity error for
system (21) does not converge to zero which is consistent
with Remark (3). Moreover, Figure 3, shows top left the
total error of system (34) and top right the total error of
system (21). The total error of the augmented system goes
towards zero while the total error of the real system enters
a ball of radius γ. The plots middle left and right in Figure
3 shows the position error, measured in the inertial frame
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Fig. 1. Comparison dual quaternion error of system (34) ans (21)
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Fig. 2. Comparison dual velocity error of system (34) and (21)

Fn, of systems (34) and (21) respectivly. The plot bottom
left shows the attitude error of the body frame yaw angle
and the desired yaw angle, while the bottom right plot show
the applied torques. As the control strategy involves mapping
the translational error onto the rotational actuators, this will,
without saturation, cause large control effort and diminish the
applicability of the method. It can be seen in the bottom right
plot of Figure 3 the the inital torques are somewhat large, the
size of which is directly affected by the size of ∆ and the
initial conditions. Moreover, due to the lack of damping, the
torques does not become smaller as the system converges
and the lack of damping becomes clear. As discussed in
[15], non-linear systems with non-asymptotically stable zero-
dynamics are said to be strictly non-minimum phase. There
are several ways to dampen the system, as will be examined
in future work.
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V. CONCLUSION AND FUTURE WORK

We proposed a new method to solve the trajectory tracking
problem for the underactuated quadrotor platform, including
a PD+ based state feedback control law for solving the
tracking problem under this method. It was shown that the
equilibria of the closed-loop augmented system are uniformly
asymptotically stable, which implied that the equilibria of the
closed-loop real system are practically asymptotically stable.
Simulations demonstrate the theoretical results, however,
they revealed that further work is necessary in order for the
method to be implemented on a real quadrotor.

APPENDIX

A. Proof of Lemma 3.1

Proof: By direct calculation, and using the fact that
a>S(a) = 0 ∀a ∈ R3 , we have

q̂>e±T̂(q̂e±) =

1

2

[
(1∓ ηe) ε>e ηep ε

>
ep

] 
±ε>e 01×3

ηeI + S(εe) 03×3
−ε>ep −ε>e

ηepI + S(εep) ηeI + S(εe)


=

1

2

[
±(1∓ηe)ε>e +ε>e (ηeI)−ηepε>ep+ε>ep(ηepI)

−ηepε>e + ε>ep(ηeI + S(εe))

]>
It is trivial to see that the first part of the vector above reduces
to ±ε>e . Further inspection of the second part reveals that
by exchanging the dual part of the dual quaternion using the
body frame convention in (11) we get

−ηepε>e + ε>ep(ηeI + S(εe)) =
1

2
(ε>e pb

eε
>
e

+ η2e(pb
e)
> − (pb

e)
>S2(εe))

which by the unit constraint of the primary part of q̂e± gives

1

2
(ε>e pb

eε
>
e + η2e(pb

e)
> − (pb

e)
>S2(εe)) =

1

2
(pb

e)
>

Hence,

q̂>e±T̂(q̂e±) =
1

2
ε̃>

which concludes the proof.

B. Proof of Lemma 3.2

Proof: This lemma follows from the fact that a unit
quaternion satisfies the property, -cf. [20]

0≤(1− η)2≤(1− η)(1 + η)=1− η2 =ε>ε η > 0

0≤(1 + η)2≤(1− η)(1 + η)=1− η2 =ε>ε η < 0
(57)

By Lemma 3.1 we have that

Ξ>Ξ =
1

4
(ε>e εe +

1

4
((pb

e)
>pb

e)) (58)

while it may be shown that

q̂>e±q̂e± = ((1∓ ηe)2 + ε>e εe +
1

4
(pb

e)
>pb

e)

Then, by using (57), the proof is completed.
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