
ASSESSMENT OF POLARIMETRIC VARIABILITY BY DISTANCE GEOMETRY FOR
ENHANCED CLASSIFICATION OF OIL SLICKS USING SAR

Andrea Marinoni1, Martine M. Espeseth1, Paolo Gamba2, Camilla Brekke1, Torbjørn Eltoft1

1: Centre for Integrated Remote Sensing and Forecasting for Arctic Operations (CIRFA)
Dept. of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway.

E-mail: {andrea.marinoni, martine.espeseth, camilla.brekke, torbjorn.eltoft}@uit.no
2: Dip. di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Pavia, Italy.
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ABSTRACT

In this paper, we introduce a new approach for investigation
of polarimetric Synthetic Aperture Radar (PolSAR) images
for oil slick analysis. Our method aims at enhancing discrim-
ination of oil types by exploring the polarimetric features that
can be produced by processing PolSAR scenes without di-
mensionality reduction. Taking advantage of a mixture de-
scription of the interactions among classes within the dataset
and a characterization of their intra- and inter-class variability,
our algorithm is able to quantify the areal coverage of differ-
ent elements. These estimates can be used to hence improve
classification. Experimental results on a PolSAR dataset ac-
quired by unmanned aerial vehicle (UAV) on oil slicks in open
water show the capacity of our method.

1. INTRODUCTION

Quad-Polarimetric (QP) SAR sensors provide multi-dimensional
observations that have found many applications in Earth Ob-
servation (EO), including land cover classification, oil spill
characterization, target detection and identification, and quan-
titative geophysical information extraction. One of the key
advantages of QP-data is that they allow for target decompo-
sition analysis, which provides information about the relative
contributions from different scattering mechanisms [1]. A
natural scene will in general consist of randomly distributed
targets, resulting back-scattered signals, which are stochastic
in nature. The target decomposition models are therefore
based on second order statistics using the polarimetric covari-
ance or coherence matrices. The fundamental assumption in
all target decomposition methods is that the signal associated
to each pixel in an image is the result of the interaction of
multiple scattering mechanisms, and the aim of the analysis
is to identify the relative power contribution of each of these
mechanisms.

The UAVSAR scenes are courtesy of NASA/JPL-Caltech. This research
is financed by CIRFA (RCN Grant no. 237906).

Target decomposition models are specific mixture mod-
els. In this paper, we introduce and explore a different type
of mixture model for analyzing QP-data, which considers a
general feature set extracted from polarimetric data (covari-
ance matrix) as a linear mixture of contributions from cer-
tain primary ground cover classes (endmembers). The ap-
proach is inspired by the type of multidimensional analysis
used in optical remote sensing to estimate fractional endmem-
ber abundances in an instantaneous field of view in a multi-
spectral scene (see for instance [2]). The approach uses the
complete high-dimensional data set, i.e. without dimension-
ality reduction, and aims at increasing classification perfor-
mance by exploiting the characteristics of the data manifold
induced by the polarimetric feature set. Here, we demonstrate
the methodology by analyzing the classification performance
in a marine oil spill experiment with four different oil spill
types observed in a series of airborne QP-scenes. Specifically,
the intrinsic variability within the features is used to improve
the description of the scattering interactions occurring in oil
slicks. In fact, due to wind and wave conditions the complex-
ity of the scattering from the oil slicks and the ocean surface
induce nonlinear effects on the feature sets (which may be
implicitly highly correlated) [3]. This would typically lead to
features characterized by data manifolds that might be non-
convex and nonlinear. In this case, pixel properties may not
be properly described by a small amount of polarimetric fea-
tures, i.e., dimensionality reduction and classic feature pro-
cessing based on Euclidean geometry might lead to misclas-
sification effects, as sparsity and nonlinearities could strongly
degrade the characterization of the considered scenario [4].
The new processing scheme proposed here aims at avoiding
information losses, as well as at recovering reliable character-
ization of the oil slicks by processing the classes feature sets
and investigating their variability and nonlinearities.

The paper is organized as follows. Section 2 introduces
the proposed method and its motivation. Section 3 reports
details about the data considered in this study and the perfor-
mance results. Finally, Section 4 delivers our final remarks



and some ideas on future steps.

2. METHODS

Feature sets computed by processing intensity and phase
of PolSAR sensed records can be considered as multidi-
mensional signals. Hence, exploring the manifolds in high
dimensional metric spaces induced by the feature set might
help in avoiding undesired analysis effects (overfitting, noise
amplification) and emphasizing hidden regularities among
the records for understanding interactions among the ele-
ments [2, 4]. Specifically, it is possible to describe each
feature set as a proper combination of the features that are
associated with the extremal points (endmembers) of the
aforesaid manifolds. Basically, the subspace induced by the
endmembers contains all the other multidimensional records.
In fact, endmembers represent a linear basis for the pixel
feature set, with coordinates that are positive and sum to one.
Hence, each feature set in the multidimensional feature space
can be written as a combination of the endmembers’ features.
Then, if the endmember identify pure pixels (i.e., pixels that
are not characterized by the combination of scatterings from
multiple materials in the scene), the data manifold will form a
simplex spanned by the endmembers in the multidimensional
polarimetric space. Moreover, the barycentric coordinates
would provide information on the actual composition of each
pixel as a linear mixture proportion of the different materi-
als, and classification can be therefore directly performed by
inverting a linear optimization problem. In other terms, let
y
l

be the feature set of the l-th pixel in the N -dimensional
feature space, i.e., y

l
= [yln ]n=1,...,N , yln ∈ R. Moreover,

let us define R as the number of endmembers, and mr as the
feature set of the r-th endmember. Thus, with the aforemen-
tioned observations on the manifold structure in mind, it is
possible to write the following:

y
l

=

R∑
r=1

arlmr, (1)

where arl identifies the proportion (fractional abundance) of
the r-th endmember in the construction of the l-th feature set.
As such, the a parameters must fulfill the sum-to-one and non-
negativity constraints, i.e.,

∑R
r=1 arl = 1 ∀l, and arl ≥ 0

∀(r, l), respectively. This approach hence requires identify-
ing both the number and type of endmembers and their corre-
sponding feature set in order to produce reliable estimates of
those fractional abundances. Nonetheless, it is worth noting
that the aforementioned scheme might not avoid characteri-
zation and classification errors. In fact, the use of fixed end-
member feature sets does not take into account the variation in
features caused by differential illumination conditions, spatial
and temporal variability in the scene components, resulting in
significant fraction estimate errors [4].

Indeed, the polarimetric variability in an image can be ex-
plained in terms of intra-class and inter-class variability [4].
In the first case, pixels belonging to the same class might
show different polarimetric features as an effect of the dif-
ferent conditions of the imaging geometry and acquisition. In
the second case, variations in features sets within the pixels
arise from pixel-to-pixel variations in the fractional coverage.
For each pixel, it may sometimes be more appropriate to rec-
ognize that a distribution of possible coverage may be derived
for each class. The width of this distribution is a function of
the degree of intra-class spectral variation (variability within
the endmember class) present and will impact on the use of
the sub-pixel classification output.

In order to properly address variability, we propose to
consider each class in the linear mixture model in (1) as rep-
resented by the mean and by a variance-covariance matrix
that captures the statistical variability around the mean. In-
deed, inter-class variance is accounted by constructing a co-
variance matrix that varies around the selected endmember
mean. Specifically, when we consider variability in (1), we
expect the endmembers of each class to be drawn from a prob-
ability distribution defined by a probability density function
(pdf) such as φr(mr). It is worth noting that it is possible
to assume that endmember probability density functions for
distinct classes are mutually independent. Hence, the proba-
bility density function of y

l
would result from the convolution

of the endmembers pdfs.
In order to extract information on these pdfs, our approach

would require to follow two steps to consider nonlinear ef-
fects and endmember variability in the PolSAR data. First,
we use distance geometry to characterize the volume spanned
by the points in the dataset. Specifically, we aim at search-
ing the simplex of largest volume in the data set. The data
points that span this simplex then are the endmembers, un-
der the assumption that a pure pixel is present in the data
for every endmember. In order to address the nonlinear ef-
fects that can be showing up in the records, we use a distance
geometry-based to detect the endmembers. In fact, it is possi-
ble to write the volume Ω of the subspace spanned by a set of
R points z1, . . . , zR in the multidimensional space according
to the following:

Ω =

√
det[Γ]

(−1)R2R−1((R− 1)!)2
, (2)

where Γ = [Γij ](i,j)∈{1,...,R+1}2 , and every Γij is set to the
distance between y

i
and y

j
for (i, j) ∈ {1, . . . , R}2; to 0

for (i, j) = (R + 1, R + 1); to 1 otherwise. The distances
used in the volume calculation in (2) are Euclidean distances.
Therefore, they might be not sufficient to directly describe the
nonlinear effects of the PolSAR signals. On te other hand, if
we use geodesic distances to characterize the data manifold
that is spanned by the considered PolSAR records, we would
be able to determine the effect of nonlinearities in feature sets.



To this aim, we can use (2) together with a proper approxima-
tion of geodesic distances on a manifold, so that (2) can be
used as an estimation of the geodesic volume one would find
if the volume was to be measured along the data manifold.

A well-known data-driven approach for approximating
geodesic distances on a manifold requires the construction of
a nearest neighbor graph on the data, and measuring shortest-
path distances along this graph [5]. To generate such a graph,
we need to compute the Euclidean distance between any two
points y

i
and y

j
, and connect every point to the κ nearest

points, with κ as a parameter of the algorithm. The weight of
every edge is the corresponding Euclidean distance. Hence,
the geodesic distance between two points is defined as the
shortest-path distance along the weighted graph between
these two points. The Dijkstra algorithm can be used to cal-
culate the shortest-path distances from a point to all other
points [6]. By defining distances in this way, these distances
will approximate the true geodesic distances as measured
along the surface of the data manifold.

Once we have built a weighted, symmetrical and con-
nected κ-nearest neighbor graph on the data set, we can then
start searching for the endmembers. Then, R points are ran-
domly selected as initial vertices. By means of the Dijkstra
algorithm, the shortest-path distances from these R vertices
to all other points can be calculated. Thus, it is possible to
compute the simplex volume when any vertex is replaced by
a point that is randomly picked. If a larger simplex is found,
the new vertex is kept, its distance to all other points with
the Dijkstra algorithm is computed, and the definition of Γ
in (2) is updated. This search is performed until no larger
simplex is found for any point. The outcome of this proce-
dure is the definition of the endmembers mr, r = 1, . . . , R,
among the feature sets of the considered dataset. At this
stage, the abundances that would satisfy (1) can be obtained as
al = (MTM)−1(MT y

l
−(λ/2)1), where al = [arl]r=1,...,R

and λ is the Lagrangian multiplier to enforce the constraint on
the abundances to be fulfilled. Moreover,M is a N ×R ma-
trix and the r-th column ofM identifies the r-th endmember
feature set. Finally, 1 is a vector of ones. However, in order
to address variability of the records in the dataset, we ought
to approximate the pdf of the endmembers within the dataset.
Thus, we consider K pixels around each endmember mr in
the multidimensional space, and we use them to approximate
the statistical properties of each endmember. Specifically, let
µ
r

and C
r

identify the mean vector and covariance matrix
(computed across theN polarimetric features) of the r-th end-
member, respectively.

When no assumptions on the general pdf of the feature
sets of the different classes can be drawn, we can always think
that we have to face a linear optimization problem according
to (1). Therefore, we must minimize the following objective
function: Fl(al, λ) = E

[
ξT ξ

]
+ λ(

∑R
r=1 arl − 1), where

ξ = y
l
−
∑R
r=1 arlmr. Recalling the definition of µ

r
and C

r
,

and setting D as the diagonal matrix of the traces of C
r
, then

Fl(al, λ) = (y
l
−µ)T (y

l
−µ)+aTl Dal+λ(aTl 1−1), where

µ = [µ
r
]r=1,...,R. In order to minimize Fl(al, λ), we must

differentiate with respect to al and λ. This process would
lead to 2µTµal − 2µT y

l
+ 2Dal + λ1 = 0, so that al can be

written as follows:

al = (µTµ+D)−1(µy
l
− λ1/2) (3)

Therefore, the variability of the endmembers distribution
is taken into account by means of the mean and covariance of
each endmember set.

3. EXPERIMENTAL RESULTS

The methods are tested on 21 L-band Uninhabited Aerial Ve-
hicle Synthetic Aperture Radar (UAVSAR) scenes from the
NOrwegian Radar oil Spill Experiment (NORSE2015) during
the oil-on-water exercise in 2015. The scenes cover four sub-
stances, three emulsions with 40% (E40), 60% (E60), 80%
(E80) oil, and one plant oil (PO) for simulation of biogenic
slicks. The four substances are masked out the same manner
as in [3]. The reader is referred to [3] for additional infor-
mation about this exercise and [7] for information about the
UAVSAR sensor. The UAVSAR monitored the slicks for ap-
proximate 8 hours from release. Three different look direc-
tions (headings) were used during the acquisitions [3], with
headings of 7◦ (≈ upwind) (10 scenes), 187◦ (≈ downwind)
(10 scenes), and 142◦ (≈ downwind) (1 scene). Fig. 1 shows
a subscene of one of the 21 UAVSAR scenes, with the four
oil slicks indicated. The input to the investigated methods are
10 polarimetric features (see Table 1), which are calculated
using a 15× 61 averaging window.

Fig. 1. VV-intensity (σ0
V V ) in dB of one of the UAVSAR

scenes with the oil slick types indicated.

The proposed method has been applied in order to un-
derstand the likelihood of the different substances to occur



Table 1. Overview of the 10 investigated features. SHH ,
SV V , and SHV are the complex scattering vectors, and
σ0
HH = 〈|SHH |2〉, σ0

V V = 〈|SV V |2〉, σ0
HV = 〈|SHV |2〉

are the intensity products, where 〈·〉 denotes spatial averag-
ing with a 15×61 filter mask. H = horizontal polarization, V
= vertical polarization, the first subscript in S or σ0 is polar-
ization on transmit, while the second subscript is polarization
on receive.

Features
σ0
V V (dB) = 10 log 10(σ0

V V ) PDN =
σ0
V V −σ

0
HH

σ0
V V +σ0

HH

σ0
HH(dB) = 10 log 10(σ0

HH) γHH/V V = σ0
HH/σ

0
V V

σ0
HV (dB) = 10 log 10(σ0

HV ) γHV/HH = σ0
HV /σ

0
HH

SPAN = σ0
V V + σ0

HV + σ0
HH rCO = <(〈SHHS?V V 〉)

PD = σ0
V V − σ0

HH ρCO =
|〈SHHS

?
V V 〉|√

〈|SHH |2〉〈|SV V |2〉

in every pixel. Following the notation in the previous Sec-
tion, the number of endmember R we considered has been
set to 4, while the number of neighbors K for statistical ap-
proximation was set to 10. Classification is then performed
by majority voting rule. Fig. 2 shows the classification re-
sults for the different types of oil. Specifically, the radar plots
report for the set of pixels that have been labeled as belong-
ing to the four different classes (E80, E60, E40, and PO in
Fig. 2(a) to (d), respectively) the classification estimates ob-
tained by means of the algorithm proposed in this paper (blue
line) and a classic inversion of the model in (1) without ad-
dressing endmember variability (orange line). For instance,
when considering the E80-labeled pixels, we can notice that
the proposed algorithm is able to correctly classify 80% of
the pixels, while 10% of them were assigned to the E60 class
(Fig. 2(a)). Therefore, it is possible to appreciate that the
approach we propose is able to improve classification by tak-
ing into account the statistical distribution of the classes in
the dataset consisting of 21 UAVSAR scenes. Hence, we can
expect our method to increase understanding of complex Pol-
SAR scenes, as it avoids nonlinear dimensionality reduction
and therefore possible information losses.

4. CONCLUSIONS

In this paper, a new method for investigation of PolSAR im-
ages has been introduced. The approach we propose aims
at improving classification by exploring the polarimetric fea-
tures that can be produced by processing PolSAR scenes. Ad-
dressing inter- and intra-class variability within the records,
the proposed architecture is able to enhance the classification
performance and provide a better characterization of Earth
surface. As this scheme is able to estimate the areal cov-
erage of different classes on the considered region, it is ex-
pected that it can be used to deliver precise quantification of
the different physical phenomena occurring on ground. Fur-

Fig. 2. Classification results for the different emulsions on the
considered dataset

thermore, as no dimensionality reduction is employed, the
proposed framework should minimize information losses in
PolSAR image processing. These points will be properly dis-
cussed and evaluated in future works.
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