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ABSTRACT 

The paper adopts the bootstrap procedures proposed by Simar and Wilson for data envelopment analysis to 

analyze technical efficiency in aquaculture. The data of 318 intensive shrimp farming households in the 

south-central coast of Vietnam is used as a case for analysis. The result demonstrates that the null hypothesis 

of constant returns-to-scale is rejected in favour of variable returns-to-scale for the production technology. 

Moreover, the potential improvement is certainly greater using bootstrapping than that using the 

conventional data envelopment analysis, which has been adopted widely in the aquaculture literature for 

technical efficiency estimation. By adopting the double bootstrap proposed by Simar & Wilson (2007), the 

bias-corrected technical efficiency is 0.69, and at the 95% confidence interval with the lower limit of 0.65 

and the upper limit of 0.75. In addition, factors that might statistically positive influence technical efficiency 

in this farming are larger farm size, having access to formal credit; whereas negative influences are cultural 

length.  

Key words: bootstrap, DEA, intensive shrimp farming, technical efficiency, Vietnam 

1. INTRODUCTION 

The world is faced with a critical challenge of feeding the growing population that is expected to reach 9.6 

billion by 2050. An increase in food production must take place in a context where resources necessary for 

food production, such as land and water, are even scarcer in a more crowded world, whereas the world is 

required to change the ways it conducts economic activities in the face of global climate change (Kobayashi 

et al., 2015). Efficient input utilization in food production is, therefore, among major concerns aiming 

sustainably supply food for growing population in the world. 

Aquaculture has seen a dramatic growth globally over the last decades. In 1974, aquaculture provided only 

7% of all fish for human consumption, whereas in 2015 the percentage had increased to 45%. Total 

aquaculture production reached 106 million tons, worth US$ 163 billion, of which crustaceans, mollusks 

and other non-fish animals made up one third (FAO, 2018). As most of the wild stocks are either fully 
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exploited or overexploited, aquaculture is expected to overtake wild capture fisheries in terms of food 

production and to play a key future role in the supply of food for a rising world population. Kobayashi et 

al., (2015) predict that the total fish supply will rise up to 186 million tons in 2030, and aquaculture is 

entirely responsible for the increase. The fastest aquaculture growth is expected for tilapia and shrimp, 

whereas India, Latin America, Caribbean and Southeast Asia are expected to be the largest aquaculture 

expanding countries (Kobayashi et al., 2015). 

Vietnam is a country in Southeast Asia and one of the leading shrimp exporters in the world. Its white-leg 

shrimp farming in brackish water has become a major part of coastal economic development since 2001. 

White-leg shrimp aquaculture, mainly in the central provinces of Vietnam and the Mekong river delta, grew 

from 13,455 ha in 2005 to 94,246 ha in 2016 (Fisheries Directorate of Vietnam, 2017). By 2014, the white-

leg shrimp production achieved 324,581 tons, reaching the export value of 2.3 billion USD. This accounts 

for 35% of Vietnam’s total export value of fisheries (Long et al., 2016). The rapid growth of white-leg 

shrimp farming had put this aquaculture faces several severe risks, especially the spread of shrimp disease 

and pollution (Anh et al., 2010; Thuyet et al., 2012; and Long et al., 2016). These problems were also found 

in some other fast growing cultured species (see Kobayashi et al., 2015 for detail). Moreover, some shrimp 

farmers experience financial losses. Thirty percent of shrimp farms in the Mekong river delta experienced 

financial losses in 2006 (Sinh, 2006). The same situation was also hold for many shrimp farms in Khanh 

Hoa (Long and Binh, 2013). Den et al. (2007), researching shrimp farms in Bac Lieu province, found that 

the less technically efficient the farms are, the more likely they are experience of financial losses.  

To meet the increasing protein demand due to population growth and an increase in household earning, it 

is, therefore, important to improve the technical efficiency (optimal use of inputs) of their production. This, 

firstly, will lead to lower production costs per unit and higher returns to shrimp farmers. Secondly, saving 

production input such as feed, chemical and power are very important for mitigating harmful emissions to 

our air, land and water. This is not only due to environmental concerns, but also long-term development of 
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shrimp farming (see Long et al. 2016 for details). Thus, this study aims to estimate the technical efficiency 

and determine the factors responsible for technical efficiency in this intensive shrimp farming. 

Data envelopment analysis (DEA), a nonparametric technique adopting a linear programming approach, is 

a leading analytical technique for analyzing technical efficiency. This technique is favourable because it 

does not impose a priori functional form and allows for multiple output technologies (Badunenko & 

Mozharovskyi, 2016). There are, however, not many studies using DEA for analyzing technical efficiency 

in aquaculture pay much attention to its statistical properties (see Sharma & Lueng, 2003 and Iliyasu et al., 

2014).  

The paper extends previous studies by adopting the bootstrap procedures proposed by Simar and Wilson 

(1998, 2000 & 2007) for DEA to make statistical inferences about technical efficiency. The results from 

the bootstrap methods are also presented in comparison with the conventional DEA approach. The case of 

white-leg shrimp farming in the south-central coast of Vietnam is used for an analysis. The main objectives 

of this study are as follows: (i) applying Simar and Wilson’s (2002) returns-to-scale test for the production 

technology of shrimp farming; (iii) comparing the technical efficiencies estimated by the conventional DEA 

and the bootstrap methods; (iii) adopting the double bootstrap procedure (Algorithm 2) developed by Simar 

and Wilson (2007) to estimate and to identify factors that are significant in explaining differences in levels 

of technical efficiency between shrimp farms. 

LITERATURE REVIEW 

Technical efficiency, developed by Farrell (1957) relates to the degree to which a farm produces the 

maximum feasible output from a given bundle of inputs, or uses the minimum feasible amount of inputs to 

produce a given level of output. The conventional DEA method has been adopted for technical efficiency 

analysis in aquaculture studies for many years (see for reviews see Sharma & Leung, 2003 and Iliyasu et 

al., 2014). However, it is rather difficult for statistical inferences about technical efficiency when applying 

DEA method as following reasons. Firstly, all estimates of technical efficiency are sample specific. 
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Although the DEA method is to be conventional, the efficiency is still computed relatively to estimated and 

not true frontier. The efficiency scores obtained from a finite sample are subject to sampling variation of 

the estimated frontier (Simar & Wilson, 1998 and Badunenko & Mozharovskyi, 2016). Secondly, the 

estimated technical efficiency measures are too optimistic, due to the fact that the DEA estimate of the 

production set is necessarily a weak subset of the true production set under standard assumptions underlying 

DEA (Simar & Wilson, 2000 and Badunenko & Mozharovskyi, 2016). Therefore, it should be careful when 

attempting to draw broad policy implications in aquaculture from a specific set of related but independent 

studies. 

To overcome these, Simar and Wilson (1998, 2000) have developed the smoothed bootstrap procedure into 

the DEA framework to introduce the statistical foundation of nonparametric frontier model. To implement 

the bootstrap into DEA framework, assuming that the original sample data is generated by the data 

generation process (DGP) and that the DGP by taking a ‘new’ or pseudo data set that is drawn from the 

original data set can be stimulated. The DEA model, then, is re-estimated with this ‘new’ data. By repeating 

this process many times, an empirical distribution of these bootstrap values can be derived. This gives a 

Monte Carlo approximation of the sampling distribution and facilitates inference procedures. Their single 

bootstrap method, based on statistical well-defined models, allows for consistent estimation of the 

production frontier, corresponding technical efficiencies, as well as standard errors, confidence intervals 

and hypothesis testing. Despite this development, the application of this technique for estimating Farrell 

(1957)’s technical efficiency has thus far been limited in aquaculture. For our best knowledge, there are 

only the works of Chang et al. (2010), Asche et al. (2013), Iliyasu et al. (2016), Lam Anh et al. (2018) and 

Hai Au et al. (2018) used the single bootstrap for correcting bias in estimation of technical efficiency (see 

Sharma & Lueng, 2003 and Iliyasu et al., 2014 for reviewing technical efficiency studies adopting DEA in 

aquaculture before the year of 2010; and Table 1 below for this decade). 

[Insert Table 1 about here] 
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The returns-to-scale for the production technology is an important issue in technical efficiency analysis. 

According to Coelli et al. (2005), the constant returns-to-scale (CRS) DEA model is only appropriate when 

the farm is operating at an optimal scale. Factors such as imperfect competition, constraints on finance, 

socio-economic limitations of the aquaculture farmers may cause the farm to not operate at an optimal scale 

in practice (see for examples, Alam & Murshed-e-Jahan, 2008; Nielsen, 2011 for a detailed discussion). 

Therefore, the variable returns-to-scale (VRS) DEA model for production technology is often assumed in 

aquaculture studies, especially for the cases of aquaculture farming in developing countries (for examples, 

see Kiet & Fisher, 2014; Zongli et al., 2017; Lam Anh et al., 2018; and Hai Au et al., 2018). However, these 

studies only adopt the assumption of variable returns-to-scale production technology without testing. Simar 

and Wilson (2002) showed that a false assumption about constant returns-to-scale may lead to inconsistent 

efficiency scores, and a false assumption about variable returns-to-scale may cause a loss in statistical 

efficiency. Based on the single bootstrap procedure, Simar and Wilson (2002) proposed returns-to-scale 

tests to raise the precision in the measurement of the boundary of the production possibilities set in the non-

parametric analysis (see Bogetoft & Otto, 2010 for details and Besstremyannaya, 2013 for an empirical 

application). We, therefore, apply Simar & Wilson’s (2002) returns-to-scale test to raise the precision in 

the measurement of the boundary of the production possibilities set in the non-parametric analysis.  

Apart from the technology used in aquaculture, individual farm characteristics may also have an impact on 

technical efficiency. For example, farmers not participating training in shrimp farming techniques are 

expected to perform worse than those who do (provided that they are operating under otherwise similar 

conditions). Iliyasu et al. (2014) recognized that the majority of aquaculture studies use a conventional two-

stage DEA approach, in which efficiency is estimated in the first stage, and then the estimated efficiencies 

are regressed on the individual farm characteristics with Tobit regression in the second stage (see Iliyasu et 

al., 2014 and Table 1). Following the McDonald (2009)’s argument that technical efficiency scores were 

fraction data, not censored data, Iliyasu & Mohamed (2015) and Iliyasu et al. (2016) have, therefore, 

adopted ordinary least square (OLS) method in the second stage of DEA approach for the cases of 



7 
 

aquaculture in Malaysia. As existing aquaculture studies undertaking efficiency analysis using conventional 

two-stage DEA have not considered its statistical properties, we need to be careful when attempting to draw 

broad policy implications based on their findings. Simar and Wilson (2007) criticized the conventional two-

stage DEA approach because its estimates are biased and serially correlated, therefore invalidating 

conventional inferences in the second stage.  

To resolve this problem, Simar and Wilson (2007) developed two complementary consistent procedures in 

the two-stage DEA approach: Algorithm 1 (the single bootstrap truncated regression) and Algorithm 2 (the 

double bootstrap DEA). Algorithm 2 is preferred over Algorithm 1 (see Simar and Wilson, 2007 and 

Fernandes at el., 2018 for detailed discussions). The double bootstrap procedure enables consistent 

inference within models explaining efficiency scores, while simultaneously producing standard errors and 

confidence intervals for these efficiency scores (Simar & Wilson, 2007, 2011 & 2013). This double 

bootstrap technique has been applied empirically to several studies in agriculture and other sectors such as 

crop and livestock farms in Czech Republic (Latruffe et al., 2008); rice farming in Bangladesh (Balcombe 

et al., 2008); agriculture farms in the US (Olson and Vu, 2009); the Greek poultry sector (Keramidou and 

Mimis, 2011); the peripheral European domestic banks (Fernandes et al., 2018). However, few studies adopt 

this approach in aquaculture. Lam Anh et al. (2018), Hai Au et al. (2018) and Anh Ngoc et al. (2018) have 

adapted the Algorithm 1, thus enabling statistical inference in the second-stage regression.  

For our best knowledge, there is only Thap et al. (2016) adopting Algorithm 2 in aquaculture studies. The 

reason may be due to computational burden of the complex procedure and sample size (see also Simar and 

Wilson, 2007; Singbo et al., 2010 and 2014). To fulfill this gap, this paper will employ this Algorithm 2 

with a double bootstrap procedure that gives confidence intervals for the efficiency estimate and also 

enables consistent inference within models explaining technical efficiency.  

2. METHODOLOGY 

2.1 The Models  
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2.1.1 The conventional DEA 

Technical efficiency relates to the degree to which a farm produces the maximum feasible output from a 

given bundle of inputs, or uses the minimum feasible amount of inputs to produce a given level of output. 

These two definitions of technical efficiency lead to what are known as output-oriented and input-oriented 

efficiency measures respectively. Orientation (input or output) is selected according to which factors 

farmers have most control over (see also Nielsen, 2011). In this study, an input-oriented DEA model was 

used. The input orientation approach to DEA for efficiency analysis has also been employed by some 

aquaculture studies for developing countries, such as those of Alam & Murshed-e-Jahan (2008), Alam 

(2011), Kiet & Fisher (2014), Zongli et al. (2017), Lam Anh et al. (2018) and Hai Au et al. (2018). The 

orientation aims to reduce the input amount by as much as possible while keeping at least the present output 

level. This is a sensible assumption for white-leg shrimp farmers in developing countries, like Vietnam, 

where reducing production cost is very important due to their limited finances. For the jth farm out of N 

farms, the input-based technical efficiency index for VRS DEA framework, TEj, is defined as: 

TEj = 𝜃𝑗̂ = 𝑚𝑖𝑛{𝜃𝑗|𝑦𝑗 ≤ 𝑌𝜆; 𝜃𝑗𝑥𝑗 ≥ 𝑋𝜆; 𝐼𝜆 = 1}            (1) 

where yj and xj are respectively the output and input matrices of the jth farm; Y and X are respectively the 

output and input matrices of the sample; TEj = 𝜃𝑗̂ is the technical efficiency value ranging from 0 to 1, λ is 

a vector of constant weights that defines the linear combination of the peers of the jth farm, and ∑ 𝜆𝑗 𝑛
𝑗=1 =1 

for assuming VRS (see e.g. Coelli, 2005 for details). For explaining the sources of farm level efficiency, 

the TE score calculated from (1) for each farm, censored between zero and one, are often regressed on the 

individual farm characteristics with Tobit regression (see e.g. Kiet & Fisher, 2014 and Zongli et al.. 2016). 

2.1.2 The single bootstrap proposed by Simar & Wilson (1998, 2000) 

The single bootstrap, based on the smoothed bootstrap procedure, proposed by Simar & Wilson (1998, 

2000) for input-oriented VRS DEA is presented in details as follows. 

Step1: Compute the estimate of technical efficiency, 𝜃𝑗, for the jth farm as in equation (1) 
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Step 2: Use bootstrap via smooth sampling from 𝜃1̂, … , 𝜃𝑁̂ to obtain a bootstrap replica 𝜃1
∗, … , 𝜃𝑁

∗ . This is 

done as follows 

(2.1) Bootstrap, sample with replacement from 𝜃1̂, … , 𝜃𝑁̂, and call the results 𝛽1, … , 𝛽𝑁 

(2.2) Simulate standard normal independent random variables 𝜖1, … , 𝜖𝑁 

(2.3) Calculate 𝜃𝑗̃ = {
𝛽𝑗 + ℎ𝜖𝑗  𝑖𝑓 𝛽𝑗 + ℎ𝜖𝑗 ≤ 1

2 − 𝛽𝑗 − ℎ𝜖𝑗  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. Note that 𝜃𝑗̃ ≤ 1 and h is the window or band 

width. 

(2.4) Adjust 𝜃𝑗̃ to obtain parameters with asymptotically correct variance, and then estimate the 

variance 𝜎2̂ =
1

𝑁
∑ (𝜃𝑗̂ − 𝜃̅)2𝑁

𝑗=1  and calculate 𝜃𝑗
∗ = 𝛽̅ +

1

√1+ℎ2

𝜎2̂⁄
(𝜃𝑗̃ − 𝛽̅) where 𝛽̅ =

1

𝑁
∑ 𝛽𝑗

𝑁
𝑗=1  

Step 3: For j = 1,…, N, a pseudo data set of (𝑥𝑗,𝑏
∗ , 𝑦𝑗,𝑏

∗ ) where 𝑥𝑗,𝑏
∗ = (𝜃𝑗̂ 𝜃𝑗

∗⁄ )𝑥𝑗 and 𝑦𝑗,𝑏
∗ = 𝑦𝑗. Calculate the 

new DEA score 𝜃𝑗
∗̂ for each farm from equation (1) by taking the pseudo data as a reference. 

Step 4: Repeat steps (1) to (3) for B times to yield B new DEA TE scores 𝜃𝑗
∗̂ for j = 1,…,N. Therefore, the 

bias-corrected estimator of 𝜃𝑗 can be computed as 𝜃𝑗̂
̂ = 𝐵−1 ∑ 𝜃𝑗

∗̂𝐵
𝑏=1  

Step 5: The confidence interval of a (1 − 𝛼) level for the technical efficiency can be established by finding 

value 𝑎𝛼 , 𝑏𝛼 such that Pr(−𝑎𝛼 ≤ 𝜃𝑗 − 𝜃𝑗 ≤ −𝑏𝛼) = 1 − 𝛼. Since we do not know the distribution of (𝜃𝑗 −

𝜃𝑗), we can use the bootstrap values to find 𝑎𝛼̂ , 𝑏𝛼̂ such that Pr(−𝑎𝛼̂ ≤ 𝜃𝑗
∗̂ − 𝜃𝑗 ≤ −𝑏𝛼̂) = 1 − 𝛼. 

Therefore the estimated confidence level of (1 − 𝛼) for technical efficiency of jth farm is 𝜃𝑗̂ + 𝑏𝛼̂ ≤ 𝜃𝑗 ≤

𝜃𝑗 + 𝑎𝛼̂. 

Next, adopting Simar & Wilson (1998, 2000)’s bootstrap procedure, the problem of testing hypothesis 

regarding returns to scale is conducted (Simar and Wilson, 2002). Considers the convexity constraint in (1), 

∑ 𝜆𝑗 𝑛
𝑗=1 =1, for assuming variable returns-to-scale. The above VRS DEA model gives us the result of 
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TE_VRS. Next, we can easily have a constant returns-to-scale (CRS) DEA model by relaxing the convex 

constraint in (1). Similarly, the CRS DEA model gives us the result of TE_CRS. Then, we apply Simar and 

Wilson’s (2002) returns-to-scale tests, bootstrapping statistics 𝑤̂ = ∑ 𝜃𝑗
𝐶𝑅𝑆/ ∑ 𝜃𝑗

𝑉𝑅𝑆𝐽
𝑗=1

𝐽
𝑗=1 , where 𝜃𝑗

𝐶𝑅𝑆 and 

𝜃𝑗
𝑉𝑅𝑆 are technical efficiency scores under the assumptions of CRS and VRS, respectively (see also Bogetoft 

and Otto, 2010 and Besstremyannaya, 2013). 

2.1.3 The double bootstrap proposed by Simar & Wilson (2007) 

Following Algorithm 2 developed by Simar and Wilson (2007), the modified double bootstrap procedure 

for input-oriented VRS DEA efficiency is as follows. 

Step 1: Using (1) to estimate DEA input-oriented technical efficiency for all the studied white-leg shrimp 

farms. Next, calculate the technical efficiency score, 𝛿𝑗̂ = 1/𝜃𝑗, for the jth farm. The score is ranged from 

one to infinity.  

Step 2: Estimate 𝛽̂of 𝛽as well as 𝜎𝜀̂ of 𝜎 in the truncated regression of 𝛿𝑗̂on Zj when 𝛿𝑗̂ > 1  using maximum 

likelihood in which Zj is the vector of socio-economic and farm characteristic variables of white-leg shrimp 

farms defined in Table 2.   

(i) Step 3: Repeat the following four steps (i–iv) L1 to yield a set of bootstrap estimates 𝐵𝑗 =

{𝛿𝑗𝑏
∗̂ }

𝑏=1

𝐿1
. For each j = 1,…, n, 𝜀𝑗 is drawn from 𝑁(0, 𝜎𝜖̂). 

(ii) For each j = 1,…, n, compute 𝛿𝑗
∗ = 𝑍𝑗𝛽̂ + 𝜀𝑗. 

(iii) Construct a pseudo data set (𝑋𝑗
∗, 𝑌𝑗

∗) where 𝑋𝑗
∗ = (𝛿𝑗̂/𝛿𝑗

∗)𝑋𝑗 and 𝑌𝑗
∗ = 𝑌. 

(iv) Using the pseudo data set and (1), calculate pseudo efficiency estimates  𝛿𝑗
∗̂ = 1/𝜃𝑗

∗ for all j = 

1,…, n. 
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Step 4: For each j = 1,…, n, calculate the bias-corrected estimator 𝛿𝑗̂
̂ =  𝛿𝑗̂ − 𝑏𝑖𝑎𝑠(𝛿𝑗̂) where the bias term 

is 𝑏𝑖𝑎𝑠(𝛿𝑗̂) = (
1

𝐿1
∑ 𝛿𝑗𝑏

∗̂ ) − 𝛿𝑗̂
𝐿1
𝑏=1 . The confidence intervals of the technical efficiency scores are calculated 

as presented in Simar & Wilson (2000). 

Step 5: Regress 𝛿̂̂ on Zj to calculate estimates 𝛽̂̂ and 𝜎𝜀̂̂ adopting truncated maximum likelihood. 

Step 6: Repeat the following three steps (i–iii) L2 time to generate a set of bootstrap estimates 𝐾 =

{(𝛽 ∗̂̂, 𝜎𝜀
∗̂̂)𝑏}

𝑏=1

𝐿2
. 

(i) For each j = 1,…, n, 𝜀𝑗 is drawn from 𝑁(0, 𝜎𝜖̂̂). 

(ii) For each j = 1,…, n, compute 𝛿𝑗
∗∗ = 𝑍𝑗𝛽𝑗̂

̂ + 𝜀𝑗. 

(iii) Regress 𝛿𝑗
∗∗ on Zj to yield estimates 𝛽 ∗̂̂ and 𝜎𝜀

∗̂̂ adopting truncated maximum likelihood. 

Step 7: The estimates 𝛽̂̂ and 𝜎𝜀̂̂ generated in Step 5 and the bootstrap estimates K are used to construct 

confidence intervals for 𝛽 and 𝜎𝜀. The (1 − 𝛼) percent confidence interval of the jth element of vector 𝛽 is 

constructed as the Pr (−𝑏𝛼

2
≤ 𝛽𝑗

∗̂̂ − 𝛽𝑗̂
̂ ≤ −𝑎𝛼

2
) ≈ 1 − 𝛼 such that the estimated confident interval for 𝛽𝑗 is 

[𝛽𝑗̂
̂ + 𝑎𝛼/2

∗  , 𝛽𝑗̂
̂ + 𝑏𝛼/2

∗ ].  

Two main points should be considered for applying the double bootstrap as follows. Firstly, considering 

that steps 3 and 4 in 2.2.3 (Algorithm 2) employ a parametric bootstrap in the first-stage problem in order 

to produce bias-corrected estimates of technical efficiency, 𝛿𝑗̂
̂ . The parametric structure assumed in this 

Algorithm, 𝜑(𝑧𝑗, 𝛽) = 𝑧𝑗𝛽, is the simplify of the smoothing that was employed in Simar and Wilson (2000); 

otherwise, the bootstrap used to obtain 𝛿𝑗̂
̂  similar to the one described in Simar and Wilson (2000). The 

difference between two methods for the estimates of technical efficiency is that the single bootstrap is based 

only on the input and output information while the double bootstrap adjusts the estimates, based on not only 

this information but also the socio-economic and farm characteristic variable information. This idea has a 
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link with the parametric approach for technical analysis, stochastic production function, proposed by 

Battese and Coelli (1995).  

Secondly, for explaining the sources of farm level efficiency, Algorithm 2 adopts the reciprocal of technical 

efficiency value, 𝛿𝑗̂ = 1/𝑇𝐸̂𝑗, as dependent variable for the second-stage with truncated regression such as: 

                 𝛿𝑗̂ = 𝛽𝑍𝑗 + 𝜀𝑗 ≥ 1                                      (2) 

where δĵ is, called the technical efficiency score (see also input efficiency score developed by Shephard 

(1970) with a distance function), with the range from 1 to infinity and Zj is a vector of individual farm 

characteristics assumed to affect the choice and use of output and inputs, β is a vector of parameters to be 

estimated, and εj is a continuous i.i.d. random variable, distributed as N(0, σϵ
2) with left truncation at 1 −

βZj for each farm j, and assumed to be independent of Zj. Adopting the truncated regression  for (2), this 

procedure avoid boundary problems since the estimated value of technical efficiencies are typically defined 

on the interval [0,1], with, in general, few values, if any, close to 0 but some values of 1 (see Burgress and 

Wilson, 1998 for further discussion). Johnson and Kuosmanen (2012) emphasized that Simar and Wilson 

(2007) advocated the use of the truncated regression model that takes into account explicitly the bounded 

domain of the DEA efficiency estimates.  

2.2 Study sites and data for analysis  

The south-central coast has been considered as the major region for developing white-leg shrimp farming 

in Vietnam since the early 2000s. The farming activities in this region occupy the area of 8,719 ha, and the 

output of 43,585 tons (the productivity reaching 5 tons/ha) in the year of 2014. We select Quang Ngai, Phu 

Yen, Khanh Hoa and Ninh Thuan provinces for study sites. This is because white-leg shrimp is raised 

mainly in these areas and these account for 79.4% and 7.5% of the farming area of the south-central coast 

and of the whole country. Specifically, the areas for intensive farming of white-leg shrimp in Quang Ngai, 

Phu Yen, Khanh Hoa and Ninh Thuan are 426, 450, 698 and 900 ha, respectively (Long et al., 2016). 
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The survey was was carried out in 2015 and in four regions of the south-central coast of Vietnam: Quang 

Ngai, Phu Yen, Khanh Hoa, Ninh Thuan. 318 intensive farming households are randomly selected for 

interview based on the lists of farmers obtained from the Fisheries Directorate of these provinces. 

Specifically, Quang Ngai has 62 households (accounting for 24% of the total number of intensive shrimp 

farming households in Quang Ngai province); Phu Yen has 59 households (24%), Khanh Hoa has 95 

households (22%) and Ninh Thuan has 102 households (24%). Each farming household, represented by the 

owner and/or manager, was face-to-face interviewed by two research team members from the Faculties of 

Economics and Aquaculture, Nha Trang University and by representatives from the Fisheries Directorate 

of these provinces. Data were collected using a project-designed questionnaire focusing socioeconomic 

characteristics, farm-specific information, outputs produced, and inputs used for the operating year of 2014. 

A pilot study was first conducted to validate the questionnaire and the necessary adjustments and changes 

were made.  

There are a few small steps have been made toward introducing noise into nonparametric production models 

(Simar & Zelenyuk, 2011; Simar & Wilson, 2013; and Olesen & Petersen, 2016). In the presence of noise, 

envelopment estimators could behave dramatically since they are very sensitive to extreme observations 

that might result only from noise (Simar, 2007). For detection of outliers, which can have large influence 

on the estimated DEA frontier, the super efficiency test developed by Andersen and Petersen (1993) is used. 

For a more thorough evaluation on detection of outliers using the super efficiency test, see Banker & Chang 

(2006) and Bogetoft & Otto (2010). 

The outputs and inputs for DEA framework in this study were selected based on informed choice from the 

existing literature for shrimp farming (see Alam & Murshed-e-Jahan, 2008; Kiet and Fisher, 2014; Long et 

al., 2016; and Hai Au et al., 2018). The production technology has, therefore, been considered to be 

comprising of one output and five main inputs. Five most important inputs, occupied 97.6% of production 

cost on average, include labor, seed, feed, chemicals/drugs and power which were assumed to adequately 

represent the white-leg shrimp production technology in the sample areas. Because intensive shrimp 



14 
 

farming uses a variety of drugs and chemicals, the cost of chemicals and drugs (for simplicity, hear after 

called chemicals) is used this study. The output is harvested shrimp in kilogram (see Table 2 for details).  

[Insert Table 2 about here] 

 

Table 2 also includes variables used to investigate the determinants of technical efficiency. The socio-

economic and farm characteristics for white-leg shrimp farming practices in the south-central coat of 

Vietnam are: (i) socio-economic characteristics of the farm’s decision maker such as education, experience, 

family number, technical training, occupation status; and (ii) farm characteristics including the length of 

shrimp farming per year, farm size and having access to formal credit. Other variables such as gender of 

the decision maker, climatic changes (such as salinity intrusion effect, flooding effect), water management 

and so on would perhaps be of importance in determining their impact on technical efficiency, but the 

survey information collected lacked data on these factors.  

3. EMPIRICAL RESULTS AND DISCUSSION 

The rDEA package developed by Simm and Besstremyannaya (2016) is employed in this study for the 

single bootstrap DEA with B = 2000 interactions. The problem of testing hypothesis regarding returns to 

scale is conducted by the rDEA package with 100 interactions. This package is also used for double 

bootstrap DEA model with L1 = 100 interactions for the first loop and L2 = 2000 for the second loop of 

Algorithm 2. The similar result can be also obtained by the simarwilson routine for Algorithm 2 developed 

by Badunenko & Tauchmann (2019) from STATA software. For comparison, the conventional two-stage 

DEA analysis with Tobit regression is also conducted for this aquaculture. We used the Benchmarking 

package created by Bogetoft and Otto (2010) for the conventional two-stage DEA approach. Both rDEA 

and Benchmarking packages are linked to the R Project for Statistical Computing. 

3.1 Descriptive statistics of the data 
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Table 3 presents the summary statistics of the data collected in the study. Regarding socio-economic 

variables, the average experience of the sample decision makers is 9.8 years; 17 percent of the farm decision 

makers have the educational level of college or higher; 51 percent have participated in extension services; 

24 percent of farms have access to formal credit. There are 53 % of the sample decision makers working 

part-time business in shrimp farming and 47 % of them working full-time. Average of the household 

number is 3.5 persons (min. 2 persons; max. 7 persons). Average farm size is 0.76 ha ranging from 0.18 to 

6 ha. The mean of culture length in the year is 185 days with min of 55 and max of 330 days.   

[Insert Table 3 about here] 

The mean shrimp output harvested is 23211 kg per ha per year (min. 2000 kg; max. 50010 kg). Labor input 

is measured as the number of man-hours per ha for various activities, and it includes all hired and family 

labor, assuming that 1 day consists of 8 working hours. The mean number of hours spent per ha per year is 

6429 (min. 1200 hours; max. 16000 hours). Seed is measured as the physical quantity of seeds in 1000 

individuals per ha per year. There are on average 3337 thousand post-larvae (i.e., thousand individual 

shrimp) per ha (min. 500; max. 9900). Feed is one of the most important components of aquaculture and 

constitutes more than 50% of production cost. The amount of feed used is measured in kg. The average 

quantity of feed used by the sample farmers is 33517 kg per ha per year. The mean of chemicals and drugs 

cost used for a year is 282512 thousand VND per ha. Finally, power devoted to shrimp production is 

measured in Kwh of electrics per ha. The average number of electrics spent per year is 224140 Kwh. 

3.2 Technical efficiency estimation 

Table 4 presents Simar and Wilson’s (2002) test for returns-to-scale of production technology in white-leg 

intensive shrimp farming in the south-central coast of Vietnam. The test demonstrates that the null 

hypothesis of CRS is rejected in favour of VRS. Consequently, in our analysis, we estimate DEA models 

for VRS returns-to-scale. Next, Table 5 illustrates estimated levels of efficiency for conventional, single 

and double bootstrapping approaches. Over all farms, conventional DEA estimate model for average 
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technical efficiency is 0.77. This means that, on average, white-leg shrimp farming households can reduce 

their inputs by 23% without changing the level of their output.  

[Insert Table 4 about here] 

From these initial estimates, we apply both methods of bootstrapping to correct for the bias of technical 

efficiency: the single bootstrap in Simar and Wilson (2000) and the double bootstrap in Simar and Wilson 

(2007). The two bootstrapping methods reveal similar results. The average bias-corrected estimate for the 

single bootstrap is 0.67 while the one for the double bootstrap is 0.69. The correlation between the two bias-

corrected estimates (i.e., single and double bootstrap) is 0.91; the Spearman rank correlation is 0.91. This 

means that the efficiency ranking of the shrimp farms are consistent in both bootstrap methods. In addition, 

the width of the 95% confidence intervals is 0.17 for technical efficiency using the single bootstrap method 

and 0.10 for the double bootstrap method. This indicates a lower statistical variability of DEA efficiency 

estimate using the double bootstrap. This result may be because the single bootstrap method is based only 

on the input and output information while the double bootstrap adjusts the estimates, based on not only this 

information but also the socio-economic and farm characteristic variable information. This is also the case 

in Balcome et al. (2008).  

 [Insert Table 5 about here] 

The lower and upper bounds of the 95% confidence interval for the bias-corrected technical efficiency in 

the double bootstrap are 0.65 and 0.75, respectively, which suggests that the amount an “average” farm 

could save its input by increased technical efficiency ranged from 25% to 35%. Clearly, as a result of 

estimating the bias-corrected measures and interval estimates of technical efficiency, our results can be 

viewed by policy makers with increased confidence. 

[Insert Table 6 about here] 
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As the efficiencies estimated from the conventional and double bootstrap DEA are not independent, we use 

the paired difference t-test, the two-sample Kolmogorov-Smirnov test, and the Kruskal–Wallis rank sum 

test to compare the estimates (see Bogetoft & Otto, 2010 for details). The results are presented in Table 6. 

Based on these tests, on average, the technical efficiency estimated from the conventional DEA is 

statistically significantly higher than in the double bootstrap method. Latruffe et al. (2008) and Olson & Vu 

(2009) also found the same relationship in their agricultural studies. The results in Table 5 show that the 

biases in the uncorrected results are rather substantial. Specifically, the conventional estimate of 0.77 means 

that with a given output, an average farm could reduce its input by 23% if the technical efficiency value 

were improved to 1. The bias-corrected estimate of 0.69, however, suggests an expected input reduction of 

31% for the double bootstrap estimate. It is clear that the percentage of input saving is considerably greater 

using the double bootstrapping compared to the conventional approaches for the case of white-leg shrimp 

aquaculture in the central south coast of Vietnam. 

3.3 Determinants of technical efficiency 

From a policy perspective, the estimates of efficiency propose that there is considerable room for 

improvement in technical efficiency in the intensive white-leg shrimp farming in Vietnam. Thus, it would 

appear sensible to examine the determinants of technical efficiency for this case. 

[Insert Table 7 about here] 

For robust checking, the Tobit regression in the second stage of the conventional DEA approach is 

conducted. To be consistent with the double bootstrap method, the dependent variable in the Tobit 

regression is also the reciprocal of the estimates of technical efficiency in (1). Therefore, a positive 

relationship between a shrimp farm specific variable and technical efficiency exists if the sign of the 

coefficient is negative, and negative if the coefficient is positive (see also Balcombe et al., 2008).   

[Insert Table 8 about here] 
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Our estimation reveals some interesting findings. First of all, educated shrimp farmers can be expected to 

comprehend information and have better management skills, thereby making them more technically 

efficient. The variable of education is positively related to a farm’s technical efficiency in the double 

bootstrap estimation, although the relationship is very weak. This is also the cases of aquaculture farms in 

practices such as in India by Roy and Rens (2008); in Bangladesh by Iliyasu et al. (2016); and in Vietnam 

by Lam Anh et al. (2018). In contrast, the Tobit regression for a conventional estimation displays the 

unexpected sign for this variable. It is, however, not statistically significant at the 90% confidence interval.   

Second, it is expected that the shrimp farmers with greater experience are more technically efficient than 

those who have little experience. This can be explained by the learning-by-doing hypothesis (see Nilsen, 

2010 for an example). The coefficients estimated for the experience have a positive impact on technical 

efficiency for both estimations. However, the estimate is rather statistically weak for both models. This is 

also found in some aquaculture practices such as in Bangladesh by Alam (2011); and in China by Yin et al. 

(2014) and Zongli et al. (2014). 

The third explanatory variable is technical training from extension agents. Contrary to our expectation, the 

technical training is recognized to have a negative impact on technical efficiency for both estimations, 

although the relationship is very weak. This may implies that shrimp farmers who receive technical training 

from extension agents may be less technically efficient than those who rely only on their lengthy experience. 

Our result is in line with Redy et al. (2008) for shrimp aquaculture in India and Kiet & Fisher (2014) for 

shrimp farming in the Mekong river delta of Vietnam. Technical training from extension is, even, found a 

statistically significant negative effect on technical efficiency, which is explained by the inappropriate 

training for the case of shrimp farming in the Mekong river delta of Vietnam (Kiet & Fisher, 2014). Our 

result may be explained by a large number of households in our sample (51%) who have attended extension 

training courses. However, the quality of the extension training for shrimp aquaculture the south-central 

coast of Vietnam may be re-assessed.  
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The estimated coefficients of the occupation status showed that farmers who operate intensive shrimp 

farming as a full-time business may be more efficient than part-time farmers in both models even though 

statistically insignificant at the level of 10%.  Observation from the survey reveals that most of the farmers 

who operate shrimp farming as a part-time business have alternative sources of income and tend to put less 

energy and resources in their shrimp farms; hence they may be less efficient. This is also found in the case 

of aquaculture in Malaysia by Iliyasu et al. (2016).  

The farm size has a significant positive impact on technical efficiency in both double bootstrap and Tobit 

estimations within the 95% confidence interval. The positive relationship between farm size and technical 

efficiency indicates that the larger the farm size is, the more efficiently the farmers utilize their inputs. More 

often than not, large farms tended to reap the benefits of economies of scale (see also Iliyasu et al., 2014). 

This is in line with the findings reported by some aquaculture studies such as Dey et al. (2005) for intensive 

freshwater pond poly-culture production in Vietnam; Yin et al. (2014) for carp farming in China; Thap et 

al. (2016) for white-leg shrimp farming in Ninh Thuan, Vietnam; and Hai Au et al. (2018) for lobster 

aquaculture in Vietnam. 

We also find a positive relationship between having access to formal credit for operational cost and 

technical efficiency. This estimate is statistically significant at the level of 5% for the double bootstrap. The 

relationship is also found in the tobit regression with the confident level of 90%. The result implies that the 

shrimp farms which are able to access to formal credit are more technically efficient than others. The 

positive relationship between credit availability and cost efficiency is also found in Cinemre et al. (2006) 

for the case of trout farming in the Black Sea Region, Turkey. Mitra et al. (2019) showed that aquaculture 

productivity is significantly higher for farmers who are not exposed to credit constraints in Bangladesh. 

Rahman et al. (2019) also showed the negative association of technical efficiency with credit constraints. 

The field survey reveals that the intensive white-leg shrimp farming in the south-central coast of Vietnam 

requires high operational expenses (see Long et al. 2016). Shrimp farm households with a loan for 

operational costs from input suppliers and even unofficial financial markets often bear high costs for 
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receiving credit with tight schedules for paying the loans off. The shrimp farmers with credit constraints 

are, therefore, not able to provide the right amount of fingerlings to the ponds, purchase formulated feed or 

sell the shrimp at the optimal size, which influences efficiency negatively. There is, however, only 24% of 

households having access to formal credit for operational cost in our sample (see Table 3). Moreover, it is 

not easy for shrimp farm households to get the official credits from commercial banks because of (i) limited 

assets for mortgage and (ii) complicated borrowing procedures for a high risky farming.  

As expected, cultivation length in a year has a significant negative impact on technical efficiency in both 

models within the 95% confidence interval. This may be due to two reasons. Firstly, farmers who keep their 

shrimp longer than necessary are more likely to use greater inputs with little or no gain in additional output, 

thus becoming inefficient (see also Iliyasu et al., 2014; Thap et al., 2016; and Zongli et al., 2017). Secondly, 

farmers with longer culture period (intensive use of land) may face higher risks of the spread of shrimp 

disease and pollution. They are, therefore, likely becoming inefficient.  

The provincial effect may be important for technical efficiency of intensive shrimp farming in the study 

area. If other variables keep unchanged, the result in both models implies that a shrimp farm in Phu Yen is 

statistically more technical efficient than a farm in Quang Ngai in the double bootstrap model with the 

significant level of 5%.  The relationship is also found in the tobit regression with the confident level of 

90%. This result might be explained by other factors which are not captured in the regression models such 

as weather, land quality, or water quality.  

Overall, the comparison of the double bootstrap estimation in Table 7 with Tobit estimation using non bias 

corrected scores in Table 8 shows only slight differences. However, stronger relationships result from the 

application of Algorithm 2 in Simar & Wilson’s (2007). This trend is hold in Latruffe et al. (2008) for the 

case of agriculture farming in the Czech Republic. Balcombe et al. (2008) also concludes that their findings 

employed the double bootstrap DEA do not contradict previous studies adopted the conventional two-stage 
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DEA for the case of rice farming in Bangladesh. Olson & Vu (2008) showed that while results from both 

methods are not substantively for the case of agriculture farms in US.  

4. CONCLUSIONS 

The paper adopts advantages of bootstrapping proposed by Simar & Wilson (1998, 2000 and 2007) into 

DEA framework to make statistical inferences about the technical efficiency, which can be viewed by policy 

makers with increased confidence to draw broad policy implications. The intensive white-leg shrimp 

farming in the south-central coast of Vietnam is used as an illustrative case. Firstly, we apply Simar and 

Wilson’s (2002) returns-to-scale test, based on the bootstrap procedure proposed by Simar & Wilson 

(1998), to raise the precision in the measurement of the boundary of the production possibilities set in the 

non-parametric analysis. The result demonstrates that the null hypothesis of CRS is rejected in favour of 

VRS for the production technology. Secondly, the single bootstrap proposed Simar & Wilson (1998, 2000) 

and the double bootstrap in Simar & Wilson (2007) are employed to determine the variability in technical 

efficiency estimates and to correct for the bias inherent in the conventional measurement. The result shows 

that the potential improvement in the technical efficiencies suggested by both bootstrapping methods in this 

study is therefore certainly greater than that using conventional DEA, which has been adopted widely in 

the aquaculture literature. Moreover, there is a lower statistical variability of DEA efficiency estimate using 

the double bootstrap. Specifically, the double bootstrap DEA shows that the bias-corrected point estimate 

of technical efficiency is 0.69, and at the 95% confidence interval is estimated to be 0.65 at the lower limit 

and 0.75 at the upper limit. This suggests that there is considerable room for improvement in technical 

efficiency in the intensive white-leg shrimp farming in Vietnam.  

The analysis also reveals that an increased farm size and having access to formal credit in intensive shrimp 

farming could enhance technical efficiency. The variable that is negatively related to technical efficiency, 

and hence hampers farm performance, is a longer cultivation period. The result suggests that policies for 

better access to formal credit and land are the leading constraints on improved productivity in this shrimp 
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farming. To help farmers avoid a long shrimp cultivation than necessary and identify an optimal harvesting 

strategy, market information on shrimp output should be provided by the government. Further development 

of intensive shrimp farming in the south-central coast of Vietnam should be undertaken with care of risks 

of the spread of shrimp disease and pollution. From a methodological point of view, the slightly different 

results derived from both the double bootstrap estimation and the Tobit regressed indicate that the identified 

factors are convincing. Nevertheless, stronger relationships result from the application of Simar and 

Wilson’s (2007) algorithm. Therefore, we can, as a result of the methods employed in this article, feel very 

secure in presenting these findings. In addition, this result also implies that the findings of previous studies, 

employing a conventional two-step DEA in aquaculture, may largely remain valid. 

It can be also stressed that the developments in DEA methodology examined in this article have been 

applied by few studies in aquaculture to date. There is clearly a need for greater adoption and consideration 

of the methods employed here to provide increased insight into their potential for the aquaculture studies 

where statistical inference for broad policies are very important. Although there is the slightly different 

result derived from both the double bootstrap estimation and the Tobit regressed in this study, it is advisable 

to use Algorithm 2 of the Simar and Wilson (2007) double bootstrap procedure with a well-defined, 

coherent statistical model in further research on technical efficiency in aquaculture, as it can increase the 

confidence that policy makers can place on results generated 

Last but not least, in frontier analysis, the nonparametric approach DEA is based on envelopment ideas 

which assume that with probability one, all observed units belong to the attainable set. In these deterministic 

frontier models, statistical inference is now possible, by using bootstrap procedures. However, no noise is 

considered in the data generating process in the bootstrap procedures proposed by Simar & Wilson in 1998, 

2000 & 2007 (see Simar, 2007; Simar & Zelenyuk, 2011). In the presence of noise, envelopment estimators 

could behave dramatically since they are very sensitive to extreme observations that might result only from 

noise. Due to stochastic nature of the aquaculture, future studies should consider some procedures, e.g 
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proposed by Simar (2007), Simar & Zelenyuk (2011) and so on, which introducing the noise in 

nonparametric frontier models into industry such as (see Olesen & Petersen, 2016).  
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