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SUMMARY

Changes in the endothelium of the cerebral vascula-
ture can contribute to inflammatory, thrombotic, and
malignant disorders. The importance of defining cell-
type-specific genes and their modification in disease
is increasingly recognized. Here, we develop a bioin-
formatics-based approach to identify normal brain
cell-enriched genes, using bulk RNA sequencing
(RNA-seq) data from 238 normal human cortex sam-
ples from 2 independent cohorts. We compare endo-
thelial cell-enriched gene profiles with astrocyte,
oligodendrocyte, neuron, and microglial cell profiles.
Endothelial changes in malignant disease are
explored using RNA-seq data from 516 lower-grade
gliomas and 401 glioblastomas. Lower-grade gli-
omas appear to be an ‘‘endothelial intermediate’’ be-
tween normal brain and glioblastoma. We apply our
method for the prediction of glioblastoma-specific
endothelial biomarkers, providing potential diag-
nostic or therapeutic targets. In summary, we pro-
vide a roadmap of endothelial cell identity in normal
and malignant brain, using a method developed to
resolve bulk RNA-seq into constituent cell-type-en-
riched profiles.
INTRODUCTION

Comprehensive characterization of human organs, and the

constitutive cell types, is required to fully understand biological

processes and disease development, concepts underlying

large-scale tissue and cell profiling projects, e.g., the Human

Protein Atlas (Uhlén et al., 2015) and Human Cell Atlas (Regev

et al., 2017). RNA sequencing (RNA-seq) data from unfractio-
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nated human normal and diseased tissue is available through

online portals, e.g., Genotype-Tissue Expression (GTEx)

Project (http://gtexportal.org/home/index.html) (GTEx Con-

sortium, 2015) and The Cancer Genome Atlas (https://www.

cancer.gov/about-nci/organization/ccg/research/structural-

genomics/tcga), but using mixed-cell ‘‘bulk’’ data to decipher

changes in cell-type-specific transcriptome profiles in disease

is challenging. Recent advances have facilitated sequencing of

cell populations or individual cells, but practical and technical

challenges, such as sourcing of material, occurrence of artifacts

due to processing, compromised read depth, and financial

constraints, limit the accessibility of such methods (Beliakova-

Bethell et al., 2014; Rizzetto et al., 2017; Saliba et al., 2014;

Ziegenhain et al., 2017). At the cell-type level, one of the most

well-studied organs is the brain, tissue composed primarily of

neurons (NCs), astrocytes (ACs), oligodendrocytes (OCs), micro-

glia (MGs), and a vascular network of endothelial cells (ECs) and

associated mural cells (Azevedo et al., 2009; von Bartheld et al.,

2016; Zhao et al., 2015). Previous studies have isolated and

analyzed the transcriptomes of these cell types, primarily from

mouse (La Manno et al., 2018; Pandey et al., 2018; Saunders

et al., 2018; Vanlandewijck et al., 2018; Zeisel et al., 2015), but

also human brain (Darmanis et al., 2015; Reddy et al., 2017;

Zhang et al., 2016). The most common primary brain malignancy

is glioma, of which 60%–70% are glioblastoma (GBM), an incur-

able disease with a short median survival (Lim et al., 2018; Osuka

and Van Meir, 2017). Bulk RNA-seq can identify GBM molecular

signatures (Jov�cevska, 2018) but does not resolve disease-

associated cell-type-specific changes. Few studies have

analyzed GBM on a cell-by-cell basis, and profiling of relatively

low abundance cells, such as ECs, remains challenging due to

the small number of tumors analyzed (Darmanis et al., 2017; Pa-

tel et al., 2014; Yuan et al., 2018).

Previously, we identified the core body-wide EC-enriched

transcriptome from unfractionated RNA-seq from 32 different

organs (Butler et al., 2016), using an analysis based on the rela-

tive proportion of ECs across organs. Here, we analyzed
thors.
creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:lynn.butler@ki.se
https://doi.org/10.1016/j.celrep.2019.09.088
http://gtexportal.org/home/index.html
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.09.088&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Ref. Transcript-Based Analysis Identifies Cell-Type-Enriched Genes from Unfractionated Human Cortex Data

(A) Cortex RNA-seq data from GTEx (n = 158) was used to calculate corr. coefficients between ref. transcripts for: (i) endothelial cells (ECs) (CD34, CLEC14A,

VWF); (ii) astrocytes (ACs) (BMPR1B, AQP4, SOX9); (iii) oligodendrocytes (OCs) (MOG, CNP, MAG); (iv) neurons (NCs) (TMEM130, STMN2, THY1); and (v)

microglial cells (MGs) (C1QA, AIF1, LAPTM5) and ‘‘test-panels’’—genes categorized in the literature as enriched in: brain ECs (test-ECs), ACs (test-ACs), OCs

(test-OCs), NCs (test-NCs), MGs (test-MGs), or smooth muscle cells (test-SMCs). Frequency distribution of coefficient values are plotted, and shaded areas

indicate thresholds selected.

(legend continued on next page)
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unfractionated RNA-seq of a single organ, the human brain, to

identify EC, AC, OC, NC, and MG cell-type-enriched genes.

We used RNA-seq from 516 lower-grade gliomas (LGGs) and

401 GBMs to decipher global EC-compartment modifications

and predict tumor-specific EC biomarkers. A searchable web-

based interface is provided for an exploration of the generated

datasets at https://cell-enrichment.shinyapps.io/brain. Our

approach allows direct comparison of cell-type-enriched tran-

scriptome profiles between normal and diseased tissue, adding

another method to the toolkit of existing RNA-seq deconvolution

approaches, such as those that can be used to establish cell-

type enriched profiles in normal tissue and changes in the

proportion of cell types in diseased tissue (Kelley et al., 2018;

Newman et al., 2015; Yoshihara et al., 2013). In addition, our

approach, which generates results consistent with isolated cell

and single-cell RNA-seq, does not require high-level bioinfor-

matics expertise or complex modeling, making it an accessible

tool for the wider research community.

RESULTS

Cell-Type Reference Transcripts Correlate across
Unfractionated Cortex RNA-Seq Data
Unfractionated normal human brain RNA-seq was sourced from

(1) GTEx V7 (cortex, n = 158) (GTEx Consortium, 2015) and (2)

Accelerating Medicines Partnership-Alzheimer’s Disease

(AMP-AD) knowledge portal (MAYO RNA-seq study) (controls,

n = 80) (Allen et al., 2016). We selected 3 ‘‘reference’’ (ref.)

gene transcripts, which encode for cell-type-specific markers:

(A) ECs (CD34, CLEC14A, VWF); (B) ACs (BMPR1B, AQP4,

SOX9); (C) OCs (MOG, CNP, MAG); (D) NCs (TMEM130,

STMN2, THY1); and (E) MGs (C1QA, AIF1, LAPTM5) (Butler

et al., 2016; Cahoy et al., 2008; Darmanis et al., 2015; Fonseca

et al., 2017; Ito et al., 1998; Pfeiffer et al., 1993; Sun et al.,

2017; Zhang et al., 2014). We analyzed GTEx cortex RNA-seq

data to calculate correlation (corr.) coefficient values between

these cell-type ref. transcripts across samples. Consistent with

co-expression, ref. transcripts within each cell-type group

correlated with each other: ECs (CD34, CLEC14A, VWF) mean

corr., 0.66 p > 0.0001; ACs (BMPR1B, AQP4, SOX9) mean

corr., 0.81 p > 0.0001; OCs (MOG, CNP, MAG) mean corr.,

0.92 p > 0.0001; NCs (TMEM130, STMN2, THY1) mean

corr., 0.89 p > 0.0001; MGs (C1QA, AIF1, LAPTM5) mean corr.,

0.91 p > 0.0001; while ref. transcripts between cell-type groups

did not (Figure S1).

Ref. Transcript Analysis Can Resolve Cell-Type Genes
from Cortex RNA-Seq Data
We analyzed the GTEx cortex RNA-seq data to produce corr.

values between each ref. transcript and the other >20,000 map-

ped protein-coding genes. A high mean corr. with cell-type ref.
(B) Equivalent test-panel analysis was performed on cortex RNA-seq data from the

compared to the GTEX results for (i) EC, (ii) AC, (iii) OC, (iv) NC, and (v) MG ref.

classification as cell-type enriched.

(C) Heatmap plot of corr. values of the top 150 genes identified as EC-, AC-, OC-,

https://biit.cs.ut.ee/clustvis/; values subject to row centering and unit variance s

See also Tables S1, S2, S3, S4, S5, and S6.
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transcripts should indicate enrichment of the gene(s) in question

in that cell type. To test sensitivity and specificity of the method,

we compared corr. between the ref. transcripts and 6 ‘‘test-

panels’’—genes categorized in the literature as enriched in (1)

brain ECs (test-ECs), (2) ACs (test-ACs), (3) OCs (test-OCs), (4)

NCs (test-NCs), (5) MGs (test-MGs), and (6) smooth muscle cells

(test-SMCs) (Cahoy et al., 2008; Chu and Peters, 2008; Conley,

2001; Darmanis et al., 2015; Dreiza et al., 2010; He et al., 2016;

Long et al., 2009; Miwa et al., 1991; Rensen et al., 2007; Wang

et al., 2003; Yamawaki et al., 2001; Zhang et al., 2014) (Table

S1, tabs 1–5: column A). Each set of ref. transcripts correlated

most highly with genes in the corresponding test-panel (Fig-

ure 1A), with no overlap with genes from any other test-panel

(Table S1, tabs 1–5: column A). We performed an equivalent

test-panel analysis using RNA-seq data from the AMP-AD

knowledge portal (MAYO RNA-seq study). Corr. between the

test-panels and the EC, AC, OC, NC and MG ref. transcripts in

the MAYO (Figures 1Bi–1Bv, respectively), were comparable to

the GTEx (Table S1, tabs 1–5). For test-EC, AC, OC, NC, and

MG genes, corr. values versus the corresponding ref. transcripts

were high in both GTEx and MAYO data; the resultant cluster

lying in the upper-right quadrant of the comparative plot (Fig-

ure 1B); the shaded box and dashed lines indicate the selected

threshold requirement for classification as cell-type enriched.

We observed comparable results in the test-panel analysis

when we used a larger panel of ref. transcripts for each cell

type (6 or 12, instead of 3) (see Figure S2). Test-SMC genes

did not highly correlate with the EC, AC, OC, NC, or MG ref. tran-

scripts (Figures 1Ai–1Av). However, to further verify that SMC-

enriched transcripts would not be incorrectly classified as EC-,

AC-, OC-, NC-, or MG-enriched, we selected 3 known SMC

transcripts (FHL5, ACTA2, ACTG2) (Vanlandewijck et al., 2018)

and calculated their corr. with the test-panels (GTEx) (Table

S1, tab 6). All test-transcripts correlatedmore highly with the cor-

responding ref. transcripts, than with SMC ref. transcripts (Fig-

ures S3Ai–S3Av). Higher corr. values of the SMC ref. transcripts

with the test-EC panel (versus test-AC, OC, NC, orMG) indicated

that SMC genes were most likely to be incorrectly classified as

EC-enriched (Figure S3Ai), rather than AC-, OC-, NC-, or MG-en-

riched. Transcripts identified as EC-, AC-, OC-, NC-, or MG-en-

riched were excluded if the mean corr. with the ref. transcripts <

mean corr. versus SMC transcripts (GTEx versus GTEx). As pre-

dicted, most exclusions were from the EC-enriched list

(Figure S4A).

ECs and ACs Have a Panel of Dual-Enriched Transcripts
We compared the relationships between transcripts in the cell-

type-enriched lists. To compare groups, e.g., EC- versus

AC-enriched, the following values were calculated for each

transcript featuring in either list: (1) the difference between

the mean corr. for both sets of corresponding ref. transcripts,
AMP-AD knowledge portal MAYORNA-seq study (controls, n = 80) andmeans

transcripts. The dotted lines indicate the dual-thresholding criteria applied for

NC-, or MG-enriched versus all the ref. transcript sets (adapted from ClustVis,

caling).

https://cell-enrichment.shinyapps.io/brain
https://biit.cs.ut.ee/clustvis/


(legend on next page)
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i.e., ECs (CD34, CLEC14A, VWF) and ACs (BMPR1B, AQP4,

SOX9) (the ‘‘differential corr. score’’), and (2) the ‘‘enrichment

ranking,’’ based on the corr. value with each set of ref. tran-

scripts (highest corr.: rank = 1) (Figures S3Bi–S3Biv). Threshold

lines indicate the rank number below which transcripts were

classified as cell-type enriched. EC and AC-enriched tran-

scripts and (to a lesser extent) EC- and MG-enriched tran-

scripts ‘‘crossed’’ on the plot (31 and 5 common genes,

respectively) (Figures S3Bi and S3Biv, yellow points), while

EC transcripts were well separated from the enriched gene pro-

files of OCs and NCs (Figures S3Bii and S3Biii). We further

investigated transcripts that fulfilled the criteria to be classified

as EC and AC enriched (Figure 2A, yellow points [plot as for

Figure S3B, but transcripts ranked below enriched classifica-

tion threshold excluded]) (Table S3, tab 5). We sourced data

from a previously published study where human brain was

sorted into cell populations prior to RNA-seq (Zhang et al.,

2016); for transcripts we identified as (1) AC-enriched only, (2)

AC and EC-enriched, or (3) EC-enriched only (Figure 2A: purple,

yellow, and green, respectively); expression profiles were

consistent with our classifications (Figure 2B). Based on these

analyses, transcripts classified as enriched in more than one

cell type were excluded from the final list(s) if they fulfilled

enrichment criteria for both, or if they had higher corr. values

with the other (non-corresponding) ref. transcripts.

Identification of EC-, AC-, OC-, NC-, or MG-Enriched
Genes
Following application of selection criteria (ref. transcript corr. in

GTEx, replication in MAYO, false discovery rate [FDR]

threshold, SMC- and dual-enriched transcript exclusion) (Fig-

ure S4), 166 genes were classified as EC-enriched, 351 were

AC-enriched, 397 were OC-enriched, 2,015 were NC-enriched,

and 205 were MG-enriched (Tables S2–S6 [enriched: tab 1; all

values: tab 2]). Expression of selected uncharacterized or

lesser-known transcripts was confirmed by immunohistochem-

istry [IHC] (Figure S5). A heatmap plot of the corr. values of the

top 100 genes identified as EC-, AC-, OC-, NC-, or MG-en-

riched versus the EC, AC, OC, NC, and MG ref. genes, respec-

tively, revealed the resolution of cell-type expression profiles in

the GTEx and MAYO data (Figure 1C). The top 15 most highly

enriched genes for each category contained known cell-en-

riched transcripts (Figure 3, marked in bold). Gene Ontology

(GO) and Reactome (‘‘pathway’’) analysis (Ashburner et al.,

2000) was performed on the final list of EC-, AC-, OC-, NC-,

and MG-enriched transcripts. The most significant biological
Figure 2. Ref. Transcript-Based Analysis Identifies Dual Cell-Type-Enr

Cortex RNA-seq data from GTEx (n = 158) was used to calculate corr. coefficien

AQP4, SOX9).

(A) For transcripts fulfilling criteria for classification as EC- (circles) or AC-enriched

and AC Ref. transcripts) was plotted versus ‘‘enrichment ranking’’ (position in ea

ranking belowwhich transcripts were classified as EC- or AC-enriched. The yellow

and square symbol, on the same x axis dimension).

(B) mRNA expression data from 5 isolated brain cell types: ECs (green, n = 2 don

donors), and MGs (cyan, n = 3 donors), isolated from human brain prior to RNA-se

31 dual-enriched in ACs and ECs (yellow box), and 166 EC-enriched (green).

expression of AHNAK, VIM, and LAMB2 in both ACs and ECs. Scale bar, 100 mm

See also Table S3, tab 5. Letter and number on bottom right of image denote tis
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process GO groups in the EC-enriched list included ‘‘vascula-

ture development’’ and ‘‘angiogenesis’’ (p < 3.8 3 10^17) and
reactome pathways included ‘‘haemostasis’’ and ‘‘NOSTRIN

mediated eNOS trafficking’’ (p < 3.9 3 10^5) (Table S2, tab

4). The most significant biological process GO groups in the

AC-enriched list included ‘‘regulation of signaling’’ and ‘‘small

molecule catabolic process’’ (p < 1.4 3 10^10) and reactome

pathways included ‘‘metabolism’’ and ‘‘transport of small

molecules’’ (p < 1.3 3 10^5) (Table S3, tab 4). The most signif-

icant biological process GO group in the OC-enriched list was

‘‘myelination’’ (p < 1.6 3 10^17) and the single reactome

pathway identified was ‘‘transport of small molecules’’ (p <

7.8 3 10^7) (Table S4, tab 4). The most significant biological

process GO groups in the NC-enriched list included ‘‘nervous

system development’’ and ‘‘trans-synaptic signaling’’ (p <

2.2 3 10^32) and reactome pathways included ‘‘neuronal

system’’ and ‘‘neurotransmitter receptors and postsynaptic

signal transmission’’ (p < 9.5 3 10^17) (Table S5, tab 4). The

most significant biological process GO groups in the MG-en-

riched list included ‘‘Immune system process’’ and ‘‘defense

response’’ (p < 2.5 3 10^45) and reactome pathways included

‘‘immune system’’ and ‘‘cytokine signaling in immune system’’

(p < 4.4 3 10^18) (Table S6, tab 4). Summary plots were gener-

ated using Reduce and Visualize Gene Ontology (REViGO) (Su-

pek et al., 2011) (Figure 3).

Comparison of Results with Single-Cell or Fractionated
Brain Cell-Type RNA-Seq Data
We compared the top 100 most enriched EC, AC, OC, NC, and

MG transcripts from our unfractionated (UF) RNA-seq analysis,

to existing single-cell RNA sequencing (scRNA-seq) of human

brain (H1) (Darmanis et al., 2015) and RNA-seq of fractionated

fluorescence-activated cell sorting (FACS)-sorted or immuno-

panned isolated cell populations from human (H2) (Zhang

et al., 2016) or mouse (M1) brain (Zhang et al., 2014). The top

100 most enriched genes we identified in the EC, AC, OC, NC,

and MG categories were significantly enriched in the corre-

sponding human single-cell-type sequencing analysis (H1): total

with reproducibility-optimized test statistic (ROTS) score (see

STAR Methods for ROTS definition) > 2 versus other cell types

ECs 72/100, ACs 90/100, OCs 86/100, NCs 97/100 and MGs

73/100 (Figures 4Ai and 4Aii) and the human fractionated cell

type analysis (H2): fold expression > 2 versus other cell types:

ECs, 72/100; ACs, 87/100; OCs, 94/100; NCs, 83/100;

and MGs, 99/100 (all p > 0.001 versus other cell types) (Figures

4Bi and 4Bii). Agreement was less consistent in the mouse
iched Genes from Unfractionated Human Cortex Data

ts between ref. transcripts for ECs (CD34, CLEC14A, VWF) or ACs (BMPR1B,

(squares), the ‘‘differential corr. score’’ (difference between mean corr. with EC

ch respective enriched list, highest corr. = ranking 1). Threshold lines denote

symbols represent transcripts classified as both EC- and AC-enriched (circular

ors), ACs (purple, n = 12 donors), OCs (orange, n = 5 donors), NCs (blue, n = 1

q (Zhang et al., 2016), for 351 genes we classified as AC-enriched (purple box),

The bars represent mean ± SD. Protein profiling of human cortex tissue for

.

sue sex (F, female; M, male) and age (years).



Figure 3. Transcripts Classified as EC-, AC-, OC-, NC-, or MG-Enriched in Human Brain Cortex

Cortex RNA-seq data from GTEx (n = 158), and the AMP-AD knowledge portal MAYO RNA-seq study (n = 80) was used to identify EC-, AC-, OC-, NC-, and

MG-enriched transcripts. Total enriched transcript number, top 15 most enriched (bold denotes previously described), and a summary of Gene Ontology (GO)

enrichment for all enriched genes in each cell type (generated using REViGO).

See also Tables S2, S3, S4, S5, and S6 and Figure S4.
fractionated cell type analysis (M1): fold expression > 2 versus

other cell types: ECs, 68/100; ACs, 53/100; OCs, 53/100; NCs,

64/100;MGs, 87/100 (p > 0.0001 versus other cell types) (Figures

4Ci and 4Cii); consistent with differences in gene expression

and cell type specificity between human and murine brain. Over-

all, �50% of the top 100 EC-, AC-, OC-, NC-, and MG-enriched

genes were categorized as enriched in the same cell type in all 3

(H1, H2 andM1) datasets (Figure 4D), andR98%were classified

as enriched in at least one other dataset. Thus, our results were

consistent with fractionated tissue or scRNA-seq-based cell-

type transcript classification.
Comparison of Ref. Transcript-Based and Weighted
Corr. Network Analysis
A disadvantage of our analysis is its reliance on a pre-selected

panel of cell-type-enriched ‘‘ref.’’ transcripts and, thus, its being

subject to a possible input bias. To determine the extent of this

limitation, we analyzed the same datasets using an alternative

‘‘unbiased’’ approach—weighted corr. network analysis

(‘‘WGCNA’’) (Langfelder and Horvath, 2008); where corrs. were

generated between each transcript and all others, and tran-

scripts with similar profiles were clustered together. Analysis of

the GTEx and MAYO data produced a total of 37 and 50
Cell Reports 29, 1690–1706, November 5, 2019 1695



Figure 4. Comparison of Transcripts Classified as EC-, AC-, OC-, NC-, or MG-Enriched with Existing Single-Cell or Fractionated Brain Cell-

Type RNA-Seq Data

(A–C) Data from (A) single-cell sequencing of human brain (Darmanis et al., 2015) (H1) or RNA-seq of cell populations from (B) human (H2) (Zhang et al., 2016) or (C)

mouse (M1) brain (Zhang et al., 2014) were downloaded. Transcript ‘‘enrichment scores’’ in EC, AC, OC, NC, and MG populations in H1 (‘‘ROTS score’’), H2, and

(legend continued on next page)
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independent clusters, respectively (Table S7, tab 1, annotated

with arbitrary numbers). Test-OC and test-EC panels were

used to identify clusters representing these cell types (Table

S7, tab 2) (Figures S6A and S6B, green/orange boxes), and

GO enrichment analysis of these clusters were consistent with

OCs or ECs identify, respectively (Figures S6C and S6D) (Table

S7, tab 4). The majority of genes classified as OC- or EC-en-

riched by the ref. transcript analysis were also classified as

such by WGCNA (Figures S6Ei and S6Fii) (337/397 [85%] and

106/166 [64%], respectively). Of those not replicated, most

were classified as OC- or EC-enriched in either the GTEx or

MAYO WGCNA, but not both, and thus were excluded (Figures

S6Ei and S6Fi) (Table S7, tab 5, columns A–D and L–O). How-

ever, IHC confirmed that many of the genes ‘‘excluded’’ from

the EC category were indeed EC-enriched (Figure S6I) and,

thus, were likely false negatives in the WGCNA. 337/446 [76%]

of genes classified as OC-enriched by the WGCNA were also

identified by the ref. transcript analysis (Figure S6Eii). Of those

not replicated, 67/109 (61%) were classified as OC-enriched in

either the GTEx or MAYO ref. transcript analysis, but not in

both (Figure S6Eii) (Table S7, tab 5, columns F–I). In most cases,

values narrowly failed to meet the required threshold in the

‘‘negative’’ dataset (mean corr.: GTEx, 0.57 ± 0.07; MAYO,

0.75 ± 0.08) (threshold required: R0.60 in GTEx, R0.70 in

MAYO). The remaining 42/109 (39%) of those not replicated

failed to reach the threshold for OC-enriched classification in

either the GTEx or the MAYO ref. transcript analyses, but by a

narrow margin (mean corr.: GTEx, 0.53 ± 0.06; MAYO, 0.62 ±

0.07). The WGCNA identified more EC-enriched genes than the

ref. transcript (252 versus 166), and 106/252 (42%) of genes

classified as EC-enriched by the WGCNA were also identified

by the ref. transcript analysis (Figure S6Fii) (Table S7, tab 5, col-

umns Q–T). Of those not replicated, 23/146 (16%) reached the

required corr. threshold for classification as EC-enriched in the

ref. transcript analysis, but were excluded due to high corr.

values with MG-enriched transcripts (n = 9) or dual enrichment

with ACs (n = 14), while 29/146 (20%) had corrs. with EC ref. tran-

scripts <0.05 below the designated threshold for classification

(mean corr.: GTEx, 0.49 ± 0.04; min., 0.45; mean corr.:

MAYO R 0.59 ± 0.08; min, 0.46).

We compared EC- and OC-enriched lists, generated using

each method, to brain cortex scRNA-seq (Darmanis et al.,

2015) (H1) and isolated brain cell-type RNA-seq (Zhang et al.,

2016) (H2) (as in Figure 4). Themajority of theOC-enriched genes

identified by ref. transcripts or WGCNA, were correspondingly

enriched in both the (H1) (ref. transcript, 82%, versus WGCNA,

76%) (Figure S6Gi) and (H2) (ref. transcript, 80%, versus

WGCNA, 78%) datasets (Figure S6Gii). Similarly, the majority

of EC-enriched genes identified by ref. transcripts or WGCNA,

were correspondingly enriched in both the (H1) dataset (ref.

transcript, 76%, versus WGCNA, 72%) (Figure S6Hi) and the

(H2) dataset (ref. transcript, 83%, versus WGCNA, 67%) data-
M2 (fold enrichment versus other cell types) were compiled for the top 100 transc

(UF) RNA-seq analysis and presented as follows: (i) heatmaps and (ii) grouped p

(D) Venn diagrams showing number of top 100 transcripts we identified as EC-

corresponding cell type in H1, H2, and M1 datasets (free circles, unfractionated o

ee/clustvis/).
sets (Figure S6Hii). Overall, fewer genes were classified as OC-

or EC-enriched by the ref. transcript analysis (OCs, 379 versus

446; and ECs, 166 versus 252), but results were better supported

by data from (H1) and (H2), compared to the WGCNA.

Ref. Transcript Analysis Can Be Used to Profile Disease-
Associated Modifications
Our data from the analysis of normal cortex were used as a start-

ing point for the prediction of cellular changes in malignant

disease. We used ref. transcript analysis to study disease-asso-

ciated changes in the vasculature of GBM and LGG, where cross

talk between ECs and tumor cells promotes proliferation and

subsequent disease progression (Yan et al., 2017). Expression

tables for GBM (n = 401) and LGG (n = 516) samples from The

Cancer Genome Atlas (TCGA) were sourced from the Genomic

Data Commons Data Portal (https://portal.gdc.cancer.gov/). As

in normal brain, EC genes (CD34, CLEC14A, VWF) correlated

highly in GBM (Figure 5A) and LGG (Figure 5B) (corr. mean,

GBM, 0.67; LGG, 0.74), with EC restricted expression (Figures

5A and 5B, upper left images), indicating suitability as EC ref.

transcripts in these cohorts. In principle, ref. transcripts repre-

senting other cell types (e.g., ACs or OCs) could be selected to

analyze changes in these cell types in malignancy, but validation

of their maintained cell-type-restricted expression in disease, in

the absence of the distinctive morphological features of ECs

(thin, relatively elongated nucleus, frequently clearly adjacent

to a vessel lumen), may be more challenging and require addi-

tional validation. GBM and LGG datasets were analyzed as for

normal brain (GTEx) (Table S8, tab 1) to identify EC-enriched

transcripts. The most significant biological process GO groups

in the GBM EC-enriched list (corr. > 0.50) were related to EC

function, including ‘‘vasculature development’’ and ‘‘blood

vessel morphogenesis’’ (p values < 1.7 3 10^25) (Table S8,

tab 5). There are were no GO groups related to immune cell pop-

ulations, hypoxia, or necrosis, indicating that transcript changes

that could be linked to vascular density per se (rather than direct

expression by ECs), are not incorrectly identified as EC-en-

riched. WGCNA of GBM RNA-seq produced 2 related clusters

that contained EC markers (n = 104 and n = 35) (Figure S7A).

These clusters contained 78/85 (92%) of genes classified as

GBM EC-enriched by the ref. transcript analysis (Figure S7B)

(Table S8, tab 2). We compared GBM and normal brain, using

the differential corr. score and enrichment rank of all transcripts

categorized as EC-enriched in GBM or normal brain (Figure 5C).

33 transcripts were classified as EC-enriched in normal brain and

GBM (Figure 5C, blue data points) (data contained in Table S8,

tab 3). Of these, we previously identified 29/33 (88%) as body-

wide core EC-enriched (Butler et al., 2016), including ENG,

TIE1, ESAM, CDH5, and ERG (which encodes for a key tran-

scription factor in the maintenance of EC identity) (Shah et al.,

2016); thus, this group likely represents genes indispensable

for vascular function. A panel of genes were classified as
ripts identified as EC-, AC-, OC-, NC-, or MG-enriched from our unfractionated

lots. Horizontal line: threshold for ‘‘enrichment.’’

, AC-, OC-, NC-, or MG-enriched that were also identified as enriched in the

nly). Heatmaps adapted from images generated by ClustVis (https://biit.cs.ut.
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EC-enriched in GBM, but not in normal brain, including PLXDC1,

ACE, PCDH12, and vice versa, including PAQR5, ANXA3, and

FAM111A (Figure 5C, red and green data points, respectively)

(Table S8, tab 3). LGG had a higher proportion of EC-enriched

genes in common with normal brain, compared to GBM (Fig-

ure 5D, more blue data points versus Figure 5C), and corre-

spondingly, fewer genes were modified in LGG versus normal,

compared to GBM versus normal. Of those EC-enriched genes

that were modified in LGG, parallels were observed with GBM,

e.g., MYO1B, DLL4, FOXS1, GPR4, LLRC32, and TM4SF18

‘‘gained’’ EC enrichment, and SDPR, FAM111A, PGR, ANXA3,

and GATA2 ‘‘lost’’ EC enrichment, in both tumor grades (Figures

5C and 5D, underlined). A heatmap plot of the raw corr. values,

between the EC ref. transcripts and those classified as EC-en-

riched in normal or LGG or GBM (Figure 5E), was consistent

with the hypothesis that LGG represents an ‘‘intermediate state’’

between normal and GBM.

Further Resolution of GBM-Associated EC-Enriched
Transcriptome Modifications Using mRNA Expression
Data in Combination with Protein Profiling
We selected a panel of EC genes identified as modified in GBM

versus normal brain to further characterize, by combining

expression data (normal, LGG, and GBM) from the OASIS portal

(Fernandez-Banet et al., 2016) with protein profiling, which we

performed as part of the Human Protein Atlas (HPA) Pathology

Atlas (Uhlén et al., 2017). ACE (angiotensin converting enzyme)

was classified as EC-enriched in GBM, but not normal brain

(mean corr., 0.63, GBM, versus�0.02, normal); correspondingly,

ACEmRNA was higher in GBM versus normal (mean transcripts

per million [TPM], 16.0, GBM, versus 4.7, normal; p < 0.0001)

(Figure 6Ai, exp. [TPM]). The ‘‘degree’’ of ACE EC-enrichment

and expression was intermediate in LGG, between normal and

GBM (Figure 6Ai), indicating changes occurred in LGG, but

they were not as pronounced/consistent as those in the

higher-grade GBM. ACE protein was not detected in normal

brain (Figure 6Ai, IHC 1 and 2) (blue arrows indicate negative ves-

sels), was variable in LGG ECs, and was highly abundant in GBM

ECs (green arrows show positive staining). Similar patterns were

observed for CD93 (receptor for the C1q complement factor)

(Figure 6Aii) and ANGPT2 (angiopoietin 2) (Figure 6Aiii).

When transcripts were classified as EC-enriched in normal

brain, but not GBM (Figure 5C, green data points), this could indi-

cate that (1) expression was lost from GBM ECs, or (2) expres-

sion was gained outside the vasculature, i.e., in tumor tissue

(illustrated in Figures 7A and 7B). ANXA3 (Annexin 3A) was EC-

enriched in normal brain, but not in GBM (mean corr., 0.66,

normal, versus �0.09, GBM) and ANXA3 mRNA was decreased

in GBM versus normal (mean TPM, 1.6, GBM, versus 10.3,
Figure 5. Ref. Transcript-Based Analysis Can Predict Global Modific

Lower-Grade Glioma

RNA-seq data from unfractionated glioblastoma (GBM) (n = 401) and lower-gra

(TCGA), and corr. coefficients were calculated between the EC ref. transcripts (C

(A–D) Corrs. between CD34, CLEC14A, VWF, and IHC confirming EC restricted ex

corr. score and enrichment rank of transcripts categorized as EC-enriched in (C)

(E) Heatmap of corr. values between transcripts classified as EC-enriched in GB

See also Table S8. Letter and number on top left of image denotes tissue sex (F
normal; p < 0.0001) (Figure 6Bi). IHC showed ANXA3 was

expressed in normal ECs, was variable in LGG ECs, and was ab-

sent from GBM ECs. Similar patterns were observed for PRX

(Periaxin) (Figure 6Bii) and ABCB1 (ATP-binding cassette sub-

family B member 1) (Figure 6Biii). CAV2 (Caveolin 2) was also

EC-enriched in normal brain, but not GBM (mean corr., 0.52,

normal, versus 0.16, GBM) (Figure 6Ci); however, CAV2 mRNA

was increased in GBM versus normal (mean TPM, 20.9, GBM,

versus 7.1, normal; p < 0.0001), and CAV2 was expressed

outside the EC compartment (Figure 6Ci). Similar was observed

for A2M (Figure 6Cii) and HLA-B (Figure 6Ciii). Generally, LGG

represented an ‘‘intermediate state’’ between normal brain and

GBM, the degree of similarity to either condition depending on

the transcript.

We used our analysis to predict 10 GBM EC markers (Fig-

ure 7C), based on the following criteria: (1) they were not core

EC-enriched genes across other vascular beds (Butler et al.,

2016); (2) they had low expression levels in the normal brain

(mean TPM < 5); and (3) they had a high differential EC-enriched

corr. between GBM and normal (Table S9). The 10 predicted

GBM-EC markers correlated with each other in the GBM RNA-

seq (Figure 7D), but not the normal RNA-seq (mean corr.,

GBM, 0.61 ± 0.06, versus normal, 0.18 ± 0.05). Consistent with

previous observations, LGG represented an intermediate be-

tween GBM and normal (mean corr., LGG, 0.46 ± 0.04) (corr.

matrices, Table S8, tab 4). All 10 predicted GBM-EC markers

were also in the EC-annotated groups in the WGCNA of the

GBM RNA-seq (Figures 7E and S7), consistent with co-expres-

sion in GBM ECs. Thus, our method can be applied to perform

a systems-based prediction of highly GBM-specific EC-markers

that, following experimental validation, could have clinical appli-

cations for tumor grading, prognosis prediction, and therapeutic

targeting.

DISCUSSION

Here, we have demonstrated how cell-type-enriched transcripts

in the brain can be identified using bulk RNA-seq, and performed

a systems-level exploration of EC changes associated with

GBM. We provide data tables and a web interface (https://

cell-enrichment.shinyapps.io/Brain/) for users to look up the

specificity profiles of any mapped protein-coding gene in normal

cortex and EC enrichment score in GBM or LGG.

Our approach has some advantages over other types of tran-

scriptome analysis, such as single-cell sequencing (scRNA-seq).

scRNA-seq typically involves the extraction and sequencing of

thousands of individual cells (Darmanis et al., 2015; Villani

et al., 2017; Pandey et al., 2018; Papalexi and Satija, 2018) to

detect cell type specific genes and identify to rare cell subtypes
ations of EC-Enriched Transcriptome of Human Glioblastoma and

de glioma (LGG) (n = 516) was downloaded from The Cancer Genome Atlas

D34, CLEC14A, VWF) and all mapped protein-coding genes.

pression (label as for y axis) in (A) GBM and (B) LGG. Plots showing differential

GBM and/or normal brain and (D) LGG and/or normal brain.

M and/or LGG and/or normal brain, and the EC ref. transcripts.

, female; M, male) and age (years).
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in heterogeneous tissue. In contrast, our analysis does not

require removal of cells from the resident niche, circumventing

modifications due to loss of environmental cues, or process-

ing-associated activation (Chow and Gu, 2015; Urich et al.,

2012; Wilhelm et al., 2016) while avoiding the introduction of

technical variability (Beliakova-Bethell et al., 2014; Saliba et al.,

2014). As sample collection and processing needs to be well

controlled, many brain scRNA-seq studies use non-human tis-

sue (e.g., Pandey et al., 2018; Rosenberg et al., 2018; Vanlande-

wijck et al., 2018). In contrast, ourmethod can be used to analyze

hundreds of human biological replicates concurrently. However,

our analysis does have limitations; we applied strict thresholds to

maximize confidence in our classifications and to only identify

the most highly specific genes for each cell type. It was not

feasible to identify an extensive panel of transcripts expressed

at moderately higher levels in one cell type versus others, which

is reflected by the low number of genes we annotated as cell-en-

riched, compared to isolated brain cell type or scRNA-seq

studies (Darmanis et al., 2015; Vanlandewijck et al., 2018; Zhang

et al., 2014). A further limitation is possible incorrect classifica-

tion of transcripts, particularly between closely associated cell

types, which could have comparable ratios across samples,

such as ECs with pericytes or SMCs. We used test panels to

exclude SMCs as a source of false-positive EC-enriched genes,

but equivalent analysis for pericytes was challenging, due to a

lack of specific markers (Armulik et al., 2011). Genes described

as pericyte-enriched, e.g., PDGFRB, ACTA2, DES, MCAM

(Smyth et al., 2018), VTN, and IFITM1 (He et al., 2016), were

not classified as EC-enriched. ANPEP (CD13), a marker used

to identify pericytes in mouse (Crouch and Doetsch, 2018),

was classified as brain EC-enriched in our study; however, it

was also classified as such by scRNA-seq (Darmanis et al.,

2015) and is highly expressed in EC lines (Thul et al., 2017).

Thus, while our data indicate that pericyte genes are not incor-

rectly classified as EC-enriched, we cannot definitively exclude

the possibility that the EC-enriched list contains dual pericyte/

EC-enriched transcripts.

We performed a global analysis to predict changes in the EC-

enriched transcriptome in GBM. Bulk RNA-seq has been used

to define GBM molecular signatures (Jov�cevska, 2018), but

not to resolve cell-type-specific changes. A small number of

studies have dissociated GBM tissue for transcriptome analysis

on a cell-by-cell basis (Darmanis et al., 2017; Dieterich et al.,

2012; Patel et al., 2014; Yuan et al., 2018), but it remains chal-

lenging to define GBM-specific cell-type signatures, due to

the small number of tumors analyzed. Brain ECs are highly

specialized with extensive adherens and tight junctions (Tietz
Figure 6. Using Ref. Transcript-Based Corr. Analysis with mRNA Ex

Modifications in LGG and GBM

Normal human cortex RNA-seq data (N) (n = 158), human lower-grade glioma (LG

mean corr. coefficient between EC ref. transcripts (CD34,CLEC14A, and VWF) an

(TPM) for selected genes were downloaded from OASIS (Fernandez-Banet et al.,

mean expression in all. (4) Protein profiling was performed for selected genes on

(A–C) Candidate genes were classified as follows: (A) EC-enriched in GBM, but no

normal (N) tissue, but not GBM (green box) either due to (B) loss of expression from

vasculature in GBM (i, CAV2; ii, A2M; and iii, HLA-B); *p < 0.05 and ****p < 0.000

See Table S8. Letter and number on top left of image denote tissue sex (F, fema
and Engelhardt, 2015) and reduced pinocytosis, transcytosis,

non-selective fenestration, and adhesion molecule expression

(Zhao et al., 2015). We identified transcripts enriched in normal

brain ECs, but not in GBM ECs, including those encoding for

specialized brain EC proteins, such as the drug efflux pump

TP-binding cassette sub-family B member 1 (ABCB1) (Borst

and Schinkel, 2013), and the immuno- and permeability regula-

tory protein Periaxin (PRX) (Wang et al., 2018). As specialized

brain EC features are regulated by the local microenvironment

(Chow and Gu, 2015) and rapidly lost ex vivo (Urich et al.,

2012; Wilhelm et al., 2011), one could speculate that GBM

ECs fail to express such genes due to the loss of the normal

microenvironment. The majority of transcripts we identified as

having EC-specific expression in both normal and GBM were

‘‘core’’ EC genes, found across human tissue beds (Butler

et al., 2016); suggesting GBM ECs maintain genes critical for

function. Studies indicate that a population of ECs in GBMcould

originate from the transdifferentiation of tumor cells (Soda et al.,

2011; Wang et al., 2010), but in the absence of a consensus on

this topic and accompanying definitions, we did not attempt to

resolve these potential populations in our analysis workflow.We

provide a panel of predicted GBM EC markers, some of which

have been previously reported as such, including CD93 (Dieter-

ich et al., 2012; Langenkamp et al., 2015) and ANGPT2 (Dieter-

ich et al., 2012; Scholz et al., 2016; Stratmann et al., 1998). The

majority, to our knowledge, were previously unknown, e.g., exo-

cyst complex component 3-like 2 (EXOC3L2), TNF receptor su-

perfamily member 4 (TNFRSF4), thromboxane A2 receptor

(TBXA2R), and prostaglandin I2 receptor (PTGIR); these are

interesting candidates for further investigation, but experi-

mental validation should be performed to confirm the predicted

expression profile. EXOC3L2, a component of the exocyst

involved in vesicle fusion with the plasma membrane, is poorly

characterized; the only published study on the protein de-

scribes its upregulation in mouse embryonic sprouting blood

vessels and induction in human ECs in response to vascular

endothelial growth factor (VEGF) (Barkefors et al., 2011). This

is consistent with its expression in GBM ECs; GBM tumor cells

produce VEGF, which induces angiogenesis (Das andMarsden,

2013); however, the role of EXOC3L2, or potential as drug target

in GBM remains unknown. TNFRSF4 (Ox40) has been a target of

experimental tumor immunotherapy, including in glioma, due to

its expression on tumor infiltrating T cells (Buchan et al., 2018).

In a mouse sarcoma model, TNFRSF4 was also expressed on

ECs, which, following TNFRSF4-agonist treatment, responded

with (T-cell-independent) VCAM-1 expression (Pardee et al.,

2010). Thus, one could speculate that TNFRSF4 on GBM ECs
pression and Tissue Protein Profiling to Investigate EC-Enriched

G) (n = 516), and human glioblastoma (GBM) (n = 401) was used to calculate: (1)

d selected genes (upper plot showsCLEC14A versus gene). mRNA expression

2016) for N, LGG, and GBM and displayed as (2) individual samples and (3) as a

tissue sections of N, LGG, and GBM. Scale bar, 100 mm.

t normal (N) tissue (red box) (i, ACE; ii, CD93; and iii, ANGPT2), EC-enriched in

GBMEC (i,ANXA3; ii,PRX; and iii,ABCB1) or (C) gain of expression outside the

1.

le; M, male) and age (years).

Cell Reports 29, 1690–1706, November 5, 2019 1701



(legend on next page)

1702 Cell Reports 29, 1690–1706, November 5, 2019



could indicate a role for EC interaction in the antitumor

effect of TNFRSF4-targeted immunotherapy (Curry et al.,

2016). TBXA2R and PTGIR encode for prostaglandin receptors,

which bind thromboxane A2 and prostacyclin, respectively,

products of the short-lived intermediate molecule prostaglandin

H2, generated from arachidonic acid, via cyclooxygenase

(COX)-1 or -2. COX-2 is elevated in GBM, and levels positively

correlated with tumor grade, reoccurrence, and shorter survival

(Qiu et al., 2017); however, the expression or role of prosta-

glandin receptors on GBM ECs has not been explored. A panel

of GBM EC-enriched genes we identified are linked through the

renin-angiotensin system (RAS): angiotensin I converting

enzyme (ACE), glutamyl aminopeptidase (ENPEP), and NADPH

oxidase 4 (NOX4). RAS inhibitors suppress progression and

lengthen survival in several cancer types (Ishikane and Takaha-

shi-Yanaga, 2018; Pinter and Jain, 2017), including glioma

(Levin et al., 2017), and are currently being considered for inclu-

sion in treatment protocols (Perdomo-Pantoja et al., 2018). ACE

and ENPEP are central enzymes in the RAS, catalyzing the con-

version of angiotensin I to angiotensin II, and angiotensin II to

angiotensin III, respectively. Angiotensin II and III have various

effects, mediated mainly through angiotensin receptor I

(ATR1) (Jackson et al., 2018), such as the induction of pro-

survival signaling, via nuclear factor kB (NF-kB)-mediated

anti-apoptotic molecules, or through PI3K-Akt-mediated sup-

pression of caspases (George et al., 2010), the induction of pro-

liferation (Clark et al., 2011; Perdomo-Pantoja et al., 2018), and

loss of brain EC barrier properties (Biancardi and Stern, 2016).

More high-grade astrocytoma tumor cells express ATR1 than

lower grade, and expression is associated with cell prolifera-

tion, vascularization, and shorter survival (Arrieta et al., 2008).

Angiotensin II induces NOX4, which regulates reactive oxygen

species (ROS) production (Nguyen Dinh Cat et al., 2013). ROS

play an important role in signal transduction, cell differentiation,

tumor cell proliferation, apoptosis, and angiogenesis (Guo and

Chen, 2015). NOX4 is more highly expressed in GBM than

lower-grade tumors, with a role in tumor proliferation and resis-

tance to chemotherapeutic agent-induced apoptosis (Shono

et al., 2008). Despite the acknowledged importance of RAS in

cancer, the cell types underlying the increased signaling are

not well described. Based on our data, we speculate that

GBM ECs drive increased local levels of angiotensin II and II,

promoting cancer progression and maintenance.

In summary, we identify cell-enriched genes from unfractio-

nated brain RNA-seq, without the need for complex modeling.

We profile system-level EC changes associatedwith brainmalig-

nancy of increasing severity, providing biological insight and

identifying potential targets for therapy.
Figure 7. Predicted Glioblastoma (GBM)-Specific EC-Enriched Genes

(A and B) Summary of EC-enriched transcriptome modifications in GBM: (A) EC

EC-transcripts absent in GBM EC or gained in non-EC (both decreased EC-enric

(C) mRNA expression (TPM) for GBM ECmarker candidates in normal brain (N) (n

corr. plots versus EC Ref. transcript CLEC14A, with mean values versus all EC r

(D) Corr. matrix of GBM marker candidates in GBM RNA-seq.

(E) Weighted corr. network analysis (WGCNA) dendrogram of unfractionated

****p < 0.0001.

See also Table S8.
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glu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., et al. (2015). Pro-

teomics. Tissue-based map of the human proteome. Science 347, 1260419.
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Yan, H., Romero-López, M., Benitez, L.I., Di, K., Frieboes, H.B., Hughes,

C.C.W., Bota, D.A., and Lowengrub, J.S. (2017). 3D mathematical modeling

of glioblastoma suggests that transdifferentiated vascular endothelial cells

mediate resistance to current standard-of-care therapy. Cancer Res. 77,

4171–4184.

Yoshihara, K., Shahmoradgoli, M., Martı́nez, E., Vegesna, R., Kim, H., Torres-

Garcia, W., Treviño, V., Shen, H., Laird, P.W., Levine, D.A., et al. (2013). Infer-

ring tumour purity and stromal and immune cell admixture from expression

data. Nat. Commun. 4, 2612.

Yuan, J., Levitin, H.M., Frattini, V., Bush, E.C., Boyett, D.M., Samanamud, J.,

Ceccarelli, M., Dovas, A., Zanazzi, G., Canoll, P., et al. (2018). Single-cell

transcriptome analysis of lineage diversity in high-grade glioma. Genome

Med. 10, 57.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

AHNAK Atlas Antibodies Cat#HPA026643

A2M Atlas Antibodies Cat#HPA002265

ANPEP Atlas Antibodies Cat#HPA004625

ANXA3 Atlas Antibodies Cat#HPA013398

C12orf43 Atlas Antibodies Cat#HPA046148

CALD1 Atlas Antibodies Cat#HPA008066

CAPN13 Atlas Antibodies Cat#HPA029497

CARNS1 Atlas Antibodies Cat#HPA038569

CD34 Atlas Antibodies Cat#HPA036722

CD93 Atlas Antibodies Cat#HPA012368

CLEC14A Atlas Antibodies Cat#HPA039468

CMTM6 Atlas Antibodies Cat#HPA026980

ERLIN2 Atlas Antibodies Cat#HPA002025

FAM163B Atlas Antibodies Cat#HPA067336

GGT5 Atlas Antibodies Cat#HPA008121

HABP4 Atlas Antibodies Cat#HPA055969

HCLS1 Atlas Antibodies Cat#HPA019143

HSDL2 Atlas Antibodies Cat#HPA050453

ITGB1 Atlas Antibodies Cat#HPA059297

KANK3 Atlas Antibodies Cat#HPA051153

MCC Atlas Antibodies Cat#HPA037391

MID1 Atlas Antibodies Cat#HPA003715

MOAP1 Atlas Antibodies Cat#HPA000939

NCKAP1L Atlas Antibodies Cat#HPA039490

NUDCD3 Atlas Antibodies Cat#HPA019529

PHLDB1 Atlas Antibodies Cat#HPA037959

PLEKHG3 Atlas Antibodies Cat#HPA074734

PROCR Atlas Antibodies Cat#HPA039461

PRSS23 Atlas Antibodies Cat#HPA030591

PRX Atlas Antibodies Cat#HPA001868

PSMB9 Atlas Antibodies Cat#HPA053280

SASH3 Atlas Antibodies Cat#HPA001085

SCIN Atlas Antibodies Cat#HPA024264

SHROOM4 Atlas Antibodies Cat#HPA010565

SLFN12 Atlas Antibodies Cat#HPA022523

SMAP2 Atlas Antibodies Cat#HPA024424

SNX20 Atlas Antibodies Cat#HPA043649

SP100 Atlas Antibodies Cat#HPA016707

TAGLN2 Atlas Antibodies Cat#HPA001925

TINAGL1 Atlas Antibodies Cat#HPA048695

TLN1 Atlas Antibodies Cat#HPA004748

TMEM47 Atlas Antibodies Cat#HPA046658

VWF Atlas Antibodies Cat#HPA001815

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DCN Abnova Cat#H00001634-M01

VIM Agilent Cat#M7020

ACE Leica Biosystems Cat#NCL-CD143-510

ABCB1 Merck Cat#MAB4120

ANGPT2 Santa Cruz Biotechnology Cat#sc-74403

HLA-B Santa Cruz Biotechnology Cat#sc-55582

LIPE Santa Cruz Biotechnology Cat#sc-74489

MYL12A Santa Cruz Biotechnology Cat#sc-28329

PGM5 Santa Cruz Biotechnology Cat#sc-73613

LAMB2 Sigma-Aldrich Cat#AMAb91097

CAV2 Thermo Fisher Scientific Cat#41-0700

CLDN5 Thermo Fisher Scientific Cat#RB-9243

Biological Samples

Normal human cortex Uppsala Biobank http://www.proteinatlas.org

Lower grade glioma Uppsala Biobank http://www.proteinatlas.org

Glioblastoma Uppsala Biobank http://www.proteinatlas.org

Deposited Data

All analysis This paper Mendeley Data https://doi.org/10.17632/mvdsfk69j6.1

Other

Human Protein Atlas (HPA) http://www.proteinatlas.org

Web-based portal for this paper This paper https://cell-enrichment.shinyapps.io/Brain/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact: Dr. Lynn

Marie Butler. Email: Lynn.butler@ki.se

This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bulk RNaseq data analyzed in this study was part of the Genotype-Tissue Expression (GTEx) Project (gtexportal.org) (GTEx Con-

sortium, 2015) (dbGaP Accession phs000424.v7.p2) (n = 158, 108 male, 50 female, ages 20-79), the TCGA Research Network

(https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga) and AMP-AD Knowledge Portal (https://

www.synapse.org) (study ID: syn3163039) (n = 80, 41male, 39 female, ages 53-90). Datasets from normal brain scRNaseq (Darmanis

et al., 2015) and RNaseq of isolated human and mouse brain cell types (Zhang et al., 2014, 2016) were downloaded from the Gene

Expression Omnibus (GEO) database (Accession IDs: GSE67835, GSE73721 and GSE52564, respectively). Comparative transcript

expression between normal, LGG and GBM samples were downloaded from OASIS (oasis-genomics.org) (Fernandez-Banet et al.,

2016). Human tissue protein profiling was performed in house as part of the Human Protein Atlas (HPA) project (Pontén et al., 2008;

Uhlén et al., 2015, 2017) (http://www.proteinatlas.org). Normal brain (cortex), lower grade glioma (LGG) and glioblastoma (GBM)

samples were obtained from the Department of Pathology, Uppsala University Hospital, Uppsala, Sweden; as part of the Uppsala

Biobank. Samples were handled in accordance with Swedish laws and regulations, with approval from the Uppsala Ethical Review

Board (Uhlén et al., 2015).

METHOD DETAILS

Tissue Profiling: Human Tissue Sections
Tissue sections from human cerebral cortex were generated and stained, as previously described (Pontén et al., 2008; Uhlén et al.,

2015). Briefly, formalin fixed and paraffin embedded tissue samples were sectioned, de-paraffinized in xylene, hydrated in graded

alcohols and blocked for endogenous peroxidase in 0.3% hydrogen peroxide diluted in 95% ethanol. For antigen retrieval, a De-

cloaking chamber� (Biocare Medical, CA) was used. Slides were boiled in Citrate buffer�, pH6 (Lab Vision, CA). Primary antibodies

and a dextran polymer visualization system (UltraVision LP HRP polymer�, Lab Vision) were incubated for 30 min each at room
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temperature and slides were developed for 10 minutes using Diaminobenzidine (Lab Vision) as the chromogen. Slides were counter-

stained inMayers hematoxylin (Histolab) and scanned using Scanscope XT (Aperio). Primary antibodies, source, target, and identifier

are as follows: Atlas Antibodies: AHNAK (HPA026643), A2M (HPA002265), ANPEP (HPA004625), ANXA3 (HPA013398), C12orf43

(HPA046148), CALD1 (HPA008066), CAPN13 (HPA029497), CARNS1 (HPA038569), CD34 (HPA036722), CD93 (HPA012368),

CLEC14A (HPA039468), CMTM6 (HPA026980), ERLIN2 (HPA002025), FAM163B (HPA067336), GGT5 (HPA008121), HABP4

(HPA055969), HCLS1 (HPA019143), HSDL2 (HPA050453), ITGB1 (HPA059297), KANK3 (HPA051153), MCC (HPA037391), MID1

(HPA003715), MOAP1 (HPA000939), NCKAP1L (HPA039490), NUDCD3 (HPA019529), PHLDB1 (HPA037959), PLEKHG3

(HPA074734), PROCR (HPA039461), PRSS23 (HPA030591), PRX (HPA001868), PSMB9 (HPA053280), SASH3 (HPA001085),

SCIN (HPA024264), SHROOM4 (HPA010565), SLFN12 (HPA022523), SMAP2 (HPA024424), SNX20 (HPA043649), SP100

(HPA016707), TAGLN2 (HPA001925), TINAGL1 (HPA048695), TLN1 (HPA004748), TMEM47 (HPA046658), VWF (HPA001815). Ab-

nova: DCN (H00001634-M01). Agilent: VIM (M7020). Leica Biosystems: ACE (NCL-CD143-510). Merck: (ABCB1 (MAB4120). Santa

Cruz Biotechnology: ANGPT2 (sc-74403), HLA-B (sc-55582), LIPE (sc-74489), MYL12A (sc-28329), PGM5 (sc-73613). Sigma-

Aldrich: LAMB2 (AMAb91097). Thermo Fisher Scientific: CAV2 (41-0700), CLDN5 (RB-9243).

QUANTIFICATION AND STATISTICAL ANALYSIS

Reference Transcript-Based Correlation Analysis
Thismethodwas adapted from that previously developed to determine the cross-tissue pan-EC-enriched transcriptome (Butler et al.,

2016). As different cell types are present in different proportions across individual samples, we used a correlation analysis to identify

cell-type specific transcripts. We calculated the pairwise Spearman correlation coefficients between reference transcripts selected

as proxy markers for: endothelial cells (EC): [CD34, CLEC14A, VWF] (in GTEx, TCGA [LGG and GBM] and MAYO datasets), astro-

cytes (AC): [BMPR1B, AQP4, SOX9] (in GTEx and MAYO datasets), oligodendrocytes (OC) [MOG,CNP,MAG] (GTEx and MAYO da-

tasets), neurons (NC) the genes [TMEM130, STMN2, THY1] (GTEx andMAYO datasets), microglial cells (MG) [C1QA, AIF1, LAPTM5]

(GTEx and MAYO datasets) and all mapped protein coding genes. To exclude false positives, we also calculated correlations be-

tween proxymarkers for SMC [FHL5,ACTA2,ACTG2] and selected transcripts identified as cell-type enriched. Reference transcripts

used in analysis ofGTEx: EC, AC, OC, NC,MG, SMC; LGG: EC;GBM: EC;MAYO: EC, AC, OC, NC,MG. Non-coding transcripts and

transcripts with mean expression TPM < 0.1 are excluded from final data tables. See results section for full analysis and exclusion

criteria required for transcript classification as cell-type enriched. Correlation coefficients were calculated in R (v 3.4.3) using the

corr.test function from the psych package (v 1.8.4). In addition to correlation coefficients False Discovery Rate (FDR) adjusted

p values (using Bonferroni correction) and raw p values were calculated.

Weighted Correlation Network (WGCNA) Analysis
The R package WGCNA was used to perform co-expression network analysis for gene clustering, on log2 expression values. The

analysis was performed according to recommendations in the WGCNAmanual. Genes with too many missing values were excluded

using the goodSamplesGenes() function. The remaining genes were used to cluster the samples, and obvious outlier samples were

excluded. Using these genes and samples a soft-thresholding power was selected and the networks were constructed using a

minimum module size of 15 and merging threshold of 0.05. Eigengenes were calculates from the resulting clusters and eigengene

dendrograms were constructed using the plotEigengeneNetworks() function.

Brain Single-Cell and Isolated Cell Fraction RNA-Seq Datasets
Brain cell type expression datasets from scRNaseq (Darmanis et al., 2015) (GSE67835) and isolated cell type RNaseq (Zhang et al.,

2014, 2016) (GSE73721 and GSE52564) studies were used to calculate cell type specific enrichment values for each mapped tran-

script. For scRNaseq, cell-type enrichment was calculated using the ROTS (reproducibility-optimized test statistic) analysis method

(Elo et al., 2008), first developed for microarrays, but later applied to RNaseq data (Jaakkola et al., 2017). ROTS analysis uses amodi-

fied t-statistic which is adjusted based on inherent properties of the data, and ranks features based on statistical evidence of differ-

ential expression. In our analysis enrichment was defined as ROTS score > 2. For the isolated cell type RNaseq fold-enrichment

values in each cell type: EC, AC, OC (myelinating oligodendrocytes and newly formed oligodendrocytes were combined), NC and

MG were calculated as described in the original studies; ‘FPKM expression in one cell type divided by the average expression level

in all other cell types’. Cell enrichment was defined as a fold-enrichment of > 2.

Gene Ontology (GO) Enrichment Analysis
The Gene Ontology Consortium (Ashburner et al., 2000) and PANTHER classification resource (Mi et al., 2013, 2016) were used to

identify over represented terms (biological processes) in the panel of identified cell-type-enriched transcripts from the GO ontology

database (release date March 2016).
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DATA AND CODE AVAILABILITY

The published article includes all datasets generated during this study (Tables S1, S2, S3, S4, S5, S6, S7, and S8).

The datasets are also available at Mendeley Data, V1 [https://doi.org/10.17632/mvdsfk69j6.1].

ADDITIONAL RESOURCES

The Human Protein Atlas (HPA) website contains details of all antibody-based protein profiling used in this study: http://www.

proteinatlas.org. A searchable web-based interface can be used to explore the datasets generated: http://cell-enrichment.

shinyapps.io/Brain/.
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