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AbstratThis thesis is a study of pattern lassi�ation based on information theoreti riteria. Infor-mation theoreti riteria are important measures based on entropy and divergene betweendata distributions. First, the basi onepts of pattern lassi�ation with the well knownBayes lassi�ation rule as a starting point is disussed. We disuss how the Parzen win-dow estimator may be used to �nd good density estimates. The Parzen window densityestimator an be used to estimate ost funtions based on information theoreti riteria.Furthermore, we explain a model of an information theoreti learning mahine. With ostfuntions based on information theoreti riteria, we argue that a learning mahine poten-tially aptures muh more information about a data set than the traditional mean squarederror ost (MSE) funtion. We �nd that there is a geometri link between informationtheoreti ost funtions estimated using Parzen windowing, and mean vetors in a Mer-er kernel feature spae. This link is used to propose and implement di�erent lassi�ersbased on the integrated squared error (ISE) divergene measure, operating impliitly ina Merer kernel feature spae. We also apply spetral methods to implement the sameISE lassi�ers working in approximations of Merer kernel feature spaes. We investigatethe performane of the lassi�ers when we weight eah data point with the the inverse ofthe probability density funtion at that point. We �nd that the ISE lassi�ers workingimpliitly in the Merer kernel feature spae performs similar to a Parzen window basedBayes lassi�er. Using a weighted inner-produt de�nition gives slightly better results forsome data sets, while for other data sets the lassi�ation rates are slightly worse. Whenomparing the results between the impliit ISE lassi�er using unweighted data points andthe Parzen window Bayes lassi�er, some of the results indiate that the ISE lassi�er favorthe lasses with highest entropy.
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Chapter 1IntrodutionPatterns are used to desribe any relations, regularities or struture inherent in a dataset generated by a soure. Similar patterns are often grouped into a lass. By detetingsigni�ant patterns in the available data, a learning mahine an make preditions aboutnew data oming from the same soure [26℄. In pattern lassi�ation we use some labeledtraining data set, where eah label represent a lass, and use a learning mahine to preditthe orret lass label for a new unlabeled sample. A learning mahine may be viewedas a devie that adjust a set of parameters through a learning proess. For eah new setof training data given to the mahine, the parameters are updated using a riteria thataptures the wanted information to desribe the data in a new form. Pattern lassi�ationis one of the fundamental problems in mahine learning and signal proessing [29℄, [26℄,[4℄.It is an important part in omputer vision, medial imaging, optial harater reognition,geostatistis, handwriting reognition, biometri identi�ation, natural language proess-ing, doument lassi�ation, email spam detetion and redit soring, to list a few examples[29℄, [4℄, [23℄, [1℄, [15℄, [8℄.Information theoreti learning (ITL) methods emerged in [18℄ and [5℄. Informationtheoreti learning here refers to the use of a general learning mahine as we desribein Setion 4.2, where a riteria related to Renyi's quadrati entropy is used to updatethe learning proess. The riteria often use Renyi's quadrati entropy to �nd divergenemeasures between data in di�erent distributions. A divergene measure an be thoughtof as a generalization of algebrai distane measures (suh as the Eulidean norm) toprobability distribution spaes [5℄. In [18℄ two important information theoreti divergenemeasures were presented, one is based on the Cauhy-Shwarz (CS) inequality and theother on the integrated squared error (ISE) between two probability distributions.The Renyi's quadrati entropy is estimated using a Parzen window density estimationmethod, and may be thought of as a generalization of variane to proesses with non-Gaussian distributions [5℄. In [18℄ and [5℄ information theoreti onepts are explained andused in time series predition, independent omponent analysis (ICA), feature extrationand blind soure deonvolution.Independent of ITL, a number of kernel methods have emerged in the reent years.Kernel methods generally solve mahine learning problems in two parts: A module, also1



2 CHAPTER 1. INTRODUCTIONknown as a kernel funtion, performs a mapping of data to a new feature spae. In thisnew feature spae a learning algorithm is used to disover linear patterns [26℄. The use of akernel funtion allows us to operate impliitly in a possible high dimensional spae throughevaluations of inner-produts. This is also known as the �kernel trik�. The advantageof operating in high dimensional spaes is that the probability that the data is linearlyseparable inreases with the number of dimensions we operate in [2℄. Kernel methods havebeen used suessfully in various �elds of mahine learning, and inlude algorithms suhas support vetor mahines (SVMs), kernel Fisher disriminant analysis (KFD) and kernelprinipal omponent analysis (KPCA) [17℄.The a�nity matrix of a data set is alulated with the pairwise inner-produts of datasamples with a kernel funtion, Element (i, j) of this matrix ontains the inner-produtbetween data sample i and j, omputed with a kernel funtion. The inner-produts of thea�nity matrix may be weighted suh that eah data point is multiplied with the inverseoverall probability density funtion at that point. This a�nity matrix with weighted inner-produts is referred to as the Laplaian matrix. Spetral methods based on the spetralproperties, i.e. the eigenvetors and eigenvalues of the a�nity matrix or the Laplaianmatrix, have been popular in reent lustering appliations [5℄,[9℄.It has been shown [13℄ and [9℄, that when using the non-parametri Parzen windowdensity estimator with a Merer kernel funtion to estimate the Renyi's quadrati entropyfor a data set, the result may be interpreted in terms of a mean vetor in a Merer kernelfeature spae. By measuring distanes between lass mean vetors in a Merer kernelfeature spae we an reate di�erent information theoreti divergene measures betweenlass distributions. The CS divergene measure is shown in [13℄ to be related to measuringangles between lass mean vetors in a Merer kernel feature spae and have interestingonnetions to graph theory. The ISE divergene measure is in a similar manner shown tobe related to the Eulidean distane between mean vetors in a Merer kernel spae [9℄.The link between ITL and Merer kernel methods has been used to develop reentlassi�er [12℄, [9℄, and lustering [9℄, [11℄, [10℄ algorithms based on the CS divergenemeasure. The lassi�er proposed in [12℄ works impliitly in a Merer kernel feature spae,while the CS based spetral lustering algorithms work in approximate Merer kernel spaesspanned by the prinipal eigenvetors of the Laplaian matrix. These methods have allused weighted inner-produt kernel funtions when alulating the CS divergene measure.This thesis is inspired by the use of the CS divergene measure in both lassi�ationand lustering appliations. We provide neessary bakground on information theoretilearning onepts to understand newly disovered, important relations between Mererkernel theory, information theoreti measures and density estimation. In partiular wefous on the properties of the ISE information theoreti divergene measure and use Mererkernel properties and geometri properties of this measure to argue that it may be usedas a ost funtion in an information theoreti lassi�er. Previous information theoretilassi�ers have to our knowledge only been implemented using the weighted CS divergenemeasure. Thus we aim to use the ISE divergene measure in a similar manner. Weinvestigate performane and properties of lassi�ers based on the ISE divergene usingboth weighted and unweighted inner-produts, operating impliitly in Merer kernel spaes



3through evaluations with Merer kernels.We also investigate spetral versions of the ISE lassi�ers, where we eigendeompose theLaplaian data matrix or the a�nity matrix. None of the ISE divergene based lassi�erspresented in this thesis have been presented before, so we ould not know how they wouldperform. We hoose to ompare the results obtained with our implementation of the Bayeslassi�er, both beause it is a well known lassi�er and beause we �nd out that the ISEbased lassi�er rule may be expressed in a very similar way to the Bayes lassi�er rule.We present two di�erent versions of the ISE lassi�er operating impliitly in di�erentMerer spaes. The standard ISE and the Laplaian ISE lassi�er, operating on unweightedand weighted training data, respetively. We also develop spetral versions of these las-si�ers, the spetral ISE lassi�er and the spetral Laplaian ISE lassi�er, working inthe approximated Merer spaes spanned by the prinipal eigenvetors of the a�nity andLaplaian matries, respetively. The ISE based lassi�ers working impliitly in a Mererkernel spae in general seems to give best results. For some data sets the Laplaian induedweights improve the lassi�ation rates, but in others it redues or does not hange thelassi�ation rates signi�antly.1.0.1 Quik summary of ontent in this thesis.
• We provide neessary bakground information about the relatively new onepts usedin information theoreti learning. We also review bakground information neessaryto understand basi density estimation and pattern lassi�ation.
• We introdue and investigate new lassi�ers based on the information theoreti ISEdivergene measure and kernel methods, using both weighted and unweighted data.
• We investigate relations between an ISE divergene based lassi�er operating im-pliitly in a Merer kernel spae and the well known Parzen window based Bayeslassi�er. We �nd that using unweighted data the ISE lassi�er is omparable to theBayes lassi�er with slightly di�erent properties.
• We use the spetral properties of the a�nity and Laplaian matries of the data, topropose and investigate ISE based lassi�ers working diretly in approximated Mererkernel spaes. We note that in most ases the spetral versions of the ISE lassi�erperform slightly worse than the versions working impliitly in Merer spaes.



4 CHAPTER 1. INTRODUCTION1.1 De�nitions and notation usedx,y A training pattern and lass labeli,N Counter and number of patternsi.i.d Independent identially distributedpdf Probability density funtionISE Integrated Squared errorMISE Mean Integrated Squared ErrorAMISE Asymptoti Mean Integrated Squared ErrorIP Information PotentialITL Information Theoreti Learning
Wσ2(·, ·) A Gaussian kernel, with bandwidth σ2

Kh(·, ·) A general Merer kernel, with bandwidth h
F A Merer kernel feature spae
d Dimensionality of data
C Number of lassesTable 1.1: De�nitions and abbreviationsDensity funtions are usually referened with small letters e.g. p(x). Probabilities arereferened with large letters e.g. P (x). Integrals with no limits are assumed to be withlower limit −∞ and upper limit∞. The sample x may take any value in the d dimensionalspae, unless otherwise spei�ed. Expetations with regard to a variable or funtion f isdenoted by Ef{·} if it may be unlear what we alulate the expeted value with respetto.1.2 Struture and literatureStruture of this thesis This thesis is divided in three parts. In Part I we present thetheory neessary to understand and implement our lassi�ers. Part II ontains analysisand experiments done to hek how the theory works on some popular data sets. In PartIII we onlude the thesis and suggests further work that may be done.

• Chapter 2 introdue the basi onepts of pattern lassi�ation. The Bayes lassi�eris used as an example and shown to give a minimum probability of lassi�ationerror.
• Chapter 3 disusses various methods for density estimation with an emphasis on theParzen window density estimator and its properties.
• Chapter 4 explains the onept of an information theoreti learning mahine. Adetailed disussion of various information theoreti riteria is given. Some samplebased estimators for information theoreti riteria are disussed.



1.2. STRUCTURE AND LITERATURE 5
• Chapter 5 explain the kernel trik and how it an be used to express informationtheoreti measures in a Merer kernel spae from a simple geometri viewpoint. Thestandard ISE lassi�er is developed using this geometri view of the ISE divergenebetween two distributions. This lassi�er is shown in a speial ase to be equal tothe familiar Bayes lassi�er using density estimates. Some relations between the ISEdivergene measure and graph theory are disussed.
• Chapter 6 presents the Laplaian ISE lassi�er, a modi�ed version of the standardISE lassi�er using weighted data samples.
• Chapter 7 presents spetral versions of the standard ISE and Laplaian lassi�er,working in approximated Merer kernel spaes.
• Chapter 8 provides a short analysis of the e�et of di�erent kernel sizes and kerneltypes used in the previously presented lassi�ers.
• Chapter 9 presents and disusses results found using the di�erent lassi�ers on somepopular data sets. We try to illustrate the e�ets of weighting the data samples andhow data distributes in the approximate Merer kernel spaes.
• Chapter 10 onludes this thesis and suggests some work that may be done in thefuture.
• The appendix ontains some additional lassi�ation results not listed in Chapter 9.Literature Information theory in general is overed by [3℄ and the artile whih �rstused entropy as a measure in ommuniation, [25℄. The priniples behind informationtheoreti learning was mainly introdued in [18℄ with an nie overview in [5℄ and [9℄. Goodintrodution books to pattern lassi�ation methods are [29℄,[4℄ and [8℄. The CS divergenebased lassi�er whih inspired muh of the work with our ISE divergene based lassi�ersis presented in [12℄. Important relations between Merer kernel funtions, Parzen windowdensity estimators, CS divergene and graph theory is reviewed in [13℄. A survey of kernelmethods used in pattern analysis is given in [26℄ and [17℄. Spetral methods used in thisthesis are in�uened by material in [26℄ [9℄, [24℄, [6℄ and [31℄.
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Chapter 2Pattern lassi�ation basisThis hapter gives a de�nition of pattern lassi�ation. It also reviews the well knownBayes lassi�ation rule, whih is shown to give a minimum probability of lassi�ationerror. The Bayes lassi�er may thus be used as a benhmark when testing other lassi�erswith regard to error rates. In Part II, Chapter 9, we use an implementation of this lassi�erto ompare with the new lassi�ers whih will be presented in later hapters of this thesis.De�nition The task of lassi�ation is to �nd a rule, whih based on observations oftraining patterns assigns an unlassi�ed pattern to one of several possible lasses. A las-si�ation rule with two di�erent lasses is to estimate a funtion
g : R

d −→ {−1, 1},using input-output training data pairs generated i.i.d aording to an unknown probabilitydistribution
p(x, y), (x1, y1), . . . , (xN , yN) ∈ R

d × Y, Y {−1, 1}suh that g will orretly lassify a new sample x [17℄. A sample x is assigned to the lasslabeled +1 if g(x) ≥ 0. The sample x is assumed to be generated from the same pdf p(x, y)as the training data.2.1 The Bayes lassi�erTo explain more in detail how we an de�ne a lassi�er we begin with the Bayes lassi�er.The reason for starting with this is that it an be shown to give an optimal result withregard to minimum probability of lassi�ation error, under ertain onditions. This willbe proved in the next setion. It is also well known and has some theoretial onnetionsto the ISE lassi�er, whih will be explained in Setion 5.3.1.We want to lassify an unknown feature vetor x to one of C possible lasses ω1, . . . , ωCin a way that assigns x to the lass where it's �most likely� to belong. We de�ne what is9



10 CHAPTER 2. PATTERN CLASSIFICATION BASICS�most likely� with the probabilities P (ωi|x), i = 1, . . . , C, also known as the a posterioriprobabilities. A possible lassi�ation rule is to assign x to the lass ω∗ satisfying [29℄
ω∗ = max

ωi

P (ωi|x), i = 1, . . . , C. (2.1)Assume that the a priori probabilities P (ωi) i = 1, . . . , C, are known. If they areunknown they an be estimated from our training data as P (ωi) = ni

N
where N is the totalnumber of training samples, and ni is the number of samples belonging to lass ωi. Thelass-onditional probability density funtions p(x|ωi), also known as likelihood funtionsof ωi, with respet to x, are also assumed to be known [29℄. If these are unknown we willsee later how they an be estimated.1 To alulate the a posteriori probabilities we anuse Bayes rule [29℄

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
, i = 1, . . . , C, (2.2)where

p(x) =
∑

i

p(x | ωi)P (ωi).Sine p(x) is a ommon fator for all lasses it may be ignored and we an use
ω∗ = max

ωi

p(x|ωi)P (ωi), i = 1, . . . , C, (2.3)as our lassi�er. If the a priori probabilities P (ωi), are equal Eq. (2.3) redues to
ω∗ = max

ωi

p(x|ωi), i = 1, . . . , C,and the searh for the most probable lass for feature x redues to evaluating the onditionalpdfs at x. Sine the lassi�er in Eq. (2.3) is obtained using Bayes rule, it is often referredto as the Bayes lassi�er. In the two lass ase we use Eq. (2.3) to assign x to lass ω1 if
p(x|ω1)P (ω1) > p(x|ω2)P (ω2).Our lassi�ation funtion an now be de�ned as to lassify x to lass ω1 if

g(x) = p(x|ω1)P (ω1) − p(x|ω2)P (ω2) ≥ 02.2 Minimum probability of lassi�ation error for theBayes lassi�erIn Fig. 2.1, the Bayesian lassi�er for two equiprobable lasses for a one-dimensional featurevetor x is illustrated. The region to the left of the dotted threshold line learly ontainsmost of p(x, ω1) = p(x|ω1)P (ω1) and we de�ne this as R1, and the region to the right1If x is disrete the likelihood funtions beome probabilities and are denoted with P (x|ωi)



2.2. MINIMUM PROBABILITY OF CLASSIFICATION ERROR FORTHE BAYES CLASSIFIER11

Figure 2.1: Illustration of two deision regions. Figure borrowed from [29℄of the threshold as R2. Let R1 and R2 be the regions where we lassify x to ω1 and ω2,respetively. The total area overed by p(x|ω1) in region R2 and p(x|ω2) in R1 will be theprobability of ausing lassi�ation errors. If the threshold is moved to the left or right, thisarea and probability will inrease. This means that if we want to minimize the probabilityof an error, the deision regions R1 and R2 must be seleted by moving the threshold sothis area is as small as possible.In a multilass situation with a multidimensional feature vetor x we have C di�erentlasses with deision regions (R1, . . . RC) our feature vetor x an be plaed in. We nowgeneralize the situation in Fig. 2.1. Writing the probability of a orret deision by thejoint probability
P (x ∈ Ri, ωi),then the probability of erroneously assigning x to ωj by not seleting the orret lass ωiis

P (x ∈ Rj, ωi), ∀j 6= i.



12 CHAPTER 2. PATTERN CLASSIFICATION BASICSThe total probability for ommitting an error in lassi�ation is thus
Pe =

⋃

∀j 6=i

P (x ∈ Rj, ωi),

=
∑

∀j 6=i

P (x ∈ Rj|ωi)P (ωi),

=
∑

∀j 6=i

P (ωi)

∫

Rj

p(x|ωi)dx,

=
∑

∀j 6=i

∫

Rj

P (ωi|x)p(x)dx.The total probability for orret lassi�ation is
∑

i

∫

Ri

P (ωi|x)p(x)dx = 1 − Pe.Hene
Pe = 1 −

∑

∀i

∫

Ri

P (ωi|x)p(x)dx.The error is learly minimized when the regions Ri are seleted in a way where
Ri : P (ωi|x) > P (ωj|x), ∀j 6= i,whih is the same as Eq. (2.1).



Chapter 3Density estimation
The ost funtions used by the lassi�ers disussed in this thesis are all dependent on �ndingsome sort of density estimate for the lass distributions of the data. The ase where we knowthe distributions of the feature vetors in eah lass ωi, given by the likelihood funtions
p(x|ωi), is unfortunately not the reality for most data sets. We have to �nd estimatesof these distributions. There are basially two ategories of methods for estimation ofpdfs, parametri and non-parametri methods. In this setion, for ompleteness, a shortdesription of parametri methods for density estimation is given. For more details [29℄is reommended. The non-parametri methods are far more important in informationtheoreti lassi�ation, sine we often annot assume that the data set has a parametridistribution shape. In partiular the Parzen window method for density estimation will beinvestigated. Throughout this hapter we assume a data set of N samples, xi, i = 1, . . . , N ,generated i.i.d from unknown distributions, unless otherwise is spei�ed.
3.1 Parametri methodsAssume that the pdf to be estimated is desribed in parametri form by some unknownparameter vetor θ, so it an be written as f(x; θ). We have a limited number N ofi.i.d training data, x1, . . . , xN available from our distribution. Using these samples we anuse di�erent methods to �nd an estimate of the parameters in θ suh that the estimate
f̂(x; θ) is as lose as possible to the true pdf. This means that we assume that our datais generated from a distribution with a shape that is lose to a parametri form, e.g weassume a Gaussian, Rayleigh or some other well known distribution and try to adjust itsparameters to �t our data as good as possible. The parameters in θ are usually foundby maximum likelihood estimation. In [29℄ some methods for parametri estimation aredesribed, e.g. maximum likelihood estimation, mixture models, maximum entropy et.13



14 CHAPTER 3. DENSITY ESTIMATION3.2 Non-parametri methodsTo avoid the need to make assumptions about a parametri shape of the desired distri-bution, we must often use non-parametri methods. In this setion, we review di�erentmethods of density estimation with a one-dimensional random variable x taken from a on-tinuous, univariate density funtion f(x). We start with the simple histogram method andexpand it until we end up with the Parzen window estimator. Some of the most importantproperties of the Parzen window estimator are then disussed. In the last setion, theParzen window method is expanded to the ase where we have multivariate distributions,where the variable x is a multidimensional vetor.3.2.1 The histogram density estimatorThe oldest way to �nd a non-parametri estimate of a funtion is given by the histogram[30℄, [9℄. Given an origin x0, and a bin width h, the bins of the histogram are de�ned as
[x0 + mh, x0 + (m + 1)h) for positive and negative integers m. The histogram estimate ofthe funtion f(x) is then

f̂(x) =
1

Nh
(no of xi in same bin as x). (3.1)This estimator is obviously disontinuous and not usable when we need to �nd derivatives.3.2.2 The naive density estimatorThis is also a variant of the histogram method. De�ne the pdf evaluated at x as

f(x) = lim
h→0

1

2h
P (x − h < X < x + h) (3.2)The probability P (x − h < X < x + h) an be estimated by ounting the number of datasamples falling into a bin of size 2h entered at x. This an be de�ned more preisely witha weight funtion

W (x) =

{
1
2

if |x| ≤ 1
0 otherwise ,suh that the naive estimator an be expressed as [9℄

f̂(x) =
1

Nh

N∑

i=1

W

(
x − xi

h

)
. (3.3)Introduing a resaling notation Wh(u) = h−1W (u/h) we rewrite Eq. (3.3) as

f̂(x) =
1

N

N∑

i=1

Wh(x − xi). (3.4)From Eq. (3.3) we see that an estimate for the pdf at x is given by plaing a �box� aroundeah sample xi with width 2h and height (2Nh)−1 and sum up. This estimator is notontinuous, sine it is a sum of disontinuous funtions.



3.2. NON-PARAMETRIC METHODS 153.2.3 The Parzen window density estimatorParzen generalized the weight funtion Wh(·) in Eq. (3.4) to a kernel funtion or Parzenwindow whih is a funtion satisfying [29℄
Kh(x) ≥ 0 and ∫

x

Kh(x)dx = 1.The subsript h refers to the bandwidth or window width of the kernel [30℄. Usually K(·) ishosen to be a unimodal probability density funtion that is symmetri around zero. Thismakes sure that the estimator
f̂(x) =

1

N

N∑

i=1

Kh(x − xi) (3.5)produes an estimate whih is also a density.To investigate some of its properties, we �nd expressions for the mean value and varianeof Eq. (3.5). Let f̂(x) be the estimate of the true density f(x) at x, with x′ a randomvariable with density f(x). Then
E{f̂(x)} =E{Kh(x − x′)}

=

∫
Kh(x − x′)f(x′)dx′

=Kh(x) ⋆ f(x). (3.6)The density estimate is therefore a smoothed version of the true density. The bias of theestimator is given by [30℄
E{f̂(x)} − f(x) = [Kh(x) ⋆ f(x)] − f(x), (3.7)and the variane is [30℄

V ar{f̂(x)} =E{[f̂(x) − E{f̂(x)}]2}

=
1

N
{(K2

h(x) ⋆ f(x)) − [(Kh(x) ⋆ f(x)]2}. (3.8)It is ommon to measure the loseness of the estimator f̂(x) to the target density f(x) inthe point x by the size of the mean squared error (MSE)
MSE{f̂ (x)} = E

{
[f̂(x) − f(x)]2

}
,whih an be written as

MSE{f̂(x)} =
1

N
{(Kh(x)2 ⋆ f(x)) − [(Kh(x) ⋆ f(x))]2} + {(Kh(x) ⋆ f(x)) − f(x)}2

=V ar{f̂(x)} + [Bias{f̂(x)}]2.



16 CHAPTER 3. DENSITY ESTIMATIONInstead of just estimating the funtion f(x) at a single point we want to estimate it overthe whole x-spae. The mean integrated error (MISE) is a more appropriate measure foranalyzing f̂(x) where
MISE{f̂(x)} =

∫
MSE{f̂ (x)}dx

=

∫
E{[f̂(x) − f(x)]2}dx +

∫
V ar{f̂(x)}dx. (3.9)The bias and variane term in Eq. (3.9) depend on the kernel width h in di�erent ways. Ithas been shown that Eq. (3.9) for large sample sizes N , the asymptoti mean integratedsquared error (AMISE) is given by [14℄, [30℄

AMISE{f̂(x)} = (Nh)−1R(K) +
1

4
h4µ2(K)2R

(
f

′′

) (3.10)where µ2(K) =
∫

z2K(z)dz, R(f
′′

) =
∫
{f ′′

(x)}2dx, f
′′

(x) = d2

d2x
f(x) and R(K) =∫

K(z)2dz. We see that minimizing the left term (the variane) with a large kernel window
h results in a huge inrease in the bias part whih is proportional to h4. This is what isknown as the variane-bias trade-o� in kernel size seletion. There exists many ways to�nd the kernel size h. We mention two popular methods here. The �rst di�erentiatesEq. (3.10) and equates it to zero, obtaining

hAMISE =

[
R(K)

µ2
2(K)R(f ′′)N

] 1

5The other method estimates R(f
′′

) by assuming that the true underlying density is anormal density. Then the kernel size is given by [9℄
hAMISE = 1.06N− 1

5Several other methods exist, see [14℄ and [30℄.3.2.4 The multivariate Parzen windowThe extension of the Parzen window to feature data in a d-dimensional spae is a little moredi�ult. The sparseness of data in higher dimensional spaes makes the estimation moredi�ult, unless we have very many samples. This phenomenon is usually referred to asthe urse of dimensionality. Remembering that the kernel funtion in the one-dimensionalase speify the window width, this window will in the multidimensional ase be replaedwith hyperubes and eah dimension of the ube requires a parameter to be estimated forthe kernel. A diret extension of the univariate kernel estimate in Eq. (3.5), is obtainedby replaing the point x with a vetor-point x ∈ R
d and the variable xi with a d-variatesample xi with density f(x). The Parzen estimator beomes [30℄

f̂(x) =
1

N

N∑

i=1

KH(x − xi) (3.11)



3.2. NON-PARAMETRIC METHODS 17where H is a symmetri positive de�nite d × d matrix alled the bandwidth matrix
KH(x) = |H|−1/2K(H−1/2x).With further restritions on H, see [30℄ for details, we get the single bandwidth kernelestimator

f̂(x) =
1

Nh−d

N∑

i=1

K{(x − xi)/h}. (3.12)There exists several methods to give an estimate of the optimal kernel size for a multi-variate data set. The optimal kernel size is usually seleted to minimize the MISE between
f̂(x) and the target density f(x). The normal referene rule for the MISE kernel size isgiven by Silverman's rule [28℄, [9℄̂

h = σx

[
4

(2d + 1)N

] 1

d+4

, (3.13)where σ2
x = d−1

∑
i Σii and Σii are the diagonal elements of the sample ovariane matrix.Due to the urse of dimensionality this method is not regarded as reliable for higher di-mensional data. In this thesis most of the data sets are of higher dimensions, so we havehosen a ross validation tehnique to �nd the best kernel sizes in the density estimates.



18 CHAPTER 3. DENSITY ESTIMATIONSome well-known Parzen windows with u = x−xi

h
are listed below, where for u ≥ 1 allwindows evaluate to zero, exept the Gaussian kernel. For simpliity we only present theone-dimensional versions, but they an easily be extended to multivariate versions.

• Uniform
Kh(u) = 1/2.

• Epanehnikov
Kh(u) =

3

4
(1 − u2).

• Gaussian
Wσ2(x) =

1√
2πσ2

exp

{
−(x − xi)

2

2σ2

}
.

• Quarti
Kh(u) =

15

16
(1 − u2)2.

• Triweight
Kh(u) =

35

32
(1 − u2)3.

• Cosinus
Kh(u) =

π

4
cos
(π

4
u
)

.



Chapter 4Information theoreti learning priniplesThis hapter starts with a brief introdution of information theory. An overview of theonepts in an information theoreti learning mahine is then given. Information theoretiriteria, whih gives us the tools to measure the shape of, and distane between, probabilitydistributions, is then explained in detail. In the last setion we disuss some ost funtionestimators used in ITL.
4.1 Information theoryInformation theory is in this thesis related to C.E Shannon's report from 1948, A math-ematial theory of ommuniation [25℄. Shannon de�ned a measure of information orunertainty assoiated with a stohasti experiment and named it entropy. This measurewas used to answer important questions in ommuniation. Shannon used entropy to �nda limit to how muh information an be transferred over a noisy hannel, and to �nd waysto design optimal odes for data ompression.Entropy an be thought of as the unertainty assoiated with the value of a realizationof a single random variable. It is a measure on how muh information that is gained aboutthe ontent of a stohasti random variable after a stohasti experiment.Shannon also de�ned a measure alled mutual information, whih is the amount ofinformation that one random variable arries about another, i.e. the redution in theunertainty of one random variable due to the knowledge of the other. Mutual informationis a speial ase of a more general quantity, alled relative entropy. The relative entropyor divergene an be used as a measure of �distane� between two distributions. It is ameasure of the ine�ieny of assuming that a distribution is given by a density funtion
q(·), when it in fat has a distribution given by a density funtion p(·). This is also refereedto as a divergene measure between distributions. In this thesis we use di�erent estimatesof entropy and divergene as information theoreti measures.19



20 CHAPTER 4. INFORMATION THEORETIC LEARNING PRINCIPLES

Figure 4.1: A general learning mahine.4.2 An information theoreti learning mahineA very general learning mahine may be desribed using a model like the one in Fig. 4.1.Mahine learning is in general divided into supervised, semi-supervised and unsupervisedtasks. The model in Fig. 4.1 an be used to desribe all of the above mahine learningtasks. We have some input data X, ontaining information or measurements from a real-world event. We want the learning mahine to perform some spei� task on X. This isdone by giving the input data X to a possibly non-linear parametri mapping funtion
g : R

d → R
M , (4.1)whih transforms the input vetor X ∈ R

d to Y ∈ R
M

Y = g(X, W ), (4.2)where W are the parameters of the mapping funtion. If the optimality riterion is based onan information theoreti measure, either entropy or divergene, we all this an informationtheoreti learning mahine. The mapper funtion in Eq. (4.2) transform the input data toa new form depending on the task of the learning mahine. The output of the mapper, Yis ompared with an optimality riterion and optionally a desired response z for the input
X. For eah presentation of training data the optimality riterion is evaluated and theerror term e is fed to an adaptation algorithm whih update the parameters W .Supervised learning onerns a learning mahine with a desired response for eah input
X. This thesis fous on supervised learning, spei�ally on lassi�ation of data. If thelearning task is lassi�ation, the desired response z for the training data ontains a lass



4.2. AN INFORMATION THEORETIC LEARNING MACHINE 21label. The task is then to lassify a random input sample to one of C lasses. The mappingfuntion may in this ase be desribed as
g : R

d → {y1, . . . , yc},where y1, . . . , yc are the possible lass labels, and M = 1 in Eq. (4.1). Regression is anotherexample of a typial supervised learning task, where the mapping is
g : R

d → R.Semi-supervised learning tasks onerns learning where the labels of the input data areonly partially known. One example is ranking where we only have available the relativeordering of the the examples in the training set, while our aim is to enable a similar orderingof novel data.Unsupervised tasks are learning tasks where the wanted information from the data hasto be extrated without any desired response in the optimality riterion. Clustering is onetypial example of unsupervised learning, where the aim is to �nd a natural division of datainto homogeneous groups [26℄. Anomaly and novelty detetion are other examples, wherethe task is to detet samples that deviate from the normal. Other important unsupervisedtasks are �nding low-dimensional representations of the input data, important examplesof this is prinipal omponent analysis (PCA) and independent omponent analysis (ICA).In PCA, the mapping in Eq. (4.1) aims to projet the input X to a lower M-dimensionalspae, where M denotes the number of unorrelated features in X. In ICA the goal is toprojet X to a lower M-dimensional spae where eah of the features of X are mutuallyindependent.Traditionally the riteria for optimality in Fig. 4.1 has been to minimize the MSE ostfuntion between the output Y of the mapper and the desired output z

J(Y ) = E
{
(z − Y )2

}
. (4.3)In our general mahine learning model we want to transfer as muh information as possibleabout our data into the mapper funtion g(X, W ), suh that this mapper is able to desribeour data as aurately as possible. The optimality riterion is thus ritial in obtainingthe parameters W . If we use MSE, the information transferred from the measurements Xand the desired responses z to the parameters W is purely based on seond order statistisonstraints. This is only optimal if the input data is drawn from Gaussian distributions,whih is a rather strit restrition.To transfer as muh information as possible to the parameters W the error term inFig. 4.1 must be omputed with a riterion transferring as muh information as possibleabout the input data X, and the desired response z, to the parameters W of the mapper

Y = g(X, W ). If we base our alulations on information theory and optimize with infor-mation theoreti riteria in Fig. 4.1 and Eq. (4.2) we have what Prinipe et al desribesas information theoreti learning [18℄. The main advantage with information theoretiriteria are that they are funtions of probability densities and apture all data statistis,not just the seond-order statistis. This gives us learning mahines where the parameters
W desribes our data in a muh better way than the traditional MSE an.



22 CHAPTER 4. INFORMATION THEORETIC LEARNING PRINCIPLES4.3 Information theoreti quantitiesIn this setion we disuss some important information theoreti quantities that may beused as information theoreti riteria in an ITL mahine.De�nitions A disrete stohasti variable X is assoiated with a triple (x,AX,PX),where the outome x is the value of the stohasti variable whih takes on a set ofpossible values AX = {a1, a2, . . . , aN}. These have probabilities (distribution) PX =
{p1, p2, . . . , pN}, where P (x = ai) = pi, pi ≥ 0 and ∑

ai∈AX
P (x = ai) = 1.A ontinuous stohasti variable X is assoiated with a probability density funtion

fX(x), where the outome x is the value of the stohasti variable. The pdf is de�ned as thederivative of the umulative distribution funtion (df), de�ned as P (X ≤ x0) = FX(x0),where 0 ≤ FX(x) ≤ 1. Hene, fX(x0) = ∂
∂x

FX(x) |x=x0
, and ∫∞

−∞
fX(x)dx = 1.We have statistial independene between random variables X1, . . . ,XN if and only if

f(x1, . . . ,xN) =
∏N

i=1 f(xi).A metri on a set X is a funtion u : X × X → R. For all x,y,z in X , this funtion isrequired to satisfy the following onditions1. u(x, y) ≥ 0.2. u(x, y) = 0 if and only if x=y.3. u(x, y) = u(y, x).4. u(x, z) = u(x, y) + u(y, z).4.3.1 EntropyAll information theoreti riteria are related to the onept of entropy. We now explainShannon's measure of entropy and some of it's properties. A more general version ofentropy, the Renyi entropy is then reviewed.Shannon's entropyAssume there is some unertainty in the outome of an random experiment and that thepossible outomes of the experiment is given by a probability distribution. This �uner-tainty� was �rst quanti�ed by Shannon as H = HN (p1, p2, . . . , pN) satisfying the followingriteria [25℄ [9℄1. HN(p1, p2, . . . , pN) is a symmetri funtion of its variables.As an example, HN (p1, p2, . . . , pN) = HN(p2, p1, . . . , pN).2. HN(p1, p2, . . . , pN) is a ontinuous funtion of p1, p2, ...., pN .3. HN( 1
N

, . . . , 1
N

) attains the maximum value.



4.3. INFORMATION THEORETIC QUANTITIES 234. HN+1(tp1, (1 − t)p1, p2, . . . , pN) = HN(p1, p2, . . . , pN) + p1H2(t, 1 − t) for any distri-bution pX and 0 ≤ t ≤ 1.The fourth property of Shannon entropy may be explained as follows [25℄. If a hoieis broken down into two suessive hoies, the original entropy (H) is the weighted sumof the individual values of H [25℄. This is illustrated in Fig. 4.2.

Figure 4.2: At the left we have three possibilities, eah hosen aordingto the probabilities p1 = 1
2
, p2 = 1

3
, p3 = 1

6
. On the right, we �rst hoosebetween two possibilities eah with probability 1

2
. If the seond possibilityis hosen, we make another hoie with probabilities 2

3
and 1

3
. The �nalresults have the same probabilities as before. We require, in this speialase, that H(1

2
, 1

3
, 1

6
) = H(1

2
, 1

2
) + 1

2
H(2

3
, 1

3
). The 1

2
oe�ient is beausethis seond hoie only ours half the time.Shannon showed that the only H satisfying the above assumptions is [25℄

HN(p1, p2, . . . , pN) = HN(PX) = −K
∑

pi∈PX

pi logb pi, (4.4)with the onvention that 0 logb 0 = 0. This measure he alled entropy, beause it is the sameexpression used to de�ne entropy in statistial mehanis. K is some onstant, dependingof the units of the sample data. If the base b = 2, the entropy unit is bits and if b = e theunit is nats. In this thesis we leave the base b of the logarithm unspei�ed, sine it is just ameasurement sale. Entropy is usually denoted by H(X) where X is a label for a randomvariable, and not the argument of a funtion. Shannon's entropy depend on the quantity
I(pi) = − log pi, (4.5)



24 CHAPTER 4. INFORMATION THEORETIC LEARNING PRINCIPLESwhih was proposed by Hartley as a measure of the information reeived by learning thata single event of probability pi took plae [7℄. Hene the Shannon entropy is a weightedaverage of informations I(pi)
H(X) = E{I(pi)}. (4.6)Properties of Shannon entropySeveral properties of the Shannon entropy an be derived based on the four basi properties[9℄ [25℄ [3℄1. Adding or removing an event with probability zero does not ontribute to the entropy,

HN(p1, p2, . . . , pN , 0) = HN(p1, p2, . . . , pN).2. It vanishes when one outome is ertain,
HN(p1, p2, . . . , pN) = 0, pi = 1, pj = 0, j 6= i, i = 1, . . . , N .3. The maximum of HN inreases as N inreases.4. HN ≥ 0.Example To illustrate some properties of Shannon entropy let the stohasti variable Xbe given by

X =

{
1, with probability p
0, with probability 1 − p.The entropy in this ase is

H(X) = −p log(p) − (1 − p) log(1 − p),as shown in Fig. 4.3 as a funtion of p. Note in Fig. 4.3 that the entropy is zero when p = 0or p = 1, meaning there is no unertainty about the outome of the stohasti experiment.If p = 1
2
the unertainty is maximized, and we need on average 1 bit to transmit theoutome of the experiment.



4.3. INFORMATION THEORETIC QUANTITIES 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

p

H
(p

)

Figure 4.3: H(X) = H(p) in bits with Shannon's entropy, notie that H(X) = 1, when
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26 CHAPTER 4. INFORMATION THEORETIC LEARNING PRINCIPLESShannon di�erential entropyFor a ontinuous stohasti variable X with density f(x)1 the di�erential entropy h(X) isde�ned as [25℄ [3℄,
h(X) = −

∫
f(x) log f(x)dx. (4.7)This an also be written as an expeted value

h(X) = Ef{− log f(x)}. (4.8)Properties of Shannon's di�erential entropy1. If X is limited to a ertain volume v in spae, then h(X) is maximum and equal to
log v when f(x) is onstant (uniform density funtion) in the volume.2. Di�erential entropy may be negative. If we onsider the uniform density above, for
v < 1, log v < 0.3. The normal distribution maximizes the entropy over all distributions with the sameovariane. This property an be exploited to measure the non-Gaussianity of astohasti variable.4. The di�erential entropy is a measure that is relative to the oordinate system. Con-sider for example hanging oordinates by a linear transformation, Y = MX. Inthat ase,

h(Y) = h(X) + log | det(M)|.Renyi's entropyAs explained above, Shannon's entropy is a measure of the average amount of informationontained in a single observation of a random variable. Renyi used a more general theoryof mean values, where the mean of the real numbers, x1, . . . , xN , with positive weighting
p1, . . . , pN , has the form [18℄ [22℄

x = ϕ−1
N∑

i=1

piϕ(xi), (4.9)where ϕ(x) is a Kolmogorov-Nagumo funtion, whih is an arbitrary ontinuous and stritlymonotoni funtion de�ned on the real numbers. He found that a general entropy measure
H obeys the relation [18℄

H = ϕ−1

(
N∑

i=1

piϕ(I(pi))

)
, (4.10)1We assume that the stohasti variable has a density funtion where the integral does exist.



4.3. INFORMATION THEORETIC QUANTITIES 27where I(pi) is Hartley's information measure. In order to be an information measure
ϕ(·) annot be arbitrary, sine information is additive. We have two hoies, ϕ(x) = xor ϕ(x) = 2(1−α)x. The �rst ase gives Shannon's entropy and the seond gives Renyi'sentropy of order α [18℄

HRα
(X) =

1

1 − α
log

(
N∑

k=1

pα
k

)
α > 0, α 6= 1. (4.11)There is a well known relation between Shannon's and Renyi's entropy. Let HS denoteShannon's entropy, then [18℄

HRα
≥ Hs ≥ HRβ

if 0 < α < 1 and β > 1,

lim
α→1

HRα
= HS.Renyi's and Shannon's entropies an also be related to eah other in another way. If weonsider the probability mass funtion P = (p1, p2, . . . , pN) as a point in the N-dimensionalspae, this point will always be in the �rst quadrant of a N-dimensional hyperplane witheah axis interseting the oordinate one. The distane of the point P to the origin is the

α root of
dα =

N∑

k=1

pα
k = ||P ||αand the α root of dα is alled the α-norm of the probability mass funtion [18℄. Renyi'sentropy satis�es all of Shannon's riteria in 4.3.1 on page 23. Exept of the fourth prop-erty. The Renyi's entropy of order α = 2, is denoted by Renyi's quadrati entropy andorresponds to the 2-norm of the probability mass funtion.If we repeat the example on page 24 with Renyi's quadrati entropy measure, we get asimilar shape in Fig. 4.4, as in Shannon's entropy in Fig. 4.3 on page 25.
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4.3. INFORMATION THEORETIC QUANTITIES 29Renyi's di�erential entropyFor the ontinuous random variable X with pdf f(x) we obtain the di�erential version ofRenyi's entropy [18℄
hRα

(X) =
1

1 − α
log

∫
fα(x)dx, (4.12)

=
1

1 − α
log Ef{f 1−α(x)}. (4.13)If we set α = 2, we get the di�erential Renyi quadrati entropy

hR2
(X) = − log

∫
f 2(x)dx, (4.14)

= − log Ef{f(x)}. (4.15)Some properties of the Renyi entropy of order α are the following [9℄1. Just as for Shannon entropy, the Renyi entropy is maximized for a uniform distribu-tion for random variables with �nite support.2. The Renyi entropy is not in general maximized by the Gaussian distribution in the�xed variane ase.3. The Renyi entropy is invariant to rotations and translations.4.3.2 DivergeneThis setion reviews some of the most ommon measures of divergene or relative entropyused in information theoreti learning. Divergene is used as a measure of statistialsimilarity, and one an think of it as a generalization of algebrai distane measures toprobability spaes [5℄.Kullbak-Leibler divergeneThis measure disriminates two probability density distributions p(x) and q(x), and it isalso referred to as relative entropy
DKL{p, q} =

∫
p(x) log

p(x)

q(x)
dx,

= Ep

{
log

p(x)

q(x)

}
. (4.16)Some properties of this measure are [9℄



30 CHAPTER 4. INFORMATION THEORETIC LEARNING PRINCIPLES1. DKL{p, q} ≥ 0, ∀p, q.2. DKL{p, q} = 0 only if p(x) = q(x).3. DKL{p, q} is additive for independent random events.This measure is not a metri, sine it is not symmetri i.e DKL{p, q} 6= DKL{q, p}, andit does not satisfy the triangle inequality. The divergene measure is invariant under thefollowing hanges in x [9℄1. Permutation in the order of whih the omponents are arranged.2. Amplitude saling.3. Monotoni nonlinear transformation.The Kullbak-Leibler divergene is impliitly based on Shannon's entropy, sine
DKL{p, q} = −

∫
p(x) log q(x)dx −

(
−
∫

p(x) log p(x)dx

)
, (4.17)where the last part is Shannon's di�erential entropy and the �rst part an be interpretedas �ross entropy� between p(x) and q(x) [9℄.Mutual InformationThe mutual information MI(X;Y) between two random variables X and Y with jointdensity f(x,y) is de�ned as [3℄

MI(X;Y) =

∫
f(x,y) log

f(x,y)

f(x)f(y)
dxdy. (4.18)From this de�nition [3℄

MI(X;Y) = h(X) − h(X|Y) = h(Y) − h(Y|X). (4.19)Mutual information is a speial ase of Kullbak-Leibler divergene, measuring the distanebetween the joint probability distribution and the produt of the marginal distributions.Renyi's divergeneRenyi analyzed the Kullbak-Leibler divergene and expressed it with a general mean value,in a similar way as entropy. Renyi proposed the following distane measure between pdfs
p(x) and q(x) [22℄

DRα
{p, q} =

1

1 − α
log

∫
pα(x)

qα−1(x)
dx,

=
1

1 − α
log Ep

{
pα(x)

qα−1(x)

}
. (4.20)The Renyi divergene possesses the following properties [22℄
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{p, q} ≥ 0, ∀p, q, α > 0.2. DRα
{p, q} = 0, if and only if p(x) = q(x), ∀x ∈ R

d.3. limα→1 DRα
{p, q} = DKL{p, q}.4. DRα

{p, q} is additive for independent events.We see that Renyi divergene is not symmetri and hene not a metri. We an use Renyidivergene to measure the mutual information between random variables, measuring thedistane between the joint pdf and the produt of marginal densities.Cauhy-Shwarz divergenePrinipe et al.[18℄, de�ned a pdf divergene measure based on the Cauhy-Shwarz (CS)inequality. Let p(x) and q(x) be pdf funtions, i.e non-negative and integrating to unity.De�ne the inner produt between two square integrable funtions p(x) and q(x) as 〈p, q〉 =∫
p(x)q(x)dx. Then by the Cauhy-Shwarz inequality, and the fat that p(x) and q(x)are always non-negative

〈p, q〉2 ≤ 〈p, p〉 · 〈q, q〉,with equality if and only if the two funtions are linearly dependent. The Cauhy-Shwarzpdf divergene is de�ned [13℄,[12℄ as
DCS{p, q} = − log

{
〈p, q〉√

〈p, q〉〈q, q〉

}

= − log

{
Ep{g(x)}√

Ep{p(x)}Eq{q(x)}

}
. (4.21)Some properties [9℄ of the Cauhy-Shwarz divergene are1. DCS{p, q} ≥ 0, ∀p, q.2. DCS{p, q} = 0, if and only if p(x) = q(x), ∀x ∈ R

d.3. DCS{p, q} = DCS{q, p}.4. DCS{p, q} is additive for independent events.The CS divergene does not satisfy the triangle inequality, and for this reason it is not adistane metri [9℄. CS divergene an be used as a measure of statistial independenebetween random variables. CS divergene is impliitly based on Renyi's quadrati entropy,sine
DCS{p, q} =

− log

∫
p(x)q(x)dx − 1

2

(
− log

∫
p2(x)dx

)
− 1

2

(
− log

∫
q2(x)dx

)
, (4.22)



32 CHAPTER 4. INFORMATION THEORETIC LEARNING PRINCIPLESwhere− log
∫

p2(x)dx is the Renyi quadrati entropy with respet to p(x) and− log
∫

q2(x)dxis the entropy with respet to q(x). The �rst term may be regarded as a �ross-entropy�between p(x) and q(x) [9℄.Integrated squared errorPrinipe et al. in [18℄ also proposed an integrated squared error (ISE) distane measurebetween the two pdfs, p(x) and q(x). As before, the inner produt between two squareintegrable funtions p(x) and q(x) is 〈p, q〉 =
∫

p(x)q(x)dx. The ISE divergene measureis de�ned as
DISE{p, q} =

∫
[p(x) − q(x)]2dx,

=

∫
p2(x)dx − 2

∫
p(x)q(x)dx +

∫
q2(x)dx,

= Ep{p(x)} − 2Ep{q(x)} + Eq{q(x)}
= 〈p, p〉 − 2〈p, q〉 + 〈q, q〉 (4.23)This measure is obviously zero if the two pdfs are equal, it is always non-negative andsymmetri. It does not satisfy the additive property, so we must be areful when alling itan information theoreti measure [9℄.Other divergene measuresThere exists many other important distane measures between pdfs. A well known exampleis the Csiszar divergene. For an arbitrary onvex funtion h(·) suh that h(1) = 0 we de�ne[5℄
Dh{p, q} =

∫
p(x)h

(
q(x)

p(x)

)
dx. (4.24)Some other measures are the Je�rey's distane, whih is a symmetri version of theKullbak-Leibler distane, and Cherno� distanes [9℄. Common to most of the measuresare that they are not metris, but they an give us useful information about divergenebetween pdfs.4.4 Estimation of information theoreti ost funtionsIn Setion 4.2 we explained how a learning mahine depends on an optimality riterionto alulate error terms to be used in an adaptation algorithm. In information theoretilearning this riterion is based on entropy or divergene of probability density funtions.The output of the ost funtion or optimality riterion in Fig. 4.1 is typially used to updatethe parameters W of the mapper g(X, W ) during a training phase. We have already seenin Chapter 3 that a Parzen window density estimator utilizes a kernel funtion to givean estimate of a pdf. In this setion we review some tehniques to �nd estimates of



4.4. ESTIMATION OF INFORMATION THEORETIC COST FUNCTIONS 33information measures using the Parzen window tehnique for density estimation. Sine theParzen window density estimate an be ontinuous, we also want our ost funtions to beontinuous. Thus we fous on estimating di�erential information theoreti measures.4.4.1 Renyi quadrati entropy estimateThe di�erential Renyi quadrati entropy assoiated with the pdf f(x) is given by [22℄
hR2

(X) = − log

∫
f 2(x)dx (4.25)Sine the Renyi quadrati entropy ontains a produt of densities, we take advantageof the onvolution property of Gaussians, and use the Gaussian kernel Wσ2(·, ·) in the plugin density estimate. Sine the logarithm is a monotoni funtion, we fous on the quantity

V (f) =
∫

f̂ 2(x)dx, given by2
V (f) =

∫
1

N

N∑

i=1

Wσ2(x,xi)
1

N

N∑

i′=1

Wσ2(x,xi′)dx

=
1

N2

∫ N,N∑

i,i′=1

Wσ2(x,xi)Wσ2(x,xi′)dx. (4.26)We now use the onvolution theorem for Gaussians
∫

Wσ2(x,xi)Wσ2(x,xi′)dx = W2σ2(xi,xi′). (4.27)Inserting this into Eq. (4.26) gives
V (f) =

1

N2

N,N∑

i,i′=1

W2σ2(xi,xi′). (4.28)It an be seen that this sample based estimator involves no approximations, exept the pdfestimate itself. This is an advantage ompared to the Shannon entropy estimate, whihhas made the Renyi entropy the preferred estimator over Shannon's. The expression inEq. (4.28) is named the information potential (IP) by Prinipe et al. [18℄ due to an analogywith a potential �eld. The Renyi quadrati entropy estimator is thus
ĥR2

(X) = − log {V (f)} . (4.29)We an also estimate the Renyi entropy of higher orders and obtain more informationabout the struture of the data set (α > 2), but the algorithm beomes muh more omplex
(O(Nα)).2∑N,N

i,i′=1
equals the double summation ∑N

i=1

∑N

i′=1



34 CHAPTER 4. INFORMATION THEORETIC LEARNING PRINCIPLES4.4.2 ISE divergene estimateIn the Renyi's quadrati entropy estimate, the use of a quadrati measure and a GaussianParzen window, resulted in an estimate with no other approximations than the densityestimate. In a similar manner we an estimate the ISE{p, q} between two pdfs p(x) and
q(x) given by [18℄

ISE{p, q} =

∫
[p(x) − q(x)]2 dx

=

∫
p2(x)dx − 2

∫
p(x)q(x)dx +

∫
q2(x)dx. (4.30)For an overview of some properties of this measure, see Setion 4.3.2 on page 32. Assumewe have samples xi, i = 1, . . . , N1 and xj , j = 1, . . . , N2 from p(x) and q(x), respetively.Estimating the two pdfs with the Parzen window method gives

p̂(x) =
1

N1

N1∑

i=1

Wσ2(x,xi) q̂(x) =
1

N2

N2∑

j=1

Wσ2(x,xj). (4.31)Plugging this into Eq. (4.30) we get the ISE sample based estimator
ÎSE{p, q} =

1

N2
1

N1,N1∑

i,i′=1

W2σ2(xi,xi′) −
2

N1N2

N1,N2∑

i,j=1

W2σ2(xi,xj) +
1

N2
2

N2,N2∑

j,j′=1

W2σ2(xj ,xj′). (4.32)4.4.3 Cauhy-Shwarz divergene estimateThe Cauhy-Shwarz divergene is given by Eq. (4.21) as
DCS{p, q} = − log

{
〈p, q〉√

〈p, q〉〈q, q〉

}

= − log





∫
p(x)q(x)dx√∫

p(x)dx
∫

q(x)dx



 (4.33)Using the same plug in tehnique as for the ISE divergene estimator in Eq. (4.4.2) we anexpress a sample based estimator for the CS divergene as

D̂CS{p, q} = − log





1
N1N2

∑N1,N2

i,j=1 W2σ2(xi,xj)√
1

N2
1

∑N1,N1

i,i′=1 W2σ2(xi,xi′)
1

N2
2

∑N2,N2

j,j′=1 W2σ2(xj ,xj′)



 (4.34)



4.4. ESTIMATION OF INFORMATION THEORETIC COST FUNCTIONS 354.4.4 Using non-Gaussian kernels in estimation of ost funtionsThe use of Gaussian kernels has the advantage that the only approximation in the estimateof the ost funtion will be in the estimation of the pdf. In general, we searh for ostfuntions involving produts of densities, beause of the properties of the Gaussian kernel.This is the main reason why quadrati measures are preferred in ITL.Generally, all the di�erential versions of information theoreti quantities de�ned earlieran be estimated by expressing the quantities in terms of an expetation value. This mayrequire many samples to be an aurate estimate. We now examine the Parzen window-based estimator of the inner-produt ∫ p(x)q(x)dx, sine this inner-produt is ommon inall the previously de�ned ost funtions. Note that
∫

p(x)q(x)dx = Ep{q(x)}, (4.35)where Ep{·} denotes the expetation with respet to the density p(x). The expetationoperator may be approximated based on the available samples in the following way
Ep{q(x)} ≈ 1

N1

N1∑

i=1

q(xi). (4.36)Assume now that
q̂(x) =

1

N2

N2∑

j=1

Kh(x,xj), (4.37)where Kh(·, ·) is a non-Gaussian kernel with bandwidth h. Eq. (4.35) an now be estimatedby
∫

p(x)q(x)dx ≈ 1

N1

N1∑

i=1

q̂(xi)

=
1

N1

N1∑

i=1

1

N2

N2∑

j=1

Kh(xi,xj)

=
1

N1N2

N1,N2∑

i,j=1

Kh(xi,xj) (4.38)This is the same result as in the ase where Gaussian kernels are used. The only di�ereneis an additional approximation with regard to the expetation operator.4.4.5 Shannon entropy estimateWe illustrate how the Shannon entropy of a pdf f(x) may estimated using non-Gaussiankernels. The Shannon entropy may be written as an expeted value
h(X) = Ef{− log f(x)}.



36 CHAPTER 4. INFORMATION THEORETIC LEARNING PRINCIPLESWe have samples {xi}, i = 1, . . . , N from f(x). With the Parzen window estimator wean estimate f(x) by f̂(x). Using the plug-in density estimator priniple, we replae f(x)with f̂(x). We now approximate the expeted value by averaging over all of the samples,whih gives the following estimate for the Shannon entropy of f(x)

ĥ(X) =
1

N

N∑

i=1

{
− log f̂(xi)

}
,

=
1

N

N∑

i=1

{
− log

1

N

N∑

j=1

Kh(xi,xj)

}
. (4.39)The drawbak of this entropy estimate is the dependeny on the approximation of theexpeted value. With few samples of training data this may not be a good estimator forentropy.



Chapter 5An information theoreti kernellassi�erReently some very interesting relations between the information theoreti measures de-�ned in the previous hapter estimated with Parzen windows satisfying Merer's theorem,and mean vetors in Merer kernel spaes has been shown. In this hapter we review thisrelationship, and use it to analyze a possible lassi�er in both the input spae and theMerer kernel spae. This lassi�er operates impliitly in a Merer kernel spae, and werefer to it as the standard ISE lassi�er. We also mention a onnetion between the ISEdivergene and the graph ut. In Part II, Setion 9.3 of this thesis we present some resultsusing this lassi�er on some well known data sets.5.1 Merer kernel theoryMerer kernel-based learning algorithms make use of the following idea. Via a nonlinearmapping [9℄ [17℄
Φ : R

d −→ F
x 7−→ Φ(x)the input data x1, . . . ,xN ∈ R

d is mapped into a potentially muh higher dimensionalfeature spae F . For a given learning problem one now onsiders the same algorithm in Finstead of in the input spae R
d, working with [17℄

(Φ(x1), y1), . . . , (Φ(xN ), yN) ∈ F × Y.The learning algorithm used is usually linear, and an be expressed solely in terms ofinner-produt evaluations. If we use the kernel-trik we an alulate the inner-produtsin the feature spae using kernel funtions. Using kernel funtions we impliitly exeutethe learning algorithm in the feature spae F . The kernel trik thus allows us to alulateinner-produts in a possible very high-dimensional spae.37



38 CHAPTER 5. AN INFORMATION THEORETIC KERNEL CLASSIFIERConsider a symmetri kernel funtion ρ(x,y). If ρ : d × d → R is a ontinuous kernelof a positive integral in a Hilbert spae L2(d) on a ompat set d ⊂ R
N , i.e

∀Ψ ∈ L2 :

∫

d

ρ(x,y)Ψ(x)Ψ(y)dxdy ≥ 0. (5.1)This means that ρ(·, ·) is a positive semide�nite funtion. Then there exist a spae F anda mapping Φ : R
d → F , suh that by Merer's theorem [13℄

ρ(x,y) = 〈Φ(x), Φ(y)〉 =

NF∑

i=1

λiφi(x)φi(y), (5.2)where 〈·〉 denotes an inner-produt, the φi's are the eigenfuntions of the kernel, the λi's arethe orresponding eigenvalues and the dimension of the feature spae F is NF ≤ ∞ [13℄.The operation in Eq. (5.2) is the �kernel trik�. A kernel funtion that satis�es Eq. (5.1)is known as a Merer kernel funtion. The most widely used Merer kernel funtion is theradial-basis-funtion (RBF) [13℄
ρ(x,y) = exp

{
−‖x − y‖2

2σ2

}
, (5.3)where σ is a sale parameter to selet the bandwidth or width of the RBF.Cover showed in [2℄ that the probability that lasses are linearly separable inreaseswhen the features are nonlinearly mapped to a higher dimensional feature spae. Usingthe kernel trik we are able to work impliitly in very high dimensional spaes. It has beenshown [19℄ that the Gaussian kernel has an in�nite dimensional feature spae, thus givenany labeled data set (where points with di�erent labels have di�erent positions), thereexists a linear hyperplane whih orretly separates them in the Merer spae given by theGaussian kernel.The support vetor mahine [17℄ is one of the most popular Merer kernel based learningalgorithms taking advantage of the kernel trik. The basi idea behind it is to �nd thehyperplane between two lasses whih maximizes the margin between the points losestto the hyperplane. The vetors from this hyperplane to the losest points onstitute thesupport vetors. If the lasses are non-separable in the input spae, this hyperplane andthe points are alulated in a high dimensional Merer kernel spae, using the kernel trik.5.2 Information measures in the Merer kernel spaeWe will now review how some of the information theoreti measures an be expressed inthe term of mean values in a Merer kernel feature spae. The key point to expressingITL riteria in a Merer kernel spae is to note that for any positive semi-de�nite kernelfuntion Kh(·, ·) that satis�es Merer's theorem

Kh(xi,xi′) = ρ(xi,xi′) = 〈Φ(xi), Φ(xi′)〉. (5.4)



5.2. INFORMATION MEASURES IN THE MERCER KERNEL SPACE 39The Gaussian kernel is a kernel that satis�es Merer's theorem. We now see how theinformation potential de�ned in Eq. (4.28) on page 33 may be expressed in a Merer kernelfeature spae. Using Wσ2(·, ·) as a Merer kernel, the IP was expressed in Setion 4.4.1 as
V (f) =

1

N2

N,N∑

i,i′=1

W2σ2(xi,xi′).We an now use the kernel trik to express the IP as
V (f) =

1

N2

N,N∑

i,i′=1

〈Φ(xi)Φ(xi′)〉,

=

〈
1

N

N∑

i=1

Φ(xi)
1

N

N∑

i′=1

Φ(xi′)

〉

= mTm

= ‖m‖2, (5.5)where m is the mean of the Φ-transformed data
m =

1

N

N∑

i=1

Φ(xi). (5.6)It turns out that the IP for a data set may be expressed as the squared norm of a meanvetor of the same data set mapped ta a Merer kernel feature spae. The Renyi quadratientropy estimate of any pdf may thus be visualized with a simple geometri desription,as a mean vetor in a Merer kernel feature spae.5.2.1 ISE divergeneWe will now see how the ISE divergene an be expressed in a Merer kernel feature spae.The ÎSE{p, q} estimate ∫
[p̂(x) − q̂(x)]2dxbetween two pdfs p(x) and q(x), was estimated in Eq. (4.30) on page 34 as
ÎSE{p, q} =

1

N2
1

N1,N1∑

i,i′=1

W2σ2(xi,xi′) −
2

N1N2

N1,N2∑

i,j=1

W2σ2(xi,xj) +
1

N2
2

N2,N2∑

j,j′=1

W2σ2(xj,xj′).Similar to the alulations in Eq. (5.5) this may be expressed as
ÎSE{f, g} = ‖m1‖2 − 2mT

1 m2 + ‖m2‖2

= ‖m1 −m2‖2, (5.7)



40 CHAPTER 5. AN INFORMATION THEORETIC KERNEL CLASSIFIERwhere m1 and m2 are the mean vetors in the Merer kernel feature spae for data pointsdrawn from p(x) and q(x), respetively. That is
m1 =

1

N1

N1∑

i=1

Φ(xi) m2 =
1

N2

N2∑

j=1

Φ(xj). (5.8)From this we see that the ISE divergene measure has a nie geometri interpretation inthe Merer kernel feature spae. It measures the the squared Eulidean distane betweenthe information potentials of the distributions given by p(x) and q(x). The ISE divergenein a Merer kernel feature spae is illustrated in Fig. 5.1 on page 41, where w is the vetor
m1 − m2.5.2.2 Cauhy-Shwarz divergeneFor ompleteness, we also review an interpretation of the CS-divergene measure in aMerer kernel feature spae. The D̂CS{p, q} estimate was given in Eq. (4.34) on page 34as

D̂CS{p, q} = − log





1
N1N2

∑N1,N2

i,j=1 W2σ2(xi,xj)√
1

N2
1

∑N1,N1

i,i′=1 W2σ2(xi,xi′)
1

N2
2

∑N2,N2

j,j′=1 W2σ2(xj ,xj′)



 (5.9)between two pdfs p(x) and q(x). Again we use the kernel trik in the same way as inEq. (5.5) and in Eq. (5.7) and an rewrite Eq. (5.9) to

D̂CS{p, q} = − log





mT
1 m2√

‖m1‖2‖m2‖2





= − log

{
〈m1,m2〉√

〈m1,m1〉〈m2,m2〉

}

= − log {cos ∠(m1,m2)} (5.10)This means that the CS divergene measure is dependent of the osine of the angle betweenthe vetors m1 and m2 in Fig. 5.1 on page 41.
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Figure 5.1: Illustration of the relationship between the meanvetors m1 and m2 in the Merer kernel feature spae. The ISEdivergene is given by the squared Eulidean distane betweenthem, ‖w‖2, where w = m1 −m2. The CS divergene measureis related to the osine of the angle between m1 and m2.



42 CHAPTER 5. AN INFORMATION THEORETIC KERNEL CLASSIFIER5.3 The standard ISE lassi�erIn Fig. 5.1 in the previous setion, we saw how the ISE between two distributions maybe represented in terms of the Eulidean distane between the lass mean vetors in theMerer kernel feature spae. In this setion we use this geometri view of the ISE divergenebetween two lasses to propose the standard ISE lassi�er.We want to lassify an unknown sample xt to one of two lasses ω1 or ω2. Let Φ(xt) = yrepresent the sample in the Merer kernel feature spae. Then we may lassify xt using aminimum Eulidean distane lassi�er in the kernel spae. That is, we simply lassify yto the lass of its losest mean vetor.

Figure 5.2: Classi�ation in the Merer kernel featurespae.In Fig. 5.2 the mean vetors m1 of lass ω1 and m2 of lass ω2 are illustrated. Thevetors m1 − y and m2 − y are used to �nd whih mean vetor the unlassi�ed point ybelongs to. We may now use the following lassi�ation rule
xt → ω1 : ‖m1 − y‖2 − ‖m2 − y‖2 ≤ 0

⇔ ‖m1‖2 − 2mT
1 y + ‖y‖2 −

(
‖m2‖2 − 2mT

2 y + ‖y‖2
)
≤ 0

⇔ mT
1 y −mT

2 y + b ≥ 0

⇔ wTy + b ≥ 0, (5.11)where w = m1 −m2 de�nes a hyperplane with b = 1
2
[‖m2‖2 −‖m1‖2] as a threshold. Thethreshold b depends on the squared Eulidean norms of the mean values, whih previously



5.3. THE STANDARD ISE CLASSIFIER 43are shown to be equivalent to the lass information potentials, and thus the lass entropies.We also see that the proposed ISE lassi�er is a hyperplane lassi�er, sine w de�nes ahyperplane separating two lasses in a Merer feature spae. All the produts in Eq. (5.11)are expressed in terms of inner-produts, and may be alulated using the kernel trik asdone in Eq. (5.5) on page 39. This means that we may impliitly operate in Merer spae,using kernel funtions to evaluate all inner-produts.We now analyze the Merer kernel feature spae lassi�ation in terms of the Parzenwindow based estimators in the input spae. We have
mT

1 y = mT
1 Φ(xt) =

1

N1

N1∑

i=1

ΦT (xi)Φ(xt) =
1

N1

N1∑

i=1

Wσ2(xt,xi) = p̂(xt) (5.12)Likewise,
mT

2 y = mT
2 Φ(xt) =

1

N2

N2∑

j=1

ΦT (xj)Φ(xt) =
1

N2

N2∑

j=1

Wσ2(xt,xj) = q̂(xt) (5.13)Using the result in Eq. (5.5) we see that
b =

1

2
[‖m2‖2 − ‖m1‖2]

=
1

2
[V2(f) − V1(f)]. (5.14)Where V2(f) − V1(f) is a measure of the di�erene in information potential between thelasses, and thus the di�erene in entropy between lass ω1 and ω2. This means that usingthe ISE divergene measure as a starting point, we may use the following lassi�ation rulein the input spae

xt → ω1 : p̂(xt) − q̂(xt) + b ≥ 0, (5.15)where p̂(xt) is the Parzen window density estimate evaluated at the test point xt, giventhat the point belongs to lass ω1 and q̂(xt) the Parzen window density estimate given thatthe point belongs to lass ω2.5.3.1 Connetions to Parzen window Bayes lassi�erIn the two lass ase the ISE lassi�er is given by
xt → ω1 : p̂(xt) − q̂(xt) + b ≥ 0

b =
1

2
[V2(f) − V1(f)].

V1(f) and V2(f) are the information potentials of lass ω1 and ω2. We notie that the ISElassi�ation rule is similar to the Parzen window Bayes lassi�ation rule for equal a prioriprobabilities, given by
xt → ω1 : p̂(xt) − q̂(xt) ≥ 0



44 CHAPTER 5. AN INFORMATION THEORETIC KERNEL CLASSIFIERexept from the threshold, b = 1
2
[V2(f) − V1(f)]. This threshold indiates that the ISElassi�er is dependent on the di�erene in entropy or IP between the lasses. If the entropyof the data in lass one is larger than the entropy of lass two, V2(f) − V1(f) > 0 the ISElassi�er will assign the test point xt to the lass with largest entropy if p̂(xt)− q̂(xt) = 0.This indiates that the ISE lassi�er tends to lassify data to the lass with largest entropyor equivalently, the lass with the smallest information potential. This may inrease theprobability of error at the ost of prioritizing the lass with largest entropy. The e�et ofdi�erent lass potentials will be investigated further in experiments.5.3.2 Multilass standard ISE lassi�erBased on a training data set, we may de�ne the lass mean vetors m1, . . . ,mC for eah of

C lasses ω1, . . . , ωC . We wish to lassify some test sample xt, to the lass whih minimizesthe ISE lassi�ation ost funtion in Eq. (5.7). This is ahieved by measuring the squaredEulidean distane between Φ(xt) and eah of the lass mean vetors, and assign the testsample to the lass for whih the squared eulidean distane is smallest. This orrespondsto the following lassi�ation rule
xt → ωc : min

c

(
‖mc − Φ(xt)‖2) ,

⇔ min
c

(〈mc,mc〉 − 2〈mc, Φ(xt)〉 + 〈Φ(xt), Φ(xt)〉)
⇔ min

c
(〈mc,mc〉 − 2〈mc, Φ(xt)〉 (5.16)where c = 1, . . . , C, and

〈mc, Φ(xt)〉 =

〈
1

Nc

Nc∑

i=1

Φ(xi), Φ(xt)

〉

=

〈
1

Nc

Nc∑

i=1

Φ(xi)
T Φ(xt)

〉

=
1

Nc

Nc∑

i=1

Wσ2(xt,xi)

= f̂c(xt) (5.17)as before,
〈mc,mc〉 = ‖mc‖2. (5.18)This is very similar to Merer spae k-means lustering,[26℄,[29℄ but we know the means ofeah luster in this lassi�ation problem.



5.3. THE STANDARD ISE CLASSIFIER 455.3.3 Using Non-Merer kernelsIn Setion 4.4.4 we showed that the inner-produt ∫ p(x)q(x)dx = Ep{q(x)} an be esti-mated using any kind of density kernel Kh(·, ·). Notie that the ISE divergene measure isdependent on the density estimate at a test point xt, and a threshold given by the di�erenein information potential between the lasses.5.3.4 Connetion to the graph utThe set of points in an arbitrary feature spae may be represented as a weighted undiretedgraph G = (V, E), where the nodes, V are the points in the feature spae, and E are theedges between eah pair of nodes. The weight on eah edge, k(i, i′), is a funtion ofsimilarity between the nodes i and i′. Let node i and i′ be represented with feature vetors
xi and xi′ , respetively, i, i′ = 1, . . . , N .An exponential funtion is often used as a similarity measure [9℄

k(i, i′) = exp

{‖xi − xi′‖2

2σ2
G

}
, (5.19)where σG is the width of the exponential funtion assoiated with the graph G. A graphmay be partitioned into two disjoint sets G1,G2, G1 ∪ G2 = V, G1 ∩ G2 = ∅, with points xi,

i = 1, . . . , N1 ∈ G1 and xj , j = 1, . . . , N2 ∈ G2. The degree of dissimilarity between thesetwo piees an be omputed as total weight of the edges that have been removed. In graphtheory, this is alled the ut [27℄
cut(G1,G2) =

N1N2∑

i,j=1

k(xi,xj). (5.20)Assume that the points in G1 and G2 have distribution funtions p(x) and q(x). Now, usingthe Parzen window-based estimator, another interpretation of the ut is
∫

p̂(x)q̂(x)dx =
1

N1N2

N1,N2∑

i,j=1

k(xi,xj), (5.21)where k(xi,xj) = W2σ2(xi,xj), and W2σ2(·, ·) is the Gaussian Parzen window.The total sum of all the edges in a graph is alled the volume of the graph
vol(G) =

N,N∑

i,i′=1

k(xi, xi′). (5.22)From Setion 4.4.1 we know that the information potential an be written as
V (f) =

1

N2

N,N∑

i,i′=1

k(xi,xi′), (5.23)



46 CHAPTER 5. AN INFORMATION THEORETIC KERNEL CLASSIFIERwhere k(xi,xi′) is de�ned as in Eq. (5.21). The onnetion between the IP and volume ofthe graph is given by
N2V (f) = vol(G), (5.24)where f denotes the distribution of the points xi, i = 1, . . . , N .The integrated squared error and graph theoryThe Parzen window-based estimator for the ISE divergene is now onneted to graphtheory by [9℄

ÎSE{p, q} =
1

N2
1

N1,N1∑

i,i′=1

k(xi,xi′) +
1

N2
2

N2,N2∑

j,j′=1

k(xj,xj′) −
2

N1N2

N1,N2∑

i,j=1

k(xi,xj)

= N2
1 vol(G1) + N2

2 vol(G2) − 2N1N2cut(G1,G2). (5.25)



Chapter 6A Laplaian ISE lassi�er
We know from Setion 5.3 that the ISE lassi�er may be viewed as a hyperplane lassi�er.Inspired both by the SVM and the Laplaian lassi�er presented in [12℄, in this hapter,we modify the standard ISE lassi�er by introduing a weighting of inner-produts in theISE divergene measure.The SVM is in a similar way to the ISE lassi�er based on �nding a hyperplane toseparate lass data. In the SVM the task is to �nd the hyperplane that maximizes themargin between lass data in a Merer kernel feature spae. The inner-produts in thisspae an be omputed by using the kernel trik with a Merer kernel funtion. Themaximization of the margin for the SVM leads to a weighting of the training data pointswhen onstruting the lassi�er. The points on the margin are known as the supportvetors. To obtain the relevant weighting, whih determines the Nsv support vetors,a onvex optimization problem must be solved. This proedure has to selet two SVMparameters and is far from straightforward.For many data sets, low values for the overall probability density funtion will orre-spond to lass boundary regions. In [12℄ a lassi�er named the Laplaian lassi�er basedon the Cauhy-Shwarz divergene is presented, where the CS ost funtion uses weightedinner-produts to emphasize the samples with small overall probability. This makes sense,sine the test data points lose to the lass boundaries often are the most di�ult to las-sify orretly. The Laplaian lassi�er does not require the optimization phase assoiatedwith the SVM, but produes similar results as the SVM in several ases [12℄.The previously de�ned ISE lassi�er is now modi�ed to a weighted version to emphasizepoints near the lass borders in the same way as done in [12℄. Next we disuss howthe weighted version of the ISE ost funtion onnets to the Bayes probability of errorand the Laplaian data matrix. The Laplaian matrix has reently been used in manyproblems in lustering [9℄, and it may be interesting to see if it an be used in an ISE basedlassi�er. Some lassi�ation results using the weighted ISE lassi�er, whih we refer to asthe Laplaian ISE lassi�er, are presented in Part II, Setion 9.4.47



48 CHAPTER 6. A LAPLACIAN ISE CLASSIFIER6.1 Modi�ed ISE divergeneIn this setion the ISE divergene previously de�ned by unweighted inner-produts isweighted to emphasize the points in the lass boundaries. Consider two data lasses,
ω1 and ω2, with orresponding probability density funtions p(x) and q(x). Let f(x) =
P1p(x) + P2q(x) be the overall pdf of the data set with P1 and P2 as lass priors. De�nethe weighted inner-produt 〈p, q〉f ≡

∫
p(x)q(x)f(x)−1dx. The ost funtion used in theISE lassi�er is now given by

DISE{p, q} = 〈p, p〉f − 2〈p, q〉f + 〈q, q〉f . (6.1)The only di�erene between this and the previous version of the ost funtion is the inner-produt weighting.6.2 Connetion to the Bayes probability of errorLet R1 and R2 be two regions in the data spae. If a test sample xt ∈ R1, it will beassigned to lass ω1. Otherwise, xt ∈ R2, and it will be assigned to lass ω2. Similar to thederivation of the Bayes probability of error, the regionsR1 andR2 must be determined suhthat the lassi�ation ost funtion is optimized. Assume that the lasses are relativelywell separated, then f(xt) ≈ P1p(xt) for xt ∈ R1 and f(xt) ≈ P2q(xt) for xt ∈ R2. Nowonsider eah of the inner-produts in Eq. (6.1)
〈p, p〉f
=

∫
p2(x)f−1(x)dx

=

∫

R1

p2(x)f−1(x)dx +

∫

R2

p2(x)f−1(x)dx

≈ 1

P1

, (6.2a)where ∫
R2

p2(x)f−1(x)dx ≈ 0 beause we have assumed that the lasses are well separated,and thus p(x) is very small in region R2.
2〈p, q〉f
= 2

∫
p(x)q(x)f−1(x)dx

= 2

[∫

R1

p(x)q(x)f−1(x)dx +

∫

R2

p(x)q(x)f−1(x)dx

]

≈ 2

[
1

P1

∫

R1

q(x)dx +
1

P2

∫

R2

p(x)dx

]
. (6.2b)
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〈q, q〉f
=

∫
q2(x)f−1(x)dx

=

∫

R1

q2(x)f−1(x)dx +

∫

R2

q2(x)f−1(x)dx

≈ 1

P2
, (6.2)where ∫

R1
q2(x)f−1(x)dx ≈ 0 beause we have assumed that the lasses are well separated,and thus q(x) is very small in region R1.Now the weighted version of the ISE divergene measure in the well separated ase anbe written as

DISEf
{p, q} ≈ 1

P1
− 2

[
1

P1

∫

R1

q(x)dx +
1

P2

∫

R2

p(x)dx

]
+

1

P2
. (6.3)The probability of error for the two lass Bayes lassi�er is given by

Pe = P2

∫

R1

q(x)dx + P1

∫

R2

p(x)dx (6.4)and we see that the weighted ISE divergene may be written as
DISEf

{p, q} ≈ 1

P1
+

1

P2
− 2Pe

P1P2

=
1

P1P2
[1 − 2Pe] . (6.5)Thus, minimizing the probability of error also maximizes the weighted divergene measurein the ase where the lass distributions are well separated.6.3 Kernel spae and Laplaian matrix representationIn this setion we review the onnetion between a Parzen window-based estimator forthe f−1(x) weighted ISE divergene and the Laplaian data matrix. The weighted ISEdivergene may be expressed as

DISE{p, q} =〈p, p〉f − 2〈p, q〉f + 〈q, q〉f
=

∫
h2

1(x)dx − 2

∫
h1(x)h2(x)dx +

∫
h2

2(x)dx, (6.6)where h1(x) = f− 1

2 (x)p(x) and h2(x) = f− 1

2 (x)q(x). We are given a training data set
xl, l = 1, . . . , N . This data set onsists of the lass 1 data points, xi, l = 1, . . . , N1, and
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xj , = 1, . . . , N2, the lass 2 data points. Based on the data samples, de�ne the Parzenwindow based estimators [12℄

f̂(x) =
1

N

N∑

l=1

Wσ2(x,xl),

ĥ1(x) =
1

N1

N1∑

i=1

f̂− 1

2 (xi)Wσ2(x,xi),

ĥ2(x) =
1

N2

N2∑

j=1

f̂− 1

2 (xj)Wσ2(x,xj). (6.7)Here, Wσ2(·, ·) is the Parzen window. We have here assumed that a Parzen window witha Gaussian kernel, with uniform bandwidth, σ2 is used in all estimators. Any kernelfuntion Kh(·, ·), with bandwidth h, satisfying Merer's theorem may be used instead ofthe Gaussian kernel Wσ2(·, ·), see also Setion 4.4.4 on page 35. Now we have
∫

ĥ1(x)ĥ2(x)dx

=

∫
1

N1

N1∑

i=1

Wσ2(x,xi)

f̂
1

2 (xi)

1

N2

N2∑

j=1

Wσ2(x,xj)

f̂
1

2 (xj)
dx

=
1

N1N2

N1,N2∑

i,j=1

1

f̂
1

2 (xi)f̂
1

2 (xj)

∫
Wσ2(x,xi)Wσ2(x,xj)dx

=
1

N1N2

N1,N2∑

i,j=1

W2σ2(xi,xj)

f̂
1

2 (xi)f̂
1

2 (xj)
, (6.8)where the onvolution theorem for Gaussians has been used in the last step. For any pairof data points in the training data set, say xl and xl′, we de�ne the a�nity matrix K,suh that element (l, l′) equals W2σ2(l, l′). We also de�ne a matrix D = (f̂(x1), . . . , f̂(xN)).Now, all f̂− 1

2 (xl)W2σ2(xl,xl′)f̂
− 1

2 (xl′) an be represented by element (l, l′) of the matrix
Kf = D− 1

2 KD− 1

2 . The matrix Kf is known as the Laplaian matrix [12℄.Eah element of the matrix K represents an inner-produt in the Merer kernel featurespae, sine the Gaussian kernel satis�es the Merer onditions mentioned in hapter 5.Now, eah element in Kf also represents an inner-produt, whih we may denote
〈Φf(xl), Φf (xl′)〉 = f̂− 1

2 (xl)W2σ2(xl,xl′)f̂
− 1

2 (xl′). (6.9)
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∫

ĥ1(x)ĥ2(x)dx

=
1

N1N2

N1,N2∑

i,j=1

〈Φ(xi), Φ(xj)〉

=

〈
1

N1

N1∑

i=1

Φf (xi),
1

N2

N2∑

j=1

Φf (xj)

〉

=〈m1f ,m2f 〉, (6.10)where m1f = 1
N1

∑N1

i=1 Φf (xi) and m2f = 1
N2

∑N2

j=1 Φf (xj) are the lass mean vetors afterthe mapping to the Merer kernel feature spae. This non-linear mapping is given by
Φf (·). The same analysis may bedone for ∫ ĥ2

1(x)dx and ∫ ĥ2
2(x)dx. Now the weightedISE lassi�er an be written in the same way as the unweighted version in Eq. (5.16). Theonly di�erene is that the data mapping is now to a di�erent Merer kernel feature spae,given by the eigenvetors of the Laplaian matrix Kf instead of the spae given by theeigenvetors of the a�nity matrix K. We repeat the lassi�er rule for a test point xt

xt → min
c

(〈mc,mc〉f − 2〈mc, Φ(xt)〉f) , (6.11)where c = 1, . . . , C, are the lass labels and
〈mc, Φ(xt)〉f =

〈
1

Nc

Nc∑

i=1

Φf (xi), Φf(xt)

〉

=

〈
1

Nc

Nc∑

i=1

Φf (xi)
T Φf(xt)

〉

=
1

Nc

Nc∑

i=1

f−1(xi)Wσ2(xt,xi) (6.12)as before, but in a di�erent Merer spae,
〈mc,mc〉f = ‖mc‖2. (6.13)



52 CHAPTER 6. A LAPLACIAN ISE CLASSIFIER6.3.1 Illustration of weightsTo illustrate the e�et of the weighting of the data we reated two lasses. Class 1 isrepresented with 150 samples from a dense Gaussian distribution with mean [0, 0]T . Class2 is represented with 150 samples from a irle distribution with the same mean. InFig. 6.1 the samples are plotted with the 10 points having largest weights marked withstar symbols. We notie that points with the largest weights all are on the borders ofthe irle distribution, whih is expeted sine the irle points have a muh more sparsedistribution.
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Figure 6.1: Note that all of the 10 largest weighted points belong to the boundaries of theirle distribution.
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Figure 6.2: Illustrated shape of the density estimates of the twolasses. In the top �gure the samples are not weighted, but inthe lower the samples are weighted with the inverse of the overallprobability for eah point.In Fig. 6.2 we see the e�et of applying weights to the sample data. The distribu-tions illustrated in the lower �gure learly emphasizes the sparse points in the ring data,ompared to the unweighted estimate in the upper �gure.
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Figure 6.3: Plot of the weights for eah sample. The �rst 150points are from the Gaussian distribution and the last 150 pointsare from the irle distribution.In Fig. 6.3 we see the weights for eah data sample in lass 1 and lass 2. The �rst150 weights belong to the dense Gaussian distributed data in lass 1, while the last 150weights belong to the learly emphasized irle data points.



Chapter 7Spetral ISE lassi�ers
Spetral methods are popular espeially in lustering methods. Spetral methods are basedon an a�nity matrix, ontaining pairwise relationships between the samples, and dependon the spetral properties of this matrix. This matrix is eigendeomposed to �nd a moreuseful data representation of the original data. Until reently, only the points used in thea�nity matrix have been possible to represent in a kernel feature spae. This is probablythe main reason spetral methods rarely are used to lassify new test samples. By usingthe Nyström routine [31℄, however, the mapping of new points to the kernel feature spaeis now possible. In the previous hapters we have used the ISE lassi�er by operatingin the Merer kernel feature spae impliitly, by evaluation of inner-produts. We knowthat the ISE divergene measure is related to the lass mean vetors in a Merer kernelfeature spae, and to the squared Eulidean distane between the mean vetors and thetest samples in this spae. Creating an a�nity or Laplaian matrix with the training data,and eigendeompose it, we an �nd the lass means operating diretly in an approximateMerer kernel spae with the projeted training samples.If the data set has outliers, it may be bene�ial to use the lass median vetors insteadof the means in the approximated Merer kernel spae. With the Nyström routine we anprojet the test samples to the same spae, alulate distanes and thus evaluate the ISEdivergene diretly in the spae spanned by either the a�nity or Laplaian matrix.In this hapter we assume that the a�nity and Laplaian matrix elements are inner-produts reated with Merer kernels, unless some other kernel type is spei�ed. Based onthe eigendeomposition of an a�nity or Laplaian matrix and projetion of training dataand samples onto the C dominant eigenvetors, we now propose spetral versions of thestandard and Laplaian ISE lassi�er. We refer to the spetral ISE lassi�er based on theeigendeomposition of the a�nity matrix as the spetral ISE lassi�er and the spetralISE lassi�er using the Laplaian matrix as the spetral Laplaian ISE lassi�er.Some results using the spetral ISE lassi�er are presented in Part II, Setion 9.5, andresults using the spetral Laplaian ISE lassi�er are presented in Part II, Setion 9.6.55



56 CHAPTER 7. SPECTRAL ISE CLASSIFIERS7.1 Mapping of data to a Merer based feature spaeAn approximation of the nonlinear mapping of the training data Φ(xl), l = 1, · · · , N , frominput spae to the Merer kernel spae, using the C largest eigenvalues and orrespondingeigenvetors of the kernel matrix K, is aomplished with [13℄, [24℄
Φ : Rd → F

xl → Φ(xl) ≈
[√

λ1e1l,
√

λ2e2l, . . . ,
√

λCeCl

]T
, l = 1, · · · , N, (7.1)where eml denotes the lth element of the mth eigenvetor of K and λm is the orrespondingeigenvalue, where λ1 ≥ λ2 ≥ . . . ≥ λC . It an be shown [13℄ that in the ideal ase with

C lusters of the training data orresponding to C di�erent lasses that are �in�nitely� farapart, the eigendeomposition of the a�nity matrix results in C point lusters, mutuallyorthogonal to eah other situated on the C �rst prinipal axes in the kernel spae [13℄.When using the a�nity matrix K to reate the basis whih the data is projeted on,this is the same as performing a C-dimensional kernel PCA on the training data [24℄. Thea�nity matrix K and the Laplaian matrix Kf are reated with training data samples asdesribed in Setion 6.3 on page 49.We an ompute the C-dimensional vetor projetion of a test sample xt into thesubspae spanned by the C eigenvetors of the kernel matrix with [6℄
Φ(xt) ≈

(
√

N

N∑

i=1

αj
iκ(xi,xt)

)C

j=1

, (7.2)where αj = λ
− 1

2

j ej is given by the orresponding eigenvetor and eigenvalue of the kernelmatrix. κ(xi,xt) is a Merer kernel funtion omputing the inner-produts between thenew test sample xt and all i = 1, . . . , N samples in the kernel matrix. The omputationin Eq. (7.2) is also known as the Nyström routine. The Merer spae spanned by theLaplaian matrix is not the same as the Merer spae spanned by the kernel matrix. Theproedure to map the training data and new samples is however the same, exept that weeigendeompose Kf , not K, in Eq. (7.2) and Eq. (7.1).



7.1. MAPPING OF DATA TO A MERCER BASED FEATURE SPACE 577.1.1 Illustration of mappings to Merer spaeIn Fig. 7.1 we see the same irle and Gaussian distributions as in Fig. 6.3 on page 54,after the projetion to spae spanned by the eigenvetors orresponding to the two largesteigenvalues of the Laplaian matrix Kf . We see that the two lasses seem to be distributedalong two learly separable lines in this spae. This seems to be lose to the ideal ase forseparable data. In this two-lass ase, we expet the data to be situated in two lusters,mutually orthogonal along the two �rst prinipal axes in the spae of the Laplaian matrix.
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Figure 7.1: Gauss and irle distributions in an approximate Merer spae, given by the twoprinipal eigenvetors of the Laplaian matrix Kf . Samples from the Gaussian distributionare labeled with ©, and irle distribution samples are labeled with ×.



58 CHAPTER 7. SPECTRAL ISE CLASSIFIERSIn Fig. 7.2 we see the same distributions as in Fig. 6.3 after the projetion to the spaespanned by the eigenvetors orresponding to the two largest eigenvalues of the a�nitymatrix K. Note that all training points that belong to the irle distribution seem to bemapped to origo, while the points that belong to the Gaussian distribution are spreadaround more uniformly.
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Figure 7.2: Gauss and irle distributions in an approximate Merer spae, given by thea�nity matrix K. Samples from the Gaussian distribution are labeled with ©, and irledistribution samples are labeled with ×.



7.2. SPECTRAL VERSIONS OF THE ISE CLASSIFIERS 597.2 Spetral versions of the ISE lassi�ers7.2.1 The spetral ISE lassi�erIn this setion we disuss how we an develop spetral lassi�ers based on the ISE di-vergene ost funtion. Assume we have a training data set with labels from C di�erentlasses, ωc, c = 1, . . . , C. From this data set we now onstrut the kernel matrix K. Thismatrix is then eigendeomposed and the training data is projeted to the spae spanned bythe C dominant eigenvetors of K using Eq. (7.1). Using the projeted training data, wean now �nd the mean vetors of eah lass in the approximated kernel spae. If the dataset has outliers, it may be useful to use the median vetors instead of the mean vetors.With Eq. (7.2) we projet eah of the test samples to the same spae as the training data,and measure the squared Eulidean distane between the sample and eah of the lassmeans. Finally, eah sample is lassi�ed to the lass where the distane is smallest. Tosummarize the steps:
• Find the a�nity matrix K using training data xl, l = 1, . . . , N

• EigendeomposeK and ompute Φ(xl) ≈
[√

λ1e1l,
√

λ2e2l, . . . ,
√

λCeCl

]T
, l = 1, . . . , N .

• Find the mean or median vetors of the projeted data, mc for lass ωc, c = 1, . . . , C,
• for i=1:number of test points to lassify1 Map xi to the approximate kernel spae with Eq. (7.2)2 Find the squared Eulidean distanes, dc, c = 1, . . . , C, between mc and Φ(xi)3 Classify: Φ(xi) ∈ ωc if dc < dk, ∀k 6= c7.2.2 The spetral Laplaian ISE lassi�erThis follows the same routine as the spetral ISE lassi�er, exept that instead of eigende-omposing the a�nity matrix K, we now use the Laplaian matrix Kf .
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Chapter 8Kernel seletionAll our versions of the ISE based lassi�er are highly dependent on density estimation,sine they are derived using Parzen windowing. Assume we have a set of data x1, . . . ,xNgenerated i.i.d aording to some unknown distribution, where this distribution desribesdata from one spei� lass. We then need to �nd the density estimate for the data set.This an often be a problem, both beause of the urse of dimensionality, and beausedistributions don't always possess a density [17℄. The Parzen window density estimatesare dependent of kernel size and kernel type. Thus, if we an �nd the optimal kernel forour data set for the Parzen window density estimation, we have an appropriate kernel forthe lassi�er. There exist many types of kernels whih an be used in density estimation.A short summary is given in Setion 3.2.4. It has been proved [30℄ that the Epanehnikovkernel gives a better density estimate then the Gaussian kernel, in terms of the number ofdata points needed to get a good estimate. This gives us a good reason to hek if the ISElassi�ers may bene�t from using this kernel, even if it does not satisfy Merer's theorem.In this hapter we will use some arti�ial distributions and analyze the e�et of di�erentkernel funtions and bandwidths on the lassi�ation rates and density estimates. We needto see if we an get good lassi�ation results, even when the density estimates are far fromexat.8.1 E�et of kernel bandwidth and kernel typeIn this setion we aim to demonstrate how the density estimates and the di�erent versionsof the ISE lassi�er may behave using di�erent kernels and bandwidths on an arti�ialdata set. We want to hek if some of the versions of the ISE lassi�er are more robust,i.e. give good lassi�ation results over a wider range of kernels then others. We also hektwo non-Merer kernels whih often are used in density estimation, the square and theEpanehnikov kernels.We use the same data set as previously in Setion 6.3.1. Class ω1 is represented with150 samples from a dense Gaussian distribution, with mean [0, 0]T . Class ω2 is representedwith 150 samples from a irular shaped distribution, with the same mean as ω1. The two63



64 CHAPTER 8. KERNEL SELECTIONlasses are illustrated again in Fig. 8.1
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Figure 8.1: ω1 samples illustrated with ◦ symbols, ω2 illustrated with × symbols.



8.1. EFFECT OF KERNEL BANDWIDTH AND KERNEL TYPE 65To test the di�erent kernel types and bandwidths we use 20 and 50 points for test andtraining from eah lass, respetively. The test points are then lassi�ed using the di�erentlassi�ers with di�erent kernel types over a range of kernel bandwidths. In Table 8.1,Table 8.2 and Table 8.3 following, we give the range of kernel bandwidths whih gives100% orret lassi�ation rates for the di�erent lassi�ers and kernels. Sine the lassdata does not have any extreme outliers, we don't expet the spetral median versions tobe muh di�erent from the mean versions, and we only inlude the spetral lassi�ers usingmean vetors in the ISE divergene measure.Table 8.1: Gaussian kernelClassi�er bandwidth rangeStandard ISE 0.30-0.76Laplaian ISE 0.09-0.91Spetral ISE means 0.07-0.45Spetral Laplaian ISE means 0.10-0.42Bayes 0.01-0.60We see from Table 8.1 that for the Gaussian kernel the broadest range of bandwidths isahieved using the the Laplaian ISE lassi�er. All lassi�ers perform well in the kernel sizerange, 0.30-0.42. The standard ISE lassi�er seems to start working properly at a slightlylarger kernel size then the others. The spetral versions of the ISE lassi�er performs well,but seems to have a little narrower bandwidth range, ompared with the lassi�ers workingimpliitly in a Merer spae.The shape of the unweighted and weighted density estimates using a Gaussian kernelwith bandwidth 0.80 is given in Fig. 8.2. Notie that the shape of the top �gure seems tobe dominated by the dense Gaussian distribution in the enter, and all lassi�ers using thisdensity estimate are unable to separate the two lasses learly. The weighted data pointsused in the bottom �gure redue the dominant shape of the Gaussian distribution enough,ompared to the more sparsely distributed irle shape, to let the weighted Laplaian ISElassi�er orretly lassify all test samples.In Fig. 8.3 the shape of the unweighted and weighted density estimates using a Gaussiankernel with bandwidth 0.30 is illustrated. Compared with the shapes in Fig. 8.2, theirle distribution is now good enough separated from the Gaussian distribution to let alllassi�ers orretly lassify all of the test samples. In the bottom �gure with weighteddata, we learly see the struture where the irle distribution is emphasized.
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Figure 8.2: Shapes of density estimates using Gaussian kernel with bandwidth, 0.80. Un-weighted estimate in the upper plot. Laplaian weights applied to the points in the estimatein the lower plot. This kernel width gives a 100% lassi�ation rate only for the LaplaianISE lassi�er.
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Figure 8.3: Shape of density estimate using Gaussian kernel with bandwidth, 0.30. Un-weighted estimate in the upper plot. Laplaian weights applied to the points in the estimatein the lower plot. This kernel width gives a 100% lassi�ation rate for all lassi�ers.



68 CHAPTER 8. KERNEL SELECTIONTable 8.2: Epanehnikov kernelClassi�er bandwidth rangeStandard ISE 0.09-2.23Laplaian ISE 0.08-1.94Spetral ISE means 0.02-1.27Spetral Laplaian ISE means 0.24-1.30Bayes 0.08-1.39We know that even if the Epanehnikov kernel does not map the data to a Mererspae, it is known to give good density estimates. From Table 8.2 we see that all lassi�erswork well over an even wider range of kernel sizes then for the Gaussian kernel. Again wenote that the impliit versions of the ISE lassi�er seems to have a wider kernel bandwidthrange then the spetral lassi�ers. This time the standard ISE lassi�er has the widestkernel bandwidth range with 100% lassi�ation rate.Table 8.3: Square kernelClassi�er bandwidth rangeStandard ISE 0.07-1.32Laplaian ISE 0.11-1.32Spetral ISE means 0.02-0.91Spetral Laplaian ISE means 0.23-1.18Bayes 0.11-1.06The results using a square kernel in Table 8.3 are similar to the previous, but the band-width ranges are generally smaller then for the Gaussian and Epanehnikov kernel. Againthe standard ISE lassi�er has the widest kernel bandwidth range with 100% lassi�ationrate.Summary We note that for this arti�ial data set, the Epanehnikov kernel seems to havethe broadest range of kernel bandwidths for all di�erent versions of the ISE lassi�er. Thismay be useful when we don't know, or are unable to use ross-validation on our trainingdata to selet the optimal kernel size. The Gaussian kernel also produes good results. Thesimple square kernel works well, but it has the smallest range of usable bandwidths. Evenif the Epanehnikov and square kernel are non-Merer kernels, and thus does not map to aMerer spae, it seems possible to �nd estimates of ISE divergene in the spaes they mapto. The Bayes lassi�er works well over similar bandwidth ranges to the ISE lassi�ers.



Chapter 9Classi�ation experiments
9.1 IntrodutionThis part of the thesis reports experiments done with the di�erent versions of the ISElassi�er disussed in Part I. Beause of the similarity with the well-known Bayes lassi�er,this is the main lassi�er whih we hoose to ompare the results with. Some experimentsalso inlude results using other Merer spae based lassi�ers, partiularly the SVM andthe Laplaian lassi�er.To redue numerial errors when alulating inner-produts, a�nity matries and den-sity estimates, we removed the saling h−d from Eq. (3.12) on page 17 in front of all kernelevaluations with bandwidth h and data dimensionality d.The purpose of the experiments is to see how di�erent implementations of the ISElassi�er behaves on some popular benhmark data sets. In the derivation of the standardISE lassi�er we noted the standard ISE lassi�er may favor the large entropy lass om-pared to the Parzen window based Bayes lassi�er. Theoretially, the ISE lassi�ers has aseparating hyperplane in the kernel spae, that is shifted away from the lass with highestentropy1 ompared with the separating hyperplane for the Bayes lassi�er. We want tohek if the standard ISE lassi�er tends to favor the lasses with high entropy ompared tothe Bayes lassi�er on some real data sets. This is why we inlude the onfusion matriesand alulated information potentials. We also want to �nd out what happens when thedi�erent ISE lassi�ers are unable to ahieve high lassi�ation rates, by looking at howthe some of the training data and samples are projeted to approximated Merer spaes.9.2 Seletion of data sets and lassi�ation methodsThe data sets used in this study are seleted from the UCI-repository [16℄ and the Rätsh[20℄ data sets. The seleted Rätsh data sets are Banana(2,400,4900), Thyroid(5,140,75),Ringnorm(20,400,7000) and Twonorm(20,400,7000), where the numbers in parenthesis are1When we refer to entropy and entropy estimates in this hapter, we mean the Renyi quadrati entropyestimate. 69



70 CHAPTER 9. CLASSIFICATION EXPERIMENTSthe dimensionality, the size of the training data set and the test data set, respetively. Eahset has 100 realizations. To redue the omputation time for the Ringnorm and Twonormdata sets we pik 500 samples from eah of the 100 realizations as test data instead of 7000samples. The data sets have zero mean and unit standard deviation for eah feature. Theresults in the tables and onfusion matries are average lassi�ation results and standarddeviations when lassifying eah of the 100 test realizations. For all Rätsh data sets wehave used the training set for training and the test sets for testing.The seleted UCI data sets are Wine(13,178), Iris(4,150), WBC(30,569) (Wisonsinbreast aner), Ionosphere(34,351), Pima(8,768) and Pendigits(16,1091). The numbers inparenthesis are the dimensionality, and the number of samples. The Pendigits data onsistsof samples representing integers 0,1 and 2 seleted from the original test data set (3498samples). For all UCI data sets we have normalized the standard deviation to one for eahfeature, sine the lassi�ers use spherial kernel funtions, and to use a method omparableto the one used in the Laplaian lassi�er, desribed in [12℄. All UCI test and training datasets were reated by splitting a random permutation of the data set in two halves over 100trials, where 1/3 of the data set was used for testing and 2/3 used for training.All the UCI and Rätsh data sets are also lassi�ed with our implementation of a Parzenwindow based Bayes lassi�er, for omparison. We refer to the Parzen window based Bayeslassi�er simply as the Bayes lassi�er from now on. In all experiments we have found thebest kernel size using three-fold ross validation over a range of kernel sizes on the trainingdata set, and seleted the kernel with highest lassi�ation rate.In the following setions we will present and disuss results obtained on the seleteddata sets, using the standard ISE, Laplaian ISE, spetral ISE and spetral LaplaianISE lassi�ers. Unless otherwise spei�ed we have hosen to use a Gaussian kernel in thealulations. This is beause it is a Merer kernel, and when using ross validation intraining to �nd the best kernel size it does not matter muh whih kernel type we use.9.3 Standard ISEIn this setion we disuss results found when using the standard ISE lassi�er disussedin Chapter 5. Classi�ation results found with our implementation of the Bayes lassi�er,SVM results obtained from [21℄ and results found using the Laplaian lassi�er abbreviatedwith CS, desribed in [12℄ are also inluded for omparison. The Laplaian lassi�er istrained in the same way as we have done. The SVM used was trained to �nd the parameters
C and σ (C is the regularization onstant and σ the width of the RBF kernel used) witha �ve-fold ross validation on �ve realizations of eah data set [21℄.If one lass from a data set has a small ratio of information potential ompared to theother lasses, this lass will have a relatively large entropy. We estimate the informationpotentials for eah lass and ompare the onfusion matries for the standard ISE and theBayes lassi�er, to �nd out if the standard ISE lassi�er tend to lassify more samples tothe lasses with large entropy.Table 9.1 ontains lassi�ation rates in perent with standard deviations for the Rätsh



9.3. STANDARD ISE 71data sets. The standard ISE lassi�er performs well, and similar to the other lassi�ers,with an exeption for the Ringnorm data set, where it has a low lassi�ation rate. Wenote that the only ase where the standard ISE lassi�er is able to beat our Bayes lassi�eris the Twonorm data set. The Banana set seems to be di�ult for all lassi�ers.Data Bayes ISE SVM CSBanana 87.7±1.2 87.6±0.9 89.2±0.7 89.4±0.5Ringnorm 96.9±0.8 76.6±17.5 98.3±0.1 No dataTwonorm 97.1±0.7 97.2±0.7 97.0±0.6 97.4±0.2Thyroid 95.5±2.3 94.9±2.5 95.2±2.2 95.7±2.2Table 9.1: Average lassi�ation rates for Rätsh data setsIn Table 9.2 the ratios of information potentials for eah of the lasses in the Rätshdata sets are listed. The ratios with bold fonts, represent the lasses with relatively highestentropy. Data ω1 ω2Banana 45.7% 54.3%Ringnorm 49.3% 50.7%Twonorm 49.7% 50.3%Thyroid 16.6% 83.4%Table 9.2: Class data information potentials for Rätsh data setsTable 9.3 list the average lassi�ation rates in perent, with standard deviations for theseleted UCI data sets in the same way as in Table 9.1. For the Wine, Iris and Pendigitsdata sets, the standard ISE lassi�er performs slightly worse than the Bayes lassi�er. Thestandard ISE lassi�er is slightly better than the Bayes for the Pima and WBC data set,and notably better for the Ionosphere data set.Data Bayes ISE SVM CSWine 96.6±2.3 95.4±2.4 97.5±1.7 97.3±1.4Iris 94.3±3.0 93.0±3.3 95.7±2.0 94.5±2.1WBC 95.9±1.4 96.3±1.2 96.9±0.7 97.1±0.7Ionosphere 86.3±2.8 94.1±2.3 94.1±1.2 92.5±1.7Pendigits 99.0±0.5 98.2±0.6 99.6±0.2 98.9±0.4Pima 71.8±2.4 72.6±2.4 76.8±1.5 73.9±1.7Table 9.3: Average lassi�ation rates for UCI data sets.In Table 9.4 the estimated ratios of lass information potentials are listed. The ratiosin bold fonts are the lasses with lowest IP, and thus highest entropy. We will later in thissetion use the onfusion matries for the standard ISE and Bayes lassi�ers for these data



72 CHAPTER 9. CLASSIFICATION EXPERIMENTSsets to see if the standard ISE lassify more points erroneously to the lass with highestentropy, as suggested in Setion 5.3.1Data ω1 ω2 ω3Wine 34.5% 26% 39.5%Iris 42.6% 31.6% 25.7%WBC 71.8% 28.2%Ionosphere 58.1% 41.9%Pima 55.1% 44.9%Pendigits 30.0% 28.6% 41.4%Table 9.4: Average lass information potentials for UCI data sets9.3.1 Confusion matries Standard ISE and BayesIn this setion we ompare the onfusion matries obtained by lassifying with the standardISE and the Bayes lassi�er. We want to hek if there is any orrespondene between thelass entropies and whih lass has most lassi�ation errors, when omparing the standardISE and the Bayes lassi�er.About the onfusion matries Eah row of a onfusion matrix denote the orret lasslabel, while eah olumn denote the predited label from the lassi�er. As an example,element (1,2) of a onfusion matrix ontains the amount of samples that belong to lass1, but are predited to belong to lass 2. The trae of a onfusion matrix ontains theamount of orretly estimated samples.BananaIn Table 9.5 we note that the standard ISE lassi�es more points to lass ω1, with relativelylarger entropy, than the Bayes lassi�er.ISE ω̂1 ω̂2

ω1 1941.6 252.9
ω2 285.5 2420.0 Bayes ω̂1 ω̂2

ω1 1874.7 319.8
ω2 201.3 2504.2Table 9.5: Average onfusion matries Banana data set.RingnormWe note in the onfusion matries for the Ringnorm data set in Table 9.6 that the standardISE has a muh lower lassi�ation rate than the Bayes lassi�er. For this data set, lass ω1has slightly larger entropy than lass ω2. This does not ause the standard ISE to lassifymore points to lass ω1, ompared with the Bayes lassi�er.



9.3. STANDARD ISE 73ISE ω̂1 ω̂2

ω1 132.19 115.97
ω2 0.84 251.00 Bayes ω̂1 ω̂2

ω1 236.25 11.91
ω2 3.42 248.42Table 9.6: Average onfusion matries Ringnorm data set.TwonormFor the Twonorm data set, lass ω1 has a slightly higher entropy than lass ω2. Thestandard ISE lassi�er should now lassify more points to lass ω1 than the Bayes lassi�er.From Table 9.7 we see that this is not the ase.ISE ω̂1 ω̂2

ω1 243.20 6.25
ω2 7.75 242.80 Bayes ω̂1 ω̂2

ω1 243.12 6.33
ω2 8.20 242.35Table 9.7: Average onfusion matries Twonorm data set.ThyroidThe Thyroid data set has a relatively large entropy di�erene between the lasses, withrelatively large entropy in lass ω1. In Table 9.8 we note that slightly more points arelassi�ed to lass ω1 for the standard ISE lassi�er than for the Bayes lassi�er.ISE ω̂1 ω̂2

ω1 20.45 1.86
ω2 1.94 50.75 Bayes ω̂1 ω̂2

ω1 20.19 2.12
ω2 1.26 51.43Table 9.8: Average onfusion matries Thyroid data set.



74 CHAPTER 9. CLASSIFICATION EXPERIMENTSWineFor the Wine data set in Table 9.9, the standard ISE lassi�er seems to take a small amountof samples from lass ω1 and ω3 and lassify to lass ω2, ompared with the Bayes lassi�er.From Table 9.4 we see that lass ω2 has largest entropy of the lasses.ISE ω̂1 ω̂2 ω̂3

ω1 19.72 0.15 0
ω2 1.05 21.68 1.29
ω3 0 0.25 15.86 Bayes ω̂1 ω̂2 ω̂3

ω1 19.81 0.03 0
ω2 1.10 21.89 0.80
ω3 0 0.10 16.27Table 9.9: Average onfusion matries Wine data set.IrisFor the Iris data set in Table 9.10, the standard ISE lassi�er takes a small amount ofsamples from lass ω1 and ω2 and lassify as ω3, ompared with the Bayes lassi�er. FromTable 9.4 we see that lass ω3 has largest entropy.ISE ω̂1 ω̂2 ω̂3

ω1 16.11 0.01 0.44
ω2 0 15.53 1.16
ω3 0 1.91 14.84 Bayes ω̂1 ω̂2 ω̂3

ω1 16.76 0.17 0
ω2 0 15.60 1.12
ω3 0 1.5700 14.78Table 9.10: Average onfusion matries Iris data setWBCFor the WBC data set in Table 9.11, lass ω2 has relatively muh larger entropy than lass

ω1. The standard ISE has a higher lassi�ation rate than the Bayes lassi�er for this dataset, but it does not seem to move samples from the lass with relatively lower entropy.ISE ω̂1 ω̂2

ω1 65.98 4.44
ω2 2.59 117.99 Bayes ω̂1 ω̂2

ω1 65.19 5.89
ω2 1.90 118.02Table 9.11: Average onfusion matries WBC data setIonosphereFrom Table 9.4 we note that lass ω2 has larger entropy than lass ω1, and the standardISE lassi�er in Table 9.12 seems to add more samples to lass ω2 when ompared withthe Bayes lassi�er. For this data set this gives a higher lassi�ation rate for the standardISE lassi�er.



9.3. STANDARD ISE 75ISE ω̂1 ω̂2

ω1 71.55 3.41
ω2 3.53 38.51 Bayes ω̂1 ω̂2

ω1 73.39 1.40
ω2 14.68 27.53Table 9.12: Average onfusion matries Ionosphere data setPimaFor the Pima data set in Table 9.13 we note that the standard ISE lassi�er has moresamples assigned to lass ω2 with largest entropy, than the Bayes lassi�er. Again this givesthe standard ISE lassi�er a slightly higher lassi�ation rate than our Bayes lassi�er.ISE ω̂1 ω̂2

ω1 123.09 42.90
ω2 27.17 62.85 Bayes ω̂1 ω̂2

ω1 138.50 27.55
ω2 44.74 45.21Table 9.13: Average onfusion matries PimaPendigitsFor the seleted lasses from Pendigits, we know from Table 9.4 that lass ω2 has largestentropy. Thus we expet the standard ISE lassi�er to lassify more points from lass ω1and lass ω3 to lass ω2 than the Bayes lassi�er. In Table 9.14 we see that this is the asefor lass ω1, but not lass ω2.ISE ω̂1 ω̂2 ω̂3

ω1 121.09 1.00 0
ω2 0.22 116.14 4.90
ω3 0.07 0.49 121.09 Bayes ω̂1 ω̂2 ω̂3

ω1 121.58 0 0
ω2 0 118.89 2.99
ω3 0 0.58 120.96Table 9.14: Average onfusion matries Pendigits



76 CHAPTER 9. CLASSIFICATION EXPERIMENTS9.3.2 Summary of lassi�ation results for the standard ISE las-si�erThe standard ISE lassi�er seems to perform very well and similar to our Bayes lassi�er,but is only able to beat our implementation of a surprisingly good Bayes lassi�er for 4 outof 10 data sets. The Ringnorm data set is the only set where the standard ISE performsnotably worse than the Bayes lassi�er. For WBC, Ionosphere, Pima and Twonorm thestandard ISE lassi�er has slightly higher lassi�ation rates than the Bayes lassi�er. Foreah data set we ompared the di�erene in entropy between the lasses and the onfusionmatries for the standard ISE and Bayes lassi�er. If we exlude the Ringnorm data set,the di�erene in entropy seems to let the standard ISE draw points from low entropylasses to higher entropy lasses for the Wine, Iris, Ionosphere, Pendigits, Pima, Bananaand Thyroid data sets (7 of 9 data sets), ompared with the Bayes lassi�er. For theTwonorm and WBC data sets this was not the ase. It is hard to explain exatly why thestandard ISE lassi�er doesn't behave as expeted for some data sets.



9.4. LAPLACIAN ISE 779.4 Laplaian ISEIn this setion we present average lassi�ation rates using the version of the ISE lassi�erdisussed in Chapter 6, operating impliitly in the Merer spae spanned by the eigenve-tors of the Laplaian matrix. The weighting of the training data samples hanges the lassentropies, so we hoose not to ompare the di�erent Laplaian ISE onfusion matries withthe Bayes onfusion matries. The average onfusion matries for the data sets using theLaplaian ISE lassi�er may be found in the appendix. For some seleted data sets wealso plot the weights for the training data in eah lass, to hek if some lass samples areweighted more than others. If some lasses have uniform weights for the training samples,this implies that the Laplaian ISE lassi�er should give the same results as the standardISE lassi�er.In Table 9.15 we list the average lassi�ation rates with standard deviations in perent,using the Laplaian ISE lassi�er on the seleted Rätsh data sets. To redue the om-putation time we redued the amount of training and test data to 100 and 50 samples ineah realization for Banana, Ringnorm and Twonorm for this lassi�er. The listed resultsshould still give a good indiation of the lassi�er performane. On these data sets theweighting indued by the Laplaian ISE does not seem to in�uene the results signi�antlyin a positive manner, ompared to the standard ISE lassi�er.Data RateBanana 86.2±5.0Ringnorm 76.7±22.1Twonorm 96.3±2.7Thyroid 94.6±2.9Table 9.15: Average Laplaian ISE lassi�ation rates for Rätsh data sets.In Fig. 9.1 we illustrate the two lasses in a typial training set for the Banana dataset. The points marked with star symbols represent some of the largest weights in the dataset. The lasses in this data set are very di�ult to separate beause they are distributedin several overlapping lusters. The points representing the largest weights seems to besituated in the outer borders of the data set.
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Figure 9.1: Plot of a sample training data set from the Banana data set. Class ω1 and
ω2, are illustrated with × and © respetively. Some of the points with largest weights areplotted with star symbols.



9.4. LAPLACIAN ISE 79In Fig. 9.2 we illustrate the weights for a typial training data set from the Bananadata set. Eah �gure illustrate the weight assigned to eah sample within a lass. We notethat of the most of the samples are weighted similarly, but for a few samples in eah lassthe weights are muh larger than the others, e.g the sample with a weighing of 400 in lass
ω2 ompared to most of the others whih seem to have weights in the interval 10-100. Thelargest weights in this �gure orresponds to the star symbols in Fig. 9.1. The weighting ofdata points does not seem improve the lassi�ation rate on this data set.
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Figure 9.2: Sample weights for the Banana training data set. Top and bottom �guresillustrate typial weights for training samples from lass ω1 and ω2, respetively.



80 CHAPTER 9. CLASSIFICATION EXPERIMENTSIn Table 9.16 we list the average lassi�ation rates with standard deviations, usingthe Laplaian ISE lassi�er on the seleted UCI data sets. We note that the results arevery similar to the standard ISE rates. For Iris, Wine, WBC and Pendigits we ahieveslightly higher lassi�ation rates with the Laplaian ISE lassi�er than for the standardISE lassi�er. The Ionosphere data set has notably worse lassi�ation rates with theLaplaian ISE lassi�er, 89.0% versus 94.1% for the standard ISE lassi�er. The Pimadata set has slightly worse lassi�ation rate for the Laplaian ISE lassi�er versus thestandard ISE lassi�er. Data set ISEWine 95.6±2.1Iris 94.1±2.6WBC 96.6±1.2Ionosphere 89.0±2.4Pendigits 98.5±0.6Pima 72.4±2.4Table 9.16: Average lassi�ation rates using the Laplaian ISE lassi�er on UCI datasets.In Fig. 9.3 we illustrate the weights for a typial training data set from the Wine dataset. Eah �gure illustrate the weight assigned to eah sample within a lass. The weightsseem to emphasize some of the points within eah lass a bit more than the others, butmostly they are quite similar. For this data set the Laplaian indued weighting seems togive a slightly better lassi�ation rate.
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Figure 9.3: Sample weights for the Wine training data set. Top, middle and bottom �guresillustrate typial weights for training samples from lass ω1, ω2 and ω3, respetively.



82 CHAPTER 9. CLASSIFICATION EXPERIMENTSIn Fig. 9.4 we illustrate the weights for a typial training data set from the Iris dataset. Eah �gure illustrate the weight assigned to eah sample within a lass. We note thatfor this training data set eah lass have a few points that have relatively large weightsompared to the others.
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Figure 9.4: Sample weights for the Iris training data set. Top, middleand bottom �gures illustrate typial weights for training samples in lass
ω1, ω2 and ω3, respetively.In Fig. 9.5 we plotted dimension 2 vs dimension 3 of the same training set used inFig. 9.4. The 15 points with the largest weights are marked with a star symbol. Thepoints with the largest weights all seem to lie in the border of a lass luster. Emphasizingthese points seems to inrease the separability of the di�erent lasses sine the LaplaianISE lassi�er performs slightly better than the standard ISE lassi�er for this data set.



9.4. LAPLACIAN ISE 83

4 5 6 7 8 9 10 11
0.5

1

1.5

2

2.5

3

3.5

4

Figure 9.5: Illustration of a typial Iris training data set. We plot dimension 2 versus3 with the 15 points with largest weights marked with star symbols. Class ω1, ω2 and ω3samples are illustrated with ©, × and �, respetively.



84 CHAPTER 9. CLASSIFICATION EXPERIMENTS9.4.1 Summary of lassi�ation results for the Laplaian ISE las-si�erWe note that weighting the training data as desribed in Chapter 6 atually gave slightlyworse results for the Rätsh data set. This may be beause the training data omes fromlasses with muh overlap between the borders of the lass lusters, as illustrated for theBanana data set in Fig. 9.1. This seems to give largest weights to the points in the outerborder of the whole data set, and may not inrease the separability of the lasses. Forthe UCI data sets, we get slightly better lassi�ation rates, exept for the Ionosphere andPima data sets. Looking at the samples in dimension 2 versus 3 for the Iris data set inFig. 9.5 the largest weights seem to be in the di�erent luster borders of quite separablelasses. This may indiate that the Laplaian indued weighting of data helps the lassi�erwhen the lass borders are not overlapping, but it is hard to onlude from the few datasets we have looked at.9.5 Spetral ISEIn this setion we present results using the spetral ISE lassi�er disussed in Chapter 7.We inlude the lassi�ation rates using the mean vetors in the approximate Mererkernel spae given by the prinipal eigenvetors of the training data a�nity matrix. Theresults with median vetors are very similar, indiating that the data sets have few outliers.Classi�ation results and onfusion matries using the median version of the spetral ISElassi�er are inluded in the appendix for referene. We also illustrate how some of the datasets with low lassi�ation results are projeted to the approximate Merer kernel spae.The illustration of mappings where the spetral lassi�ers performs well are postponed tothe disussion of the spetral Laplaian ISE lassi�er in the next setion.In Table 9.17 we list the average lassi�ation rates with standard deviations using themean version of the spetral ISE lassi�er on seleted Rätsh data sets. We note thatfor the Banana data set this lassi�er seems to fail and that the Ringnorm data set hasslightly higher lassi�ation rates than the standard ISE lassi�er. The other data setshave lassi�ation rates slightly lower, but similar to the standard ISE lassi�er.Data Mean rateBanana 54.2±6.2Ringnorm 77.3±1.8Twonorm 97.3±0.6Thyroid 93.5±2.4 Table 9.17: Average lassi�ation rates forsome Rätsh data sets using the spetral ISElassi�er.



9.5. SPECTRAL ISE 85In Fig. 9.6 we illustrate the mapping of the Banana data set projeted to the approx-imate Merer kernel spae given by the two prinipal eigenvetors of the a�nity matrixwhih gives a lassi�ation rate of 54.2%. Note that the training data samples for bothlasses are lustered together around origo and almost impossible to separate from eahother. In Fig. 9.1 in the previous setion, we saw that the lass lusters for the Bananadata set in the input spae also were highly overlapping. The test samples illustrated with
∗ symbols are spread far a way from the lass mean vetors, but the spetral ISE lassi�erfails, beause no test point is distintly loser to one of the two lass means.
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Figure 9.6: Illustration of the data mapping given by the a�nity matrix re-ated with training data from the Banana data set. We projeted 50 trainingsamples from eah of lass ω1 illustrated with ©, and 50 from lass ω2 illus-trated with ×. Mapping of 20 test samples is illustrated with ∗ symbols.



86 CHAPTER 9. CLASSIFICATION EXPERIMENTSIn Table 9.18 we list the average lassi�ation rates with standard deviations using thespetral ISE lassi�er on seleted UCI data sets. We get lower lassi�ation rates, butsimilar to the standard ISE lassi�er.We illustrate the mapping of data for the Ionosphereand Iris data sets in Fig. 9.7 and Fig. 9.8, respetively.Data set Mean rateWine 95.1±2.5Iris 81.1±6.8WBC 90.0±2.3Ionosphere 70.6±3.4Pendigits 84.1±2.1Pima 69.6±2.5Table 9.18: Average lassi�ation rates for some UCI data sets using thespetral ISE lassi�er.In Fig. 9.7 we illustrate the mapping of data projeted onto the two prinipal eigen-vetors of the a�nity matrix for the Ionosphere data set. We marked the mean points ofeah lass from the training data with large bold symbols. The lass means seem to end uplose to eah other around origo, with test samples spread far away from the lass means.This makes it di�ult for the spetral ISE lassi�er to separate the two lasses, sine thedistanes from eah test point to eah lass mean are very similar.
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Figure 9.7: Illustration of the data mapping given by the a�nity matrix reated with train-ing data from the Ionosphere data set. We projeted 50 training samples from eah of lass
ω1 illustrated with ©, and 50 from lass ω2 illustrated with ×. Mapping of test samples isillustrated with ∗ symbols.



88 CHAPTER 9. CLASSIFICATION EXPERIMENTSIn Fig. 9.8 we illustrate the mapping of a typial training data projeted onto the threeprinipal eigenvetors of the a�nity matrix for the Iris data set. We marked the meanpoints of eah lass with large bold symbols. Note that the data set is learly not linearlyseparable for all lasses, and this is probably why the ISE lassi�er seems to have someproblems.
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Figure 9.8: Illustration of the data mapping given by the a�nity matrix reated with train-ing data from the Iris data set. We projeted typial training samples from eah of lass
ω1, ω2 and ω3 and illustrated with ©, × and � symbols, respetively. The mean points ofeah lass are marked with large bold symbols.



9.5. SPECTRAL ISE 899.5.1 Summary of lassi�ation results for the spetral ISE las-si�erThe results obtained with the spetral ISE lassi�er are similar to the results obtained withthe standard ISE lassi�er, but with a lower lassi�ation rate in most ases. Note thatfor the Ringnorm and Twonorm data sets the lassi�ation rates are slightly better usingthe spetral ISE lassi�er ompared with the standard ISE lassi�er. Why the spetralISE lassi�er seems to work better for these two data sets is hard to say. The lowerlassi�ation rates may be explained with the fat that the spetral ISE lassi�er worksin an approximated Merer spae, while the standard ISE lassi�er works impliitly in aMerer spae. When the spetral ISE lassi�er fails, it seems to be beause almost alltraining points are mapped to lusters where the mean vetors are lose to eah other.When a test sample is far away from losely grouped mean vetors, the distane betweenthe test point and eah of the lass means are very similar, and the lassi�er seems to bemore likely to make an error.



90 CHAPTER 9. CLASSIFICATION EXPERIMENTS9.6 Spetral Laplaian ISEIn this setion we present results using the spetral Laplaian lassi�er disussed in Chap-ter 7. For the same reason as previously we fous on the version using the mean vetorsin an approximate Merer spae. Results obtained with the median version are inludedin the appendix along with onfusion matries for both versions. We also illustrate howsome of the data sets with good lassi�ation rates are mapped to the spae spanned bythe prinipal eigenvetors of their Laplaian matries.In Table 9.19 we note that the Banana set is di�ult to lassify orretly when usingthe spetral Laplaian lassi�er. The Ringnorm data set is the big surprise here, andwe will illustrate in Fig. 9.9 why we ahieve so high lassi�ation rate for this data set.The Twonorm data set now has a slightly higher lassi�ation rate than for the spetrallassi�er, while the Thyroid has a slightly lower lassi�ation rate.Data Mean rateBanana 58.3±5.3Ringnorm 98.0±0.7Twonorm 97.5±0.7Thyroid 92.9±2.3Table 9.19: Average lassi�ation rates for Rätsh data sets, using thespetral Laplaian ISE lassi�er.In Fig. 9.9 we illustrate the mapping of a typial training data projeted onto the twoprinipal eigenvetors of the Laplaian matrix for the Ringnorm data set. We illustratethe mean points of eah lass with large bold symbols. Note that eah mean point is farfrom the other. The test samples are mapped along the same line as the training data,and it is easy to see whih of the lass means most samples are losest to.In Table 9.20 we list the average lassi�ation rates in perent with standard deviationsobtained with the mean version of the spetral Laplaian lassi�er. We note that for Wineand Iris we ahieve better results with the spetral Laplaian lassi�er than with thespetral ISE lassi�er, so weighting of data points inrease the separability of the data inthese data sets. For Ionosphere and Pima we get worse results, so weighting the trainingsamples does not give a positive e�et for these data sets.In Fig. 9.10 we illustrate the mapping of training data and some samples for the Winedata set. It seems from the �gure that we get three distint lusters, one for eah lasswith learly separated mean vetors. The Laplaian ISE lassi�er is able to assign the testpoints to the orret mean luster in most ases, and we ahieve high lassi�ation rates.
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Figure 9.9: Illustration of the data mapping given by the Laplaian matrix reated withtraining data from the Ringnorm data set. We projeted typial training samples from eahof lass ω1 and ω2 and and illustrated with © and � symbols, respetively. The meanpoints of eah lass are marked with large bold symbols. Some projeted test samples areillustrated with ∗ symbols.
Data Mean rateWine 97.7±1.8Iris 85.2±4.8WBC 78.9±2.2Ionosphere 57.5±10.7Pendigits 79.4±3.9Pima 68.3±2.7Table 9.20: Average lassi�ation rates for UCI data sets, using the spetral Laplaian ISElassi�er.
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Figure 9.10: Illustration of the data mapping given by the Laplaian matrix reated withtraining data from the Wine data set. We projeted typial training samples from eahof lass ω1, ω2 and ω3 and illustrated with ©, � and × symbols, respetively. The meanpoints of eah lass are marked with large bold symbols. Some projeted test samples areillustrated with ∗ symbols.



9.6. SPECTRAL LAPLACIAN ISE 939.6.1 Summary of lassi�ation results for the spetral LaplaianISE lassi�erWe sometimes get better results using the spetral Laplaian ISE lassi�er than for thespetral ISE lassi�er, but overall the results are inferior to the other lassi�ers. Generallyall the spetral methods seems to give slightly worse results than the methods workingimpliitly in Merer spae.
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Chapter 10ConlusionIn this thesis we have provided a study of many of the relatively new onepts used ininformation theoreti learning. We also reviewed bakground information neessary to un-derstand basi density estimation and pattern lassi�ation. New lassi�ers based on theinformation theoreti ISE divergene measure and kernel methods, using both weightedand unweighted data, are investigated. Relations between an ISE divergene based lassi-�er operating impliitly in a Merer kernel spae and the well known Parzen window basedBayes lassi�er are studied. We found that by using unweighted data the ISE lassi�er isomparable to the Bayes lassi�er with slightly di�erent properties. This lassi�er seemsto prioritize the lasses with highest entropy ompared to the Bayes lassi�er on severalpopular data sets, but not all. We use the spetral properties of the data a�nity andLaplaian matrix, to propose and investigate ISE based lassi�ers working diretly in ap-proximated Merer kernel spaes. We found that in most ases the spetral versions of theISE lassi�er perform slightly worse than the versions working impliitly in Merer spaes.10.1 Further work
• In this thesis we have used the same single bandwidth kernel size for all lasses withina data set. This is �ne if the lasses have the same type of distribution, but this isprobably not a realisti situation. It should be rather simple to extend the lassi�ersdisussed in this thesis to allow for di�erent kernel sizes for eah lass. We an alsohek several other Merer and Non-Merer kernels to try to �nd out if some typesof data distributions bene�t from a partiular kernel type.
• It may be interesting to investigate how the lassi�ers perform with di�erent kernelswhen the kernel size is seleted by some referene rule, e.g. Silverman's rule inEq. 3.13 on page 17, sine we an't always a�ord to do ross-validation.
• The spetral ISE lassi�er and the spetral Laplaian lassi�er both work in spaesspanned by a number of eigenvetors orresponding to the number of lasses in eah97



98 CHAPTER 10. CONCLUSIONdata set. It may be interesting to see if inluding a few more eigenvetors an improvethe lassi�ers performane.
• The weighting of data points used in the Laplaian ISE lassi�ers seems to givelargest weights to points on the lass borders. For large data sets it may be useful totrain the lassi�ers by seleting a small portion of the points with the largest weights,within eah lass. This may redue the omputation time for the lassi�ers, withoutreduing the lassi�ation rates signi�antly.
• Sine we have developed spetral lassi�ers whih use the median vetors in an ap-proximated Merer spae, it should be interesting to test how they behave omparedto the same lassi�ers using mean vetors on data sets whih learly ontains outliers.An analysis of how the di�erent lassi�ers behave on data sets with outliers shouldalso be done.



Appendix ALaplaian ISE lassi�erClassi�ation results for the Laplaian ISE lassi�er not listed in the main part of thethesis.A.1 Average onfusion matries Laplaian ISE lassi�er
ω̂1 ω̂2

ω1 18.57 4.26
ω2 2.63 24.54Table A.1: Average onfusion matrix Banana data set.

ω̂1 ω̂2

ω1 12.94 11.40
ω2 0.26 25.40Table A.2: Average onfusion matrix Ringnorm data set.

ω̂1 ω̂2

ω1 18.61 3.70
ω2 0.35 52.34Table A.3: Average onfusion matrix Thyroid data set.
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ω̂1 ω̂2

ω1 24.66 0.97
ω2 0.86 23.51Table A.4: Average onfusion matrix Twonorm data set.

ω̂1 ω̂2

ω1 66.84 4.02
ω2 2.44 117.70Table A.5: Average onfusion matrix WBC data set

ω̂1 ω̂2

ω1 73.64 1.80
ω2 11.06 30.50Table A.6: Average onfusion matrix Ionosphere data set.

ω̂1 ω̂2

ω1 127.41 39.63
ω2 31.02 57.94Table A.7: Average onfusion matrix Pima data set.

ω̂1 ω̂2 ω̂3

ω1 19.68 0 0
ω2 1.22 21.20 1.41
ω3 0 0.04 16.45Table A.8: Average onfusion matrix Wine data set.

ω̂1 ω̂2 ω̂3

ω1 16.44 0.20 0.10
ω2 0 14.96 1.00
ω3 0 1.63 15.67Table A.9: Average onfusion matrix Iris data set.

ω̂1 ω̂2 ω̂3

ω1 121.89 0.04 0.04
ω2 0.01 116.52 5.37
ω3 0 0.180 120.95Table A.10: Average onfusion matrix Pendigits data set.



Appendix BSpetral ISE lassi�erClassi�ation results for the spetral ISE lassi�er not listed in the main part of the thesis.Data Median rateBanana 56.59±5.58Ringnorm 76.69±1.92Twonorm 97.28±0.58Thyroid 93.35±2.70Table B.1: Average lassi�ation rates for some Rätsh data sets using the spetral ISElassi�er with median vetors. Data set Median rateWine 95.5±2.4Iris 81.3±6.3WBC 89.2±2.9Ionosphere 68.9±8.4Pendigits 83.0±2.0Pima 69.2±2.3Table B.2: Average lassi�ation rates for some UCI data sets using the spetral ISElassi�er with median vetors.
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102 APPENDIX B. SPECTRAL ISE CLASSIFIERB.1 Average onfusion matries Spetral ISEMeans ω̂1 ω̂2

ω1 1431.69 1489.02
ω2 762.78 1216.51 Medians ω̂1 ω̂2

ω1 1524.60 1412.56
ω2 669.87 1292.97Table B.3: Average onfusion matries for the Banana data set.Means ω̂1 ω̂2

ω1 134.82 113.34
ω2 0 251.84 Medians ω̂1 ω̂2

ω1 131.61 116.55
ω2 0 251.84Table B.4: Average onfusion matries for the Ringnorm data set.Means ω̂1 ω̂2

ω1 243.73 5.72
ω2 8.00 242.55 Medians ω̂1 ω̂2

ω1 243.79 5.66
ω2 7.95 242.60Table B.5: Average onfusion matries for the Twonorm data set.



B.1. AVERAGE CONFUSION MATRICES SPECTRAL ISE 103Means ω̂1 ω̂2

ω1 19.56 2.15
ω2 2.75 50.54 Medians ω̂1 ω̂2

ω1 19.50 2.18
ω2 2.81 50.51Table B.6: Average onfusion matries for the Thyroid data set.Means ω̂1 ω̂2 ω̂3

ω1 19.94 1.29 0
ω2 0 20.61 0
ω3 0 1.63 16.53 Medians ω̂1 ω̂2 ω̂3

ω1 19.94 1.2 0
ω2 0 20.82 0
ω3 0 1.51 16.53Table B.7: Average onfusion matries for the Wine data set.Means ω̂1 ω̂2 ω̂3

ω1 15.85 0 0
ω2 0.06 12.99 3.8
ω3 0.61 4.02 12.67 Medians ω̂1 ω̂2 ω̂3

ω1 15.93 0 0
ω2 0.01 12.9 3.94
ω3 0.58 4.11 12.53Table B.8: Average onfusion matries for the Iris data set.Means ω̂1 ω̂2

ω1 60.82 9.51
ω2 9.6 111.07 Medians ω̂1 ω̂2

ω1 57.45 7.71
ω2 12.97 112.87Table B.9: Average onfusion matries for the WBC data set.Means ω̂1 ω̂2

ω1 46.24 5.33
ω2 29.06 36.37 Medians ω̂1 ω̂2

ω1 45.87 6.93
ω2 29.43 34.77Table B.10: Average onfusion matries for the Ionosphere data set.Means ω̂1 ω̂2 ω̂3

ω1 113.34 6.27 2.30
ω2 0 82.40 38.60
ω3 0 10.87 111.22 Medians ω̂1 ω̂2 ω̂3

ω1 113.01 5.12 3.78
ω2 0 70.65 50.35
ω3 0 2.64 119.45Table B.11: Average onfusion matries for the Pendigits data set.Means ω̂1 ω̂2

ω1 130.61 37.03
ω2 40.75 47.61 Medians ω̂1 ω̂2

ω1 126.27 41.37
ω2 37.51 50.85Table B.12: Average onfusion matries for the Pima data set.
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Appendix CSpetral Laplaian ISE lassi�erClassi�ation results for the spetral Laplaian ISE lassi�er not listed in the main part ofthe thesis. Data Median rateBanana 58.8±3.9Ringnorm 98.0±0.7Twonorm 97.4±1.0Thyroid 92.7±2.6Table C.1: Average lassi�ation rates for Rätsh data sets, using the spetral LaplaianISE lassi�er with median vetors.

Data Median rateWine 98.0±1.9Iris 85.1±4.8WBC 78.9±2.2Ionosphere 61.6±14.8Pendigits 80.9±2.7Pima 68.3±2.6Table C.2: Average lassi�ation rates for UCI data sets, using the spetral Laplaian ISElassi�er with median vetors. 105



106 APPENDIX C. SPECTRAL LAPLACIAN ISE CLASSIFIERC.1 Average onfusion matries for the spetral Lapla-ian ISE lassi�er.Means ω̂1 ω̂2

ω1 1546.59 1396.16
ω2 647.88 1309.37 Medians ω1 ω2

ω̂1 1576.08 1401.74
ω̂2 618.39 1303.79Table C.3: Average onfusion matries for the Banana data set.Means ω̂1 ω̂2

ω1 239.83 1.46
ω2 8.33 250.38 Medians ω̂1 ω̂2

ω1 239.73 1.35
ω2 8.43 250.49Table C.4: Average onfusion matries for the Ringnorm data set.Means ω̂1 ω̂2

ω1 244.34 5.11
ω2 7.50 243.05 Median ω̂1 ω̂2

ω1 243.71 5.74
ω2 7.32 243.23Table C.5: Average onfusion matries for the Twonorm data set.



C.1. AVERAGE CONFUSIONMATRICES FORTHE SPECTRAL LAPLACIAN ISE CLASSIFIER.107Means ω̂1 ω̂2

ω1 19.22 2.21
ω2 3.09 50.48 Medians ω̂1 ω̂2

ω1 19.03 2.20
ω2 3.28 50.49Table C.6: Average onfusion matries for the Thyroid data set.Means ω̂1 ω̂2 ω̂3

ω1 19.87 0.51 0
ω2 0.06 22.89 0.21
ω3 0 0.62 15.84 Medians ω̂1 ω̂2 ω̂3

ω1 19.85 0.39 0
ω2 0.08 23.04 0.16
ω3 0 0.59 15.89Table C.7: Average onfusion matries for the Wine data set.Means ω̂1 ω̂2 ω̂3

ω1 17.11 0 0
ω2 0.04 12.18 3.28
ω3 0 4.08 13.31 Medians ω̂1 ω̂2 ω̂3

ω1 17.13 0 0
ω2 0.02 12.15 3.3
ω3 0 4.11 13.29Table C.8: Average onfusion matries for the Iris data set.Means ω̂1 ω̂2

ω1 49 18.24
ω2 22.12 101.64 Medians ω̂1 ω̂2

ω1 49.09 18.21
ω2 22.03 101.67Table C.9: Average onfusion matries for the WBC data set.Means ω̂1 ω̂2

ω1 40.16 14.15
ω2 35.56 27.13 Medians ω̂1 ω̂2

ω1 32.69 1.85
ω2 43.03 39.43Table C.10: Average onfusion matries for the Ionosphere data set.Means ω̂1 ω̂2

ω1 130.10 36.54
ω2 44.67 44.69 Medians ω̂1 ω̂2

ω1 130.26 36.38
ω2 44.66 44.70Table C.11: Average onfusion matries for the Pima data set.Means ω̂1 ω̂2 ω̂3

ω1 110.75 3.06 6.12
ω2 0 58.00 65.32
ω3 0 0.68 121.07 Medians ω̂1 ω̂2 ω̂3

ω1 108.35 9.95 1.63
ω2 0 65.39 57.93
ω3 0 0.34 121.41Table C.12: Average onfusion matries for the Pendigits data set.
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