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Abstract

This thesis is a study of pattern classification based on information theoretic criteria. Infor-
mation theoretic criteria are important measures based on entropy and divergence between
data distributions. First, the basic concepts of pattern classification with the well known
Bayes classification rule as a starting point is discussed. We discuss how the Parzen win-
dow estimator may be used to find good density estimates. The Parzen window density
estimator can be used to estimate cost functions based on information theoretic criteria.
Furthermore, we explain a model of an information theoretic learning machine. With cost
functions based on information theoretic criteria, we argue that a learning machine poten-
tially captures much more information about a data set than the traditional mean squared
error cost (MSE) function. We find that there is a geometric link between information
theoretic cost functions estimated using Parzen windowing, and mean vectors in a Mer-
cer kernel feature space. This link is used to propose and implement different classifiers
based on the integrated squared error (ISE) divergence measure, operating implicitly in
a Mercer kernel feature space. We also apply spectral methods to implement the same
ISE classifiers working in approximations of Mercer kernel feature spaces. We investigate
the performance of the classifiers when we weight each data point with the the inverse of
the probability density function at that point. We find that the ISE classifiers working
implicitly in the Mercer kernel feature space performs similar to a Parzen window based
Bayes classifier. Using a weighted inner-product definition gives slightly better results for
some data sets, while for other data sets the classification rates are slightly worse. When
comparing the results between the implicit ISE classifier using unweighted data points and
the Parzen window Bayes classifier, some of the results indicate that the ISE classifier favor
the classes with highest entropy.
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Chapter 1

Introduction

Patterns are used to describe any relations, regularities or structure inherent in a data
set generated by a source. Similar patterns are often grouped into a class. By detecting
significant patterns in the available data, a learning machine can make predictions about
new data coming from the same source |26]. In pattern classification we use some labeled
training data set, where each label represent a class, and use a learning machine to predict
the correct class label for a new unlabeled sample. A learning machine may be viewed
as a device that adjust a set of parameters through a learning process. For each new set
of training data given to the machine, the parameters are updated using a criteria that
captures the wanted information to describe the data in a new form. Pattern classification
is one of the fundamental problems in machine learning and signal processing |29], [26],[4].
It is an important part in computer vision, medical imaging, optical character recognition,
geostatistics, handwriting recognition, biometric identification, natural language process-
ing, document classification, email spam detection and credit scoring, to list a few examples
1201, [4, 23], 1], [13], [8]

Information theoretic learning (ITL) methods emerged in [18] and [5]. Information
theoretic learning here refers to the use of a general learning machine as we describe
in Section 4.2, where a criteria related to Renyi’s quadratic entropy is used to update
the learning process. The criteria often use Renyi’s quadratic entropy to find divergence
measures between data in different distributions. A divergence measure can be thought
of as a generalization of algebraic distance measures (such as the Euclidean norm) to
probability distribution spaces |5]. In [18] two important information theoretic divergence
measures were presented, one is based on the Cauchy-Schwarz (CS) inequality and the
other on the integrated squared error (ISE) between two probability distributions.

The Renyi’s quadratic entropy is estimated using a Parzen window density estimation
method, and may be thought of as a generalization of variance to processes with non-
Gaussian distributions [5]. In [18] and [5] information theoretic concepts are explained and
used in time series prediction, independent component analysis (ICA), feature extraction
and blind source deconvolution.

Independent of ITL, a number of kernel methods have emerged in the recent years.
Kernel methods generally solve machine learning problems in two parts: A module, also
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known as a kernel function, performs a mapping of data to a new feature space. In this
new feature space a learning algorithm is used to discover linear patterns [26]. The use of a
kernel function allows us to operate implicitly in a possible high dimensional space through
evaluations of inner-products. This is also known as the “kernel trick”. The advantage
of operating in high dimensional spaces is that the probability that the data is linearly
separable increases with the number of dimensions we operate in [2|. Kernel methods have
been used successfully in various fields of machine learning, and include algorithms such
as support vector machines (SVMs), kernel Fisher discriminant analysis (KFD) and kernel
principal component analysis (KPCA) [17].

The affinity matrix of a data set is calculated with the pairwise inner-products of data
samples with a kernel function, Element (4, 7) of this matrix contains the inner-product
between data sample 7 and j, computed with a kernel function. The inner-products of the
affinity matrix may be weighted such that each data point is multiplied with the inverse
overall probability density function at that point. This affinity matrix with weighted inner-
products is referred to as the Laplacian matrix. Spectral methods based on the spectral
properties, i.e. the eigenvectors and eigenvalues of the affinity matrix or the Laplacian
matrix, have been popular in recent clustering applications [5],|9].

It has been shown [13] and [9], that when using the non-parametric Parzen window
density estimator with a Mercer kernel function to estimate the Renyi’s quadratic entropy
for a data set, the result may be interpreted in terms of a mean vector in a Mercer kernel
feature space. By measuring distances between class mean vectors in a Mercer kernel
feature space we can create different information theoretic divergence measures between
class distributions. The CS divergence measure is shown in [13] to be related to measuring
angles between class mean vectors in a Mercer kernel feature space and have interesting
connections to graph theory. The ISE divergence measure is in a similar manner shown to
be related to the Euclidean distance between mean vectors in a Mercer kernel space |9].

The link between ITL and Mercer kernel methods has been used to develop recent
classifier [12], [9], and clustering [9], [11], [10] algorithms based on the CS divergence
measure. The classifier proposed in [12] works implicitly in a Mercer kernel feature space,
while the CS based spectral clustering algorithms work in approximate Mercer kernel spaces
spanned by the principal eigenvectors of the Laplacian matrix. These methods have all
used weighted inner-product kernel functions when calculating the CS divergence measure.

This thesis is inspired by the use of the CS divergence measure in both classification
and clustering applications. We provide necessary background on information theoretic
learning concepts to understand newly discovered, important relations between Mercer
kernel theory, information theoretic measures and density estimation. In particular we
focus on the properties of the ISE information theoretic divergence measure and use Mercer
kernel properties and geometric properties of this measure to argue that it may be used
as a cost function in an information theoretic classifier. Previous information theoretic
classifiers have to our knowledge only been implemented using the weighted CS divergence
measure. Thus we aim to use the ISE divergence measure in a similar manner. We
investigate performance and properties of classifiers based on the ISE divergence using
both weighted and unweighted inner-products, operating implicitly in Mercer kernel spaces



through evaluations with Mercer kernels.

We also investigate spectral versions of the ISE classifiers, where we eigendecompose the
Laplacian data matrix or the affinity matrix. None of the ISE divergence based classifiers
presented in this thesis have been presented before, so we could not know how they would
perform. We choose to compare the results obtained with our implementation of the Bayes
classifier, both because it is a well known classifier and because we find out that the ISE
based classifier rule may be expressed in a very similar way to the Bayes classifier rule.

We present two different versions of the ISE classifier operating implicitly in different
Mercer spaces. The standard ISE and the Laplacian ISE classifier, operating on unweighted
and weighted training data, respectively. We also develop spectral versions of these clas-
sifiers, the spectral ISE classifier and the spectral Laplacian ISE classifier, working in
the approximated Mercer spaces spanned by the principal eigenvectors of the affinity and
Laplacian matrices, respectively. The ISE based classifiers working implicitly in a Mercer
kernel space in general seems to give best results. For some data sets the Laplacian induced
weights improve the classification rates, but in others it reduces or does not change the
classification rates significantly.

1.0.1 Quick summary of content in this thesis.

e We provide necessary background information about the relatively new concepts used
in information theoretic learning. We also review background information necessary
to understand basic density estimation and pattern classification.

e We introduce and investigate new classifiers based on the information theoretic ISE
divergence measure and kernel methods, using both weighted and unweighted data.

e We investigate relations between an ISE divergence based classifier operating im-
plicitly in a Mercer kernel space and the well known Parzen window based Bayes
classifier. We find that using unweighted data the ISE classifier is comparable to the
Bayes classifier with slightly different properties.

e We use the spectral properties of the affinity and Laplacian matrices of the data, to
propose and investigate ISE based classifiers working directly in approximated Mercer
kernel spaces. We note that in most cases the spectral versions of the ISE classifier
perform slightly worse than the versions working implicitly in Mercer spaces.
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1.1 Definitions and notation used

X,y A training pattern and class label
i, N Counter and number of patterns
i.i.d Independent identically distributed
pdf Probability density function

ISE Integrated Squared error

MISE Mean Integrated Squared Error

AMISE  Asymptotic Mean Integrated Squared Error
IpP Information Potential

ITL Information Theoretic Learning

W,2(+,-) A Gaussian kernel, with bandwidth o2
Kn(-,©) A general Mercer kernel, with bandwidth A

F A Mercer kernel feature space
d Dimensionality of data
C Number of classes

Table 1.1: Definitions and abbreviations

Density functions are usually referenced with small letters e.g. p(z). Probabilities are
referenced with large letters e.g. P(x). Integrals with no limits are assumed to be with
lower limit —oo and upper limit co. The sample x may take any value in the d dimensional
space, unless otherwise specified. Expectations with regard to a variable or function f is
denoted by E{-} if it may be unclear what we calculate the expected value with respect
to.

1.2 Structure and literature

Structure of this thesis This thesis is divided in three parts. In Part I we present the
theory necessary to understand and implement our classifiers. Part II contains analysis
and experiments done to check how the theory works on some popular data sets. In Part
I1I we conclude the thesis and suggests further work that may be done.

e Chapter 2 introduce the basic concepts of pattern classification. The Bayes classifier
is used as an example and shown to give a minimum probability of classification
erTor.

e Chapter 3 discusses various methods for density estimation with an emphasis on the
Parzen window density estimator and its properties.

e Chapter 4 explains the concept of an information theoretic learning machine. A
detailed discussion of various information theoretic criteria is given. Some sample
based estimators for information theoretic criteria are discussed.
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e Chapter 5 explain the kernel trick and how it can be used to express information
theoretic measures in a Mercer kernel space from a simple geometric viewpoint. The
standard ISE classifier is developed using this geometric view of the ISE divergence
between two distributions. This classifier is shown in a special case to be equal to
the familiar Bayes classifier using density estimates. Some relations between the ISE
divergence measure and graph theory are discussed.

e Chapter 6 presents the Laplacian ISE classifier, a modified version of the standard
ISE classifier using weighted data samples.

e Chapter 7 presents spectral versions of the standard ISE and Laplacian classifier,
working in approximated Mercer kernel spaces.

e Chapter 8 provides a short analysis of the effect of different kernel sizes and kernel
types used in the previously presented classifiers.

e Chapter 9 presents and discusses results found using the different classifiers on some
popular data sets. We try to illustrate the effects of weighting the data samples and
how data distributes in the approximate Mercer kernel spaces.

e Chapter 10 concludes this thesis and suggests some work that may be done in the
future.

e The appendix contains some additional classification results not listed in Chapter 9.

Literature Information theory in general is covered by [3| and the article which first
used entropy as a measure in communication, [25]. The principles behind information
theoretic learning was mainly introduced in [18] with an nice overview in [5] and [9]. Good
introduction books to pattern classification methods are [29|,[4] and [8|. The CS divergence
based classifier which inspired much of the work with our ISE divergence based classifiers
is presented in [12]. Important relations between Mercer kernel functions, Parzen window
density estimators, CS divergence and graph theory is reviewed in [13]. A survey of kernel
methods used in pattern analysis is given in [26] and [17]. Spectral methods used in this
thesis are influenced by material in 26| |9], [24], |6] and [31].
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Theory






Chapter 2

Pattern classification basics

This chapter gives a definition of pattern classification. It also reviews the well known
Bayes classification rule, which is shown to give a minimum probability of classification
error. The Bayes classifier may thus be used as a benchmark when testing other classifiers
with regard to error rates. In Part II, Chapter 9, we use an implementation of this classifier
to compare with the new classifiers which will be presented in later chapters of this thesis.

Definition The task of classification is to find a rule, which based on observations of
training patterns assigns an unclassified pattern to one of several possible classes. A clas-
sification rule with two different classes is to estimate a function

g:R* — {—1,1},

using input-output training data pairs generated i.i.d according to an unknown probability
distribution

p(Xuy)v (Xlayl)v’”?(XNayN) ERd XY7 Y{_lul}

such that g will correctly classify a new sample x [17]. A sample x is assigned to the class
labeled 41 if g(x) > 0. The sample x is assumed to be generated from the same pdf p(x, y)
as the training data.

2.1 The Bayes classifier

To explain more in detail how we can define a classifier we begin with the Bayes classifier.
The reason for starting with this is that it can be shown to give an optimal result with
regard to minimum probability of classification error, under certain conditions. This will
be proved in the next section. It is also well known and has some theoretical connections
to the ISE classifier, which will be explained in Section 5.3.1.

We want to classify an unknown feature vector x to one of C possible classes wy, . ..,we
in a way that assigns x to the class where it’s “most likely” to belong. We define what is



10 CHAPTER 2. PATTERN CLASSIFICATION BASICS

“most likely” with the probabilities P(w;|x), i = 1,...,C, also known as the a posteriori
probabilities. A possible classification rule is to assign x to the class w* satisfying [29]

w* = max P(w;|x), i=1,...,C. (2.1)

wy

Assume that the a priori probabilities P(w;) ¢ = 1,...,C, are known. If they are
unknown they can be estimated from our training data as P(w;) = 5 where N is the total
number of training samples, and n; is the number of samples belonging to class w;. The
class-conditional probability density functions p(x|w;), also known as likelihood functions
of w;, with respect to x, are also assumed to be known [29]. If these are unknown we will
see later how they can be estimated.! To calculate the a posteriori probabilities we can

use Bayes rule [29]
p(x|ws) P(wi)

b9 =0

i=1,...,C, (2.2)

where

p(x) =D p(x | w;)P(w).
Since p(x) is a common factor for all classes it may be ignored and we can use

w” = max p(x|w;) P(w;), i=1,...,C, (2.3)

as our classifier. If the a priori probabilities P(w;), are equal Eq. (2.3) reduces to

w* :rr}uaxp(x|wi), i=1,...,C,

and the search for the most probable class for feature x reduces to evaluating the conditional
pdfs at x. Since the classifier in Eq. (2.3) is obtained using Bayes rule, it is often referred
to as the Bayes classifier. In the two class case we use Eq. (2.3) to assign x to class wy if

p(x|wi) P(wr) > p(x|w2) P(ws).
Our classification function can now be defined as to classify x to class w; if

g(x) = p(x|w1) P(w1) — p(x|ws) P(ws) > 0

2.2 Minimum probability of classification error for the
Bayes classifier

In Fig. 2.1, the Bayesian classifier for two equiprobable classes for a one-dimensional feature
vector x is illustrated. The region to the left of the dotted threshold line clearly contains
most of p(x,w;) = p(x|w;)P(w1) and we define this as R, and the region to the right

'If x is discrete the likelihood functions become probabilities and are denoted with P(x|w;)
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p(x|w,)
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Figure 2.1: Illustration of two decision regions. Figure borrowed from [29]

of the threshold as R,. Let Ry and Ry be the regions where we classify = to w; and ws,
respectively. The total area covered by p(z|w) in region Ry and p(z|ws) in Ry will be the
probability of causing classification errors. If the threshold is moved to the left or right, this
area and probability will increase. This means that if we want to minimize the probability
of an error, the decision regions R; and R, must be selected by moving the threshold so
this area is as small as possible.

In a multiclass situation with a multidimensional feature vector x we have C' different
classes with decision regions (Ry, ... R¢) our feature vector x can be placed in. We now
generalize the situation in Fig. 2.1. Writing the probability of a correct decision by the
joint probability

P(X € RZ’, u)i),

then the probability of erroneously assigning x to w; by not selecting the correct class w;

is
P(x € Rj,w;), Vg # i.
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The total probability for committing an error in classification is thus

P, = UP(XGR]‘,Q}i),

Vi
= ) P(x € Rjlw;)P(wy),
Vi
= ;#P(wi)/}sz(ﬂ%)dx
= P(wi|x)p(x)dx.

The total probability for correct classification is
Z/ P(w;|x)p(x)dx = 1 — P..

Hence
P.=1->" / P(w;]x)p(x)dx.
vi Y
The error is clearly minimized when the regions R; are selected in a way where
R; - P(WZ|X) > P(wj|x), VJ % i,

which is the same as Eq. (2.1).



Chapter 3

Density estimation

The cost functions used by the classifiers discussed in this thesis are all dependent on finding
some sort of density estimate for the class distributions of the data. The case where we know
the distributions of the feature vectors in each class w;, given by the likelihood functions
p(x|w;), is unfortunately not the reality for most data sets. We have to find estimates
of these distributions. There are basically two categories of methods for estimation of
pdfs, parametric and non-parametric methods. In this section, for completeness, a short
description of parametric methods for density estimation is given. For more details [29]
is recommended. The non-parametric methods are far more important in information
theoretic classification, since we often cannot assume that the data set has a parametric
distribution shape. In particular the Parzen window method for density estimation will be
investigated. Throughout this chapter we assume a data set of NV samples, z;, 1 =1,..., N,
generated i.i.d from unknown distributions, unless otherwise is specified.

3.1 Parametric methods

Assume that the pdf to be estimated is described in parametric form by some unknown
parameter vector 6, so it can be written as f(x;6). We have a limited number N of
i.i.d training data, x1,...,xy available from our distribution. Using these samples we can
use different methods to find an estimate of the parameters in 6 such that the estimate
f(x; 0) is as close as possible to the true pdf. This means that we assume that our data
is generated from a distribution with a shape that is close to a parametric form, e.g we
assume a Gaussian, Rayleigh or some other well known distribution and try to adjust its
parameters to fit our data as good as possible. The parameters in 6 are usually found
by maximum likelihood estimation. In |29] some methods for parametric estimation are
described, e.g. maximum likelihood estimation, mixture models, maximum entropy etc.

13
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3.2 Non-parametric methods

To avoid the need to make assumptions about a parametric shape of the desired distri-
bution, we must often use non-parametric methods. In this section, we review different
methods of density estimation with a one-dimensional random variable x taken from a con-
tinuous, univariate density function f(z). We start with the simple histogram method and
expand it until we end up with the Parzen window estimator. Some of the most important
properties of the Parzen window estimator are then discussed. In the last section, the
Parzen window method is expanded to the case where we have multivariate distributions,
where the variable x is a multidimensional vector.

3.2.1 The histogram density estimator

The oldest way to find a non-parametric estimate of a function is given by the histogram
[30], [9]. Given an origin xy, and a bin width A, the bins of the histogram are defined as
[zo +mh, xg + (m + 1)h) for positive and negative integers m. The histogram estimate of
the function f(x) is then

no of z; in same bin as x). (3.1)

fla) =

This estimator is obviously discontinuous and not usable when we need to find derivatives.

3.2.2 The naive density estimator

This is also a variant of the histogram method. Define the pdf evaluated at = as

f(z) = lim %P(m h<X<z4h) (3.2)

h—0

The probability P(z —h < X < z + h) can be estimated by counting the number of data
samples falling into a bin of size 2h centered at x. This can be defined more precisely with

a weight function
1 x| <1
= 2 -
Wi(z) { 0 otherwise ’

such that the naive estimator can be expressed as [9]

Fla) = ﬁiw(‘r?) (3.3)

Introducing a rescaling notation Wy (u) = h™'W (u/h) we rewrite Eq. (3.3) as

o) = % 3" Wil = 22). (3.4)

From Eq. (3.3) we see that an estimate for the pdf at « is given by placing a “box” around
each sample z; with width 2h and height (2Nh)~! and sum up. This estimator is not
continuous, since it is a sum of discontinuous functions.
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3.2.3 The Parzen window density estimator

Parzen generalized the weight function Wj,(+) in Eq. (3.4) to a kernel function or Parzen
window which is a function satisfying [29]

Ku(z) >0  and /Kh(x)dle.

The subscript h refers to the bandwidth or window width of the kernel [30]. Usually K(-) is
chosen to be a unimodal probability density function that is symmetric around zero. This
makes sure that the estimator

= % Z Ky(z — ;) (3.5)

produces an estimate which is also a density.

To investigate some of its properties, we find expressions for the mean value and variance
of Eq. (3.5). Let f(x) be the estimate of the true density f(z) at z, with 2/ a random
variable with density f(z). Then

E{f(x)} =E{EKx( x—fﬂ)}

=Kp(x) x f(x). (3.6)

The density estimate is therefore a smoothed version of the true density. The bias of the
estimator is given by [30|

E{f(2)} = f(x) = (@) » f(2)] = f(2), (3.7)
and the variance is [30]
Var{f(x)} =E{[f(z) — E{f()}]*}
Z%{(Kﬁ(x)*f(l“)) — [(Kn(@) * f(2)]"}. (3-8)

It is common to measure the closeness of the estimator f(z) to the target density f(z) in
the point x by the size of the mean squared error (MSE)

MSE{f(@)} = E{[f(2) - f(2)2}

which can be written as

MSE{f(x)} Z%{(Kh(%)2 * f(2)) = [(Kn(x) * f(@)]} + {(Kn(2) * f(2)) = f(2)}?
=Var{f(x)} + [Bias{f(x)}]*
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Instead of just estimating the function f(x) at a single point we want to estimate it over
the whole z-space. The mean integrated error (MISE) is a more appropriate measure for
analyzing f(x) where

MISE{f(z)} = / MSE{f(z)}dx
~ [ B{lf@) - rePydo+ [ Var{fa)ds, (39)

The bias and variance term in Eq. (3.9) depend on the kernel width % in different ways. It
has been shown that Eq. (3.9) for large sample sizes N, the asymptotic mean integrated
squared error (AMISE) is given by [14], [30]

AMISE{f(z)} = (NB)"'R(K) + ih“ug(K)zR (") (3.10)

where 115(K) = [22K(2)dz, R(f") = [{f'(x)}*dz, f'(x) = $&f(x) and R(K) =
[ K(z)?dz. We see that minimizing the left term (the variance) with a large kernel window
h results in a huge increase in the bias part which is proportional to h*. This is what is
known as the variance-bias trade-off in kernel size selection. There exists many ways to
find the kernel size h. We mention two popular methods here. The first differentiates
Eq. (3.10) and equates it to zero, obtaining

hanise = L%([g(g}”w]%

The other method estimates R(f") by assuming that the true underlying density is a
normal density. Then the kernel size is given by |9]

hanrse = 1.OGN 3
Several other methods exist, see |14] and [30].

3.2.4 The multivariate Parzen window

The extension of the Parzen window to feature data in a d-dimensional space is a little more
difficult. The sparseness of data in higher dimensional spaces makes the estimation more
difficult, unless we have very many samples. This phenomenon is usually referred to as
the curse of dimensionality. Remembering that the kernel function in the one-dimensional
case specify the window width, this window will in the multidimensional case be replaced
with hypercubes and each dimension of the cube requires a parameter to be estimated for
the kernel. A direct extension of the univariate kernel estimate in Eq. (3.5), is obtained
by replacing the point x with a vector-point x € R? and the variable x; with a d-variate
sample x; with density f(x). The Parzen estimator becomes [30]

A~

f(x) = %ZKH(X_Xi) (3.11)



3.2. NON-PARAMETRIC METHODS 17

where H is a symmetric positive definite d x d matrix called the bandwidth matriz
Ku(x) = [H|"V2K(HV%).

With further restrictions on H, see |30] for details, we get the single bandwidth kernel
estimator

~

flx) = # > K{(x = x0)/h}. (3.12)

There exists several methods to give an estimate of the optimal kernel size for a multi-
variate data set. The optimal kernel size is usually selected to minimize the MISE between
f(x) and the target density f(x). The normal reference rule for the MISE kernel size is
given by Silverman’s rule [28], 9]

h=o, {m} o (3.13)

where O’i =d! ZZ Y and X;; are the diagonal elements of the sample covariance matrix.
Due to the curse of dimensionality this method is not regarded as reliable for higher di-
mensional data. In this thesis most of the data sets are of higher dimensions, so we have
chosen a cross validation technique to find the best kernel sizes in the density estimates.
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Some well-known Parzen windows with u = == are listed below, where for v > 1 all

h

windows evaluate to zero, except the Gaussian kernel. For simplicity we only present the
one-dimensional versions, but they can easily be extended to multivariate versions.

e Uniform

Epanechnikov

Gaussian

Quartic

Triweight

e Cosinus

Ky (u) = 1/2.

Kp(u) = 1—6(1 —u?)?
Kp(u) = %(1 —u?)?



Chapter 4

Information theoretic learning principles

This chapter starts with a brief introduction of information theory. An overview of the
concepts in an information theoretic learning machine is then given. Information theoretic
criteria, which gives us the tools to measure the shape of, and distance between, probability
distributions, is then explained in detail. In the last section we discuss some cost function
estimators used in I'TL.

4.1 Information theory

Information theory is in this thesis related to C.E Shannon’s report from 1948, A math-
ematical theory of communication [25]. Shannon defined a measure of information or
uncertainty associated with a stochastic experiment and named it entropy. This measure
was used to answer important questions in communication. Shannon used entropy to find
a limit to how much information can be transferred over a noisy channel, and to find ways
to design optimal codes for data compression.

Entropy can be thought of as the uncertainty associated with the value of a realization
of a single random variable. It is a measure on how much information that is gained about
the content of a stochastic random variable after a stochastic experiment.

Shannon also defined a measure called mutual information, which is the amount of
information that one random variable carries about another, i.e. the reduction in the
uncertainty of one random variable due to the knowledge of the other. Mutual information
is a special case of a more general quantity, called relative entropy. The relative entropy
or divergence can be used as a measure of “distance” between two distributions. It is a
measure of the inefficiency of assuming that a distribution is given by a density function
q(+), when it in fact has a distribution given by a density function p(-). This is also refereed
to as a divergence measure between distributions. In this thesis we use different estimates
of entropy and divergence as information theoretic measures.

19
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Desired response

(optional)
mapping of vectors, .
input X and '
output'Y \ 4
Input data Output: Y | Optimality
X 9(X.W) 1 criterion

adaptation |
algorithm

Error term: e

=

Figure 4.1: A general learning machine.

4.2 An information theoretic learning machine

A very general learning machine may be described using a model like the one in Fig. 4.1.
Machine learning is in general divided into supervised, semi-supervised and unsupervised
tasks. The model in Fig. 4.1 can be used to describe all of the above machine learning
tasks. We have some input data X, containing information or measurements from a real-
world event. We want the learning machine to perform some specific task on X. This is
done by giving the input data X to a possibly non-linear parametric mapping function

g:RY— RM, (4.1)
which transforms the input vector X € R to Y € RM

where W are the parameters of the mapping function. If the optimality criterion is based on
an information theoretic measure, either entropy or divergence, we call this an information
theoretic learning machine. The mapper function in Eq. (4.2) transform the input data to
a new form depending on the task of the learning machine. The output of the mapper, ¥
is compared with an optimality criterion and optionally a desired response z for the input
X. For each presentation of training data the optimality criterion is evaluated and the
error term e is fed to an adaptation algorithm which update the parameters W.
Supervised learning concerns a learning machine with a desired response for each input
X. This thesis focus on supervised learning, specifically on classification of data. If the
learning task is classification, the desired response z for the training data contains a class
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label. The task is then to classify a random input sample to one of C' classes. The mapping
function may in this case be described as

g:Rd_){ylw"ayc}a

where 1, ..., y. are the possible class labels, and M = 1 in Eq. (4.1). Regression is another
example of a typical supervised learning task, where the mapping is

g:RY—=R.

Semi-supervised learning tasks concerns learning where the labels of the input data are
only partially known. One example is ranking where we only have available the relative
ordering of the the examples in the training set, while our aim is to enable a similar ordering
of novel data.

Unsupervised tasks are learning tasks where the wanted information from the data has
to be extracted without any desired response in the optimality criterion. Clustering is one
typical example of unsupervised learning, where the aim is to find a natural division of data
into homogeneous groups [26]. Anomaly and novelty detection are other examples, where
the task is to detect samples that deviate from the normal. Other important unsupervised
tasks are finding low-dimensional representations of the input data, important examples
of this is principal component analysis (PCA) and independent component analysis (ICA).
In PCA, the mapping in Eq. (4.1) aims to project the input X to a lower M-dimensional
space, where M denotes the number of uncorrelated features in X. In ICA the goal is to
project X to a lower M-dimensional space where each of the features of X are mutually
independent.

Traditionally the criteria for optimality in Fig. 4.1 has been to minimize the MSE cost
function between the output Y of the mapper and the desired output z

JY)=E{(z-Y)*}. (4.3)

In our general machine learning model we want to transfer as much information as possible
about our data into the mapper function g(X, W), such that this mapper is able to describe
our data as accurately as possible. The optimality criterion is thus critical in obtaining
the parameters W. If we use MSE, the information transferred from the measurements X
and the desired responses z to the parameters W is purely based on second order statistics
constraints. This is only optimal if the input data is drawn from Gaussian distributions,
which is a rather strict restriction.

To transfer as much information as possible to the parameters W the error term in
Fig. 4.1 must be computed with a criterion transferring as much information as possible
about the input data X, and the desired response z, to the parameters W of the mapper
Y = g(X,W). If we base our calculations on information theory and optimize with infor-
mation theoretic criteria in Fig. 4.1 and Eq. (4.2) we have what Principe et al describes
as information theoretic learning |[18]. The main advantage with information theoretic
criteria are that they are functions of probability densities and capture all data statistics,
not just the second-order statistics. This gives us learning machines where the parameters
W describes our data in a much better way than the traditional MSE can.
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4.3 Information theoretic quantities

In this section we discuss some important information theoretic quantities that may be
used as information theoretic criteria in an I'TL machine.

Definitions A discrete stochastic variable X is associated with a triple (x,.Ax,Px),
where the outcome x is the value of the stochastic variable which takes on a set of
possible values Ax = {aj;,as,...,ay}. These have probabilities (distribution) Px =
{p1,p2,...,pn}, where P(x =a;) =p;, p; >0and ), ., Plx=a;) =1

A continuous stochastic variable X is associated with a probability density function
fx(x), where the outcome x is the value of the stochastic variable. The pdf is defined as the
derivative of the cumulative distribution function (cdf), defined as P(X < xq) = Fx(xo),
where 0 < Fx(x) < 1. Hence, fx(xo) = ZFx(X) |x=x,, and [~ fx(x)dx = 1.

We have statistical independence between random variables Xy, ..., Xy if and only if
Foxa, - oxn) = TIL f(x).

A metric on a set X' is a function u : X x X — R. For all x,y,z in X, this function is
required to satisfy the following conditions

4.3.1 Entropy

All information theoretic criteria are related to the concept of entropy. We now explain
Shannon’s measure of entropy and some of it’s properties. A more general version of
entropy, the Renyi entropy is then reviewed.

Shannon’s entropy

Assume there is some uncertainty in the outcome of an random experiment and that the
possible outcomes of the experiment is given by a probability distribution. This “uncer-
tainty” was first quantified by Shannon as H = Hy(p1, pe, - .., pn) satisfying the following
criteria [25] [9]

1. Hy(p1,p2,...,pnN) is a symmetric function of its variables.
As an example, HN(p17p27 s 7pN> = HN(p27p17 s 7pN)

2. Hx(p1,p2,--.,pn) is a continuous function of py, po, ..., pn.

1

3. Hy(,-..,+) attains the maximum value.
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4. Hyyi(tpr, (1 = )p1,p2, -, pn) = Hx(p1,pa, - -, o) + prHa(t, 1 —t) for any distri-
bution px and 0 <t < 1.

The fourth property of Shannon entropy may be explained as follows [25]. If a choice
is broken down into two successive choices, the original entropy (H) is the weighted sum
of the individual values of H [25]. This is illustrated in Fig. 4.2.

1/2
1/2
/ 1/2
1/3 13
¢ 2/3
172
1/6
1/3
1/6

Figure 4.2: At the left we have three possibilities, each chosen according
to the probabilities p; = %, Do = %, p3 = %. On the right, we first choose
between two possibilities each with probability % If the second possibility
1s chosen, we make another choice with probabilities % and é The final
results have the same probabilities as before. We require, in this special
case, that H(3,3,5) = H(3,%) + 3H(2,3). The & coefficient is because
this second choice only occurs half the time.

Shannon showed that the only H satisfying the above assumptions is [25]

Hy(p1,p2s...,pn) = Hnv(Px) = —K Z pilogy, pi, (4.4)

Pi€Px

with the convention that 0log, 0 = 0. This measure he called entropy, because it is the same
expression used to define entropy in statistical mechanics. K is some constant, depending
of the units of the sample data. If the base b = 2, the entropy unit is bits and if b = e the
unit is nats. In this thesis we leave the base b of the logarithm unspecified, since it is just a
measurement scale. Entropy is usually denoted by H(X) where X is a label for a random
variable, and not the argument of a function. Shannon’s entropy depend on the quantity

I(p;) = —log p;, (4.5)
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which was proposed by Hartley as a measure of the information received by learning that
a single event of probability p; took place [7]. Hence the Shannon entropy is a weighted
average of informations I(p;)

H(X) = E{I(p;)}- (4.6)
Properties of Shannon entropy

Several properties of the Shannon entropy can be derived based on the four basic properties
191 [25] [3]

1. Adding or removing an event with probability zero does not contribute to the entropy,
HN(p1>p27 s apNaO) = HN(plap?a s 7pN)

2. It vanishes when one outcome is certain,
HN(ppr?"-apN) :07 Di = ]-;pj :0,] %Z,Z: ].,...,N.

3. The maximum of Hy increases as IV increases.

4. Hy > 0.

Example To illustrate some properties of Shannon entropy let the stochastic variable X

be given by
Y — 1, with probability p
| 0, with probability 1 — p.

The entropy in this case is
H(X) = —plog(p) — (1 — p)log(1 - p),

as shown in Fig. 4.3 as a function of p. Note in Fig. 4.3 that the entropy is zero when p = 0
or p = 1, meaning there is no uncertainty about the outcome of the stochastic experiment.
If p = % the uncertainty is maximized, and we need on average 1 bit to transmit the
outcome of the experiment.
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H(p)

0.4 0.5 0.6 0.7 0.8 0.9 1
p

Figure 4.3: H(X) = H(p) in bits
1
p=3-

with Shannon’s entropy, notice that H(X) = 1, when
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Shannon differential entropy

For a continuous stochastic variable X with density f(x)! the differential entropy h(X) is
defined as [25] [3],

h(X) = — / £(x) log f(x)dx. (4.7)
This can also be written as an expected value
h(X) = Ey{~log f(x)}. (4.8)

Properties of Shannon’s differential entropy

1. If X is limited to a certain volume v in space, then h(X) is maximum and equal to
logv when f(x) is constant (uniform density function) in the volume.

2. Differential entropy may be negative. If we consider the uniform density above, for
v <1,logv <O0.

3. The normal distribution maximizes the entropy over all distributions with the same
covariance. This property can be exploited to measure the non-Gaussianity of a
stochastic variable.

4. The differential entropy is a measure that is relative to the coordinate system. Con-
sider for example changing coordinates by a linear transformation, Y = MX. In
that case,

h(Y) = h(X) + log | det(M)|.
Renyi’s entropy

As explained above, Shannon’s entropy is a measure of the average amount of information
contained in a single observation of a random variable. Renyi used a more general theory
of mean values, where the mean of the real numbers, zy, ..., xy, with positive weighting
P1s- -, PN, has the form [18| [22]

T=¢ ! Zpiw(xi), (4.9)

where ¢(z) is a Kolmogorov-Nagumo function, which is an arbitrary continuous and strictly
monotonic function defined on the real numbers. He found that a general entropy measure
H obeys the relation [18]

H=¢"! <Zpi<p(f(pi))> : (4.10)

!We assume that the stochastic variable has a density function where the integral does exist.
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where I(p;) is Hartley’s information measure. In order to be an information measure
©(+) cannot be arbitrary, since information is additive. We have two choices, p(z) = =
or o(z) = 2072 The first case gives Shannon’s entropy and the second gives Renyi’s
entropy of order o 18]

N
1
Hp, (X) = 7—log (Z;;g) a>0,a#]1. (4.11)
k=1

There is a well known relation between Shannon’s and Renyi’s entropy. Let Hg denote
Shannon’s entropy, then [18]

Hg, > H; > Hg, if 0O<a<land g >1,
hrI%HRa :HS-

Renyi’s and Shannon’s entropies can also be related to each other in another way. If we
consider the probability mass function P = (py, po, ..., pn) as a point in the N-dimensional
space, this point will always be in the first quadrant of a N-dimensional hyperplane with
each axis intersecting the coordinate one. The distance of the point P to the origin is the

« root of
N
> p =Pl
k=1

and the « root of d, is called the a-norm of the probability mass function [18]. Renyi’s
entropy satisfies all of Shannon’s criteria in 4.3.1 on page 23. Except of the fourth prop-
erty. The Renyi’s entropy of order @ = 2, is denoted by Renyi’s quadratic entropy and
corresponds to the 2-norm of the probability mass function.

If we repeat the example on page 24 with Renyi’s quadratic entropy measure, we get a
similar shape in Fig. 4.4, as in Shannon’s entropy in Fig. 4.3 on page 25.

da
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0.6 .

Hy, (P)
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Figure 4.4: H(X) = H(p) in bits with Renyi’s quadratic entropy measure, notice that
H(X)=1 whenp=

1
5
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Renyi’s differential entropy

For the continuous random variable X with pdf f(x) we obtain the differential version of
Renyi’s entropy [18]

hg,(X) = ! Oélog/f‘"(x)dx, (4.12)

= e B{/ () (4.13)

If we set a = 2, we get the differential Renyi quadratic entropy

hr,(X) = —log / fA(x)d (4.14)
= —logE{f(x)}. (4.15)
Some properties of the Renyi entropy of order a are the following |9

1. Just as for Shannon entropy, the Renyi entropy is maximized for a uniform distribu-
tion for random variables with finite support.

2. The Renyi entropy is not in general maximized by the Gaussian distribution in the
fixed variance case.

3. The Renyi entropy is invariant to rotations and translations.

4.3.2 Divergence

This section reviews some of the most common measures of divergence or relative entropy
used in information theoretic learning. Divergence is used as a measure of statistical
similarity, and one can think of it as a generalization of algebraic distance measures to
probability spaces |[5].

Kullback-Leibler divergence

This measure discriminates two probability density distributions p(x) and ¢(x), and it is
also referred to as relative entropy

Durlmat = [ poolos %dx,

5y {1025} (116)

Some properties of this measure are 9|
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L. Dgr{p,q} = 0,Vp,q.
2. Dgr{p. ¢} = 0 only if p(x) = g(x).
3. Dkr{p,q} is additive for independent random events.

This measure is not a metric, since it is not symmetric i.e Dgr{p,q} # Dkr{q, p}, and
it does not satisfy the triangle inequality. The divergence measure is invariant under the
following changes in x [9]

1. Permutation in the order of which the components are arranged.
2. Amplitude scaling.

3. Monotonic nonlinear transformation.

The Kullback-Leibler divergence is implicitly based on Shannon’s entropy, since

Drrdp,q} = — / p(x) log g(x)dx — <— / p(x) logp(X)dX) : (4.17)

where the last part is Shannon’s differential entropy and the first part can be interpreted
as “cross entropy” between p(x) and ¢(x) [9].
Mutual Information

The mutual information MI(X;Y) between two random variables X and Y with joint
density f(x,y) is defined as [3]

fxy)
MI(X;Y) /fx y logf( Ty >dxdy (4.18)

From this definition [3]

MI(X;Y) =h(X) = h(X|Y)=h(Y) - h(Y|X). (4.19)
Mutual information is a special case of Kullback-Leibler divergence, measuring the distance
between the joint probability distribution and the product of the marginal distributions.
Renyi’s divergence

Renyi analyzed the Kullback-Leibler divergence and expressed it with a general mean value,
in a similar way as entropy. Renyi proposed the following distance measure between pdfs

p(x) and ¢(x) [22]

1 *(x
Dg {p, q} log / Px) dx,

-« >~ (x)

o {L(X)} | (4.20)

-« ¢ (x)

The Renyi divergence possesses the following properties [22]




4.3. INFORMATION THEORETIC QUANTITIES 31

1. Dg.{p,q} >0, Vp,q, a > 0.

2. Dr {p,q} =0, if and only if p(x) = ¢(x),Vx € R%
3. limy—1 Dr,{p, ¢} = Dxr{p,q}.

4. Dr {p,q} is additive for independent events.

We see that Renyi divergence is not symmetric and hence not a metric. We can use Renyi
divergence to measure the mutual information between random variables, measuring the
distance between the joint pdf and the product of marginal densities.

Cauchy-Schwarz divergence

Principe et al.|[18], defined a pdf divergence measure based on the Cauchy-Schwarz (CS)
inequality. Let p(x) and ¢(x) be pdf functions, i.e non-negative and integrating to unity.
Define the inner product between two square integrable functions p(x) and ¢(x) as (p, q¢) =
[ p(x)q(x)dx. Then by the Cauchy-Schwarz inequality, and the fact that p(x) and ¢(x)
are always non-negative

(p.0)> < (p.p) - (¢, 9),

with equality if and only if the two functions are linearly dependent. The Cauchy-Schwarz
pdf divergence is defined [13],[12] as

Des{p,q} = —log {%}

(p, ){q; q)

. E,{g()}
— ol { VE o EAao) } ' 42

Some properties [9] of the Cauchy-Schwarz divergence are
L. Des{p,q} = 0, Vp,q.
2. Dcs{p,q} =0, if and only if p(x) = ¢(x),Vx € R
3. Des{p,a} = Des{aq, p}-

4. Des{p,q} is additive for independent events.

The CS divergence does not satisfy the triangle inequality, and for this reason it is not a
distance metric [9]. CS divergence can be used as a measure of statistical independence
between random variables. CS divergence is implicitly based on Renyi’s quadratic entropy,
since

DC’S{p> q} =

—10g/p(X)Q(X)dX—% (—log/pZ(X)dX) - % (—log/qz(X)dX) : (4.22)
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where — log [ p?(x)dx is the Renyi quadratic entropy with respect to p(x) and — log [ ¢*(x)dx
is the entropy Wlth respect to ¢(x). The first term may be regarded as a “cross-entropy”
between p(x) and ¢(x) [9].

Integrated squared error

Principe et al. in |18] also proposed an integrated squared error (ISE) distance measure
between the two pdfs, p(x) and q( ) As before, the inner product between two square
integrable functions p(x) and ¢(x) is (p,¢) = [ p(x)¢(x)dx. The ISE divergence measure
is defined as

Diselp.q) = / p(x) — g(x)Pdx,

~ [#eodx—2 [ pexaeoix+ [xax

= Ey{p(x)} — 2E,{q(x)} + E,{a(x)}
= (p,p) — 2(p,q) + (¢, 9) (4.23)

This measure is obviously zero if the two pdfs are equal, it is always non-negative and
symmetric. It does not satisfy the additive property, so we must be careful when calling it
an information theoretic measure |9].

Other divergence measures

There exists many other important distance measures between pdfs. A well known example
is the Csiszar divergence. For an arbitrary convex function A(-) such that A(1) = 0 we define

5]
Diip,q} = /p(X)h <%) dx. (4.24)

Some other measures are the Jeffrey’s distance, which is a symmetric version of the
Kullback-Leibler distance, and Chernoff distances [9]. Common to most of the measures
are that they are not metrics, but they can give us useful information about divergence
between pdfs.

4.4 Estimation of information theoretic cost functions

In Section 4.2 we explained how a learning machine depends on an optimality criterion
to calculate error terms to be used in an adaptation algorithm. In information theoretic
learning this criterion is based on entropy or divergence of probability density functions.
The output of the cost function or optimality criterion in Fig. 4.1 is typically used to update
the parameters W of the mapper g(X, W) during a training phase. We have already seen
in Chapter 3 that a Parzen window density estimator utilizes a kernel function to give
an estimate of a pdf. In this section we review some techniques to find estimates of
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information measures using the Parzen window technique for density estimation. Since the
Parzen window density estimate can be continuous, we also want our cost functions to be
continuous. Thus we focus on estimating differential information theoretic measures.

4.4.1 Renyi quadratic entropy estimate
The differential Renyi quadratic entropy associated with the pdf f(x) is given by [22]

hg,(X) = —log/f2(x)dx (4.25)

Since the Renyi quadratic entropy contains a product of densities, we take advantage
of the convolution property of Gaussians, and use the Gaussian kernel W,2(-,) in the plug
in density estimate. Since the logarithm is a monotonic function, we focus on the quantity

V(f)= ff2(X)dX, given by?

N N
V(f) = / % ; W2 (x, XZ)% ; W2 (x, x4 )dx
1 N,N
:m / Z W2 (x, %) Woz (x, X )dx. (4.26)
iil=1
We now use the convolution theorem for Gaussians
/Woz (x, %) W2 (x, x5 )dx = Wogz (X4, Xy). (4.27)
Inserting this into Eq. (4.26) gives
L N
V(f)= N2 Z Wag2 (i, Xir). (4.28)

ii'=1

It can be seen that this sample based estimator involves no approximations, except the pdf
estimate itself. This is an advantage compared to the Shannon entropy estimate, which
has made the Renyi entropy the preferred estimator over Shannon’s. The expression in
Eq. (4.28) is named the information potential (IP) by Principe et al. [18] due to an analogy
with a potential field. The Renyi quadratic entropy estimator is thus

hia(X) = —log {V(f)} (4.29)

We can also estimate the Renyi entropy of higher orders and obtain more information
about the structure of the data set (a > 2), but the algorithm becomes much more complex

(O(N9)).

2222.’,]!1 equals the double summation vazl Ef\le
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4.4.2 ISE divergence estimate

In the Renyi’s quadratic entropy estimate, the use of a quadratic measure and a Gaussian
Parzen window, resulted in an estimate with no other approximations than the density
estimate. In a similar manner we can estimate the ISE{p, ¢} between two pdfs p(x) and

q(x) given by [18|

1SE{p.q} = / (%)) dx

_ / PA(x)dx — 2 / p(x)g(x)dx + / P(x)dx. (4.30)

For an overview of some properties of this measure, see Section 4.3.2 on page 32. Assume
we have samples x;, ¢ =1,..., Ny and x;, j =1,..., N, from p(x) and ¢(x), respectively.
Estimating the two pdfs with the Parzen window method gives

Nl N2

R 1 R 1

p(X) = E E W2 (X7 Xi) Q(X) = Fz E W2 (X, Xj). (4.31)
i=1 i=1

Plugging this into Eq. (4.30) we get the ISE sample based estimator

ISE{p,q} =
]_ N N 2 Nl N2 1 N2 N2
W Z: 202 (%0, %0) = 3 ”21 Wa (50,%) + 5 Hzl Wape (x5, %), (4.32)

4.4.3 Cauchy-Schwarz divergence estimate

The Cauchy-Schwarz divergence is given by Eq. (4.21) as

Des{p,q} = —log {<<p’—q>}

p,4){¢:q)

~ log J p(x)q(x)dx (4.33)

\/fp(x)dqu(x)dx

Using the same plug in technique as for the ISE divergence estimator in Eq. (4.4.2) we can
express a sample based estimator for the CS divergence as

1 ZN}’NZ W202 (Xi, Xj)

N1N2 27_]:1

\/N%z vazlfzj\? Wag2 (xi, Xi')N%z Z;V;/ivf Wog2 (X5, %Xj7)

(4.34)

Des{p,q} = —log
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4.4.4 Using non-Gaussian kernels in estimation of cost functions

The use of Gaussian kernels has the advantage that the only approximation in the estimate
of the cost function will be in the estimation of the pdf. In general, we search for cost
functions involving products of densities, because of the properties of the Gaussian kernel.
This is the main reason why quadratic measures are preferred in ITL.

Generally, all the differential versions of information theoretic quantities defined earlier
can be estimated by expressing the quantities in terms of an expectation value. This may
require many samples to be an accurate estimate. We now examine the Parzen window-
based estimator of the inner-product [ p(x)g(x)dx, since this inner-product is common in
all the previously defined cost functions. Note that

/f@M@MXZEAM@L (4.35)

where E,{-} denotes the expectation with respect to the density p(x). The expectation
operator may be approximated based on the available samples in the following way

Ny

1
E{q(x)} =~ N > alx). (4.36)
=1
Assume now that
. 1 &
4(x) = A > Kn(x,x;), (4.37)
j=1

where K, (-, ) is a non-Gaussian kernel with bandwidth h. Eq. (4.35) can now be estimated
by

=1 j=

1 1 &
N >, N > Knlxi X))
=1
1 Ni1,Na
o, > Kulxi,x;) (4.38)

ij=1

This is the same result as in the case where Gaussian kernels are used. The only difference
is an additional approximation with regard to the expectation operator.

4.4.5 Shannon entropy estimate

We illustrate how the Shannon entropy of a pdf f(x) may estimated using non-Gaussian
kernels. The Shannon entropy may be written as an expected value

h(X) = E;{~log f(x)}.
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We have samples {x;}, i = 1,..., N from f(x). With the Parzen window estimator we
can estimate f(x) by f(x). Using the plug-in density estimator principle, we replace f(x)
with f (x). We now approximate the expected value by averaging over all of the samples,
which gives the following estimate for the Shannon entropy of f(x)

N

W) =3 {tog fx)}

=1
1 & 1 &
— NZ{—logNZKh(xi,xj)}. (4.39)
i=1 Jj=1

The drawback of this entropy estimate is the dependency on the approximation of the
expected value. With few samples of training data this may not be a good estimator for
entropy.



Chapter 5

An information theoretic kernel
classifier

Recently some very interesting relations between the information theoretic measures de-
fined in the previous chapter estimated with Parzen windows satisfying Mercer’s theorem,
and mean vectors in Mercer kernel spaces has been shown. In this chapter we review this
relationship, and use it to analyze a possible classifier in both the input space and the
Mercer kernel space. This classifier operates implicitly in a Mercer kernel space, and we
refer to it as the standard ISE classifier. We also mention a connection between the ISE
divergence and the graph cut. In Part 11, Section 9.3 of this thesis we present some results
using this classifier on some well known data sets.

5.1 Mercer kernel theory

Mercer kernel-based learning algorithms make use of the following idea. Via a nonlinear
mapping [9] [17]

®:R'— F
x — O(x)
the input data xi,...,xy € R? is mapped into a potentially much higher dimensional

feature space F. For a given learning problem one now considers the same algorithm in F
instead of in the input space RY, working with [17]

((I)(Xl>vy1)v SRR ((I)(XN)ayN) e FxY.

The learning algorithm used is usually linear, and can be expressed solely in terms of
inner-product evaluations. If we use the kernel-trick we can calculate the inner-products
in the feature space using kernel functions. Using kernel functions we implicitly execute
the learning algorithm in the feature space F. The kernel trick thus allows us to calculate
inner-products in a possible very high-dimensional space.

37
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Consider a symmetric kernel function p(x,y). If p: d x d — R is a continuous kernel
of a positive integral in a Hilbert space Lo(d) on a compact set d C RY, i.e

YU e Ly : /d,o(x, y)V(x)U(y)dxdy > 0. (5.1)

This means that p(-,-) is a positive semidefinite function. Then there exist a space F and
a mapping ® : R? — F, such that by Mercer’s theorem [13]

p(x,y) = (B(x), B(y)) = Z Xidi(x)di(y), (5.2)

where (-) denotes an inner-product, the ¢;’s are the eigenfunctions of the kernel, the \;’s are
the corresponding eigenvalues and the dimension of the feature space F is Ny < oo [13].
The operation in Eq. (5.2) is the “kernel trick”. A kernel function that satisfies Eq. (5.1)
is known as a Mercer kernel function. The most widely used Mercer kernel function is the
radial-basis-function (RBF) [13]

p(X,y) = exp {—M} (5.3)

202

where o is a scale parameter to select the bandwidth or width of the RBF.

Cover showed in [2] that the probability that classes are linearly separable increases
when the features are nonlinearly mapped to a higher dimensional feature space. Using
the kernel trick we are able to work implicitly in very high dimensional spaces. It has been
shown [19] that the Gaussian kernel has an infinite dimensional feature space, thus given
any labeled data set (where points with different labels have different positions), there
exists a linear hyperplane which correctly separates them in the Mercer space given by the
Gaussian kernel.

The support vector machine [17] is one of the most popular Mercer kernel based learning
algorithms taking advantage of the kernel trick. The basic idea behind it is to find the
hyperplane between two classes which maximizes the margin between the points closest
to the hyperplane. The vectors from this hyperplane to the closest points constitute the
support vectors. If the classes are non-separable in the input space, this hyperplane and
the points are calculated in a high dimensional Mercer kernel space, using the kernel trick.

5.2 Information measures in the Mercer kernel space

We will now review how some of the information theoretic measures can be expressed in
the term of mean values in a Mercer kernel feature space. The key point to expressing
ITL criteria in a Mercer kernel space is to note that for any positive semi-definite kernel
function Kj(-,-) that satisfies Mercer’s theorem

Kn(xi, xir) = p(Xi, Xir) = (%), (1)) (5.4)
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The Gaussian kernel is a kernel that satisfies Mercer’s theorem. We now see how the
information potential defined in Eq. (4.28) on page 33 may be expressed in a Mercer kernel
feature space. Using W,2(+,-) as a Mercer kernel, the IP was expressed in Section 4.4.1 as

N,N
1

V(f)= N2 Z Wagz (X4, Xi).

i)i'=1

We can now use the kernel trick to express the IP as

= [[m]f?, (5.5)

where m is the mean of the ®-transformed data
XN
m= ; O (x;). (5.6)

It turns out that the IP for a data set may be expressed as the squared norm of a mean
vector of the same data set mapped ta a Mercer kernel feature space. The Renyi quadratic
entropy estimate of any pdf may thus be visualized with a simple geometric description,
as a mean vector in a Mercer kernel feature space.

5.2.1 ISE divergence

We will now see how the ISE divergence can be expressed in a Mercer kernel feature space.
The ISE{p,q} estimate

/ B(x) — G)]dx

between two pdfs p(x) and ¢(x), was estimated in Eq. (4.30) on page 34 as

ISE{p,q} =
1 N1,N1 9 N1,N2 N2,N3
— Wog2 (X, Xi1) — Wog2 (X4, X)) + — Wog2 (X, X1).

Similar to the calculations in Eq. (5.5) this may be expressed as

ISE{f,g} = [lmy* — 2mTmj + |my]?

= [lmy — my|f?, (5.7)
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where m; and my are the mean vectors in the Mercer kernel feature space for data points
drawn from p(x) and ¢(x), respectively. That is

1 1 &
- P (x; = d(x,). 5.8
m, Nli; (x;) my NQ; (x;) (5.8)

From this we see that the ISE divergence measure has a nice geometric interpretation in
the Mercer kernel feature space. It measures the the squared Euclidean distance between
the information potentials of the distributions given by p(x) and ¢(x). The ISE divergence
in a Mercer kernel feature space is illustrated in Fig. 5.1 on page 41, where w is the vector
m; — 1o.

5.2.2 Cauchy-Schwarz divergence

For completeness, we also review an interpretation of the CS-divergence measure in a
Mercer kernel feature space. The Dog{p, q} estimate was given in Eq. (4.34) on page 34
as

1 N1,No
— . ’_ WO-Q XZ7X
DCS{p> (J} = — 10g N1 N ZZ,]_l 2 ( ])

\/NL% Zf\;l/:Nl Waoz (X, Xz”)]\%z Zj\f;/f Waoz (x5, X;7)

(5.9)

between two pdfs p(x) and ¢(x). Again we use the kernel trick in the same way as in
Eq. (5.5) and in Eq. (5.7) and can rewrite Eq. (5.9) to

_ m’m
Des{p,q} = —log ——
[ |||
_ log <m17 m2>
\/<m1,m1><m2, mz)
= — log {cos Z(m;, my)} (5.10)

This means that the CS divergence measure is dependent of the cosine of the angle between
the vectors m; and m, in Fig. 5.1 on page 41.
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>

Figure 5.1: Illustration of the relationship between the mean
vectors my and my in the Mercer kernel feature space. The ISE
divergence s given by the squared Euclidean distance between
them, ||w||?, where w = m; — my. The CS divergence measure
s related to the cosine of the angle between my and msy.

41
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5.3 The standard ISE classifier

In Fig. 5.1 in the previous section, we saw how the ISE between two distributions may
be represented in terms of the Euclidean distance between the class mean vectors in the
Mercer kernel feature space. In this section we use this geometric view of the ISE divergence
between two classes to propose the standard ISE classifier.

We want to classify an unknown sample x; to one of two classes w; or wy. Let ®(x;) =y
represent the sample in the Mercer kernel feature space. Then we may classify x; using a
minimum FEuclidean distance classifier in the kernel space. That is, we simply classify y
to the class of its closest mean vector.

A

>

Figure 5.2: Classification in the Mercer kernel feature
space.

In Fig. 5.2 the mean vectors m; of class w; and my of class w, are illustrated. The
vectors m; —y and my — y are used to find which mean vector the unclassified point y
belongs to. We may now use the following classification rule

xg — wit [my =y = lmy — y[* <0
< |lm[* —2miy + [ly[* = (mz]* — 2myy + [ly[|*) <0
& mly-mly+b>0
& wly+b>0, (5.11)

where w = m; — my defines a hyperplane with b = 1[|/my||? — ||m;||?] as a threshold. The
threshold b depends on the squared Euclidean norms of the mean values, which previously
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are shown to be equivalent to the class information potentials, and thus the class entropies.
We also see that the proposed ISE classifier is a hyperplane classifier, since w defines a
hyperplane separating two classes in a Mercer feature space. All the products in Eq. (5.11)
are expressed in terms of inner-products, and may be calculated using the kernel trick as
done in Eq. (5.5) on page 39. This means that we may implicitly operate in Mercer space,
using kernel functions to evaluate all inner-products.

We now analyze the Mercer kernel feature space classification in terms of the Parzen
window based estimators in the input space. We have

m’y = m! d(x,) = - ZCI)T x;)P(x;) = N, 2 ZW02 (x¢,%;) = p(x¢) (5.12)
Likewise,
N2 N2
1 1 ~
mly =mld(x,) = A D o7 (x)@(x,) = A > Woa(xi, %)) = Glx) (5.13)
j=1 j=1

= 2

= I%(7) = Vil (5.14)

Where V,(f) — Vi(f) is a measure of the difference in information potential between the
classes, and thus the difference in entropy between class w; and ws. This means that using
the ISE divergence measure as a starting point, we may use the following classification rule
in the input space

xX; —wp : p(Xe) —q(xe) +b >0, (5.15)

where p(x;) is the Parzen window density estimate evaluated at the test point x;, given
that the point belongs to class w; and ¢(x;) the Parzen window density estimate given that
the point belongs to class ws.

5.3.1 Connections to Parzen window Bayes classifier

In the two class case the ISE classifier is given by

x; —wp o p(xy) —q4(x) +b>0

b= S1Va(f) ~ V()]

Vi(f) and Via(f) are the information potentials of class w; and wy. We notice that the ISE
classification rule is similar to the Parzen window Bayes classification rule for equal a priori
probabilities, given by

Xy —w - p(xe) —q(x¢) >0
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except from the threshold, b = £[Va(f) — Vi(f)]. This threshold indicates that the ISE
classifier is dependent on the difference in entropy or IP between the classes. If the entropy
of the data in class one is larger than the entropy of class two, Vo(f) — Vi(f) > 0 the ISE
classifier will assign the test point x; to the class with largest entropy if p(x;) — ¢(x;) = 0.
This indicates that the ISE classifier tends to classify data to the class with largest entropy
or equivalently, the class with the smallest information potential. This may increase the
probability of error at the cost of prioritizing the class with largest entropy. The effect of
different class potentials will be investigated further in experiments.

5.3.2 Multiclass standard ISE classifier

Based on a training data set, we may define the class mean vectors my, ..., m¢ for each of
C classes wy, . ..,wc. We wish to classify some test sample x;, to the class which minimizes
the ISE classification cost function in Eq. (5.7). This is achieved by measuring the squared
Euclidean distance between ®(x;) and each of the class mean vectors, and assign the test
sample to the class for which the squared euclidean distance is smallest. This corresponds
to the following classification rule

Xg — W, mcin (|jm, — cI)(Xt)||2) )
& min ((m,, me) — 2(m, ®(x;)) + ((x;), ©(x,)))
& mcin((mc, m,.) — 2(m,, P(x;)) (5.16)

where c=1,...,C, and

(m,, B(x,)) = <Ni i@(xi>,q><xt>>
1 Qe
(o)
1 N¢
F g o2 Xt,XZ
= fu(x)
(5.17)
as before,
(m,,m,) = [m,|*. (5.18)

This is very similar to Mercer space k-means clustering,|26],|29] but we know the means of
each cluster in this classification problem.
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5.3.3 Using Non-Mercer kernels

In Section 4.4.4 we showed that the inner-product [ p(x)g(x)dx = E,{¢(x)} can be esti-
mated using any kind of density kernel Kj,(+,-). Notice that the ISE divergence measure is
dependent on the density estimate at a test point x;, and a threshold given by the difference
in information potential between the classes.

5.3.4 Connection to the graph cut

The set of points in an arbitrary feature space may be represented as a weighted undirected
graph G = (V, ), where the nodes, V are the points in the feature space, and £ are the
edges between each pair of nodes. The weight on each edge, k(i,i'), is a function of
similarity between the nodes ¢ and i’. Let node ¢ and i’ be represented with feature vectors
x; and x;/, respectively, i, = 1,..., N.

An exponential function is often used as a similarity measure [9]

TP
k(i, ') = exp {u} , (5.19)

2
20g

where og is the width of the exponential function associated with the graph G. A graph
may be partitioned into two disjoint sets Gy, Go, G1 UGy =V, G NG, = (), with points x;,
t=1,...,Ny € Gy and x5, j = 1,..., Ny € Go. The degree of dissimilarity between these
two pieces can be computed as total weight of the edges that have been removed. In graph
theory, this is called the cut [27]

N1Na

cut(Gr,Go) = Y k(xi,%;). (5.20)

4,j=1

Assume that the points in G; and G, have distribution functions p(x) and ¢(x). Now, using
the Parzen window-based estimator, another interpretation of the cut is

/ﬁ(x)cj(x)dx = VN ZZ k(xi, %), (5.21)

where k(x;,x;) = Was2(x;,%;), and Was2(+,-) is the Gaussian Parzen window.
The total sum of all the edges in a graph is called the volume of the graph

vol(G) = Z k(x;, x;). (5.22)

ii'=1

From Section 4.4.1 we know that the information potential can be written as

V(f) = % Z k(xi, xir), (5.23)

i)i'=1
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where k(x;,x;) is defined as in Eq. (5.21). The connection between the IP and volume of
the graph is given by
N2V (f) = vol(G), (5.24)

where f denotes the distribution of the points x;,i =1,..., N.

The integrated squared error and graph theory

The Parzen window-based estimator for the ISE divergence is now connected to graph
theory by |9

1 Ni,N1 1 N2,N2 9 N1,N2
ISE{p,q} = N2 Z k(xi, %) + N2 Z k(xj, %) — NN, Z k(xi, %)
L gir=1 2 =1 ij=1

= le’UOl(gl) + N;'UOZ(QQ) — 2N1N20Ut(g1, 92)
(5.25)



Chapter 6

A Laplacian ISE classifier

We know from Section 5.3 that the ISE classifier may be viewed as a hyperplane classifier.
Inspired both by the SVM and the Laplacian classifier presented in [12], in this chapter,
we modify the standard ISE classifier by introducing a weighting of inner-products in the
ISE divergence measure.

The SVM is in a similar way to the ISE classifier based on finding a hyperplane to
separate class data. In the SVM the task is to find the hyperplane that maximizes the
margin between class data in a Mercer kernel feature space. The inner-products in this
space can be computed by using the kernel trick with a Mercer kernel function. The
maximization of the margin for the SVM leads to a weighting of the training data points
when constructing the classifier. The points on the margin are known as the support
vectors. To obtain the relevant weighting, which determines the N, support vectors,
a convex optimization problem must be solved. This procedure has to select two SVM
parameters and is far from straightforward.

For many data sets, low values for the overall probability density function will corre-
spond to class boundary regions. In [12] a classifier named the Laplacian classifier based
on the Cauchy-Schwarz divergence is presented, where the CS cost function uses weighted
inner-products to emphasize the samples with small overall probability. This makes sense,
since the test data points close to the class boundaries often are the most difficult to clas-
sify correctly. The Laplacian classifier does not require the optimization phase associated
with the SVM, but produces similar results as the SVM in several cases [12].

The previously defined ISE classifier is now modified to a weighted version to emphasize
points near the class borders in the same way as done in [12]. Next we discuss how
the weighted version of the ISE cost function connects to the Bayes probability of error
and the Laplacian data matriz. The Laplacian matrix has recently been used in many
problems in clustering |9], and it may be interesting to see if it can be used in an ISE based
classifier. Some classification results using the weighted ISE classifier, which we refer to as
the Laplacian ISE classifier, are presented in Part II, Section 9.4.

47
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6.1 Modified ISE divergence

In this section the ISE divergence previously defined by unweighted inner-products is
weighted to emphasize the points in the class boundaries. Consider two data classes,
wy and ws, with corresponding probability density functions p(x) and ¢(x). Let f(x) =
Pip(x) + Poq(x) be the overall pdf of the data set with P, and P, as class priors. Define
the weighted inner-product (p,q); = [ p(x)q(x)f(x)"*dx. The cost function used in the
ISE classifier is now given by

Drse{p,a} = (0:0)r — 2(0, @)1 + (0, @) - (6.1)

The only difference between this and the previous version of the cost function is the inner-
product weighting.

6.2 Connection to the Bayes probability of error

Let R; and R, be two regions in the data space. If a test sample x; € Ry, it will be
assigned to class w;. Otherwise, x; € R, and it will be assigned to class wy. Similar to the
derivation of the Bayes probability of error, the regions Ry and Ro must be determined such
that the classification cost function is optimized. Assume that the classes are relatively
well separated, then f(x;) ~ Pip(x;) for x, € Ry and f(x;) = Pyq(x;) for x; € Ry. Now
consider each of the inner-products in Eq. (6.1)

(0, p)s

~ — 6.2
Pl’ ( a)

where [ p*(x)f~'(x)dx ~ 0 because we have assumed that the classes are well separated,
and thus p(x) is very small in region Ro.

~9 [%1 /R )+ %2 p(x)dx] | (6.2b)
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~ (6.2¢)

where [, ¢*(x)f~"(x)dx ~ 0 because we have assumed that the classes are well separated,
and thus ¢(x) is very small in region R;.

Now the weighted version of the ISE divergence measure in the well separated case can
be written as

1 1 1 1
D N ——2|—= d — d —.
pserlna) g 2| [t [ a4 4

The probability of error for the two class Bayes classifier is given by
P. = P2/ q(x)dx + P1/ p(x)dx (6.4)
R1 Ra2

and we see that the weighted ISE divergence may be written as

[1—2P)]. (6.5)

Thus, minimizing the probability of error also maximizes the weighted divergence measure
in the case where the class distributions are well separated.

6.3 Kernel space and Laplacian matrix representation

In this section we review the connection between a Parzen window-based estimator for
the f~!(x) weighted ISE divergence and the Laplacian data matrix. The weighted ISE
divergence may be expressed as

Disp{p.qa} =(p,p)s — 2(p, @)y + (¢, 0)s
= / h3(x)dx — 2 / hy(x)ha(x)dx + / h3(x)dx,
(6.6)

where hy(x) = f72(x)p(x) and hy(x) = f~2(x)q(x). We are given a training data set
x;,l = 1,...,N. This data set consists of the class 1 data points, x;,[ = 1,..., N, and
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X;,= 1,..., Ny, the class 2 data points. Based on the data samples, define the Parzen
window based estimators [12]

. 1 &
fx) = D Worlx. %),
A lj_l . -
hy(x) = N f2(x)W,e(x, %),
A 1 7,;21 -
ho(x) = A Z F2(x)Woe(x, %) (6.7)

Here, W,2(-,-) is the Parzen window. We have here assumed that a Parzen window with
a Gaussian kernel, with uniform bandwidth, o2 is used in all estimators. Any kernel
function Kj(-,-), with bandwidth h, satisfying Mercer’s theorem may be used instead of
the Gaussian kernel W,z (-, -), see also Section 4.4.4 on page 35. Now we have

/ ﬁl(x)ﬁz(x)dx

No
/ 02 Wea(x,x;) 1 Z W2 (x, Xj)dx
Ny = XZ) N j=1 f2(x;)

N1,N2
Z ﬁ/WUz x, X;) W2 (x, x;)dx
i,j=1 fz(xi> 2

N WQ 2(Xi,Xj)

1 o
W 2 f2 () f(x;)

ij=1

:N1N2

: (6.8)

where the convolution theorem for Gaussians has been used in the last step. For any pair
of data points in the training data set, say x; and x;, we define the affinity matriz K,
such that element (1, 1) equals Way2 (1, I'). We also define a matrix D = (f(x), ..., f(xy)).
Now, all f (Xl)WQUQ (x;,%r)f~2(xy) can be represented by element (1) of the matrix
K; = D :KD"z. The matrix K is known as the Laplacian matriz |12].

Each element of the matrix K represents an inner-product in the Mercer kernel feature

space, since the Gaussian kernel satisfies the Mercer conditions mentioned in chapter 5.
Now, each element in K also represents an inner-product, which we may denote

~

(@5(x1), Dy (x)) = f72 (361) Waon (31, 300 f 72 (). (6.9)



6.3. KERNEL SPACE AND LAPLACIAN MATRIX REPRESENTATION 51

Which gives

/ oy () ()l

N1,N2

1

NN, ;_:1 (@(xi), D(x;))
<lefbfxz Zq)f X]>
=(myy, myy), (6.10)

where m;; = E SN @ (x;) and myy = ~ Z;\El ®((x;) are the class mean vectors after
the mapping to the Mercer kernel feature space. This non-linear mapping is given by
®;(-). The same analysis may bedone for [ h%(x)dx and [ h3(x)dx. Now the weighted
ISE classifier can be written in the same way as the unweighted version in Eq. (5.16). The
only difference is that the data mapping is now to a different Mercer kernel feature space,
given by the eigenvectors of the Laplacian matrix K, instead of the space given by the
eigenvectors of the affinity matrix K. We repeat the classifier rule for a test point x;

X¢ — mcin ((mg, m.)r —2(m., D(x¢))s), (6.11)

where ¢ =1,...,C, are the class labels and
1 &
(me, ®(x;)); = <ﬁc > @s(xi), (I)f(xt)>
|
= <ﬁ ) <I>f<xz->T<I>f<xt>>
¢ =1

1 o
—_ f_l(Xi)Wo—Z (Xt7 XZ)
N2
(6.12)

as before, but in a different Mercer space,

<m0am0>f = ||m0||2 (6'13)
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6.3.1 Illustration of weights

To illustrate the effect of the weighting of the data we created two classes. Class 1 is
represented with 150 samples from a dense Gaussian distribution with mean [0,0]7. Class
2 is represented with 150 samples from a circle distribution with the same mean. In
Fig. 6.1 the samples are plotted with the 10 points having largest weights marked with
star symbols. We notice that points with the largest weights all are on the borders of
the circle distribution, which is expected since the circle points have a much more sparse
distribution.
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Figure 6.1: Note that all of the 10 largest weighted points belong to the boundaries of the
circle distribution.
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Figure 6.2: Illustrated shape of the density estimates of the two
classes. In the top figure the samples are not weighted, but in
the lower the samples are weighted with the inverse of the overall

probability for each point.

In Fig. 6.2 we see the effect of applying weights to the sample data. The distribu-
tions illustrated in the lower figure clearly emphasizes the sparse points in the ring data,
compared to the unweighted estimate in the upper figure.
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Figure 6.3: Plot of the weights for each sample. The first 150
points are from the Gaussian distribution and the last 150 points
are from the circle distribution.

In Fig. 6.3 we see the weights for each data sample in class 1 and class 2. The first
150 weights belong to the dense Gaussian distributed data in class 1, while the last 150
weights belong to the clearly emphasized circle data points.



Chapter 7

Spectral ISE classifiers

Spectral methods are popular especially in clustering methods. Spectral methods are based
on an affinity matrix, containing pairwise relationships between the samples, and depend
on the spectral properties of this matrix. This matrix is eigendecomposed to find a more
useful data representation of the original data. Until recently, only the points used in the
affinity matrix have been possible to represent in a kernel feature space. This is probably
the main reason spectral methods rarely are used to classify new test samples. By using
the Nystrom routine 31|, however, the mapping of new points to the kernel feature space
is now possible. In the previous chapters we have used the ISE classifier by operating
in the Mercer kernel feature space implicitly, by evaluation of inner-products. We know
that the ISE divergence measure is related to the class mean vectors in a Mercer kernel
feature space, and to the squared Euclidean distance between the mean vectors and the
test samples in this space. Creating an affinity or Laplacian matrix with the training data,
and eigendecompose it, we can find the class means operating directly in an approximate
Mercer kernel space with the projected training samples.

If the data set has outliers, it may be beneficial to use the class median vectors instead
of the means in the approximated Mercer kernel space. With the Nystrém routine we can
project the test samples to the same space, calculate distances and thus evaluate the ISE
divergence directly in the space spanned by either the affinity or Laplacian matrix.

In this chapter we assume that the affinity and Laplacian matrix elements are inner-
products created with Mercer kernels, unless some other kernel type is specified. Based on
the eigendecomposition of an affinity or Laplacian matrix and projection of training data
and samples onto the C' dominant eigenvectors, we now propose spectral versions of the
standard and Laplacian ISE classifier. We refer to the spectral [SE classifier based on the
eigendecomposition of the affinity matrix as the spectral ISE classifier and the spectral
ISE classifier using the Laplacian matrix as the spectral Laplacian ISE classifier.

Some results using the spectral ISE classifier are presented in Part II, Section 9.5, and
results using the spectral Laplacian ISE classifier are presented in Part II, Section 9.6.

%)
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7.1 Mapping of data to a Mercer based feature space

An approximation of the nonlinear mapping of the training data ®(x;),l = 1,--- , N, from
input space to the Mercer kernel space, using the C' largest eigenvalues and corresponding
eigenvectors of the kernel matrix K, is accomplished with [13], [24]

d:R' > F
T
X — (I)(Xl) =~ [\/ >\1611, \/ )\2621, ceey Acecl:| s [ = 1, cee ,N, (71)

where e,,; denotes the [th element of the mth eigenvector of K and \,, is the corresponding
eigenvalue, where \; > Ao > ... > A¢. It can be shown [13] that in the ideal case with
C clusters of the training data corresponding to C' different classes that are “infinitely” far
apart, the eigendecomposition of the affinity matrix results in C' point clusters, mutually
orthogonal to each other situated on the C' first principal axes in the kernel space |13].

When using the affinity matrix K to create the basis which the data is projected on,
this is the same as performing a C-dimensional kernel PCA on the training data [24]. The
affinity matrix K and the Laplacian matrix Ky are created with training data samples as
described in Section 6.3 on page 49.

We can compute the C-dimensional vector projection of a test sample x; into the
subspace spanned by the C' eigenvectors of the kernel matrix with [6]

C

d(x,) ~ (Wzagg(xi,xt)> : (7.2)

j=1

where o/ = )\j_%ej is given by the corresponding eigenvector and eigenvalue of the kernel
matrix. k(X;,x;) is a Mercer kernel function computing the inner-products between the
new test sample x; and all ¢« = 1,..., N samples in the kernel matrix. The computation
in Eq. (7.2) is also known as the Nystrom routine. The Mercer space spanned by the
Laplacian matrix is not the same as the Mercer space spanned by the kernel matrix. The
procedure to map the training data and new samples is however the same, except that we
eigendecompose Ky, not K, in Eq. (7.2) and Eq. (7.1).
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7.1.1 TIllustration of mappings to Mercer space

In Fig. 7.1 we see the same circle and Gaussian distributions as in Fig. 6.3 on page 54,
after the projection to space spanned by the eigenvectors corresponding to the two largest
eigenvalues of the Laplacian matrix K. We see that the two classes seem to be distributed
along two clearly separable lines in this space. This seems to be close to the ideal case for
separable data. In this two-class case, we expect the data to be situated in two clusters,
mutually orthogonal along the two first principal axes in the space of the Laplacian matrix.
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Figure 7.1: Gauss and circle distributions in an approzimate Mercer space, given by the two
principal eigenvectors of the Laplacian matriz Ky. Samples from the Gaussian distribution
are labeled with O), and circle distribution samples are labeled with X.
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In Fig. 7.2 we see the same distributions as in Fig. 6.3 after the projection to the space
spanned by the eigenvectors corresponding to the two largest eigenvalues of the affinity
matrix K. Note that all training points that belong to the circle distribution seem to be
mapped to origo, while the points that belong to the Gaussian distribution are spread
around more uniformly.
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Figure 7.2: Gauss and circle distributions in an approximate Mercer space, given by the
affinity matric K. Samples from the Gaussian distribution are labeled with (), and circle
distribution samples are labeled with .
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7.2 Spectral versions of the ISE classifiers

7.2.1 The spectral ISE classifier

In this section we discuss how we can develop spectral classifiers based on the ISE di-
vergence cost function. Assume we have a training data set with labels from C' different
classes, w.,c = 1,...,C. From this data set we now construct the kernel matrix K. This
matrix is then eigendecomposed and the training data is projected to the space spanned by
the C' dominant eigenvectors of K using Eq. (7.1). Using the projected training data, we
can now find the mean vectors of each class in the approximated kernel space. If the data
set has outliers, it may be useful to use the median vectors instead of the mean vectors.
With Eq. (7.2) we project each of the test samples to the same space as the training data,
and measure the squared Euclidean distance between the sample and each of the class
means. Finally, each sample is classified to the class where the distance is smallest. To
summarize the steps:

e Find the affinity matrix K using training data x;, [ =1,..., N
e Eigendecompose K and compute ®(x;) ~ [v/Arew, vAzea, . . ., \/%e(;l}T ,l=1,...,N.
e Find the mean or median vectors of the projected data, m, for class w., c=1,...,C,
e for i=1:number of test points to classify

1 Map x; to the approximate kernel space with Eq. (7.2)
2 Find the squared Euclidean distances, d., ¢ =1,...,C, between m. and ®(x;)
3 Classify: ®(x;) € w, if d. < dy, Vk # ¢

7.2.2 The spectral Laplacian ISE classifier

This follows the same routine as the spectral ISE classifier, except that instead of eigende-
composing the affinity matrix K, we now use the Laplacian matrix K.
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Part 11

Analysis and experiments
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Chapter 8

Kernel selection

All our versions of the ISE based classifier are highly dependent on density estimation,
since they are derived using Parzen windowing. Assume we have a set of data xy,..., Xy
generated i.i.d according to some unknown distribution, where this distribution describes
data from one specific class. We then need to find the density estimate for the data set.
This can often be a problem, both because of the curse of dimensionality, and because
distributions don’t always possess a density [17|. The Parzen window density estimates
are dependent of kernel size and kernel type. Thus, if we can find the optimal kernel for
our data set for the Parzen window density estimation, we have an appropriate kernel for
the classifier. There exist many types of kernels which can be used in density estimation.
A short summary is given in Section 3.2.4. It has been proved [30] that the Epanechnikov
kernel gives a better density estimate then the Gaussian kernel, in terms of the number of
data points needed to get a good estimate. This gives us a good reason to check if the ISE
classifiers may benefit from using this kernel, even if it does not satisfy Mercer’s theorem.
In this chapter we will use some artificial distributions and analyze the effect of different
kernel functions and bandwidths on the classification rates and density estimates. We need
to see if we can get good classification results, even when the density estimates are far from
exact.

8.1 Effect of kernel bandwidth and kernel type

In this section we aim to demonstrate how the density estimates and the different versions
of the ISE classifier may behave using different kernels and bandwidths on an artificial
data set. We want to check if some of the versions of the ISE classifier are more robust,
i.e. give good classification results over a wider range of kernels then others. We also check
two non-Mercer kernels which often are used in density estimation, the square and the
Epanechnikov kernels.

We use the same data set as previously in Section 6.3.1. Class w; is represented with
150 samples from a dense Gaussian distribution, with mean [0, 0]7. Class ws is represented
with 150 samples from a circular shaped distribution, with the same mean as w;. The two
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classes are illustrated again in Fig. 8.1
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Figure 8.1: wy samples illustrated with o symbols, wy illustrated with X symbols.
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To test the different kernel types and bandwidths we use 20 and 50 points for test and
training from each class, respectively. The test points are then classified using the different
classifiers with different kernel types over a range of kernel bandwidths. In Table 8.1,
Table 8.2 and Table 8.3 following, we give the range of kernel bandwidths which gives
100% correct classification rates for the different classifiers and kernels. Since the class
data does not have any extreme outliers, we don’t expect the spectral median versions to
be much different from the mean versions, and we only include the spectral classifiers using
mean vectors in the ISE divergence measure.

Table 8.1: Gaussian kernel

‘ Classifier ‘ bandwidth range
Standard ISE 0.30-0.76
Laplacian ISE 0.09-0.91
Spectral ISE means 0.07-0.45
Spectral Laplacian ISE means 0.10-0.42
Bayes 0.01-0.60

We see from Table 8.1 that for the Gaussian kernel the broadest range of bandwidths is
achieved using the the Laplacian ISE classifier. All classifiers perform well in the kernel size
range, 0.30-0.42. The standard ISE classifier seems to start working properly at a slightly
larger kernel size then the others. The spectral versions of the ISE classifier performs well,
but seems to have a little narrower bandwidth range, compared with the classifiers working
implicitly in a Mercer space.

The shape of the unweighted and weighted density estimates using a Gaussian kernel
with bandwidth 0.80 is given in Fig. 8.2. Notice that the shape of the top figure seems to
be dominated by the dense Gaussian distribution in the center, and all classifiers using this
density estimate are unable to separate the two classes clearly. The weighted data points
used in the bottom figure reduce the dominant shape of the Gaussian distribution enough,
compared to the more sparsely distributed circle shape, to let the weighted Laplacian ISE
classifier correctly classify all test samples.

In Fig. 8.3 the shape of the unweighted and weighted density estimates using a Gaussian
kernel with bandwidth 0.30 is illustrated. Compared with the shapes in Fig. 8.2, the
circle distribution is now good enough separated from the Gaussian distribution to let all
classifiers correctly classify all of the test samples. In the bottom figure with weighted
data, we clearly see the structure where the circle distribution is emphasized.
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Figure 8.2: Shapes of density estimates using Gaussian kernel with bandwidth, 0.80. Un-
wetghted estimate in the upper plot. Laplacian weights applied to the points in the estimate
in the lower plot. This kernel width gives a 100% classification rate only for the Laplacian
ISFE classifier.
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Figure 8.3: Shape of density estimate using Gaussian kernel with bandwidth, 0.30. Un-
wetghted estimate in the upper plot. Laplacian weights applied to the points in the estimate
in the lower plot. This kernel width gives a 100% classification rate for all classifiers.
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Table 8.2: Epanechnikov kernel

‘ Classifier ‘ bandwidth range ‘
Standard ISE 0.09-2.23
Laplacian ISE 0.08-1.94
Spectral ISE means 0.02-1.27
Spectral Laplacian ISE means 0.24-1.30
Bayes 0.08-1.39

We know that even if the Epanechnikov kernel does not map the data to a Mercer
space, it is known to give good density estimates. From Table 8.2 we see that all classifiers
work well over an even wider range of kernel sizes then for the Gaussian kernel. Again we
note that the implicit versions of the ISE classifier seems to have a wider kernel bandwidth
range then the spectral classifiers. This time the standard ISE classifier has the widest
kernel bandwidth range with 100% classification rate.

Table 8.3: Square kernel

‘ Classifier ‘ bandwidth range
Standard ISE 0.07-1.32
Laplacian ISE 0.11-1.32
Spectral ISE means 0.02-0.91
Spectral Laplacian ISE means 0.23-1.18
Bayes 0.11-1.06

The results using a square kernel in Table 8.3 are similar to the previous, but the band-
width ranges are generally smaller then for the Gaussian and Epanechnikov kernel. Again
the standard ISE classifier has the widest kernel bandwidth range with 100% classification
rate.

Summary We note that for this artificial data set, the Epanechnikov kernel seems to have
the broadest range of kernel bandwidths for all different versions of the ISE classifier. This
may be useful when we don’t know, or are unable to use cross-validation on our training
data to select the optimal kernel size. The Gaussian kernel also produces good results. The
simple square kernel works well, but it has the smallest range of usable bandwidths. Even
if the Epanechnikov and square kernel are non-Mercer kernels, and thus does not map to a
Mercer space, it seems possible to find estimates of ISE divergence in the spaces they map
to. The Bayes classifier works well over similar bandwidth ranges to the ISE classifiers.



Chapter 9

Classification experiments

9.1 Introduction

This part of the thesis reports experiments done with the different versions of the ISE
classifier discussed in Part I. Because of the similarity with the well-known Bayes classifier,
this is the main classifier which we choose to compare the results with. Some experiments
also include results using other Mercer space based classifiers, particularly the SVM and
the Laplacian classifier.

To reduce numerical errors when calculating inner-products, affinity matrices and den-
sity estimates, we removed the scaling h=¢ from Eq. (3.12) on page 17 in front of all kernel
evaluations with bandwidth h and data dimensionality d.

The purpose of the experiments is to see how different implementations of the ISE
classifier behaves on some popular benchmark data sets. In the derivation of the standard
ISE classifier we noted the standard ISE classifier may favor the large entropy class com-
pared to the Parzen window based Bayes classifier. Theoretically, the ISE classifiers has a
separating hyperplane in the kernel space, that is shifted away from the class with highest
entropy! compared with the separating hyperplane for the Bayes classifier. We want to
check if the standard ISE classifier tends to favor the classes with high entropy compared to
the Bayes classifier on some real data sets. This is why we include the confusion matrices
and calculated information potentials. We also want to find out what happens when the
different ISE classifiers are unable to achieve high classification rates, by looking at how
the some of the training data and samples are projected to approximated Mercer spaces.

9.2 Selection of data sets and classification methods

The data sets used in this study are selected from the UCI-repository [16] and the Rétsch
[20] data sets. The selected Rétsch data sets are Banana(2,400,4900), Thyroid(5,140,75),
Ringnorm(20,400,7000) and Twonorm(20,400,7000), where the numbers in parenthesis are

'When we refer to entropy and entropy estimates in this chapter, we mean the Renyi quadratic entropy
estimate.
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the dimensionality, the size of the training data set and the test data set, respectively. Each
set has 100 realizations. To reduce the computation time for the Ringnorm and Twonorm
data sets we pick 500 samples from each of the 100 realizations as test data instead of 7000
samples. The data sets have zero mean and unit standard deviation for each feature. The
results in the tables and confusion matrices are average classification results and standard
deviations when classifying each of the 100 test realizations. For all Réatsch data sets we
have used the training set for training and the test sets for testing.

The selected UCI data sets are Wine(13,178), Iris(4,150), WBC(30,569) (Wisconsin
breast cancer), Ionosphere(34,351), Pima(8,768) and Pendigits(16,1091). The numbers in
parenthesis are the dimensionality, and the number of samples. The Pendigits data consists
of samples representing integers 0,1 and 2 selected from the original test data set (3498
samples). For all UCI data sets we have normalized the standard deviation to one for each
feature, since the classifiers use spherical kernel functions, and to use a method comparable
to the one used in the Laplacian classifier, described in [12]. All UCI test and training data
sets were created by splitting a random permutation of the data set in two halves over 100
trials, where 1/3 of the data set was used for testing and 2/3 used for training.

All the UCT and Rétsch data sets are also classified with our implementation of a Parzen
window based Bayes classifier, for comparison. We refer to the Parzen window based Bayes
classifier simply as the Bayes classifier from now on. In all experiments we have found the
best kernel size using three-fold cross validation over a range of kernel sizes on the training
data set, and selected the kernel with highest classification rate.

In the following sections we will present and discuss results obtained on the selected
data sets, using the standard ISE, Laplacian ISE, spectral ISE and spectral Laplacian
ISE classifiers. Unless otherwise specified we have chosen to use a Gaussian kernel in the
calculations. This is because it is a Mercer kernel, and when using cross validation in
training to find the best kernel size it does not matter much which kernel type we use.

9.3 Standard ISE

In this section we discuss results found when using the standard ISE classifier discussed
in Chapter 5. Classification results found with our implementation of the Bayes classifier,
SVM results obtained from [21] and results found using the Laplacian classifier abbreviated
with CS, described in [12] are also included for comparison. The Laplacian classifier is
trained in the same way as we have done. The SVM used was trained to find the parameters
C and o (C is the regularization constant and o the width of the RBF kernel used) with
a five-fold cross validation on five realizations of each data set [21].

If one class from a data set has a small ratio of information potential compared to the
other classes, this class will have a relatively large entropy. We estimate the information
potentials for each class and compare the confusion matrices for the standard ISE and the
Bayes classifier, to find out if the standard ISE classifier tend to classify more samples to
the classes with large entropy.

Table 9.1 contains classification rates in percent with standard deviations for the Ratsch
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data sets. The standard ISE classifier performs well, and similar to the other classifiers,
with an exception for the Ringnorm data set, where it has a low classification rate. We
note that the only case where the standard ISE classifier is able to beat our Bayes classifier
is the Twonorm data set. The Banana set seems to be difficult for all classifiers.

‘ Data ‘ Bayes ‘ ISE ‘ SVM ‘ CS ‘
Banana 87.7+1.2 | 87.6+0.9 | 89.2+0.7 | 89.44+0.5
Ringnorm | 96.940.8 | 76.6+17.5 | 98.340.1 | No data
Twonorm | 97.14+0.7 | 97.2+0.7 | 97.040.6 | 97.440.2
Thyroid 95.54+2.3 | 94.942.5 | 95.242.2 | 95.74+2.2

Table 9.1: Average classification rates for Rditsch data sets

In Table 9.2 the ratios of information potentials for each of the classes in the Rétsch
data sets are listed. The ratios with bold fonts, represent the classes with relatively highest
entropy.

‘ Data ‘ w1 ‘ ) ‘
Banana | 45.7% | 54.3%
Ringnorm | 49.3% | 50.7%
Twonorm | 49.7% | 50.3%
Thyroid | 16.6% | 83.4%

Table 9.2: Class data information potentials for Rdtsch data sets

Table 9.3 list the average classification rates in percent, with standard deviations for the
selected UCI data sets in the same way as in Table 9.1. For the Wine, Iris and Pendigits
data sets, the standard ISE classifier performs slightly worse than the Bayes classifier. The
standard ISE classifier is slightly better than the Bayes for the Pima and WBC data set,
and notably better for the Tonosphere data set.

Data Bayes ISE SVM CS

Wine 96.6+2.3 | 95.44+2.4 | 97.5+1.7 | 97.3£1.4
Iris 94.3+3.0 | 93.04£3.3 | 95.7£2.0 | 94.5+2.1
WBC 95.9+1.4 | 96.3+1.2 | 96.9+0.7 | 97.1+0.7
Tonosphere | 86.3+2.8 | 94.1+£2.3 | 94.14+1.2 | 92.54+1.7
Pendigits | 99.0+0.5 | 98.24+0.6 | 99.64+0.2 | 98.940.4
Pima 71.8+£2.4 | 72.6+£2.4 | 76.8+1.5 | 73.9+1.7

Table 9.3: Average classification rates for UCI data sets.

In Table 9.4 the estimated ratios of class information potentials are listed. The ratios
in bold fonts are the classes with lowest [P, and thus highest entropy. We will later in this
section use the confusion matrices for the standard ISE and Bayes classifiers for these data
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sets to see if the standard ISE classify more points erroneously to the class with highest
entropy, as suggested in Section 5.3.1

‘ Data ‘ w1 ‘ W ‘ w3 ‘
Wine 34.5% 26% 39.5%
Iris 42.6% | 31.6% | 25.7%
WBC 71.8% | 28.2%
TIonosphere | 58.1% | 41.9%
Pima 55.1% | 44.9%
Pendigits | 30.0% | 28.6% | 41.4%

Table 9.4: Average class information potentials for UCI data sets

9.3.1 Confusion matrices Standard ISE and Bayes

In this section we compare the confusion matrices obtained by classifying with the standard
ISE and the Bayes classifier. We want to check if there is any correspondence between the
class entropies and which class has most classification errors, when comparing the standard
ISE and the Bayes classifier.

About the confusion matrices FEach row of a confusion matrix denote the correct class
label, while each column denote the predicted label from the classifier. As an example,
element (1,2) of a confusion matrix contains the amount of samples that belong to class
1, but are predicted to belong to class 2. The trace of a confusion matrix contains the
amount of correctly estimated samples.

Banana

In Table 9.5 we note that the standard ISE classifies more points to class wq, with relatively
larger entropy, than the Bayes classifier.

ISE (ﬁl (ﬁg Bayes (ﬁl (ﬁg
wy | 1941.6 | 252.9 w1 1874.7 | 319.8
wy | 285.5 | 2420.0 Wy 201.3 | 2504.2

Table 9.5: Average confusion matrices Banana data set.

Ringnorm

We note in the confusion matrices for the Ringnorm data set in Table 9.6 that the standard
ISE has a much lower classification rate than the Bayes classifier. For this data set, class wq
has slightly larger entropy than class wy. This does not cause the standard ISE to classify
more points to class wy, compared with the Bayes classifier.
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ISE (ﬁl (ﬁg Bayes (ﬁl (ﬁg
wy | 132.19 | 115.97 w1 236.25 | 11.91
Wy 0.84 | 251.00 Wo 3.42 | 248.42

Table 9.6: Average confusion matrices Ringnorm data set.

Twonorm

For the Twonorm data set, class w; has a slightly higher entropy than class ws. The
standard ISE classifier should now classify more points to class w; than the Bayes classifier.
From Table 9.7 we see that this is not the case.

ISE (ﬁl (ﬁg Bayes (ﬁl (ﬁg
wy | 243.20 | 6.25 w1 243.12 | 6.33
wo 7.75 | 242.80 wo 8.20 | 242.35

Table 9.7: Average confusion matrices Twonorm data set.

Thyroid

The Thyroid data set has a relatively large entropy difference between the classes, with
relatively large entropy in class w;. In Table 9.8 we note that slightly more points are
classified to class w; for the standard ISE classifier than for the Bayes classifier.

ISE uﬁl 0&2 Bayes uﬁl u52
wy | 2045 | 1.86 w1 20.19 | 2.12
wy | 1.94 | 50.75 wo 1.26 | 51.43

Table 9.8: Average confusion matrices Thyroid data set.
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Wine

For the Wine data set in Table 9.9, the standard ISE classifier seems to take a small amount
of samples from class w; and w3 and classify to class wo, compared with the Bayes classifier.
From Table 9.4 we see that class ws has largest entropy of the classes.

ISE uﬁl u52 0&3 Bayes uﬁl u52 u53
wyp | 19.72 | 0.15 0 w1 19.81 | 0.03 0
wy | 1.05 | 21.68 | 1.29 wWo 1.10 | 21.89 | 0.80
w3 0 0.25 | 15.86 w3 0 0.10 | 16.27

Table 9.9: Average confusion matrices Wine data set.

Iris

For the Iris data set in Table 9.10, the standard ISE classifier takes a small amount of
samples from class w; and wo and classify as w3, compared with the Bayes classifier. From
Table 9.4 we see that class w3 has largest entropy.

ISE uﬁl u52 u33 Bayes uﬁl ujg ujg
wp | 16.11 ] 0.01 | 0.44 w1 16.76 | 0.17 0
Wy 0 15.53 | 1.16 Wy 0 15.60 | 1.12
w3 0 1.91 | 14.84 w3 0 1.5700 | 14.78

Table 9.10: Average confusion matrices Iris data set

WBC

For the WBC data set in Table 9.11, class ws has relatively much larger entropy than class
wi. The standard ISE has a higher classification rate than the Bayes classifier for this data
set, but it does not seem to move samples from the class with relatively lower entropy.

ISE (ﬁl (ﬁg Bayes uﬁl (ﬁg
wip | 63.98 | 4.44 w1 65.19 | 5.89
wy | 2.59 | 117.99 wo 1.90 | 118.02

Table 9.11: Average confusion matrices WBC data set

Ionosphere

From Table 9.4 we note that class wy has larger entropy than class w;, and the standard
ISE classifier in Table 9.12 seems to add more samples to class wy when compared with

the Bayes classifier. For this data set this gives a higher classification rate for the standard
ISE classifier.
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ISE (ﬁl 0&2 Bayes (ﬁl (ﬁg
wy | 71.55 | 3.41 w1 73.39 | 1.40
wy | 3.53 | 38.51 Wy 14.68 | 27.53

Table 9.12: Average confusion matrices Ionosphere data set

Pima

For the Pima data set in Table 9.13 we note that the standard ISE classifier has more
samples assigned to class wy with largest entropy, than the Bayes classifier. Again this gives
the standard ISE classifier a slightly higher classification rate than our Bayes classifier.

ISE uﬁl 0&2 Bayes (ﬁl (ﬁg
wy | 123.09 | 42.90 w1 138.50 | 27.55
wy | 27.17 | 62.85 Wo 44.74 | 45.21

Table 9.13: Average confusion matrices Pima

Pendigits

For the selected classes from Pendigits, we know from Table 9.4 that class wo has largest
entropy. Thus we expect the standard ISE classifier to classify more points from class w
and class w3 to class wy than the Bayes classifier. In Table 9.14 we see that this is the case
for class wy, but not class ws.

ISE uﬁl (452 (453 Bayes (ﬁl (452 ujg
wy | 121.09 | 1.00 0 w1 121.58 0 0
wo 0.22 | 116.14 | 4.90 Wy 0 118.89 | 2.99
w3 0.07 0.49 | 121.09 w3 0 0.58 | 120.96

Table 9.14: Average confusion matrices Pendigits
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9.3.2 Summary of classification results for the standard ISE clas-
sifier

The standard ISE classifier seems to perform very well and similar to our Bayes classifier,
but is only able to beat our implementation of a surprisingly good Bayes classifier for 4 out
of 10 data sets. The Ringnorm data set is the only set where the standard [SE performs
notably worse than the Bayes classifier. For WBC, Ionosphere, Pima and Twonorm the
standard ISE classifier has slightly higher classification rates than the Bayes classifier. For
each data set we compared the difference in entropy between the classes and the confusion
matrices for the standard ISE and Bayes classifier. If we exclude the Ringnorm data set,
the difference in entropy seems to let the standard ISE draw points from low entropy
classes to higher entropy classes for the Wine, Iris, Ionosphere, Pendigits, Pima, Banana
and Thyroid data sets (7 of 9 data sets), compared with the Bayes classifier. For the
Twonorm and WBC data sets this was not the case. It is hard to explain exactly why the
standard ISE classifier doesn’t behave as expected for some data sets.
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9.4 Laplacian ISE

In this section we present average classification rates using the version of the ISE classifier
discussed in Chapter 6, operating implicitly in the Mercer space spanned by the eigenvec-
tors of the Laplacian matrix. The weighting of the training data samples changes the class
entropies, so we choose not to compare the different Laplacian ISE confusion matrices with
the Bayes confusion matrices. The average confusion matrices for the data sets using the
Laplacian ISE classifier may be found in the appendix. For some selected data sets we
also plot the weights for the training data in each class, to check if some class samples are
weighted more than others. If some classes have uniform weights for the training samples,
this implies that the Laplacian ISE classifier should give the same results as the standard
ISE classifier.

In Table 9.15 we list the average classification rates with standard deviations in percent,
using the Laplacian ISE classifier on the selected Rétsch data sets. To reduce the com-
putation time we reduced the amount of training and test data to 100 and 50 samples in
each realization for Banana, Ringnorm and Twonorm for this classifier. The listed results
should still give a good indication of the classifier performance. On these data sets the
weighting induced by the Laplacian ISE does not seem to influence the results significantly
in a positive manner, compared to the standard ISE classifier.

Data Rate

Banana 86.215.0
Ringnorm | 76.7422.1
Twonorm | 96.3+2.7
Thyroid 94.6£2.9

Table 9.15: Average Laplacian ISE classification rates for Ratsch data sets.

In Fig. 9.1 we illustrate the two classes in a typical training set for the Banana data
set. The points marked with star symbols represent some of the largest weights in the data
set. The classes in this data set are very difficult to separate because they are distributed
in several overlapping clusters. The points representing the largest weights seems to be
situated in the outer borders of the data set.
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Figure 9.1: Plot of a sample training data set from the Banana data set. Class wy and
we, are illustrated with x and () respectively. Some of the points with largest weights are
plotted with star symbols.
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In Fig. 9.2 we illustrate the weights for a typical training data set from the Banana
data set. Each figure illustrate the weight assigned to each sample within a class. We note
that of the most of the samples are weighted similarly, but for a few samples in each class
the weights are much larger than the others, e.g the sample with a weighing of 400 in class
wo compared to most of the others which seem to have weights in the interval 10-100. The
largest weights in this figure corresponds to the star symbols in Fig. 9.1. The weighting of
data points does not seem improve the classification rate on this data set.
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Figure 9.2: Sample weights for the Banana training data set. Top and bottom figures
Wllustrate typical weights for training samples from class wy and wq, respectively.
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In Table 9.16 we list the average classification rates with standard deviations, using
the Laplacian ISE classifier on the selected UCI data sets. We note that the results are
very similar to the standard ISE rates. For Iris, Wine, WBC and Pendigits we achieve
slightly higher classification rates with the Laplacian ISE classifier than for the standard
ISE classifier. The Ionosphere data set has notably worse classification rates with the
Laplacian ISE classifier, 89.0% versus 94.1% for the standard ISE classifier. The Pima
data set has slightly worse classification rate for the Laplacian ISE classifier versus the
standard ISE classifier.

Data set ISE

Wine 95.6+2.1
Iris 94.14+2.6
WBC 96.6+1.2

[onosphere | 89.0+2.4
Pendigits | 98.5%+0.6
Pima 72.4+2.4

Table 9.16: Average classification rates using the Laplacian ISE classifier on UCI data
sets.

In Fig. 9.3 we illustrate the weights for a typical training data set from the Wine data
set. Fach figure illustrate the weight assigned to each sample within a class. The weights
seem to emphasize some of the points within each class a bit more than the others, but
mostly they are quite similar. For this data set the Laplacian induced weighting seems to
give a slightly better classification rate.
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In Fig. 9.4 we illustrate the weights for a typical training data set from the Iris data
set. Each figure illustrate the weight assigned to each sample within a class. We note that
for this training data set each class have a few points that have relatively large weights
compared to the others.
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Figure 9.4: Sample weights for the Iris training data set. Top, middle
and bottom figures illustrate typical weights for training samples in class
w1, we and ws, respectively.

In Fig. 9.5 we plotted dimension 2 vs dimension 3 of the same training set used in
Fig. 9.4. The 15 points with the largest weights are marked with a star symbol. The
points with the largest weights all seem to lie in the border of a class cluster. Emphasizing
these points seems to increase the separability of the different classes since the Laplacian
ISE classifier performs slightly better than the standard ISE classifier for this data set.
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Figure 9.5: Illustration of a typical Iris training data set. We plot dimension 2 versus
3 with the 15 points with largest weights marked with star symbols. Class w1, we and ws
samples are illustrated with (), X and O, respectively.
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9.4.1 Summary of classification results for the Laplacian ISE clas-
sifier

We note that weighting the training data as described in Chapter 6 actually gave slightly
worse results for the Rétsch data set. This may be because the training data comes from
classes with much overlap between the borders of the class clusters, as illustrated for the
Banana data set in Fig. 9.1. This seems to give largest weights to the points in the outer
border of the whole data set, and may not increase the separability of the classes. For
the UCI data sets, we get slightly better classification rates, except for the Ionosphere and
Pima data sets. Looking at the samples in dimension 2 versus 3 for the Iris data set in
Fig. 9.5 the largest weights seem to be in the different cluster borders of quite separable
classes. This may indicate that the Laplacian induced weighting of data helps the classifier
when the class borders are not overlapping, but it is hard to conclude from the few data
sets we have looked at.

9.5 Spectral ISE

In this section we present results using the spectral ISE classifier discussed in Chapter 7.
We include the classification rates using the mean vectors in the approximate Mercer
kernel space given by the principal eigenvectors of the training data affinity matrix. The
results with median vectors are very similar, indicating that the data sets have few outliers.
Classification results and confusion matrices using the median version of the spectral ISE
classifier are included in the appendix for reference. We also illustrate how some of the data
sets with low classification results are projected to the approximate Mercer kernel space.
The illustration of mappings where the spectral classifiers performs well are postponed to
the discussion of the spectral Laplacian ISE classifier in the next section.

In Table 9.17 we list the average classification rates with standard deviations using the
mean version of the spectral ISE classifier on selected Réatsch data sets. We note that
for the Banana data set this classifier seems to fail and that the Ringnorm data set has
slightly higher classification rates than the standard ISE classifier. The other data sets
have classification rates slightly lower, but similar to the standard ISE classifier.

‘ Data ‘ Mean rate ‘

Banana 54.246.2
Ringnorm | 77.3£1.8
Twonorm | 97.340.6
Thyroid 93.5+2.4

Table 9.17: Awverage classification rates for
some Rdtsch data sets using the spectral ISE
classifier.




9.5. SPECTRAL ISE 85

In Fig. 9.6 we illustrate the mapping of the Banana data set projected to the approx-
imate Mercer kernel space given by the two principal eigenvectors of the affinity matrix
which gives a classification rate of 54.2%. Note that the training data samples for both
classes are clustered together around origo and almost impossible to separate from each
other. In Fig. 9.1 in the previous section, we saw that the class clusters for the Banana
data set in the input space also were highly overlapping. The test samples illustrated with
x symbols are spread far a way from the class mean vectors, but the spectral ISE classifier
fails, because no test point is distinctly closer to one of the two class means.
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Figure 9.6: Illustration of the data mapping given by the affinity matriz cre-
ated with training data from the Banana data set. We projected 50 training
samples from each of class wy illustrated with (), and 50 from class wy illus-
trated with x. Mapping of 20 test samples is illustrated with * symbols.
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In Table 9.18 we list the average classification rates with standard deviations using the
spectral ISE classifier on selected UCI data sets. We get lower classification rates, but
similar to the standard ISE classifier.We illustrate the mapping of data for the Ionosphere
and Iris data sets in Fig. 9.7 and Fig. 9.8, respectively.

‘ Data set ‘ Mean rate ‘
Wine 95.1+£2.5
Iris 81.1+6.8
WBC 90.0+2.3

Tonosphere | 70.6+3.4
Pendigits 84.1+2.1
Pima 69.6+2.5

Table 9.18: Average classification rates for some UCI data sets using the
spectral ISE classifier.

In Fig. 9.7 we illustrate the mapping of data projected onto the two principal eigen-
vectors of the affinity matrix for the Ionosphere data set. We marked the mean points of
each class from the training data with large bold symbols. The class means seem to end up
close to each other around origo, with test samples spread far away from the class means.
This makes it difficult for the spectral ISE classifier to separate the two classes, since the
distances from each test point to each class mean are very similar.
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Figure 9.7: Illustration of the data mapping given by the affinity matrixz created with train-
ing data from the Ionosphere data set. We projected 50 training samples from each of class
w1 tllustrated with O), and 50 from class wy illustrated with x. Mapping of test samples is
tllustrated with x symbols.
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In Fig. 9.8 we illustrate the mapping of a typical training data projected onto the three
principal eigenvectors of the affinity matrix for the Iris data set. We marked the mean
points of each class with large bold symbols. Note that the data set is clearly not linearly
separable for all classes, and this is probably why the ISE classifier seems to have some
problems.
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Figure 9.8: Illustration of the data mapping given by the affinity matrixz created with train-
ing data from the Iris data set. We projected typical training samples from each of class
w1, we and ws and illustrated with (), x and O symbols, respectively. The mean points of
each class are marked with large bold symbols.



9.5. SPECTRAL ISE 89

9.5.1 Summary of classification results for the spectral ISE clas-
sifier

The results obtained with the spectral ISE classifier are similar to the results obtained with
the standard ISE classifier, but with a lower classification rate in most cases. Note that
for the Ringnorm and Twonorm data sets the classification rates are slightly better using
the spectral ISE classifier compared with the standard ISE classifier. Why the spectral
ISE classifier seems to work better for these two data sets is hard to say. The lower
classification rates may be explained with the fact that the spectral ISE classifier works
in an approximated Mercer space, while the standard ISE classifier works implicitly in a
Mercer space. When the spectral ISE classifier fails, it seems to be because almost all
training points are mapped to clusters where the mean vectors are close to each other.
When a test sample is far away from closely grouped mean vectors, the distance between
the test point and each of the class means are very similar, and the classifier seems to be
more likely to make an error.
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9.6 Spectral Laplacian ISE

In this section we present results using the spectral Laplacian classifier discussed in Chap-
ter 7. For the same reason as previously we focus on the version using the mean vectors
in an approximate Mercer space. Results obtained with the median version are included
in the appendix along with confusion matrices for both versions. We also illustrate how
some of the data sets with good classification rates are mapped to the space spanned by
the principal eigenvectors of their Laplacian matrices.

In Table 9.19 we note that the Banana set is difficult to classify correctly when using
the spectral Laplacian classifier. The Ringnorm data set is the big surprise here, and
we will illustrate in Fig. 9.9 why we achieve so high classification rate for this data set.
The Twonorm data set now has a slightly higher classification rate than for the spectral
classifier, while the Thyroid has a slightly lower classification rate.

‘ Data ‘ Mean rate ‘

Banana 58.3£5.3
Ringnorm | 98.0£0.7
Twonorm | 97.540.7
Thyroid 92.9£2.3

Table 9.19: Average classification rates for Ratsch data sets, using the
spectral Laplacian ISE classifier.

In Fig. 9.9 we illustrate the mapping of a typical training data projected onto the two
principal eigenvectors of the Laplacian matrix for the Ringnorm data set. We illustrate
the mean points of each class with large bold symbols. Note that each mean point is far
from the other. The test samples are mapped along the same line as the training data,
and it is easy to see which of the class means most samples are closest to.

In Table 9.20 we list the average classification rates in percent with standard deviations
obtained with the mean version of the spectral Laplacian classifier. We note that for Wine
and Iris we achieve better results with the spectral Laplacian classifier than with the
spectral ISE classifier, so weighting of data points increase the separability of the data in
these data sets. For lonosphere and Pima we get worse results, so weighting the training
samples does not give a positive effect for these data sets.

In Fig. 9.10 we illustrate the mapping of training data and some samples for the Wine
data set. It seems from the figure that we get three distinct clusters, one for each class
with clearly separated mean vectors. The Laplacian ISE classifier is able to assign the test
points to the correct mean cluster in most cases, and we achieve high classification rates.
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Figure 9.9: Illustration of the data mapping given by the Laplacian matriz created with
training data from the Ringnorm data set. We projected typical training samples from each
of class wi and wy and and illustrated with () and O symbols, respectively. The mean
points of each class are marked with large bold symbols. Some projected test samples are
tllustrated with x symbols.

‘ Data ‘ Mean rate ‘
Wine 97.7+1.8
Iris 85.2+4.8
WBC 78.942.2

Ionosphere | 57.54+10.7
Pendigits 79.4£3.9
Pima 68.3£2.7

Table 9.20: Average classification rates for UCI data sets, using the spectral Laplacian ISE
classifier.
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15

Figure 9.10: Illustration of the data mapping given by the Laplacian matriz created with
training data from the Wine data set. We projected typical training samples from each
of class wy, we and wz and illustrated with (), O and x symbols, respectively. The mean
points of each class are marked with large bold symbols. Some projected test samples are
tllustrated with x symbols.
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9.6.1 Summary of classification results for the spectral Laplacian
ISE classifier

We sometimes get better results using the spectral Laplacian ISE classifier than for the
spectral ISE classifier, but overall the results are inferior to the other classifiers. Generally
all the spectral methods seems to give slightly worse results than the methods working
implicitly in Mercer space.
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Chapter 10

Conclusion

In this thesis we have provided a study of many of the relatively new concepts used in
information theoretic learning. We also reviewed background information necessary to un-
derstand basic density estimation and pattern classification. New classifiers based on the
information theoretic ISE divergence measure and kernel methods, using both weighted
and unweighted data, are investigated. Relations between an ISE divergence based classi-
fier operating implicitly in a Mercer kernel space and the well known Parzen window based
Bayes classifier are studied. We found that by using unweighted data the ISE classifier is
comparable to the Bayes classifier with slightly different properties. This classifier seems
to prioritize the classes with highest entropy compared to the Bayes classifier on several
popular data sets, but not all. We use the spectral properties of the data affinity and
Laplacian matrix, to propose and investigate ISE based classifiers working directly in ap-
proximated Mercer kernel spaces. We found that in most cases the spectral versions of the
ISE classifier perform slightly worse than the versions working implicitly in Mercer spaces.

10.1 Further work

e In this thesis we have used the same single bandwidth kernel size for all classes within
a data set. This is fine if the classes have the same type of distribution, but this is
probably not a realistic situation. It should be rather simple to extend the classifiers
discussed in this thesis to allow for different kernel sizes for each class. We can also
check several other Mercer and Non-Mercer kernels to try to find out if some types
of data distributions benefit from a particular kernel type.

e [t may be interesting to investigate how the classifiers perform with different kernels
when the kernel size is selected by some reference rule, e.g. Silverman’s rule in

Eq. 3.13 on page 17, since we can’t always afford to do cross-validation.

e The spectral ISE classifier and the spectral Laplacian classifier both work in spaces
spanned by a number of eigenvectors corresponding to the number of classes in each
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data set. It may be interesting to see if including a few more eigenvectors can improve
the classifiers performance.

The weighting of data points used in the Laplacian ISE classifiers seems to give
largest weights to points on the class borders. For large data sets it may be useful to
train the classifiers by selecting a small portion of the points with the largest weights,
within each class. This may reduce the computation time for the classifiers, without
reducing the classification rates significantly.

Since we have developed spectral classifiers which use the median vectors in an ap-
proximated Mercer space, it should be interesting to test how they behave compared
to the same classifiers using mean vectors on data sets which clearly contains outliers.
An analysis of how the different classifiers behave on data sets with outliers should
also be done.



Appendix A

Laplacian ISE classifier

Classification results for the Laplacian ISE classifier not listed in the main part of the
thesis.

A.1 Average confusion matrices Laplacian ISE classifier

Wi | W
wy | 1857 | 4.26
wy | 2.63 | 24.54

Table A.1: Average confusion matric Banana data set.

Wi W
wy | 12.94 | 11.40
wy | 0.26 | 25.40

Table A.2: Average confusion matriz Ringnorm data set.

Wi W
wp | 18.61 | 3.70
wy | 0.35 | 52.34

Table A.3: Average confusion matriz Thyroid data set.

99



100 APPENDIX A. LAPLACIAN ISE CLASSIFIER

Wi W
wy | 24.66 | 0.97
wy | 0.86 | 23.51

Table A.4: Average confusion matriz Twonorm data set.

Wi W
wi | 66.84 | 4.02
wy | 2.44 | 117.70

Table A.5: Average confusion matric WBC data set

w1 W
wy | 73.64 | 1.80
wy | 11.06 | 30.50

Table A.6: Average confusion matrixz Tonosphere data set.

Wi W
wp | 127.41 | 39.63
we | 31.02 | 57.94

Table A.7: Average confusion matriz Pima data set.
W1 W W3
wi | 19.68 0 0

wo | 1.22 | 21.20 | 1.41
ws 0 0.04 | 16.45

Table A.8: Average confusion matric Wine data set.

Wi | Wy | w3

wy | 16.44 | 0.20 | 0.10
wy | 0 ]14.96 | 1.00
wy | 0 | 1.63 [ 15.67

Table A.9: Average confusion matrixz Iris data set.

Wi Wy W3
wy | 121.89 | 0.04 | 0.04
wy | 0.01 |116.52| 5.37
ws| O 0.180 | 120.95

Table A.10: Average confusion matrix Pendigits data set.



Appendix B

Spectral ISE classifier

Classification results for the spectral ISE classifier not listed in the main part of the thesis.

‘ Data ‘ Median rate ‘
Banana 56.5915.58
Ringnorm | 76.6941.92
Twonorm | 97.28+0.58
Thyroid 93.35+2.70

Table B.1: Awverage classification rates for some Rdtsch data sets using the spectral ISE
classifier with median vectors.

‘ Data set ‘ Median rate ‘
Wine 95.54+2.4
Iris 81.3+6.3
WBC 89.24+2.9

Tonosphere 68.9+8.4
Pendigits 83.0£2.0
Pima 69.2+2.3

Table B.2: Average classification rates for some UCI data sets using the spectral ISE
classifier with median vectors.
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B.1 Average confusion matrices Spectral ISE

Means W1 W Medians W1 W9
w1 1431.69 | 1489.02 w1 1524.60 | 1412.56
Wo 762.78 | 1216.51 Wy 669.87 | 1292.97

Table B.3: Average confusion matrices for the Banana data set.

Means W1 o Medians W1 W
w1 134.82 | 113.34 w1 131.61 | 116.55
Wy 0 251.84 Wo 0 251.84

Table B.j: Average confusion matrices for the Ringnorm data set.

Means W1 Wo Medians W1 Wy
w1 243.73 | 5.72 w1 243.79 | 5.66
Wy 8.00 | 242.55 Wy 7.95 | 242.60

Table B.5: Average confusion matrices for the Twonorm data set.




AVERAGE CONFUSION MATRICES SPECTRAL ISE

Means | Wo Medians | Wy Wo
w1 19.56 | 2.15 w1 19.50 | 2.18
Wo 2.75 | 50.54 Wo 2.81 | 50.51

Table B.6: Average confusion matrices for the Thyroid data set.

Means (ﬁl ujg ujg Medians ch ujg ujg
w1 19.94 | 1.29 0 w1 1994 1.2 0
Wy 0 20.61 0 Wy 0 20.82 0
w3 0 1.63 | 16.53 w3 0 1.51 | 16.53

Table B.7: Average confusion matrices for the Wine data set.

~

~

Means | W9 W3
w1 15.85 0 0
Wo 0.06 | 12.99 | 3.8
w3 0.61 | 4.02 | 12.67

Medians | Wy Wo W3
w1 1593 | 0 0
wWo 0.01 | 12.9| 3.94
w3 0.58 | 4.11 | 12.53

Table B.8: Average confusion matrices for the Iris data set.

Means | WJo Medians | W
w1 60.82 | 9.51 w1 57.45 | T7.71
Wy 9.6 |111.07 Wo 12.97 | 112.87

Table B.9: Average confusion matrices for the WBC data set.

Means | Wo Medians | Wy Wo
w1 46.24 | 5.33 w1 45.87 | 6.93
Wy 29.06 | 36.37 Wy 29.43 | 34.77

Table B.10: Average confusion matrices for the Ionosphere data set.

Means W1 Wo Wa Medians W1 Wy W3
w1 113.34 | 6.27 2.30 w1 113.01 | 5.12 3.78
Wo 0 82.40 | 38.60 Wy 0 70.65 | 50.35
w3 0 10.87 | 111.22 w3 0 2.64 | 119.45

Table B.11: Average confusion matrices for the Pendigits data set.

Means W1 WJo Medians W1 W
w1 130.61 | 37.03 w1 126.27 | 41.37
Wy 40.75 | 47.61 Wy 37.51 | 50.85

Table B.12: Average confusion matrices for the Pima data set.
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Appendix C

Spectral Laplacian ISE classifier

Classification results for the spectral Laplacian ISE classifier not listed in the main part of
the thesis.

‘ Data ‘ Median rate ‘

Banana 58.8+£3.9
Ringnorm | 98.0+0.7
Twonorm 97.4+1.0
Thyroid 92.74+2.6

Table C.1: Average classification rates for Rditsch data sets, using the spectral Laplacian
ISE classifier with median vectors.

‘ Data ‘ Median rate
Wine 98.0+1.9
Iris 85.1+4.8
WBC 78.9+2.2

Ionosphere | 61.64+14.8
Pendigits 80.9£2.7
Pima 68.3+2.6

Table C.2: Average classification rates for UCI data sets, using the spectral Laplacian ISE
classifier with median vectors.
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C.1 Average confusion matrices for the spectral Lapla-
cian ISE classifier.

Means W1 W9 Medians w1 Wo
w1 1546.59 | 1396.16 W 1576.08 | 1401.74
Wy 647.88 | 1309.37 Wo 618.39 | 1303.79

Table C.3: Average confusion matrices for the Banana data set.

Means W1 Wo Medians W1 Wy
w1 239.83 | 1.46 w1 239.73 | 1.35
Wy 8.33 | 250.38 Wy 8.43 | 250.49

Table C.4: Average confusion matrices for the Ringnorm data set.

Means W1 W Median W1 WJo
w1 244.34 | 5.11 w1 243.71 | 5.74
Wy 7.50 | 243.05 Wo 7.32 | 243.23

Table C.5: Average confusion matrices for the Twonorm data set.




Means | Wo Medians | Wy Wo
w1 19.22 | 2.21 w1 19.03 | 2.20
Wo 3.09 | 50.48 Wy 3.28 | 50.49

C.1. AVERAGE CONFUSION MATRICES FOR THE SPECTRAL LAPLACIAN ISE CLASSIFIER.1

Table C.6: Average confusion matrices for the Thyroid data set.

Means (ﬁl ujg ujg Medians ch ujg ujg
w1 19.87 | 0.51 0 w1 19.85 | 0.39 0
Wy 0.06 | 22.89 | 0.21 Wy 0.08 | 23.04| 0.16
w3 0 0.62 | 15.84 w3 0 0.59 | 15.89

Table C.7: Average confusion matrices for the Wine data set.

~

~

~

Means | Wo Wa Medians | Wy Wo Wa
w1 17.11 0 0 w1 17.13 0 0
Wo 0.04 | 12.18 | 3.28 Wo 0.02 | 12.15| 3.3
w3 0 4.08 | 13.31 w3 0 4.11 | 13.29

Table C.8: Average confusion matrices for the Iris data set.

Means | WJo Medians | W
w1 49 18.24 w1 49.09 | 18.21
Wo 22.12 | 101.64 Wo 22.03 | 101.67

Table C.9: Average confusion matrices for the WBC' data set.

Means | Wo Medians | Wy Wo
w1 40.16 | 14.15 w1 32.69 | 1.85
Wy 35.56 | 27.13 Wy 43.03 | 39.43

Table C.10: Average confusion matrices for the Ionosphere data set.

Means W1 Wo Medians W1 Wy
w1 130.10 | 36.54 w1 130.26 | 36.38
Wo 44.67 | 44.69 Wo 44.66 | 44.70

Table C.11: Average confusion matrices for the Pima data set.

Means (ﬁl ujg u53 Medians (ﬁl (ﬁg (ﬁg
w1 110.75 | 3.06 6.12 w1 108.35 | 9.95 1.63
Wy 0 58.00 | 65.32 wa 0 65.39 | 57.93
w3 0 0.68 | 121.07 w3 0 0.34 | 121.41

Table C.12: Average confusion matrices for the Pendigits data set.
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