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Abstra
tThis thesis is a study of pattern 
lassi�
ation based on information theoreti
 
riteria. Infor-mation theoreti
 
riteria are important measures based on entropy and divergen
e betweendata distributions. First, the basi
 
on
epts of pattern 
lassi�
ation with the well knownBayes 
lassi�
ation rule as a starting point is dis
ussed. We dis
uss how the Parzen win-dow estimator may be used to �nd good density estimates. The Parzen window densityestimator 
an be used to estimate 
ost fun
tions based on information theoreti
 
riteria.Furthermore, we explain a model of an information theoreti
 learning ma
hine. With 
ostfun
tions based on information theoreti
 
riteria, we argue that a learning ma
hine poten-tially 
aptures mu
h more information about a data set than the traditional mean squarederror 
ost (MSE) fun
tion. We �nd that there is a geometri
 link between informationtheoreti
 
ost fun
tions estimated using Parzen windowing, and mean ve
tors in a Mer-
er kernel feature spa
e. This link is used to propose and implement di�erent 
lassi�ersbased on the integrated squared error (ISE) divergen
e measure, operating impli
itly ina Mer
er kernel feature spa
e. We also apply spe
tral methods to implement the sameISE 
lassi�ers working in approximations of Mer
er kernel feature spa
es. We investigatethe performan
e of the 
lassi�ers when we weight ea
h data point with the the inverse ofthe probability density fun
tion at that point. We �nd that the ISE 
lassi�ers workingimpli
itly in the Mer
er kernel feature spa
e performs similar to a Parzen window basedBayes 
lassi�er. Using a weighted inner-produ
t de�nition gives slightly better results forsome data sets, while for other data sets the 
lassi�
ation rates are slightly worse. When
omparing the results between the impli
it ISE 
lassi�er using unweighted data points andthe Parzen window Bayes 
lassi�er, some of the results indi
ate that the ISE 
lassi�er favorthe 
lasses with highest entropy.
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Chapter 1Introdu
tionPatterns are used to des
ribe any relations, regularities or stru
ture inherent in a dataset generated by a sour
e. Similar patterns are often grouped into a 
lass. By dete
tingsigni�
ant patterns in the available data, a learning ma
hine 
an make predi
tions aboutnew data 
oming from the same sour
e [26℄. In pattern 
lassi�
ation we use some labeledtraining data set, where ea
h label represent a 
lass, and use a learning ma
hine to predi
tthe 
orre
t 
lass label for a new unlabeled sample. A learning ma
hine may be viewedas a devi
e that adjust a set of parameters through a learning pro
ess. For ea
h new setof training data given to the ma
hine, the parameters are updated using a 
riteria that
aptures the wanted information to des
ribe the data in a new form. Pattern 
lassi�
ationis one of the fundamental problems in ma
hine learning and signal pro
essing [29℄, [26℄,[4℄.It is an important part in 
omputer vision, medi
al imaging, opti
al 
hara
ter re
ognition,geostatisti
s, handwriting re
ognition, biometri
 identi�
ation, natural language pro
ess-ing, do
ument 
lassi�
ation, email spam dete
tion and 
redit s
oring, to list a few examples[29℄, [4℄, [23℄, [1℄, [15℄, [8℄.Information theoreti
 learning (ITL) methods emerged in [18℄ and [5℄. Informationtheoreti
 learning here refers to the use of a general learning ma
hine as we des
ribein Se
tion 4.2, where a 
riteria related to Renyi's quadrati
 entropy is used to updatethe learning pro
ess. The 
riteria often use Renyi's quadrati
 entropy to �nd divergen
emeasures between data in di�erent distributions. A divergen
e measure 
an be thoughtof as a generalization of algebrai
 distan
e measures (su
h as the Eu
lidean norm) toprobability distribution spa
es [5℄. In [18℄ two important information theoreti
 divergen
emeasures were presented, one is based on the Cau
hy-S
hwarz (CS) inequality and theother on the integrated squared error (ISE) between two probability distributions.The Renyi's quadrati
 entropy is estimated using a Parzen window density estimationmethod, and may be thought of as a generalization of varian
e to pro
esses with non-Gaussian distributions [5℄. In [18℄ and [5℄ information theoreti
 
on
epts are explained andused in time series predi
tion, independent 
omponent analysis (ICA), feature extra
tionand blind sour
e de
onvolution.Independent of ITL, a number of kernel methods have emerged in the re
ent years.Kernel methods generally solve ma
hine learning problems in two parts: A module, also1



2 CHAPTER 1. INTRODUCTIONknown as a kernel fun
tion, performs a mapping of data to a new feature spa
e. In thisnew feature spa
e a learning algorithm is used to dis
over linear patterns [26℄. The use of akernel fun
tion allows us to operate impli
itly in a possible high dimensional spa
e throughevaluations of inner-produ
ts. This is also known as the �kernel tri
k�. The advantageof operating in high dimensional spa
es is that the probability that the data is linearlyseparable in
reases with the number of dimensions we operate in [2℄. Kernel methods havebeen used su

essfully in various �elds of ma
hine learning, and in
lude algorithms su
has support ve
tor ma
hines (SVMs), kernel Fisher dis
riminant analysis (KFD) and kernelprin
ipal 
omponent analysis (KPCA) [17℄.The a�nity matrix of a data set is 
al
ulated with the pairwise inner-produ
ts of datasamples with a kernel fun
tion, Element (i, j) of this matrix 
ontains the inner-produ
tbetween data sample i and j, 
omputed with a kernel fun
tion. The inner-produ
ts of thea�nity matrix may be weighted su
h that ea
h data point is multiplied with the inverseoverall probability density fun
tion at that point. This a�nity matrix with weighted inner-produ
ts is referred to as the Lapla
ian matrix. Spe
tral methods based on the spe
tralproperties, i.e. the eigenve
tors and eigenvalues of the a�nity matrix or the Lapla
ianmatrix, have been popular in re
ent 
lustering appli
ations [5℄,[9℄.It has been shown [13℄ and [9℄, that when using the non-parametri
 Parzen windowdensity estimator with a Mer
er kernel fun
tion to estimate the Renyi's quadrati
 entropyfor a data set, the result may be interpreted in terms of a mean ve
tor in a Mer
er kernelfeature spa
e. By measuring distan
es between 
lass mean ve
tors in a Mer
er kernelfeature spa
e we 
an 
reate di�erent information theoreti
 divergen
e measures between
lass distributions. The CS divergen
e measure is shown in [13℄ to be related to measuringangles between 
lass mean ve
tors in a Mer
er kernel feature spa
e and have interesting
onne
tions to graph theory. The ISE divergen
e measure is in a similar manner shown tobe related to the Eu
lidean distan
e between mean ve
tors in a Mer
er kernel spa
e [9℄.The link between ITL and Mer
er kernel methods has been used to develop re
ent
lassi�er [12℄, [9℄, and 
lustering [9℄, [11℄, [10℄ algorithms based on the CS divergen
emeasure. The 
lassi�er proposed in [12℄ works impli
itly in a Mer
er kernel feature spa
e,while the CS based spe
tral 
lustering algorithms work in approximate Mer
er kernel spa
esspanned by the prin
ipal eigenve
tors of the Lapla
ian matrix. These methods have allused weighted inner-produ
t kernel fun
tions when 
al
ulating the CS divergen
e measure.This thesis is inspired by the use of the CS divergen
e measure in both 
lassi�
ationand 
lustering appli
ations. We provide ne
essary ba
kground on information theoreti
learning 
on
epts to understand newly dis
overed, important relations between Mer
erkernel theory, information theoreti
 measures and density estimation. In parti
ular wefo
us on the properties of the ISE information theoreti
 divergen
e measure and use Mer
erkernel properties and geometri
 properties of this measure to argue that it may be usedas a 
ost fun
tion in an information theoreti
 
lassi�er. Previous information theoreti

lassi�ers have to our knowledge only been implemented using the weighted CS divergen
emeasure. Thus we aim to use the ISE divergen
e measure in a similar manner. Weinvestigate performan
e and properties of 
lassi�ers based on the ISE divergen
e usingboth weighted and unweighted inner-produ
ts, operating impli
itly in Mer
er kernel spa
es



3through evaluations with Mer
er kernels.We also investigate spe
tral versions of the ISE 
lassi�ers, where we eigende
ompose theLapla
ian data matrix or the a�nity matrix. None of the ISE divergen
e based 
lassi�erspresented in this thesis have been presented before, so we 
ould not know how they wouldperform. We 
hoose to 
ompare the results obtained with our implementation of the Bayes
lassi�er, both be
ause it is a well known 
lassi�er and be
ause we �nd out that the ISEbased 
lassi�er rule may be expressed in a very similar way to the Bayes 
lassi�er rule.We present two di�erent versions of the ISE 
lassi�er operating impli
itly in di�erentMer
er spa
es. The standard ISE and the Lapla
ian ISE 
lassi�er, operating on unweightedand weighted training data, respe
tively. We also develop spe
tral versions of these 
las-si�ers, the spe
tral ISE 
lassi�er and the spe
tral Lapla
ian ISE 
lassi�er, working inthe approximated Mer
er spa
es spanned by the prin
ipal eigenve
tors of the a�nity andLapla
ian matri
es, respe
tively. The ISE based 
lassi�ers working impli
itly in a Mer
erkernel spa
e in general seems to give best results. For some data sets the Lapla
ian indu
edweights improve the 
lassi�
ation rates, but in others it redu
es or does not 
hange the
lassi�
ation rates signi�
antly.1.0.1 Qui
k summary of 
ontent in this thesis.
• We provide ne
essary ba
kground information about the relatively new 
on
epts usedin information theoreti
 learning. We also review ba
kground information ne
essaryto understand basi
 density estimation and pattern 
lassi�
ation.
• We introdu
e and investigate new 
lassi�ers based on the information theoreti
 ISEdivergen
e measure and kernel methods, using both weighted and unweighted data.
• We investigate relations between an ISE divergen
e based 
lassi�er operating im-pli
itly in a Mer
er kernel spa
e and the well known Parzen window based Bayes
lassi�er. We �nd that using unweighted data the ISE 
lassi�er is 
omparable to theBayes 
lassi�er with slightly di�erent properties.
• We use the spe
tral properties of the a�nity and Lapla
ian matri
es of the data, topropose and investigate ISE based 
lassi�ers working dire
tly in approximated Mer
erkernel spa
es. We note that in most 
ases the spe
tral versions of the ISE 
lassi�erperform slightly worse than the versions working impli
itly in Mer
er spa
es.



4 CHAPTER 1. INTRODUCTION1.1 De�nitions and notation usedx,y A training pattern and 
lass labeli,N Counter and number of patternsi.i.d Independent identi
ally distributedpdf Probability density fun
tionISE Integrated Squared errorMISE Mean Integrated Squared ErrorAMISE Asymptoti
 Mean Integrated Squared ErrorIP Information PotentialITL Information Theoreti
 Learning
Wσ2(·, ·) A Gaussian kernel, with bandwidth σ2

Kh(·, ·) A general Mer
er kernel, with bandwidth h
F A Mer
er kernel feature spa
e
d Dimensionality of data
C Number of 
lassesTable 1.1: De�nitions and abbreviationsDensity fun
tions are usually referen
ed with small letters e.g. p(x). Probabilities arereferen
ed with large letters e.g. P (x). Integrals with no limits are assumed to be withlower limit −∞ and upper limit∞. The sample x may take any value in the d dimensionalspa
e, unless otherwise spe
i�ed. Expe
tations with regard to a variable or fun
tion f isdenoted by Ef{·} if it may be un
lear what we 
al
ulate the expe
ted value with respe
tto.1.2 Stru
ture and literatureStru
ture of this thesis This thesis is divided in three parts. In Part I we present thetheory ne
essary to understand and implement our 
lassi�ers. Part II 
ontains analysisand experiments done to 
he
k how the theory works on some popular data sets. In PartIII we 
on
lude the thesis and suggests further work that may be done.

• Chapter 2 introdu
e the basi
 
on
epts of pattern 
lassi�
ation. The Bayes 
lassi�eris used as an example and shown to give a minimum probability of 
lassi�
ationerror.
• Chapter 3 dis
usses various methods for density estimation with an emphasis on theParzen window density estimator and its properties.
• Chapter 4 explains the 
on
ept of an information theoreti
 learning ma
hine. Adetailed dis
ussion of various information theoreti
 
riteria is given. Some samplebased estimators for information theoreti
 
riteria are dis
ussed.



1.2. STRUCTURE AND LITERATURE 5
• Chapter 5 explain the kernel tri
k and how it 
an be used to express informationtheoreti
 measures in a Mer
er kernel spa
e from a simple geometri
 viewpoint. Thestandard ISE 
lassi�er is developed using this geometri
 view of the ISE divergen
ebetween two distributions. This 
lassi�er is shown in a spe
ial 
ase to be equal tothe familiar Bayes 
lassi�er using density estimates. Some relations between the ISEdivergen
e measure and graph theory are dis
ussed.
• Chapter 6 presents the Lapla
ian ISE 
lassi�er, a modi�ed version of the standardISE 
lassi�er using weighted data samples.
• Chapter 7 presents spe
tral versions of the standard ISE and Lapla
ian 
lassi�er,working in approximated Mer
er kernel spa
es.
• Chapter 8 provides a short analysis of the e�e
t of di�erent kernel sizes and kerneltypes used in the previously presented 
lassi�ers.
• Chapter 9 presents and dis
usses results found using the di�erent 
lassi�ers on somepopular data sets. We try to illustrate the e�e
ts of weighting the data samples andhow data distributes in the approximate Mer
er kernel spa
es.
• Chapter 10 
on
ludes this thesis and suggests some work that may be done in thefuture.
• The appendix 
ontains some additional 
lassi�
ation results not listed in Chapter 9.Literature Information theory in general is 
overed by [3℄ and the arti
le whi
h �rstused entropy as a measure in 
ommuni
ation, [25℄. The prin
iples behind informationtheoreti
 learning was mainly introdu
ed in [18℄ with an ni
e overview in [5℄ and [9℄. Goodintrodu
tion books to pattern 
lassi�
ation methods are [29℄,[4℄ and [8℄. The CS divergen
ebased 
lassi�er whi
h inspired mu
h of the work with our ISE divergen
e based 
lassi�ersis presented in [12℄. Important relations between Mer
er kernel fun
tions, Parzen windowdensity estimators, CS divergen
e and graph theory is reviewed in [13℄. A survey of kernelmethods used in pattern analysis is given in [26℄ and [17℄. Spe
tral methods used in thisthesis are in�uen
ed by material in [26℄ [9℄, [24℄, [6℄ and [31℄.
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Chapter 2Pattern 
lassi�
ation basi
sThis 
hapter gives a de�nition of pattern 
lassi�
ation. It also reviews the well knownBayes 
lassi�
ation rule, whi
h is shown to give a minimum probability of 
lassi�
ationerror. The Bayes 
lassi�er may thus be used as a ben
hmark when testing other 
lassi�erswith regard to error rates. In Part II, Chapter 9, we use an implementation of this 
lassi�erto 
ompare with the new 
lassi�ers whi
h will be presented in later 
hapters of this thesis.De�nition The task of 
lassi�
ation is to �nd a rule, whi
h based on observations oftraining patterns assigns an un
lassi�ed pattern to one of several possible 
lasses. A 
las-si�
ation rule with two di�erent 
lasses is to estimate a fun
tion
g : R

d −→ {−1, 1},using input-output training data pairs generated i.i.d a

ording to an unknown probabilitydistribution
p(x, y), (x1, y1), . . . , (xN , yN) ∈ R

d × Y, Y {−1, 1}su
h that g will 
orre
tly 
lassify a new sample x [17℄. A sample x is assigned to the 
lasslabeled +1 if g(x) ≥ 0. The sample x is assumed to be generated from the same pdf p(x, y)as the training data.2.1 The Bayes 
lassi�erTo explain more in detail how we 
an de�ne a 
lassi�er we begin with the Bayes 
lassi�er.The reason for starting with this is that it 
an be shown to give an optimal result withregard to minimum probability of 
lassi�
ation error, under 
ertain 
onditions. This willbe proved in the next se
tion. It is also well known and has some theoreti
al 
onne
tionsto the ISE 
lassi�er, whi
h will be explained in Se
tion 5.3.1.We want to 
lassify an unknown feature ve
tor x to one of C possible 
lasses ω1, . . . , ωCin a way that assigns x to the 
lass where it's �most likely� to belong. We de�ne what is9



10 CHAPTER 2. PATTERN CLASSIFICATION BASICS�most likely� with the probabilities P (ωi|x), i = 1, . . . , C, also known as the a posterioriprobabilities. A possible 
lassi�
ation rule is to assign x to the 
lass ω∗ satisfying [29℄
ω∗ = max

ωi

P (ωi|x), i = 1, . . . , C. (2.1)Assume that the a priori probabilities P (ωi) i = 1, . . . , C, are known. If they areunknown they 
an be estimated from our training data as P (ωi) = ni

N
where N is the totalnumber of training samples, and ni is the number of samples belonging to 
lass ωi. The
lass-
onditional probability density fun
tions p(x|ωi), also known as likelihood fun
tionsof ωi, with respe
t to x, are also assumed to be known [29℄. If these are unknown we willsee later how they 
an be estimated.1 To 
al
ulate the a posteriori probabilities we 
anuse Bayes rule [29℄

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
, i = 1, . . . , C, (2.2)where

p(x) =
∑

i

p(x | ωi)P (ωi).Sin
e p(x) is a 
ommon fa
tor for all 
lasses it may be ignored and we 
an use
ω∗ = max

ωi

p(x|ωi)P (ωi), i = 1, . . . , C, (2.3)as our 
lassi�er. If the a priori probabilities P (ωi), are equal Eq. (2.3) redu
es to
ω∗ = max

ωi

p(x|ωi), i = 1, . . . , C,and the sear
h for the most probable 
lass for feature x redu
es to evaluating the 
onditionalpdfs at x. Sin
e the 
lassi�er in Eq. (2.3) is obtained using Bayes rule, it is often referredto as the Bayes 
lassi�er. In the two 
lass 
ase we use Eq. (2.3) to assign x to 
lass ω1 if
p(x|ω1)P (ω1) > p(x|ω2)P (ω2).Our 
lassi�
ation fun
tion 
an now be de�ned as to 
lassify x to 
lass ω1 if

g(x) = p(x|ω1)P (ω1) − p(x|ω2)P (ω2) ≥ 02.2 Minimum probability of 
lassi�
ation error for theBayes 
lassi�erIn Fig. 2.1, the Bayesian 
lassi�er for two equiprobable 
lasses for a one-dimensional featureve
tor x is illustrated. The region to the left of the dotted threshold line 
learly 
ontainsmost of p(x, ω1) = p(x|ω1)P (ω1) and we de�ne this as R1, and the region to the right1If x is dis
rete the likelihood fun
tions be
ome probabilities and are denoted with P (x|ωi)



2.2. MINIMUM PROBABILITY OF CLASSIFICATION ERROR FORTHE BAYES CLASSIFIER11

Figure 2.1: Illustration of two de
ision regions. Figure borrowed from [29℄of the threshold as R2. Let R1 and R2 be the regions where we 
lassify x to ω1 and ω2,respe
tively. The total area 
overed by p(x|ω1) in region R2 and p(x|ω2) in R1 will be theprobability of 
ausing 
lassi�
ation errors. If the threshold is moved to the left or right, thisarea and probability will in
rease. This means that if we want to minimize the probabilityof an error, the de
ision regions R1 and R2 must be sele
ted by moving the threshold sothis area is as small as possible.In a multi
lass situation with a multidimensional feature ve
tor x we have C di�erent
lasses with de
ision regions (R1, . . . RC) our feature ve
tor x 
an be pla
ed in. We nowgeneralize the situation in Fig. 2.1. Writing the probability of a 
orre
t de
ision by thejoint probability
P (x ∈ Ri, ωi),then the probability of erroneously assigning x to ωj by not sele
ting the 
orre
t 
lass ωiis

P (x ∈ Rj, ωi), ∀j 6= i.



12 CHAPTER 2. PATTERN CLASSIFICATION BASICSThe total probability for 
ommitting an error in 
lassi�
ation is thus
Pe =

⋃

∀j 6=i

P (x ∈ Rj, ωi),

=
∑

∀j 6=i

P (x ∈ Rj|ωi)P (ωi),

=
∑

∀j 6=i

P (ωi)

∫

Rj

p(x|ωi)dx,

=
∑

∀j 6=i

∫

Rj

P (ωi|x)p(x)dx.The total probability for 
orre
t 
lassi�
ation is
∑

i

∫

Ri

P (ωi|x)p(x)dx = 1 − Pe.Hen
e
Pe = 1 −

∑

∀i

∫

Ri

P (ωi|x)p(x)dx.The error is 
learly minimized when the regions Ri are sele
ted in a way where
Ri : P (ωi|x) > P (ωj|x), ∀j 6= i,whi
h is the same as Eq. (2.1).



Chapter 3Density estimation
The 
ost fun
tions used by the 
lassi�ers dis
ussed in this thesis are all dependent on �ndingsome sort of density estimate for the 
lass distributions of the data. The 
ase where we knowthe distributions of the feature ve
tors in ea
h 
lass ωi, given by the likelihood fun
tions
p(x|ωi), is unfortunately not the reality for most data sets. We have to �nd estimatesof these distributions. There are basi
ally two 
ategories of methods for estimation ofpdfs, parametri
 and non-parametri
 methods. In this se
tion, for 
ompleteness, a shortdes
ription of parametri
 methods for density estimation is given. For more details [29℄is re
ommended. The non-parametri
 methods are far more important in informationtheoreti
 
lassi�
ation, sin
e we often 
annot assume that the data set has a parametri
distribution shape. In parti
ular the Parzen window method for density estimation will beinvestigated. Throughout this 
hapter we assume a data set of N samples, xi, i = 1, . . . , N ,generated i.i.d from unknown distributions, unless otherwise is spe
i�ed.
3.1 Parametri
 methodsAssume that the pdf to be estimated is des
ribed in parametri
 form by some unknownparameter ve
tor θ, so it 
an be written as f(x; θ). We have a limited number N ofi.i.d training data, x1, . . . , xN available from our distribution. Using these samples we 
anuse di�erent methods to �nd an estimate of the parameters in θ su
h that the estimate
f̂(x; θ) is as 
lose as possible to the true pdf. This means that we assume that our datais generated from a distribution with a shape that is 
lose to a parametri
 form, e.g weassume a Gaussian, Rayleigh or some other well known distribution and try to adjust itsparameters to �t our data as good as possible. The parameters in θ are usually foundby maximum likelihood estimation. In [29℄ some methods for parametri
 estimation aredes
ribed, e.g. maximum likelihood estimation, mixture models, maximum entropy et
.13



14 CHAPTER 3. DENSITY ESTIMATION3.2 Non-parametri
 methodsTo avoid the need to make assumptions about a parametri
 shape of the desired distri-bution, we must often use non-parametri
 methods. In this se
tion, we review di�erentmethods of density estimation with a one-dimensional random variable x taken from a 
on-tinuous, univariate density fun
tion f(x). We start with the simple histogram method andexpand it until we end up with the Parzen window estimator. Some of the most importantproperties of the Parzen window estimator are then dis
ussed. In the last se
tion, theParzen window method is expanded to the 
ase where we have multivariate distributions,where the variable x is a multidimensional ve
tor.3.2.1 The histogram density estimatorThe oldest way to �nd a non-parametri
 estimate of a fun
tion is given by the histogram[30℄, [9℄. Given an origin x0, and a bin width h, the bins of the histogram are de�ned as
[x0 + mh, x0 + (m + 1)h) for positive and negative integers m. The histogram estimate ofthe fun
tion f(x) is then

f̂(x) =
1

Nh
(no of xi in same bin as x). (3.1)This estimator is obviously dis
ontinuous and not usable when we need to �nd derivatives.3.2.2 The naive density estimatorThis is also a variant of the histogram method. De�ne the pdf evaluated at x as

f(x) = lim
h→0

1

2h
P (x − h < X < x + h) (3.2)The probability P (x − h < X < x + h) 
an be estimated by 
ounting the number of datasamples falling into a bin of size 2h 
entered at x. This 
an be de�ned more pre
isely witha weight fun
tion

W (x) =

{
1
2

if |x| ≤ 1
0 otherwise ,su
h that the naive estimator 
an be expressed as [9℄

f̂(x) =
1

Nh

N∑

i=1

W

(
x − xi

h

)
. (3.3)Introdu
ing a res
aling notation Wh(u) = h−1W (u/h) we rewrite Eq. (3.3) as

f̂(x) =
1

N

N∑

i=1

Wh(x − xi). (3.4)From Eq. (3.3) we see that an estimate for the pdf at x is given by pla
ing a �box� aroundea
h sample xi with width 2h and height (2Nh)−1 and sum up. This estimator is not
ontinuous, sin
e it is a sum of dis
ontinuous fun
tions.



3.2. NON-PARAMETRIC METHODS 153.2.3 The Parzen window density estimatorParzen generalized the weight fun
tion Wh(·) in Eq. (3.4) to a kernel fun
tion or Parzenwindow whi
h is a fun
tion satisfying [29℄
Kh(x) ≥ 0 and ∫

x

Kh(x)dx = 1.The subs
ript h refers to the bandwidth or window width of the kernel [30℄. Usually K(·) is
hosen to be a unimodal probability density fun
tion that is symmetri
 around zero. Thismakes sure that the estimator
f̂(x) =

1

N

N∑

i=1

Kh(x − xi) (3.5)produ
es an estimate whi
h is also a density.To investigate some of its properties, we �nd expressions for the mean value and varian
eof Eq. (3.5). Let f̂(x) be the estimate of the true density f(x) at x, with x′ a randomvariable with density f(x). Then
E{f̂(x)} =E{Kh(x − x′)}

=

∫
Kh(x − x′)f(x′)dx′

=Kh(x) ⋆ f(x). (3.6)The density estimate is therefore a smoothed version of the true density. The bias of theestimator is given by [30℄
E{f̂(x)} − f(x) = [Kh(x) ⋆ f(x)] − f(x), (3.7)and the varian
e is [30℄

V ar{f̂(x)} =E{[f̂(x) − E{f̂(x)}]2}

=
1

N
{(K2

h(x) ⋆ f(x)) − [(Kh(x) ⋆ f(x)]2}. (3.8)It is 
ommon to measure the 
loseness of the estimator f̂(x) to the target density f(x) inthe point x by the size of the mean squared error (MSE)
MSE{f̂ (x)} = E

{
[f̂(x) − f(x)]2

}
,whi
h 
an be written as

MSE{f̂(x)} =
1

N
{(Kh(x)2 ⋆ f(x)) − [(Kh(x) ⋆ f(x))]2} + {(Kh(x) ⋆ f(x)) − f(x)}2

=V ar{f̂(x)} + [Bias{f̂(x)}]2.



16 CHAPTER 3. DENSITY ESTIMATIONInstead of just estimating the fun
tion f(x) at a single point we want to estimate it overthe whole x-spa
e. The mean integrated error (MISE) is a more appropriate measure foranalyzing f̂(x) where
MISE{f̂(x)} =

∫
MSE{f̂ (x)}dx

=

∫
E{[f̂(x) − f(x)]2}dx +

∫
V ar{f̂(x)}dx. (3.9)The bias and varian
e term in Eq. (3.9) depend on the kernel width h in di�erent ways. Ithas been shown that Eq. (3.9) for large sample sizes N , the asymptoti
 mean integratedsquared error (AMISE) is given by [14℄, [30℄

AMISE{f̂(x)} = (Nh)−1R(K) +
1

4
h4µ2(K)2R

(
f

′′

) (3.10)where µ2(K) =
∫

z2K(z)dz, R(f
′′

) =
∫
{f ′′

(x)}2dx, f
′′

(x) = d2

d2x
f(x) and R(K) =∫

K(z)2dz. We see that minimizing the left term (the varian
e) with a large kernel window
h results in a huge in
rease in the bias part whi
h is proportional to h4. This is what isknown as the varian
e-bias trade-o� in kernel size sele
tion. There exists many ways to�nd the kernel size h. We mention two popular methods here. The �rst di�erentiatesEq. (3.10) and equates it to zero, obtaining

hAMISE =

[
R(K)

µ2
2(K)R(f ′′)N

] 1

5The other method estimates R(f
′′

) by assuming that the true underlying density is anormal density. Then the kernel size is given by [9℄
hAMISE = 1.06N− 1

5Several other methods exist, see [14℄ and [30℄.3.2.4 The multivariate Parzen windowThe extension of the Parzen window to feature data in a d-dimensional spa
e is a little moredi�
ult. The sparseness of data in higher dimensional spa
es makes the estimation moredi�
ult, unless we have very many samples. This phenomenon is usually referred to asthe 
urse of dimensionality. Remembering that the kernel fun
tion in the one-dimensional
ase spe
ify the window width, this window will in the multidimensional 
ase be repla
edwith hyper
ubes and ea
h dimension of the 
ube requires a parameter to be estimated forthe kernel. A dire
t extension of the univariate kernel estimate in Eq. (3.5), is obtainedby repla
ing the point x with a ve
tor-point x ∈ R
d and the variable xi with a d-variatesample xi with density f(x). The Parzen estimator be
omes [30℄

f̂(x) =
1

N

N∑

i=1

KH(x − xi) (3.11)



3.2. NON-PARAMETRIC METHODS 17where H is a symmetri
 positive de�nite d × d matrix 
alled the bandwidth matrix
KH(x) = |H|−1/2K(H−1/2x).With further restri
tions on H, see [30℄ for details, we get the single bandwidth kernelestimator

f̂(x) =
1

Nh−d

N∑

i=1

K{(x − xi)/h}. (3.12)There exists several methods to give an estimate of the optimal kernel size for a multi-variate data set. The optimal kernel size is usually sele
ted to minimize the MISE between
f̂(x) and the target density f(x). The normal referen
e rule for the MISE kernel size isgiven by Silverman's rule [28℄, [9℄̂

h = σx

[
4

(2d + 1)N

] 1

d+4

, (3.13)where σ2
x = d−1

∑
i Σii and Σii are the diagonal elements of the sample 
ovarian
e matrix.Due to the 
urse of dimensionality this method is not regarded as reliable for higher di-mensional data. In this thesis most of the data sets are of higher dimensions, so we have
hosen a 
ross validation te
hnique to �nd the best kernel sizes in the density estimates.



18 CHAPTER 3. DENSITY ESTIMATIONSome well-known Parzen windows with u = x−xi

h
are listed below, where for u ≥ 1 allwindows evaluate to zero, ex
ept the Gaussian kernel. For simpli
ity we only present theone-dimensional versions, but they 
an easily be extended to multivariate versions.

• Uniform
Kh(u) = 1/2.

• Epane
hnikov
Kh(u) =

3

4
(1 − u2).

• Gaussian
Wσ2(x) =

1√
2πσ2

exp

{
−(x − xi)

2

2σ2

}
.

• Quarti

Kh(u) =

15

16
(1 − u2)2.

• Triweight
Kh(u) =

35

32
(1 − u2)3.

• Cosinus
Kh(u) =

π

4
cos
(π

4
u
)

.



Chapter 4Information theoreti
 learning prin
iplesThis 
hapter starts with a brief introdu
tion of information theory. An overview of the
on
epts in an information theoreti
 learning ma
hine is then given. Information theoreti

riteria, whi
h gives us the tools to measure the shape of, and distan
e between, probabilitydistributions, is then explained in detail. In the last se
tion we dis
uss some 
ost fun
tionestimators used in ITL.
4.1 Information theoryInformation theory is in this thesis related to C.E Shannon's report from 1948, A math-emati
al theory of 
ommuni
ation [25℄. Shannon de�ned a measure of information orun
ertainty asso
iated with a sto
hasti
 experiment and named it entropy. This measurewas used to answer important questions in 
ommuni
ation. Shannon used entropy to �nda limit to how mu
h information 
an be transferred over a noisy 
hannel, and to �nd waysto design optimal 
odes for data 
ompression.Entropy 
an be thought of as the un
ertainty asso
iated with the value of a realizationof a single random variable. It is a measure on how mu
h information that is gained aboutthe 
ontent of a sto
hasti
 random variable after a sto
hasti
 experiment.Shannon also de�ned a measure 
alled mutual information, whi
h is the amount ofinformation that one random variable 
arries about another, i.e. the redu
tion in theun
ertainty of one random variable due to the knowledge of the other. Mutual informationis a spe
ial 
ase of a more general quantity, 
alled relative entropy. The relative entropyor divergen
e 
an be used as a measure of �distan
e� between two distributions. It is ameasure of the ine�
ien
y of assuming that a distribution is given by a density fun
tion
q(·), when it in fa
t has a distribution given by a density fun
tion p(·). This is also refereedto as a divergen
e measure between distributions. In this thesis we use di�erent estimatesof entropy and divergen
e as information theoreti
 measures.19
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Figure 4.1: A general learning ma
hine.4.2 An information theoreti
 learning ma
hineA very general learning ma
hine may be des
ribed using a model like the one in Fig. 4.1.Ma
hine learning is in general divided into supervised, semi-supervised and unsupervisedtasks. The model in Fig. 4.1 
an be used to des
ribe all of the above ma
hine learningtasks. We have some input data X, 
ontaining information or measurements from a real-world event. We want the learning ma
hine to perform some spe
i�
 task on X. This isdone by giving the input data X to a possibly non-linear parametri
 mapping fun
tion
g : R

d → R
M , (4.1)whi
h transforms the input ve
tor X ∈ R

d to Y ∈ R
M

Y = g(X, W ), (4.2)where W are the parameters of the mapping fun
tion. If the optimality 
riterion is based onan information theoreti
 measure, either entropy or divergen
e, we 
all this an informationtheoreti
 learning ma
hine. The mapper fun
tion in Eq. (4.2) transform the input data toa new form depending on the task of the learning ma
hine. The output of the mapper, Yis 
ompared with an optimality 
riterion and optionally a desired response z for the input
X. For ea
h presentation of training data the optimality 
riterion is evaluated and theerror term e is fed to an adaptation algorithm whi
h update the parameters W .Supervised learning 
on
erns a learning ma
hine with a desired response for ea
h input
X. This thesis fo
us on supervised learning, spe
i�
ally on 
lassi�
ation of data. If thelearning task is 
lassi�
ation, the desired response z for the training data 
ontains a 
lass
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lassify a random input sample to one of C 
lasses. The mappingfun
tion may in this 
ase be des
ribed as
g : R

d → {y1, . . . , yc},where y1, . . . , yc are the possible 
lass labels, and M = 1 in Eq. (4.1). Regression is anotherexample of a typi
al supervised learning task, where the mapping is
g : R

d → R.Semi-supervised learning tasks 
on
erns learning where the labels of the input data areonly partially known. One example is ranking where we only have available the relativeordering of the the examples in the training set, while our aim is to enable a similar orderingof novel data.Unsupervised tasks are learning tasks where the wanted information from the data hasto be extra
ted without any desired response in the optimality 
riterion. Clustering is onetypi
al example of unsupervised learning, where the aim is to �nd a natural division of datainto homogeneous groups [26℄. Anomaly and novelty dete
tion are other examples, wherethe task is to dete
t samples that deviate from the normal. Other important unsupervisedtasks are �nding low-dimensional representations of the input data, important examplesof this is prin
ipal 
omponent analysis (PCA) and independent 
omponent analysis (ICA).In PCA, the mapping in Eq. (4.1) aims to proje
t the input X to a lower M-dimensionalspa
e, where M denotes the number of un
orrelated features in X. In ICA the goal is toproje
t X to a lower M-dimensional spa
e where ea
h of the features of X are mutuallyindependent.Traditionally the 
riteria for optimality in Fig. 4.1 has been to minimize the MSE 
ostfun
tion between the output Y of the mapper and the desired output z

J(Y ) = E
{
(z − Y )2

}
. (4.3)In our general ma
hine learning model we want to transfer as mu
h information as possibleabout our data into the mapper fun
tion g(X, W ), su
h that this mapper is able to des
ribeour data as a

urately as possible. The optimality 
riterion is thus 
riti
al in obtainingthe parameters W . If we use MSE, the information transferred from the measurements Xand the desired responses z to the parameters W is purely based on se
ond order statisti
s
onstraints. This is only optimal if the input data is drawn from Gaussian distributions,whi
h is a rather stri
t restri
tion.To transfer as mu
h information as possible to the parameters W the error term inFig. 4.1 must be 
omputed with a 
riterion transferring as mu
h information as possibleabout the input data X, and the desired response z, to the parameters W of the mapper

Y = g(X, W ). If we base our 
al
ulations on information theory and optimize with infor-mation theoreti
 
riteria in Fig. 4.1 and Eq. (4.2) we have what Prin
ipe et al des
ribesas information theoreti
 learning [18℄. The main advantage with information theoreti

riteria are that they are fun
tions of probability densities and 
apture all data statisti
s,not just the se
ond-order statisti
s. This gives us learning ma
hines where the parameters
W des
ribes our data in a mu
h better way than the traditional MSE 
an.



22 CHAPTER 4. INFORMATION THEORETIC LEARNING PRINCIPLES4.3 Information theoreti
 quantitiesIn this se
tion we dis
uss some important information theoreti
 quantities that may beused as information theoreti
 
riteria in an ITL ma
hine.De�nitions A dis
rete sto
hasti
 variable X is asso
iated with a triple (x,AX,PX),where the out
ome x is the value of the sto
hasti
 variable whi
h takes on a set ofpossible values AX = {a1, a2, . . . , aN}. These have probabilities (distribution) PX =
{p1, p2, . . . , pN}, where P (x = ai) = pi, pi ≥ 0 and ∑

ai∈AX
P (x = ai) = 1.A 
ontinuous sto
hasti
 variable X is asso
iated with a probability density fun
tion

fX(x), where the out
ome x is the value of the sto
hasti
 variable. The pdf is de�ned as thederivative of the 
umulative distribution fun
tion (
df), de�ned as P (X ≤ x0) = FX(x0),where 0 ≤ FX(x) ≤ 1. Hen
e, fX(x0) = ∂
∂x

FX(x) |x=x0
, and ∫∞

−∞
fX(x)dx = 1.We have statisti
al independen
e between random variables X1, . . . ,XN if and only if

f(x1, . . . ,xN) =
∏N

i=1 f(xi).A metri
 on a set X is a fun
tion u : X × X → R. For all x,y,z in X , this fun
tion isrequired to satisfy the following 
onditions1. u(x, y) ≥ 0.2. u(x, y) = 0 if and only if x=y.3. u(x, y) = u(y, x).4. u(x, z) = u(x, y) + u(y, z).4.3.1 EntropyAll information theoreti
 
riteria are related to the 
on
ept of entropy. We now explainShannon's measure of entropy and some of it's properties. A more general version ofentropy, the Renyi entropy is then reviewed.Shannon's entropyAssume there is some un
ertainty in the out
ome of an random experiment and that thepossible out
omes of the experiment is given by a probability distribution. This �un
er-tainty� was �rst quanti�ed by Shannon as H = HN (p1, p2, . . . , pN) satisfying the following
riteria [25℄ [9℄1. HN(p1, p2, . . . , pN) is a symmetri
 fun
tion of its variables.As an example, HN (p1, p2, . . . , pN) = HN(p2, p1, . . . , pN).2. HN(p1, p2, . . . , pN) is a 
ontinuous fun
tion of p1, p2, ...., pN .3. HN( 1
N

, . . . , 1
N

) attains the maximum value.



4.3. INFORMATION THEORETIC QUANTITIES 234. HN+1(tp1, (1 − t)p1, p2, . . . , pN) = HN(p1, p2, . . . , pN) + p1H2(t, 1 − t) for any distri-bution pX and 0 ≤ t ≤ 1.The fourth property of Shannon entropy may be explained as follows [25℄. If a 
hoi
eis broken down into two su

essive 
hoi
es, the original entropy (H) is the weighted sumof the individual values of H [25℄. This is illustrated in Fig. 4.2.

Figure 4.2: At the left we have three possibilities, ea
h 
hosen a

ordingto the probabilities p1 = 1
2
, p2 = 1

3
, p3 = 1

6
. On the right, we �rst 
hoosebetween two possibilities ea
h with probability 1

2
. If the se
ond possibilityis 
hosen, we make another 
hoi
e with probabilities 2

3
and 1

3
. The �nalresults have the same probabilities as before. We require, in this spe
ial
ase, that H(1

2
, 1

3
, 1

6
) = H(1

2
, 1

2
) + 1

2
H(2

3
, 1

3
). The 1

2

oe�
ient is be
ausethis se
ond 
hoi
e only o

urs half the time.Shannon showed that the only H satisfying the above assumptions is [25℄

HN(p1, p2, . . . , pN) = HN(PX) = −K
∑

pi∈PX

pi logb pi, (4.4)with the 
onvention that 0 logb 0 = 0. This measure he 
alled entropy, be
ause it is the sameexpression used to de�ne entropy in statisti
al me
hani
s. K is some 
onstant, dependingof the units of the sample data. If the base b = 2, the entropy unit is bits and if b = e theunit is nats. In this thesis we leave the base b of the logarithm unspe
i�ed, sin
e it is just ameasurement s
ale. Entropy is usually denoted by H(X) where X is a label for a randomvariable, and not the argument of a fun
tion. Shannon's entropy depend on the quantity
I(pi) = − log pi, (4.5)



24 CHAPTER 4. INFORMATION THEORETIC LEARNING PRINCIPLESwhi
h was proposed by Hartley as a measure of the information re
eived by learning thata single event of probability pi took pla
e [7℄. Hen
e the Shannon entropy is a weightedaverage of informations I(pi)
H(X) = E{I(pi)}. (4.6)Properties of Shannon entropySeveral properties of the Shannon entropy 
an be derived based on the four basi
 properties[9℄ [25℄ [3℄1. Adding or removing an event with probability zero does not 
ontribute to the entropy,

HN(p1, p2, . . . , pN , 0) = HN(p1, p2, . . . , pN).2. It vanishes when one out
ome is 
ertain,
HN(p1, p2, . . . , pN) = 0, pi = 1, pj = 0, j 6= i, i = 1, . . . , N .3. The maximum of HN in
reases as N in
reases.4. HN ≥ 0.Example To illustrate some properties of Shannon entropy let the sto
hasti
 variable Xbe given by

X =

{
1, with probability p
0, with probability 1 − p.The entropy in this 
ase is

H(X) = −p log(p) − (1 − p) log(1 − p),as shown in Fig. 4.3 as a fun
tion of p. Note in Fig. 4.3 that the entropy is zero when p = 0or p = 1, meaning there is no un
ertainty about the out
ome of the sto
hasti
 experiment.If p = 1
2
the un
ertainty is maximized, and we need on average 1 bit to transmit theout
ome of the experiment.
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Figure 4.3: H(X) = H(p) in bits with Shannon's entropy, noti
e that H(X) = 1, when
p = 1

2
.



26 CHAPTER 4. INFORMATION THEORETIC LEARNING PRINCIPLESShannon di�erential entropyFor a 
ontinuous sto
hasti
 variable X with density f(x)1 the di�erential entropy h(X) isde�ned as [25℄ [3℄,
h(X) = −

∫
f(x) log f(x)dx. (4.7)This 
an also be written as an expe
ted value

h(X) = Ef{− log f(x)}. (4.8)Properties of Shannon's di�erential entropy1. If X is limited to a 
ertain volume v in spa
e, then h(X) is maximum and equal to
log v when f(x) is 
onstant (uniform density fun
tion) in the volume.2. Di�erential entropy may be negative. If we 
onsider the uniform density above, for
v < 1, log v < 0.3. The normal distribution maximizes the entropy over all distributions with the same
ovarian
e. This property 
an be exploited to measure the non-Gaussianity of asto
hasti
 variable.4. The di�erential entropy is a measure that is relative to the 
oordinate system. Con-sider for example 
hanging 
oordinates by a linear transformation, Y = MX. Inthat 
ase,

h(Y) = h(X) + log | det(M)|.Renyi's entropyAs explained above, Shannon's entropy is a measure of the average amount of information
ontained in a single observation of a random variable. Renyi used a more general theoryof mean values, where the mean of the real numbers, x1, . . . , xN , with positive weighting
p1, . . . , pN , has the form [18℄ [22℄

x = ϕ−1
N∑

i=1

piϕ(xi), (4.9)where ϕ(x) is a Kolmogorov-Nagumo fun
tion, whi
h is an arbitrary 
ontinuous and stri
tlymonotoni
 fun
tion de�ned on the real numbers. He found that a general entropy measure
H obeys the relation [18℄

H = ϕ−1

(
N∑

i=1

piϕ(I(pi))

)
, (4.10)1We assume that the sto
hasti
 variable has a density fun
tion where the integral does exist.



4.3. INFORMATION THEORETIC QUANTITIES 27where I(pi) is Hartley's information measure. In order to be an information measure
ϕ(·) 
annot be arbitrary, sin
e information is additive. We have two 
hoi
es, ϕ(x) = xor ϕ(x) = 2(1−α)x. The �rst 
ase gives Shannon's entropy and the se
ond gives Renyi'sentropy of order α [18℄

HRα
(X) =

1

1 − α
log

(
N∑

k=1

pα
k

)
α > 0, α 6= 1. (4.11)There is a well known relation between Shannon's and Renyi's entropy. Let HS denoteShannon's entropy, then [18℄

HRα
≥ Hs ≥ HRβ

if 0 < α < 1 and β > 1,

lim
α→1

HRα
= HS.Renyi's and Shannon's entropies 
an also be related to ea
h other in another way. If we
onsider the probability mass fun
tion P = (p1, p2, . . . , pN) as a point in the N-dimensionalspa
e, this point will always be in the �rst quadrant of a N-dimensional hyperplane withea
h axis interse
ting the 
oordinate one. The distan
e of the point P to the origin is the

α root of
dα =

N∑

k=1

pα
k = ||P ||αand the α root of dα is 
alled the α-norm of the probability mass fun
tion [18℄. Renyi'sentropy satis�es all of Shannon's 
riteria in 4.3.1 on page 23. Ex
ept of the fourth prop-erty. The Renyi's entropy of order α = 2, is denoted by Renyi's quadrati
 entropy and
orresponds to the 2-norm of the probability mass fun
tion.If we repeat the example on page 24 with Renyi's quadrati
 entropy measure, we get asimilar shape in Fig. 4.4, as in Shannon's entropy in Fig. 4.3 on page 25.
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.
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ontinuous random variable X with pdf f(x) we obtain the di�erential version ofRenyi's entropy [18℄
hRα

(X) =
1

1 − α
log

∫
fα(x)dx, (4.12)

=
1

1 − α
log Ef{f 1−α(x)}. (4.13)If we set α = 2, we get the di�erential Renyi quadrati
 entropy

hR2
(X) = − log

∫
f 2(x)dx, (4.14)

= − log Ef{f(x)}. (4.15)Some properties of the Renyi entropy of order α are the following [9℄1. Just as for Shannon entropy, the Renyi entropy is maximized for a uniform distribu-tion for random variables with �nite support.2. The Renyi entropy is not in general maximized by the Gaussian distribution in the�xed varian
e 
ase.3. The Renyi entropy is invariant to rotations and translations.4.3.2 Divergen
eThis se
tion reviews some of the most 
ommon measures of divergen
e or relative entropyused in information theoreti
 learning. Divergen
e is used as a measure of statisti
alsimilarity, and one 
an think of it as a generalization of algebrai
 distan
e measures toprobability spa
es [5℄.Kullba
k-Leibler divergen
eThis measure dis
riminates two probability density distributions p(x) and q(x), and it isalso referred to as relative entropy
DKL{p, q} =

∫
p(x) log

p(x)

q(x)
dx,

= Ep

{
log

p(x)

q(x)

}
. (4.16)Some properties of this measure are [9℄



30 CHAPTER 4. INFORMATION THEORETIC LEARNING PRINCIPLES1. DKL{p, q} ≥ 0, ∀p, q.2. DKL{p, q} = 0 only if p(x) = q(x).3. DKL{p, q} is additive for independent random events.This measure is not a metri
, sin
e it is not symmetri
 i.e DKL{p, q} 6= DKL{q, p}, andit does not satisfy the triangle inequality. The divergen
e measure is invariant under thefollowing 
hanges in x [9℄1. Permutation in the order of whi
h the 
omponents are arranged.2. Amplitude s
aling.3. Monotoni
 nonlinear transformation.The Kullba
k-Leibler divergen
e is impli
itly based on Shannon's entropy, sin
e
DKL{p, q} = −

∫
p(x) log q(x)dx −

(
−
∫

p(x) log p(x)dx

)
, (4.17)where the last part is Shannon's di�erential entropy and the �rst part 
an be interpretedas �
ross entropy� between p(x) and q(x) [9℄.Mutual InformationThe mutual information MI(X;Y) between two random variables X and Y with jointdensity f(x,y) is de�ned as [3℄

MI(X;Y) =

∫
f(x,y) log

f(x,y)

f(x)f(y)
dxdy. (4.18)From this de�nition [3℄

MI(X;Y) = h(X) − h(X|Y) = h(Y) − h(Y|X). (4.19)Mutual information is a spe
ial 
ase of Kullba
k-Leibler divergen
e, measuring the distan
ebetween the joint probability distribution and the produ
t of the marginal distributions.Renyi's divergen
eRenyi analyzed the Kullba
k-Leibler divergen
e and expressed it with a general mean value,in a similar way as entropy. Renyi proposed the following distan
e measure between pdfs
p(x) and q(x) [22℄

DRα
{p, q} =

1

1 − α
log

∫
pα(x)

qα−1(x)
dx,

=
1

1 − α
log Ep

{
pα(x)

qα−1(x)

}
. (4.20)The Renyi divergen
e possesses the following properties [22℄
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{p, q} ≥ 0, ∀p, q, α > 0.2. DRα
{p, q} = 0, if and only if p(x) = q(x), ∀x ∈ R

d.3. limα→1 DRα
{p, q} = DKL{p, q}.4. DRα

{p, q} is additive for independent events.We see that Renyi divergen
e is not symmetri
 and hen
e not a metri
. We 
an use Renyidivergen
e to measure the mutual information between random variables, measuring thedistan
e between the joint pdf and the produ
t of marginal densities.Cau
hy-S
hwarz divergen
ePrin
ipe et al.[18℄, de�ned a pdf divergen
e measure based on the Cau
hy-S
hwarz (CS)inequality. Let p(x) and q(x) be pdf fun
tions, i.e non-negative and integrating to unity.De�ne the inner produ
t between two square integrable fun
tions p(x) and q(x) as 〈p, q〉 =∫
p(x)q(x)dx. Then by the Cau
hy-S
hwarz inequality, and the fa
t that p(x) and q(x)are always non-negative

〈p, q〉2 ≤ 〈p, p〉 · 〈q, q〉,with equality if and only if the two fun
tions are linearly dependent. The Cau
hy-S
hwarzpdf divergen
e is de�ned [13℄,[12℄ as
DCS{p, q} = − log

{
〈p, q〉√

〈p, q〉〈q, q〉

}

= − log

{
Ep{g(x)}√

Ep{p(x)}Eq{q(x)}

}
. (4.21)Some properties [9℄ of the Cau
hy-S
hwarz divergen
e are1. DCS{p, q} ≥ 0, ∀p, q.2. DCS{p, q} = 0, if and only if p(x) = q(x), ∀x ∈ R

d.3. DCS{p, q} = DCS{q, p}.4. DCS{p, q} is additive for independent events.The CS divergen
e does not satisfy the triangle inequality, and for this reason it is not adistan
e metri
 [9℄. CS divergen
e 
an be used as a measure of statisti
al independen
ebetween random variables. CS divergen
e is impli
itly based on Renyi's quadrati
 entropy,sin
e
DCS{p, q} =

− log

∫
p(x)q(x)dx − 1

2

(
− log

∫
p2(x)dx

)
− 1

2

(
− log

∫
q2(x)dx

)
, (4.22)
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∫

p2(x)dx is the Renyi quadrati
 entropy with respe
t to p(x) and− log
∫

q2(x)dxis the entropy with respe
t to q(x). The �rst term may be regarded as a �
ross-entropy�between p(x) and q(x) [9℄.Integrated squared errorPrin
ipe et al. in [18℄ also proposed an integrated squared error (ISE) distan
e measurebetween the two pdfs, p(x) and q(x). As before, the inner produ
t between two squareintegrable fun
tions p(x) and q(x) is 〈p, q〉 =
∫

p(x)q(x)dx. The ISE divergen
e measureis de�ned as
DISE{p, q} =

∫
[p(x) − q(x)]2dx,

=

∫
p2(x)dx − 2

∫
p(x)q(x)dx +

∫
q2(x)dx,

= Ep{p(x)} − 2Ep{q(x)} + Eq{q(x)}
= 〈p, p〉 − 2〈p, q〉 + 〈q, q〉 (4.23)This measure is obviously zero if the two pdfs are equal, it is always non-negative andsymmetri
. It does not satisfy the additive property, so we must be 
areful when 
alling itan information theoreti
 measure [9℄.Other divergen
e measuresThere exists many other important distan
e measures between pdfs. A well known exampleis the Csiszar divergen
e. For an arbitrary 
onvex fun
tion h(·) su
h that h(1) = 0 we de�ne[5℄
Dh{p, q} =

∫
p(x)h

(
q(x)

p(x)

)
dx. (4.24)Some other measures are the Je�rey's distan
e, whi
h is a symmetri
 version of theKullba
k-Leibler distan
e, and Cherno� distan
es [9℄. Common to most of the measuresare that they are not metri
s, but they 
an give us useful information about divergen
ebetween pdfs.4.4 Estimation of information theoreti
 
ost fun
tionsIn Se
tion 4.2 we explained how a learning ma
hine depends on an optimality 
riterionto 
al
ulate error terms to be used in an adaptation algorithm. In information theoreti
learning this 
riterion is based on entropy or divergen
e of probability density fun
tions.The output of the 
ost fun
tion or optimality 
riterion in Fig. 4.1 is typi
ally used to updatethe parameters W of the mapper g(X, W ) during a training phase. We have already seenin Chapter 3 that a Parzen window density estimator utilizes a kernel fun
tion to givean estimate of a pdf. In this se
tion we review some te
hniques to �nd estimates of
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hnique for density estimation. Sin
e theParzen window density estimate 
an be 
ontinuous, we also want our 
ost fun
tions to be
ontinuous. Thus we fo
us on estimating di�erential information theoreti
 measures.4.4.1 Renyi quadrati
 entropy estimateThe di�erential Renyi quadrati
 entropy asso
iated with the pdf f(x) is given by [22℄
hR2

(X) = − log

∫
f 2(x)dx (4.25)Sin
e the Renyi quadrati
 entropy 
ontains a produ
t of densities, we take advantageof the 
onvolution property of Gaussians, and use the Gaussian kernel Wσ2(·, ·) in the plugin density estimate. Sin
e the logarithm is a monotoni
 fun
tion, we fo
us on the quantity

V (f) =
∫

f̂ 2(x)dx, given by2
V (f) =

∫
1

N

N∑

i=1

Wσ2(x,xi)
1

N

N∑

i′=1

Wσ2(x,xi′)dx

=
1

N2

∫ N,N∑

i,i′=1

Wσ2(x,xi)Wσ2(x,xi′)dx. (4.26)We now use the 
onvolution theorem for Gaussians
∫

Wσ2(x,xi)Wσ2(x,xi′)dx = W2σ2(xi,xi′). (4.27)Inserting this into Eq. (4.26) gives
V (f) =

1

N2

N,N∑

i,i′=1

W2σ2(xi,xi′). (4.28)It 
an be seen that this sample based estimator involves no approximations, ex
ept the pdfestimate itself. This is an advantage 
ompared to the Shannon entropy estimate, whi
hhas made the Renyi entropy the preferred estimator over Shannon's. The expression inEq. (4.28) is named the information potential (IP) by Prin
ipe et al. [18℄ due to an analogywith a potential �eld. The Renyi quadrati
 entropy estimator is thus
ĥR2

(X) = − log {V (f)} . (4.29)We 
an also estimate the Renyi entropy of higher orders and obtain more informationabout the stru
ture of the data set (α > 2), but the algorithm be
omes mu
h more 
omplex
(O(Nα)).2∑N,N

i,i′=1
equals the double summation ∑N

i=1

∑N

i′=1
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e estimateIn the Renyi's quadrati
 entropy estimate, the use of a quadrati
 measure and a GaussianParzen window, resulted in an estimate with no other approximations than the densityestimate. In a similar manner we 
an estimate the ISE{p, q} between two pdfs p(x) and
q(x) given by [18℄

ISE{p, q} =

∫
[p(x) − q(x)]2 dx

=

∫
p2(x)dx − 2

∫
p(x)q(x)dx +

∫
q2(x)dx. (4.30)For an overview of some properties of this measure, see Se
tion 4.3.2 on page 32. Assumewe have samples xi, i = 1, . . . , N1 and xj , j = 1, . . . , N2 from p(x) and q(x), respe
tively.Estimating the two pdfs with the Parzen window method gives

p̂(x) =
1

N1

N1∑

i=1

Wσ2(x,xi) q̂(x) =
1

N2

N2∑

j=1

Wσ2(x,xj). (4.31)Plugging this into Eq. (4.30) we get the ISE sample based estimator
ÎSE{p, q} =

1

N2
1

N1,N1∑

i,i′=1

W2σ2(xi,xi′) −
2

N1N2

N1,N2∑

i,j=1

W2σ2(xi,xj) +
1

N2
2

N2,N2∑

j,j′=1

W2σ2(xj ,xj′). (4.32)4.4.3 Cau
hy-S
hwarz divergen
e estimateThe Cau
hy-S
hwarz divergen
e is given by Eq. (4.21) as
DCS{p, q} = − log

{
〈p, q〉√

〈p, q〉〈q, q〉

}

= − log





∫
p(x)q(x)dx√∫

p(x)dx
∫

q(x)dx



 (4.33)Using the same plug in te
hnique as for the ISE divergen
e estimator in Eq. (4.4.2) we 
anexpress a sample based estimator for the CS divergen
e as

D̂CS{p, q} = − log





1
N1N2

∑N1,N2

i,j=1 W2σ2(xi,xj)√
1

N2
1

∑N1,N1

i,i′=1 W2σ2(xi,xi′)
1

N2
2

∑N2,N2

j,j′=1 W2σ2(xj ,xj′)



 (4.34)
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ost fun
tionsThe use of Gaussian kernels has the advantage that the only approximation in the estimateof the 
ost fun
tion will be in the estimation of the pdf. In general, we sear
h for 
ostfun
tions involving produ
ts of densities, be
ause of the properties of the Gaussian kernel.This is the main reason why quadrati
 measures are preferred in ITL.Generally, all the di�erential versions of information theoreti
 quantities de�ned earlier
an be estimated by expressing the quantities in terms of an expe
tation value. This mayrequire many samples to be an a

urate estimate. We now examine the Parzen window-based estimator of the inner-produ
t ∫ p(x)q(x)dx, sin
e this inner-produ
t is 
ommon inall the previously de�ned 
ost fun
tions. Note that
∫

p(x)q(x)dx = Ep{q(x)}, (4.35)where Ep{·} denotes the expe
tation with respe
t to the density p(x). The expe
tationoperator may be approximated based on the available samples in the following way
Ep{q(x)} ≈ 1

N1

N1∑

i=1

q(xi). (4.36)Assume now that
q̂(x) =

1

N2

N2∑

j=1

Kh(x,xj), (4.37)where Kh(·, ·) is a non-Gaussian kernel with bandwidth h. Eq. (4.35) 
an now be estimatedby
∫

p(x)q(x)dx ≈ 1

N1

N1∑

i=1

q̂(xi)

=
1

N1

N1∑

i=1

1

N2

N2∑

j=1

Kh(xi,xj)

=
1

N1N2

N1,N2∑

i,j=1

Kh(xi,xj) (4.38)This is the same result as in the 
ase where Gaussian kernels are used. The only di�eren
eis an additional approximation with regard to the expe
tation operator.4.4.5 Shannon entropy estimateWe illustrate how the Shannon entropy of a pdf f(x) may estimated using non-Gaussiankernels. The Shannon entropy may be written as an expe
ted value
h(X) = Ef{− log f(x)}.



36 CHAPTER 4. INFORMATION THEORETIC LEARNING PRINCIPLESWe have samples {xi}, i = 1, . . . , N from f(x). With the Parzen window estimator we
an estimate f(x) by f̂(x). Using the plug-in density estimator prin
iple, we repla
e f(x)with f̂(x). We now approximate the expe
ted value by averaging over all of the samples,whi
h gives the following estimate for the Shannon entropy of f(x)

ĥ(X) =
1

N

N∑

i=1

{
− log f̂(xi)

}
,

=
1

N

N∑

i=1

{
− log

1

N

N∑

j=1

Kh(xi,xj)

}
. (4.39)The drawba
k of this entropy estimate is the dependen
y on the approximation of theexpe
ted value. With few samples of training data this may not be a good estimator forentropy.



Chapter 5An information theoreti
 kernel
lassi�erRe
ently some very interesting relations between the information theoreti
 measures de-�ned in the previous 
hapter estimated with Parzen windows satisfying Mer
er's theorem,and mean ve
tors in Mer
er kernel spa
es has been shown. In this 
hapter we review thisrelationship, and use it to analyze a possible 
lassi�er in both the input spa
e and theMer
er kernel spa
e. This 
lassi�er operates impli
itly in a Mer
er kernel spa
e, and werefer to it as the standard ISE 
lassi�er. We also mention a 
onne
tion between the ISEdivergen
e and the graph 
ut. In Part II, Se
tion 9.3 of this thesis we present some resultsusing this 
lassi�er on some well known data sets.5.1 Mer
er kernel theoryMer
er kernel-based learning algorithms make use of the following idea. Via a nonlinearmapping [9℄ [17℄
Φ : R

d −→ F
x 7−→ Φ(x)the input data x1, . . . ,xN ∈ R

d is mapped into a potentially mu
h higher dimensionalfeature spa
e F . For a given learning problem one now 
onsiders the same algorithm in Finstead of in the input spa
e R
d, working with [17℄

(Φ(x1), y1), . . . , (Φ(xN ), yN) ∈ F × Y.The learning algorithm used is usually linear, and 
an be expressed solely in terms ofinner-produ
t evaluations. If we use the kernel-tri
k we 
an 
al
ulate the inner-produ
tsin the feature spa
e using kernel fun
tions. Using kernel fun
tions we impli
itly exe
utethe learning algorithm in the feature spa
e F . The kernel tri
k thus allows us to 
al
ulateinner-produ
ts in a possible very high-dimensional spa
e.37



38 CHAPTER 5. AN INFORMATION THEORETIC KERNEL CLASSIFIERConsider a symmetri
 kernel fun
tion ρ(x,y). If ρ : d × d → R is a 
ontinuous kernelof a positive integral in a Hilbert spa
e L2(d) on a 
ompa
t set d ⊂ R
N , i.e

∀Ψ ∈ L2 :

∫

d

ρ(x,y)Ψ(x)Ψ(y)dxdy ≥ 0. (5.1)This means that ρ(·, ·) is a positive semide�nite fun
tion. Then there exist a spa
e F anda mapping Φ : R
d → F , su
h that by Mer
er's theorem [13℄

ρ(x,y) = 〈Φ(x), Φ(y)〉 =

NF∑

i=1

λiφi(x)φi(y), (5.2)where 〈·〉 denotes an inner-produ
t, the φi's are the eigenfun
tions of the kernel, the λi's arethe 
orresponding eigenvalues and the dimension of the feature spa
e F is NF ≤ ∞ [13℄.The operation in Eq. (5.2) is the �kernel tri
k�. A kernel fun
tion that satis�es Eq. (5.1)is known as a Mer
er kernel fun
tion. The most widely used Mer
er kernel fun
tion is theradial-basis-fun
tion (RBF) [13℄
ρ(x,y) = exp

{
−‖x − y‖2

2σ2

}
, (5.3)where σ is a s
ale parameter to sele
t the bandwidth or width of the RBF.Cover showed in [2℄ that the probability that 
lasses are linearly separable in
reaseswhen the features are nonlinearly mapped to a higher dimensional feature spa
e. Usingthe kernel tri
k we are able to work impli
itly in very high dimensional spa
es. It has beenshown [19℄ that the Gaussian kernel has an in�nite dimensional feature spa
e, thus givenany labeled data set (where points with di�erent labels have di�erent positions), thereexists a linear hyperplane whi
h 
orre
tly separates them in the Mer
er spa
e given by theGaussian kernel.The support ve
tor ma
hine [17℄ is one of the most popular Mer
er kernel based learningalgorithms taking advantage of the kernel tri
k. The basi
 idea behind it is to �nd thehyperplane between two 
lasses whi
h maximizes the margin between the points 
losestto the hyperplane. The ve
tors from this hyperplane to the 
losest points 
onstitute thesupport ve
tors. If the 
lasses are non-separable in the input spa
e, this hyperplane andthe points are 
al
ulated in a high dimensional Mer
er kernel spa
e, using the kernel tri
k.5.2 Information measures in the Mer
er kernel spa
eWe will now review how some of the information theoreti
 measures 
an be expressed inthe term of mean values in a Mer
er kernel feature spa
e. The key point to expressingITL 
riteria in a Mer
er kernel spa
e is to note that for any positive semi-de�nite kernelfun
tion Kh(·, ·) that satis�es Mer
er's theorem

Kh(xi,xi′) = ρ(xi,xi′) = 〈Φ(xi), Φ(xi′)〉. (5.4)



5.2. INFORMATION MEASURES IN THE MERCER KERNEL SPACE 39The Gaussian kernel is a kernel that satis�es Mer
er's theorem. We now see how theinformation potential de�ned in Eq. (4.28) on page 33 may be expressed in a Mer
er kernelfeature spa
e. Using Wσ2(·, ·) as a Mer
er kernel, the IP was expressed in Se
tion 4.4.1 as
V (f) =

1

N2

N,N∑

i,i′=1

W2σ2(xi,xi′).We 
an now use the kernel tri
k to express the IP as
V (f) =

1

N2

N,N∑

i,i′=1

〈Φ(xi)Φ(xi′)〉,

=

〈
1

N

N∑

i=1

Φ(xi)
1

N

N∑

i′=1

Φ(xi′)

〉

= mTm

= ‖m‖2, (5.5)where m is the mean of the Φ-transformed data
m =

1

N

N∑

i=1

Φ(xi). (5.6)It turns out that the IP for a data set may be expressed as the squared norm of a meanve
tor of the same data set mapped ta a Mer
er kernel feature spa
e. The Renyi quadrati
entropy estimate of any pdf may thus be visualized with a simple geometri
 des
ription,as a mean ve
tor in a Mer
er kernel feature spa
e.5.2.1 ISE divergen
eWe will now see how the ISE divergen
e 
an be expressed in a Mer
er kernel feature spa
e.The ÎSE{p, q} estimate ∫
[p̂(x) − q̂(x)]2dxbetween two pdfs p(x) and q(x), was estimated in Eq. (4.30) on page 34 as
ÎSE{p, q} =

1

N2
1

N1,N1∑

i,i′=1

W2σ2(xi,xi′) −
2

N1N2

N1,N2∑

i,j=1

W2σ2(xi,xj) +
1

N2
2

N2,N2∑

j,j′=1

W2σ2(xj,xj′).Similar to the 
al
ulations in Eq. (5.5) this may be expressed as
ÎSE{f, g} = ‖m1‖2 − 2mT

1 m2 + ‖m2‖2

= ‖m1 −m2‖2, (5.7)



40 CHAPTER 5. AN INFORMATION THEORETIC KERNEL CLASSIFIERwhere m1 and m2 are the mean ve
tors in the Mer
er kernel feature spa
e for data pointsdrawn from p(x) and q(x), respe
tively. That is
m1 =

1

N1

N1∑

i=1

Φ(xi) m2 =
1

N2

N2∑

j=1

Φ(xj). (5.8)From this we see that the ISE divergen
e measure has a ni
e geometri
 interpretation inthe Mer
er kernel feature spa
e. It measures the the squared Eu
lidean distan
e betweenthe information potentials of the distributions given by p(x) and q(x). The ISE divergen
ein a Mer
er kernel feature spa
e is illustrated in Fig. 5.1 on page 41, where w is the ve
tor
m1 − m2.5.2.2 Cau
hy-S
hwarz divergen
eFor 
ompleteness, we also review an interpretation of the CS-divergen
e measure in aMer
er kernel feature spa
e. The D̂CS{p, q} estimate was given in Eq. (4.34) on page 34as

D̂CS{p, q} = − log





1
N1N2

∑N1,N2

i,j=1 W2σ2(xi,xj)√
1

N2
1

∑N1,N1

i,i′=1 W2σ2(xi,xi′)
1

N2
2

∑N2,N2

j,j′=1 W2σ2(xj ,xj′)



 (5.9)between two pdfs p(x) and q(x). Again we use the kernel tri
k in the same way as inEq. (5.5) and in Eq. (5.7) and 
an rewrite Eq. (5.9) to

D̂CS{p, q} = − log





mT
1 m2√

‖m1‖2‖m2‖2





= − log

{
〈m1,m2〉√

〈m1,m1〉〈m2,m2〉

}

= − log {cos ∠(m1,m2)} (5.10)This means that the CS divergen
e measure is dependent of the 
osine of the angle betweenthe ve
tors m1 and m2 in Fig. 5.1 on page 41.
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Figure 5.1: Illustration of the relationship between the meanve
tors m1 and m2 in the Mer
er kernel feature spa
e. The ISEdivergen
e is given by the squared Eu
lidean distan
e betweenthem, ‖w‖2, where w = m1 −m2. The CS divergen
e measureis related to the 
osine of the angle between m1 and m2.
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lassi�erIn Fig. 5.1 in the previous se
tion, we saw how the ISE between two distributions maybe represented in terms of the Eu
lidean distan
e between the 
lass mean ve
tors in theMer
er kernel feature spa
e. In this se
tion we use this geometri
 view of the ISE divergen
ebetween two 
lasses to propose the standard ISE 
lassi�er.We want to 
lassify an unknown sample xt to one of two 
lasses ω1 or ω2. Let Φ(xt) = yrepresent the sample in the Mer
er kernel feature spa
e. Then we may 
lassify xt using aminimum Eu
lidean distan
e 
lassi�er in the kernel spa
e. That is, we simply 
lassify yto the 
lass of its 
losest mean ve
tor.

Figure 5.2: Classi�
ation in the Mer
er kernel featurespa
e.In Fig. 5.2 the mean ve
tors m1 of 
lass ω1 and m2 of 
lass ω2 are illustrated. Theve
tors m1 − y and m2 − y are used to �nd whi
h mean ve
tor the un
lassi�ed point ybelongs to. We may now use the following 
lassi�
ation rule
xt → ω1 : ‖m1 − y‖2 − ‖m2 − y‖2 ≤ 0

⇔ ‖m1‖2 − 2mT
1 y + ‖y‖2 −

(
‖m2‖2 − 2mT

2 y + ‖y‖2
)
≤ 0

⇔ mT
1 y −mT

2 y + b ≥ 0

⇔ wTy + b ≥ 0, (5.11)where w = m1 −m2 de�nes a hyperplane with b = 1
2
[‖m2‖2 −‖m1‖2] as a threshold. Thethreshold b depends on the squared Eu
lidean norms of the mean values, whi
h previously



5.3. THE STANDARD ISE CLASSIFIER 43are shown to be equivalent to the 
lass information potentials, and thus the 
lass entropies.We also see that the proposed ISE 
lassi�er is a hyperplane 
lassi�er, sin
e w de�nes ahyperplane separating two 
lasses in a Mer
er feature spa
e. All the produ
ts in Eq. (5.11)are expressed in terms of inner-produ
ts, and may be 
al
ulated using the kernel tri
k asdone in Eq. (5.5) on page 39. This means that we may impli
itly operate in Mer
er spa
e,using kernel fun
tions to evaluate all inner-produ
ts.We now analyze the Mer
er kernel feature spa
e 
lassi�
ation in terms of the Parzenwindow based estimators in the input spa
e. We have
mT

1 y = mT
1 Φ(xt) =

1

N1

N1∑

i=1

ΦT (xi)Φ(xt) =
1

N1

N1∑

i=1

Wσ2(xt,xi) = p̂(xt) (5.12)Likewise,
mT

2 y = mT
2 Φ(xt) =

1

N2

N2∑

j=1

ΦT (xj)Φ(xt) =
1

N2

N2∑

j=1

Wσ2(xt,xj) = q̂(xt) (5.13)Using the result in Eq. (5.5) we see that
b =

1

2
[‖m2‖2 − ‖m1‖2]

=
1

2
[V2(f) − V1(f)]. (5.14)Where V2(f) − V1(f) is a measure of the di�eren
e in information potential between the
lasses, and thus the di�eren
e in entropy between 
lass ω1 and ω2. This means that usingthe ISE divergen
e measure as a starting point, we may use the following 
lassi�
ation rulein the input spa
e

xt → ω1 : p̂(xt) − q̂(xt) + b ≥ 0, (5.15)where p̂(xt) is the Parzen window density estimate evaluated at the test point xt, giventhat the point belongs to 
lass ω1 and q̂(xt) the Parzen window density estimate given thatthe point belongs to 
lass ω2.5.3.1 Conne
tions to Parzen window Bayes 
lassi�erIn the two 
lass 
ase the ISE 
lassi�er is given by
xt → ω1 : p̂(xt) − q̂(xt) + b ≥ 0

b =
1

2
[V2(f) − V1(f)].

V1(f) and V2(f) are the information potentials of 
lass ω1 and ω2. We noti
e that the ISE
lassi�
ation rule is similar to the Parzen window Bayes 
lassi�
ation rule for equal a prioriprobabilities, given by
xt → ω1 : p̂(xt) − q̂(xt) ≥ 0
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ept from the threshold, b = 1
2
[V2(f) − V1(f)]. This threshold indi
ates that the ISE
lassi�er is dependent on the di�eren
e in entropy or IP between the 
lasses. If the entropyof the data in 
lass one is larger than the entropy of 
lass two, V2(f) − V1(f) > 0 the ISE
lassi�er will assign the test point xt to the 
lass with largest entropy if p̂(xt)− q̂(xt) = 0.This indi
ates that the ISE 
lassi�er tends to 
lassify data to the 
lass with largest entropyor equivalently, the 
lass with the smallest information potential. This may in
rease theprobability of error at the 
ost of prioritizing the 
lass with largest entropy. The e�e
t ofdi�erent 
lass potentials will be investigated further in experiments.5.3.2 Multi
lass standard ISE 
lassi�erBased on a training data set, we may de�ne the 
lass mean ve
tors m1, . . . ,mC for ea
h of

C 
lasses ω1, . . . , ωC . We wish to 
lassify some test sample xt, to the 
lass whi
h minimizesthe ISE 
lassi�
ation 
ost fun
tion in Eq. (5.7). This is a
hieved by measuring the squaredEu
lidean distan
e between Φ(xt) and ea
h of the 
lass mean ve
tors, and assign the testsample to the 
lass for whi
h the squared eu
lidean distan
e is smallest. This 
orrespondsto the following 
lassi�
ation rule
xt → ωc : min

c

(
‖mc − Φ(xt)‖2) ,

⇔ min
c

(〈mc,mc〉 − 2〈mc, Φ(xt)〉 + 〈Φ(xt), Φ(xt)〉)
⇔ min

c
(〈mc,mc〉 − 2〈mc, Φ(xt)〉 (5.16)where c = 1, . . . , C, and

〈mc, Φ(xt)〉 =

〈
1

Nc

Nc∑

i=1

Φ(xi), Φ(xt)

〉

=

〈
1

Nc

Nc∑

i=1

Φ(xi)
T Φ(xt)

〉

=
1

Nc

Nc∑

i=1

Wσ2(xt,xi)

= f̂c(xt) (5.17)as before,
〈mc,mc〉 = ‖mc‖2. (5.18)This is very similar to Mer
er spa
e k-means 
lustering,[26℄,[29℄ but we know the means ofea
h 
luster in this 
lassi�
ation problem.
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er kernelsIn Se
tion 4.4.4 we showed that the inner-produ
t ∫ p(x)q(x)dx = Ep{q(x)} 
an be esti-mated using any kind of density kernel Kh(·, ·). Noti
e that the ISE divergen
e measure isdependent on the density estimate at a test point xt, and a threshold given by the di�eren
ein information potential between the 
lasses.5.3.4 Conne
tion to the graph 
utThe set of points in an arbitrary feature spa
e may be represented as a weighted undire
tedgraph G = (V, E), where the nodes, V are the points in the feature spa
e, and E are theedges between ea
h pair of nodes. The weight on ea
h edge, k(i, i′), is a fun
tion ofsimilarity between the nodes i and i′. Let node i and i′ be represented with feature ve
tors
xi and xi′ , respe
tively, i, i′ = 1, . . . , N .An exponential fun
tion is often used as a similarity measure [9℄

k(i, i′) = exp

{‖xi − xi′‖2

2σ2
G

}
, (5.19)where σG is the width of the exponential fun
tion asso
iated with the graph G. A graphmay be partitioned into two disjoint sets G1,G2, G1 ∪ G2 = V, G1 ∩ G2 = ∅, with points xi,

i = 1, . . . , N1 ∈ G1 and xj , j = 1, . . . , N2 ∈ G2. The degree of dissimilarity between thesetwo pie
es 
an be 
omputed as total weight of the edges that have been removed. In graphtheory, this is 
alled the 
ut [27℄
cut(G1,G2) =

N1N2∑

i,j=1

k(xi,xj). (5.20)Assume that the points in G1 and G2 have distribution fun
tions p(x) and q(x). Now, usingthe Parzen window-based estimator, another interpretation of the 
ut is
∫

p̂(x)q̂(x)dx =
1

N1N2

N1,N2∑

i,j=1

k(xi,xj), (5.21)where k(xi,xj) = W2σ2(xi,xj), and W2σ2(·, ·) is the Gaussian Parzen window.The total sum of all the edges in a graph is 
alled the volume of the graph
vol(G) =

N,N∑

i,i′=1

k(xi, xi′). (5.22)From Se
tion 4.4.1 we know that the information potential 
an be written as
V (f) =

1

N2

N,N∑

i,i′=1

k(xi,xi′), (5.23)



46 CHAPTER 5. AN INFORMATION THEORETIC KERNEL CLASSIFIERwhere k(xi,xi′) is de�ned as in Eq. (5.21). The 
onne
tion between the IP and volume ofthe graph is given by
N2V (f) = vol(G), (5.24)where f denotes the distribution of the points xi, i = 1, . . . , N .The integrated squared error and graph theoryThe Parzen window-based estimator for the ISE divergen
e is now 
onne
ted to graphtheory by [9℄

ÎSE{p, q} =
1

N2
1

N1,N1∑

i,i′=1

k(xi,xi′) +
1

N2
2

N2,N2∑

j,j′=1

k(xj,xj′) −
2

N1N2

N1,N2∑

i,j=1

k(xi,xj)

= N2
1 vol(G1) + N2

2 vol(G2) − 2N1N2cut(G1,G2). (5.25)



Chapter 6A Lapla
ian ISE 
lassi�er
We know from Se
tion 5.3 that the ISE 
lassi�er may be viewed as a hyperplane 
lassi�er.Inspired both by the SVM and the Lapla
ian 
lassi�er presented in [12℄, in this 
hapter,we modify the standard ISE 
lassi�er by introdu
ing a weighting of inner-produ
ts in theISE divergen
e measure.The SVM is in a similar way to the ISE 
lassi�er based on �nding a hyperplane toseparate 
lass data. In the SVM the task is to �nd the hyperplane that maximizes themargin between 
lass data in a Mer
er kernel feature spa
e. The inner-produ
ts in thisspa
e 
an be 
omputed by using the kernel tri
k with a Mer
er kernel fun
tion. Themaximization of the margin for the SVM leads to a weighting of the training data pointswhen 
onstru
ting the 
lassi�er. The points on the margin are known as the supportve
tors. To obtain the relevant weighting, whi
h determines the Nsv support ve
tors,a 
onvex optimization problem must be solved. This pro
edure has to sele
t two SVMparameters and is far from straightforward.For many data sets, low values for the overall probability density fun
tion will 
orre-spond to 
lass boundary regions. In [12℄ a 
lassi�er named the Lapla
ian 
lassi�er basedon the Cau
hy-S
hwarz divergen
e is presented, where the CS 
ost fun
tion uses weightedinner-produ
ts to emphasize the samples with small overall probability. This makes sense,sin
e the test data points 
lose to the 
lass boundaries often are the most di�
ult to 
las-sify 
orre
tly. The Lapla
ian 
lassi�er does not require the optimization phase asso
iatedwith the SVM, but produ
es similar results as the SVM in several 
ases [12℄.The previously de�ned ISE 
lassi�er is now modi�ed to a weighted version to emphasizepoints near the 
lass borders in the same way as done in [12℄. Next we dis
uss howthe weighted version of the ISE 
ost fun
tion 
onne
ts to the Bayes probability of errorand the Lapla
ian data matrix. The Lapla
ian matrix has re
ently been used in manyproblems in 
lustering [9℄, and it may be interesting to see if it 
an be used in an ISE based
lassi�er. Some 
lassi�
ation results using the weighted ISE 
lassi�er, whi
h we refer to asthe Lapla
ian ISE 
lassi�er, are presented in Part II, Se
tion 9.4.47



48 CHAPTER 6. A LAPLACIAN ISE CLASSIFIER6.1 Modi�ed ISE divergen
eIn this se
tion the ISE divergen
e previously de�ned by unweighted inner-produ
ts isweighted to emphasize the points in the 
lass boundaries. Consider two data 
lasses,
ω1 and ω2, with 
orresponding probability density fun
tions p(x) and q(x). Let f(x) =
P1p(x) + P2q(x) be the overall pdf of the data set with P1 and P2 as 
lass priors. De�nethe weighted inner-produ
t 〈p, q〉f ≡

∫
p(x)q(x)f(x)−1dx. The 
ost fun
tion used in theISE 
lassi�er is now given by

DISE{p, q} = 〈p, p〉f − 2〈p, q〉f + 〈q, q〉f . (6.1)The only di�eren
e between this and the previous version of the 
ost fun
tion is the inner-produ
t weighting.6.2 Conne
tion to the Bayes probability of errorLet R1 and R2 be two regions in the data spa
e. If a test sample xt ∈ R1, it will beassigned to 
lass ω1. Otherwise, xt ∈ R2, and it will be assigned to 
lass ω2. Similar to thederivation of the Bayes probability of error, the regionsR1 andR2 must be determined su
hthat the 
lassi�
ation 
ost fun
tion is optimized. Assume that the 
lasses are relativelywell separated, then f(xt) ≈ P1p(xt) for xt ∈ R1 and f(xt) ≈ P2q(xt) for xt ∈ R2. Now
onsider ea
h of the inner-produ
ts in Eq. (6.1)
〈p, p〉f
=

∫
p2(x)f−1(x)dx

=

∫

R1

p2(x)f−1(x)dx +

∫

R2

p2(x)f−1(x)dx

≈ 1

P1

, (6.2a)where ∫
R2

p2(x)f−1(x)dx ≈ 0 be
ause we have assumed that the 
lasses are well separated,and thus p(x) is very small in region R2.
2〈p, q〉f
= 2

∫
p(x)q(x)f−1(x)dx

= 2

[∫

R1

p(x)q(x)f−1(x)dx +

∫

R2

p(x)q(x)f−1(x)dx

]

≈ 2

[
1

P1

∫

R1

q(x)dx +
1

P2

∫

R2

p(x)dx

]
. (6.2b)
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〈q, q〉f
=

∫
q2(x)f−1(x)dx

=

∫

R1

q2(x)f−1(x)dx +

∫

R2

q2(x)f−1(x)dx

≈ 1

P2
, (6.2
)where ∫

R1
q2(x)f−1(x)dx ≈ 0 be
ause we have assumed that the 
lasses are well separated,and thus q(x) is very small in region R1.Now the weighted version of the ISE divergen
e measure in the well separated 
ase 
anbe written as

DISEf
{p, q} ≈ 1

P1
− 2

[
1

P1

∫

R1

q(x)dx +
1

P2

∫

R2

p(x)dx

]
+

1

P2
. (6.3)The probability of error for the two 
lass Bayes 
lassi�er is given by

Pe = P2

∫

R1

q(x)dx + P1

∫

R2

p(x)dx (6.4)and we see that the weighted ISE divergen
e may be written as
DISEf

{p, q} ≈ 1

P1
+

1

P2
− 2Pe

P1P2

=
1

P1P2
[1 − 2Pe] . (6.5)Thus, minimizing the probability of error also maximizes the weighted divergen
e measurein the 
ase where the 
lass distributions are well separated.6.3 Kernel spa
e and Lapla
ian matrix representationIn this se
tion we review the 
onne
tion between a Parzen window-based estimator forthe f−1(x) weighted ISE divergen
e and the Lapla
ian data matrix. The weighted ISEdivergen
e may be expressed as

DISE{p, q} =〈p, p〉f − 2〈p, q〉f + 〈q, q〉f
=

∫
h2

1(x)dx − 2

∫
h1(x)h2(x)dx +

∫
h2

2(x)dx, (6.6)where h1(x) = f− 1

2 (x)p(x) and h2(x) = f− 1

2 (x)q(x). We are given a training data set
xl, l = 1, . . . , N . This data set 
onsists of the 
lass 1 data points, xi, l = 1, . . . , N1, and
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xj , = 1, . . . , N2, the 
lass 2 data points. Based on the data samples, de�ne the Parzenwindow based estimators [12℄

f̂(x) =
1

N

N∑

l=1

Wσ2(x,xl),

ĥ1(x) =
1

N1

N1∑

i=1

f̂− 1

2 (xi)Wσ2(x,xi),

ĥ2(x) =
1

N2

N2∑

j=1

f̂− 1

2 (xj)Wσ2(x,xj). (6.7)Here, Wσ2(·, ·) is the Parzen window. We have here assumed that a Parzen window witha Gaussian kernel, with uniform bandwidth, σ2 is used in all estimators. Any kernelfun
tion Kh(·, ·), with bandwidth h, satisfying Mer
er's theorem may be used instead ofthe Gaussian kernel Wσ2(·, ·), see also Se
tion 4.4.4 on page 35. Now we have
∫

ĥ1(x)ĥ2(x)dx

=

∫
1

N1

N1∑

i=1

Wσ2(x,xi)

f̂
1

2 (xi)

1

N2

N2∑

j=1

Wσ2(x,xj)

f̂
1

2 (xj)
dx

=
1

N1N2

N1,N2∑

i,j=1

1

f̂
1

2 (xi)f̂
1

2 (xj)

∫
Wσ2(x,xi)Wσ2(x,xj)dx

=
1

N1N2

N1,N2∑

i,j=1

W2σ2(xi,xj)

f̂
1

2 (xi)f̂
1

2 (xj)
, (6.8)where the 
onvolution theorem for Gaussians has been used in the last step. For any pairof data points in the training data set, say xl and xl′, we de�ne the a�nity matrix K,su
h that element (l, l′) equals W2σ2(l, l′). We also de�ne a matrix D = (f̂(x1), . . . , f̂(xN)).Now, all f̂− 1

2 (xl)W2σ2(xl,xl′)f̂
− 1

2 (xl′) 
an be represented by element (l, l′) of the matrix
Kf = D− 1

2 KD− 1

2 . The matrix Kf is known as the Lapla
ian matrix [12℄.Ea
h element of the matrix K represents an inner-produ
t in the Mer
er kernel featurespa
e, sin
e the Gaussian kernel satis�es the Mer
er 
onditions mentioned in 
hapter 5.Now, ea
h element in Kf also represents an inner-produ
t, whi
h we may denote
〈Φf(xl), Φf (xl′)〉 = f̂− 1

2 (xl)W2σ2(xl,xl′)f̂
− 1

2 (xl′). (6.9)
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h gives
∫

ĥ1(x)ĥ2(x)dx

=
1

N1N2

N1,N2∑

i,j=1

〈Φ(xi), Φ(xj)〉

=

〈
1

N1

N1∑

i=1

Φf (xi),
1

N2

N2∑

j=1

Φf (xj)

〉

=〈m1f ,m2f 〉, (6.10)where m1f = 1
N1

∑N1

i=1 Φf (xi) and m2f = 1
N2

∑N2

j=1 Φf (xj) are the 
lass mean ve
tors afterthe mapping to the Mer
er kernel feature spa
e. This non-linear mapping is given by
Φf (·). The same analysis may bedone for ∫ ĥ2

1(x)dx and ∫ ĥ2
2(x)dx. Now the weightedISE 
lassi�er 
an be written in the same way as the unweighted version in Eq. (5.16). Theonly di�eren
e is that the data mapping is now to a di�erent Mer
er kernel feature spa
e,given by the eigenve
tors of the Lapla
ian matrix Kf instead of the spa
e given by theeigenve
tors of the a�nity matrix K. We repeat the 
lassi�er rule for a test point xt

xt → min
c

(〈mc,mc〉f − 2〈mc, Φ(xt)〉f) , (6.11)where c = 1, . . . , C, are the 
lass labels and
〈mc, Φ(xt)〉f =

〈
1

Nc

Nc∑

i=1

Φf (xi), Φf(xt)

〉

=

〈
1

Nc

Nc∑

i=1

Φf (xi)
T Φf(xt)

〉

=
1

Nc

Nc∑

i=1

f−1(xi)Wσ2(xt,xi) (6.12)as before, but in a di�erent Mer
er spa
e,
〈mc,mc〉f = ‖mc‖2. (6.13)



52 CHAPTER 6. A LAPLACIAN ISE CLASSIFIER6.3.1 Illustration of weightsTo illustrate the e�e
t of the weighting of the data we 
reated two 
lasses. Class 1 isrepresented with 150 samples from a dense Gaussian distribution with mean [0, 0]T . Class2 is represented with 150 samples from a 
ir
le distribution with the same mean. InFig. 6.1 the samples are plotted with the 10 points having largest weights marked withstar symbols. We noti
e that points with the largest weights all are on the borders ofthe 
ir
le distribution, whi
h is expe
ted sin
e the 
ir
le points have a mu
h more sparsedistribution.
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Figure 6.1: Note that all of the 10 largest weighted points belong to the boundaries of the
ir
le distribution.



6.3. KERNEL SPACE AND LAPLACIAN MATRIX REPRESENTATION 53

10 20 30 40 50 60 70 80 90

20

40

60

80

10 20 30 40 50 60 70 80 90

20

40

60

80

Figure 6.2: Illustrated shape of the density estimates of the two
lasses. In the top �gure the samples are not weighted, but inthe lower the samples are weighted with the inverse of the overallprobability for ea
h point.In Fig. 6.2 we see the e�e
t of applying weights to the sample data. The distribu-tions illustrated in the lower �gure 
learly emphasizes the sparse points in the ring data,
ompared to the unweighted estimate in the upper �gure.
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Figure 6.3: Plot of the weights for ea
h sample. The �rst 150points are from the Gaussian distribution and the last 150 pointsare from the 
ir
le distribution.In Fig. 6.3 we see the weights for ea
h data sample in 
lass 1 and 
lass 2. The �rst150 weights belong to the dense Gaussian distributed data in 
lass 1, while the last 150weights belong to the 
learly emphasized 
ir
le data points.



Chapter 7Spe
tral ISE 
lassi�ers
Spe
tral methods are popular espe
ially in 
lustering methods. Spe
tral methods are basedon an a�nity matrix, 
ontaining pairwise relationships between the samples, and dependon the spe
tral properties of this matrix. This matrix is eigende
omposed to �nd a moreuseful data representation of the original data. Until re
ently, only the points used in thea�nity matrix have been possible to represent in a kernel feature spa
e. This is probablythe main reason spe
tral methods rarely are used to 
lassify new test samples. By usingthe Nyström routine [31℄, however, the mapping of new points to the kernel feature spa
eis now possible. In the previous 
hapters we have used the ISE 
lassi�er by operatingin the Mer
er kernel feature spa
e impli
itly, by evaluation of inner-produ
ts. We knowthat the ISE divergen
e measure is related to the 
lass mean ve
tors in a Mer
er kernelfeature spa
e, and to the squared Eu
lidean distan
e between the mean ve
tors and thetest samples in this spa
e. Creating an a�nity or Lapla
ian matrix with the training data,and eigende
ompose it, we 
an �nd the 
lass means operating dire
tly in an approximateMer
er kernel spa
e with the proje
ted training samples.If the data set has outliers, it may be bene�
ial to use the 
lass median ve
tors insteadof the means in the approximated Mer
er kernel spa
e. With the Nyström routine we 
anproje
t the test samples to the same spa
e, 
al
ulate distan
es and thus evaluate the ISEdivergen
e dire
tly in the spa
e spanned by either the a�nity or Lapla
ian matrix.In this 
hapter we assume that the a�nity and Lapla
ian matrix elements are inner-produ
ts 
reated with Mer
er kernels, unless some other kernel type is spe
i�ed. Based onthe eigende
omposition of an a�nity or Lapla
ian matrix and proje
tion of training dataand samples onto the C dominant eigenve
tors, we now propose spe
tral versions of thestandard and Lapla
ian ISE 
lassi�er. We refer to the spe
tral ISE 
lassi�er based on theeigende
omposition of the a�nity matrix as the spe
tral ISE 
lassi�er and the spe
tralISE 
lassi�er using the Lapla
ian matrix as the spe
tral Lapla
ian ISE 
lassi�er.Some results using the spe
tral ISE 
lassi�er are presented in Part II, Se
tion 9.5, andresults using the spe
tral Lapla
ian ISE 
lassi�er are presented in Part II, Se
tion 9.6.55



56 CHAPTER 7. SPECTRAL ISE CLASSIFIERS7.1 Mapping of data to a Mer
er based feature spa
eAn approximation of the nonlinear mapping of the training data Φ(xl), l = 1, · · · , N , frominput spa
e to the Mer
er kernel spa
e, using the C largest eigenvalues and 
orrespondingeigenve
tors of the kernel matrix K, is a

omplished with [13℄, [24℄
Φ : Rd → F

xl → Φ(xl) ≈
[√

λ1e1l,
√

λ2e2l, . . . ,
√

λCeCl

]T
, l = 1, · · · , N, (7.1)where eml denotes the lth element of the mth eigenve
tor of K and λm is the 
orrespondingeigenvalue, where λ1 ≥ λ2 ≥ . . . ≥ λC . It 
an be shown [13℄ that in the ideal 
ase with

C 
lusters of the training data 
orresponding to C di�erent 
lasses that are �in�nitely� farapart, the eigende
omposition of the a�nity matrix results in C point 
lusters, mutuallyorthogonal to ea
h other situated on the C �rst prin
ipal axes in the kernel spa
e [13℄.When using the a�nity matrix K to 
reate the basis whi
h the data is proje
ted on,this is the same as performing a C-dimensional kernel PCA on the training data [24℄. Thea�nity matrix K and the Lapla
ian matrix Kf are 
reated with training data samples asdes
ribed in Se
tion 6.3 on page 49.We 
an 
ompute the C-dimensional ve
tor proje
tion of a test sample xt into thesubspa
e spanned by the C eigenve
tors of the kernel matrix with [6℄
Φ(xt) ≈

(
√

N

N∑

i=1

αj
iκ(xi,xt)

)C

j=1

, (7.2)where αj = λ
− 1

2

j ej is given by the 
orresponding eigenve
tor and eigenvalue of the kernelmatrix. κ(xi,xt) is a Mer
er kernel fun
tion 
omputing the inner-produ
ts between thenew test sample xt and all i = 1, . . . , N samples in the kernel matrix. The 
omputationin Eq. (7.2) is also known as the Nyström routine. The Mer
er spa
e spanned by theLapla
ian matrix is not the same as the Mer
er spa
e spanned by the kernel matrix. Thepro
edure to map the training data and new samples is however the same, ex
ept that weeigende
ompose Kf , not K, in Eq. (7.2) and Eq. (7.1).



7.1. MAPPING OF DATA TO A MERCER BASED FEATURE SPACE 577.1.1 Illustration of mappings to Mer
er spa
eIn Fig. 7.1 we see the same 
ir
le and Gaussian distributions as in Fig. 6.3 on page 54,after the proje
tion to spa
e spanned by the eigenve
tors 
orresponding to the two largesteigenvalues of the Lapla
ian matrix Kf . We see that the two 
lasses seem to be distributedalong two 
learly separable lines in this spa
e. This seems to be 
lose to the ideal 
ase forseparable data. In this two-
lass 
ase, we expe
t the data to be situated in two 
lusters,mutually orthogonal along the two �rst prin
ipal axes in the spa
e of the Lapla
ian matrix.
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Figure 7.1: Gauss and 
ir
le distributions in an approximate Mer
er spa
e, given by the twoprin
ipal eigenve
tors of the Lapla
ian matrix Kf . Samples from the Gaussian distributionare labeled with ©, and 
ir
le distribution samples are labeled with ×.



58 CHAPTER 7. SPECTRAL ISE CLASSIFIERSIn Fig. 7.2 we see the same distributions as in Fig. 6.3 after the proje
tion to the spa
espanned by the eigenve
tors 
orresponding to the two largest eigenvalues of the a�nitymatrix K. Note that all training points that belong to the 
ir
le distribution seem to bemapped to origo, while the points that belong to the Gaussian distribution are spreadaround more uniformly.
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Figure 7.2: Gauss and 
ir
le distributions in an approximate Mer
er spa
e, given by thea�nity matrix K. Samples from the Gaussian distribution are labeled with ©, and 
ir
ledistribution samples are labeled with ×.



7.2. SPECTRAL VERSIONS OF THE ISE CLASSIFIERS 597.2 Spe
tral versions of the ISE 
lassi�ers7.2.1 The spe
tral ISE 
lassi�erIn this se
tion we dis
uss how we 
an develop spe
tral 
lassi�ers based on the ISE di-vergen
e 
ost fun
tion. Assume we have a training data set with labels from C di�erent
lasses, ωc, c = 1, . . . , C. From this data set we now 
onstru
t the kernel matrix K. Thismatrix is then eigende
omposed and the training data is proje
ted to the spa
e spanned bythe C dominant eigenve
tors of K using Eq. (7.1). Using the proje
ted training data, we
an now �nd the mean ve
tors of ea
h 
lass in the approximated kernel spa
e. If the dataset has outliers, it may be useful to use the median ve
tors instead of the mean ve
tors.With Eq. (7.2) we proje
t ea
h of the test samples to the same spa
e as the training data,and measure the squared Eu
lidean distan
e between the sample and ea
h of the 
lassmeans. Finally, ea
h sample is 
lassi�ed to the 
lass where the distan
e is smallest. Tosummarize the steps:
• Find the a�nity matrix K using training data xl, l = 1, . . . , N

• Eigende
omposeK and 
ompute Φ(xl) ≈
[√

λ1e1l,
√

λ2e2l, . . . ,
√

λCeCl

]T
, l = 1, . . . , N .

• Find the mean or median ve
tors of the proje
ted data, mc for 
lass ωc, c = 1, . . . , C,
• for i=1:number of test points to 
lassify1 Map xi to the approximate kernel spa
e with Eq. (7.2)2 Find the squared Eu
lidean distan
es, dc, c = 1, . . . , C, between mc and Φ(xi)3 Classify: Φ(xi) ∈ ωc if dc < dk, ∀k 6= c7.2.2 The spe
tral Lapla
ian ISE 
lassi�erThis follows the same routine as the spe
tral ISE 
lassi�er, ex
ept that instead of eigende-
omposing the a�nity matrix K, we now use the Lapla
ian matrix Kf .
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Chapter 8Kernel sele
tionAll our versions of the ISE based 
lassi�er are highly dependent on density estimation,sin
e they are derived using Parzen windowing. Assume we have a set of data x1, . . . ,xNgenerated i.i.d a

ording to some unknown distribution, where this distribution des
ribesdata from one spe
i�
 
lass. We then need to �nd the density estimate for the data set.This 
an often be a problem, both be
ause of the 
urse of dimensionality, and be
ausedistributions don't always possess a density [17℄. The Parzen window density estimatesare dependent of kernel size and kernel type. Thus, if we 
an �nd the optimal kernel forour data set for the Parzen window density estimation, we have an appropriate kernel forthe 
lassi�er. There exist many types of kernels whi
h 
an be used in density estimation.A short summary is given in Se
tion 3.2.4. It has been proved [30℄ that the Epane
hnikovkernel gives a better density estimate then the Gaussian kernel, in terms of the number ofdata points needed to get a good estimate. This gives us a good reason to 
he
k if the ISE
lassi�ers may bene�t from using this kernel, even if it does not satisfy Mer
er's theorem.In this 
hapter we will use some arti�
ial distributions and analyze the e�e
t of di�erentkernel fun
tions and bandwidths on the 
lassi�
ation rates and density estimates. We needto see if we 
an get good 
lassi�
ation results, even when the density estimates are far fromexa
t.8.1 E�e
t of kernel bandwidth and kernel typeIn this se
tion we aim to demonstrate how the density estimates and the di�erent versionsof the ISE 
lassi�er may behave using di�erent kernels and bandwidths on an arti�
ialdata set. We want to 
he
k if some of the versions of the ISE 
lassi�er are more robust,i.e. give good 
lassi�
ation results over a wider range of kernels then others. We also 
he
ktwo non-Mer
er kernels whi
h often are used in density estimation, the square and theEpane
hnikov kernels.We use the same data set as previously in Se
tion 6.3.1. Class ω1 is represented with150 samples from a dense Gaussian distribution, with mean [0, 0]T . Class ω2 is representedwith 150 samples from a 
ir
ular shaped distribution, with the same mean as ω1. The two63
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lasses are illustrated again in Fig. 8.1
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Figure 8.1: ω1 samples illustrated with ◦ symbols, ω2 illustrated with × symbols.



8.1. EFFECT OF KERNEL BANDWIDTH AND KERNEL TYPE 65To test the di�erent kernel types and bandwidths we use 20 and 50 points for test andtraining from ea
h 
lass, respe
tively. The test points are then 
lassi�ed using the di�erent
lassi�ers with di�erent kernel types over a range of kernel bandwidths. In Table 8.1,Table 8.2 and Table 8.3 following, we give the range of kernel bandwidths whi
h gives100% 
orre
t 
lassi�
ation rates for the di�erent 
lassi�ers and kernels. Sin
e the 
lassdata does not have any extreme outliers, we don't expe
t the spe
tral median versions tobe mu
h di�erent from the mean versions, and we only in
lude the spe
tral 
lassi�ers usingmean ve
tors in the ISE divergen
e measure.Table 8.1: Gaussian kernelClassi�er bandwidth rangeStandard ISE 0.30-0.76Lapla
ian ISE 0.09-0.91Spe
tral ISE means 0.07-0.45Spe
tral Lapla
ian ISE means 0.10-0.42Bayes 0.01-0.60We see from Table 8.1 that for the Gaussian kernel the broadest range of bandwidths isa
hieved using the the Lapla
ian ISE 
lassi�er. All 
lassi�ers perform well in the kernel sizerange, 0.30-0.42. The standard ISE 
lassi�er seems to start working properly at a slightlylarger kernel size then the others. The spe
tral versions of the ISE 
lassi�er performs well,but seems to have a little narrower bandwidth range, 
ompared with the 
lassi�ers workingimpli
itly in a Mer
er spa
e.The shape of the unweighted and weighted density estimates using a Gaussian kernelwith bandwidth 0.80 is given in Fig. 8.2. Noti
e that the shape of the top �gure seems tobe dominated by the dense Gaussian distribution in the 
enter, and all 
lassi�ers using thisdensity estimate are unable to separate the two 
lasses 
learly. The weighted data pointsused in the bottom �gure redu
e the dominant shape of the Gaussian distribution enough,
ompared to the more sparsely distributed 
ir
le shape, to let the weighted Lapla
ian ISE
lassi�er 
orre
tly 
lassify all test samples.In Fig. 8.3 the shape of the unweighted and weighted density estimates using a Gaussiankernel with bandwidth 0.30 is illustrated. Compared with the shapes in Fig. 8.2, the
ir
le distribution is now good enough separated from the Gaussian distribution to let all
lassi�ers 
orre
tly 
lassify all of the test samples. In the bottom �gure with weighteddata, we 
learly see the stru
ture where the 
ir
le distribution is emphasized.
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Figure 8.2: Shapes of density estimates using Gaussian kernel with bandwidth, 0.80. Un-weighted estimate in the upper plot. Lapla
ian weights applied to the points in the estimatein the lower plot. This kernel width gives a 100% 
lassi�
ation rate only for the Lapla
ianISE 
lassi�er.
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Figure 8.3: Shape of density estimate using Gaussian kernel with bandwidth, 0.30. Un-weighted estimate in the upper plot. Lapla
ian weights applied to the points in the estimatein the lower plot. This kernel width gives a 100% 
lassi�
ation rate for all 
lassi�ers.



68 CHAPTER 8. KERNEL SELECTIONTable 8.2: Epane
hnikov kernelClassi�er bandwidth rangeStandard ISE 0.09-2.23Lapla
ian ISE 0.08-1.94Spe
tral ISE means 0.02-1.27Spe
tral Lapla
ian ISE means 0.24-1.30Bayes 0.08-1.39We know that even if the Epane
hnikov kernel does not map the data to a Mer
erspa
e, it is known to give good density estimates. From Table 8.2 we see that all 
lassi�erswork well over an even wider range of kernel sizes then for the Gaussian kernel. Again wenote that the impli
it versions of the ISE 
lassi�er seems to have a wider kernel bandwidthrange then the spe
tral 
lassi�ers. This time the standard ISE 
lassi�er has the widestkernel bandwidth range with 100% 
lassi�
ation rate.Table 8.3: Square kernelClassi�er bandwidth rangeStandard ISE 0.07-1.32Lapla
ian ISE 0.11-1.32Spe
tral ISE means 0.02-0.91Spe
tral Lapla
ian ISE means 0.23-1.18Bayes 0.11-1.06The results using a square kernel in Table 8.3 are similar to the previous, but the band-width ranges are generally smaller then for the Gaussian and Epane
hnikov kernel. Againthe standard ISE 
lassi�er has the widest kernel bandwidth range with 100% 
lassi�
ationrate.Summary We note that for this arti�
ial data set, the Epane
hnikov kernel seems to havethe broadest range of kernel bandwidths for all di�erent versions of the ISE 
lassi�er. Thismay be useful when we don't know, or are unable to use 
ross-validation on our trainingdata to sele
t the optimal kernel size. The Gaussian kernel also produ
es good results. Thesimple square kernel works well, but it has the smallest range of usable bandwidths. Evenif the Epane
hnikov and square kernel are non-Mer
er kernels, and thus does not map to aMer
er spa
e, it seems possible to �nd estimates of ISE divergen
e in the spa
es they mapto. The Bayes 
lassi�er works well over similar bandwidth ranges to the ISE 
lassi�ers.



Chapter 9Classi�
ation experiments
9.1 Introdu
tionThis part of the thesis reports experiments done with the di�erent versions of the ISE
lassi�er dis
ussed in Part I. Be
ause of the similarity with the well-known Bayes 
lassi�er,this is the main 
lassi�er whi
h we 
hoose to 
ompare the results with. Some experimentsalso in
lude results using other Mer
er spa
e based 
lassi�ers, parti
ularly the SVM andthe Lapla
ian 
lassi�er.To redu
e numeri
al errors when 
al
ulating inner-produ
ts, a�nity matri
es and den-sity estimates, we removed the s
aling h−d from Eq. (3.12) on page 17 in front of all kernelevaluations with bandwidth h and data dimensionality d.The purpose of the experiments is to see how di�erent implementations of the ISE
lassi�er behaves on some popular ben
hmark data sets. In the derivation of the standardISE 
lassi�er we noted the standard ISE 
lassi�er may favor the large entropy 
lass 
om-pared to the Parzen window based Bayes 
lassi�er. Theoreti
ally, the ISE 
lassi�ers has aseparating hyperplane in the kernel spa
e, that is shifted away from the 
lass with highestentropy1 
ompared with the separating hyperplane for the Bayes 
lassi�er. We want to
he
k if the standard ISE 
lassi�er tends to favor the 
lasses with high entropy 
ompared tothe Bayes 
lassi�er on some real data sets. This is why we in
lude the 
onfusion matri
esand 
al
ulated information potentials. We also want to �nd out what happens when thedi�erent ISE 
lassi�ers are unable to a
hieve high 
lassi�
ation rates, by looking at howthe some of the training data and samples are proje
ted to approximated Mer
er spa
es.9.2 Sele
tion of data sets and 
lassi�
ation methodsThe data sets used in this study are sele
ted from the UCI-repository [16℄ and the Räts
h[20℄ data sets. The sele
ted Räts
h data sets are Banana(2,400,4900), Thyroid(5,140,75),Ringnorm(20,400,7000) and Twonorm(20,400,7000), where the numbers in parenthesis are1When we refer to entropy and entropy estimates in this 
hapter, we mean the Renyi quadrati
 entropyestimate. 69



70 CHAPTER 9. CLASSIFICATION EXPERIMENTSthe dimensionality, the size of the training data set and the test data set, respe
tively. Ea
hset has 100 realizations. To redu
e the 
omputation time for the Ringnorm and Twonormdata sets we pi
k 500 samples from ea
h of the 100 realizations as test data instead of 7000samples. The data sets have zero mean and unit standard deviation for ea
h feature. Theresults in the tables and 
onfusion matri
es are average 
lassi�
ation results and standarddeviations when 
lassifying ea
h of the 100 test realizations. For all Räts
h data sets wehave used the training set for training and the test sets for testing.The sele
ted UCI data sets are Wine(13,178), Iris(4,150), WBC(30,569) (Wis
onsinbreast 
an
er), Ionosphere(34,351), Pima(8,768) and Pendigits(16,1091). The numbers inparenthesis are the dimensionality, and the number of samples. The Pendigits data 
onsistsof samples representing integers 0,1 and 2 sele
ted from the original test data set (3498samples). For all UCI data sets we have normalized the standard deviation to one for ea
hfeature, sin
e the 
lassi�ers use spheri
al kernel fun
tions, and to use a method 
omparableto the one used in the Lapla
ian 
lassi�er, des
ribed in [12℄. All UCI test and training datasets were 
reated by splitting a random permutation of the data set in two halves over 100trials, where 1/3 of the data set was used for testing and 2/3 used for training.All the UCI and Räts
h data sets are also 
lassi�ed with our implementation of a Parzenwindow based Bayes 
lassi�er, for 
omparison. We refer to the Parzen window based Bayes
lassi�er simply as the Bayes 
lassi�er from now on. In all experiments we have found thebest kernel size using three-fold 
ross validation over a range of kernel sizes on the trainingdata set, and sele
ted the kernel with highest 
lassi�
ation rate.In the following se
tions we will present and dis
uss results obtained on the sele
teddata sets, using the standard ISE, Lapla
ian ISE, spe
tral ISE and spe
tral Lapla
ianISE 
lassi�ers. Unless otherwise spe
i�ed we have 
hosen to use a Gaussian kernel in the
al
ulations. This is be
ause it is a Mer
er kernel, and when using 
ross validation intraining to �nd the best kernel size it does not matter mu
h whi
h kernel type we use.9.3 Standard ISEIn this se
tion we dis
uss results found when using the standard ISE 
lassi�er dis
ussedin Chapter 5. Classi�
ation results found with our implementation of the Bayes 
lassi�er,SVM results obtained from [21℄ and results found using the Lapla
ian 
lassi�er abbreviatedwith CS, des
ribed in [12℄ are also in
luded for 
omparison. The Lapla
ian 
lassi�er istrained in the same way as we have done. The SVM used was trained to �nd the parameters
C and σ (C is the regularization 
onstant and σ the width of the RBF kernel used) witha �ve-fold 
ross validation on �ve realizations of ea
h data set [21℄.If one 
lass from a data set has a small ratio of information potential 
ompared to theother 
lasses, this 
lass will have a relatively large entropy. We estimate the informationpotentials for ea
h 
lass and 
ompare the 
onfusion matri
es for the standard ISE and theBayes 
lassi�er, to �nd out if the standard ISE 
lassi�er tend to 
lassify more samples tothe 
lasses with large entropy.Table 9.1 
ontains 
lassi�
ation rates in per
ent with standard deviations for the Räts
h



9.3. STANDARD ISE 71data sets. The standard ISE 
lassi�er performs well, and similar to the other 
lassi�ers,with an ex
eption for the Ringnorm data set, where it has a low 
lassi�
ation rate. Wenote that the only 
ase where the standard ISE 
lassi�er is able to beat our Bayes 
lassi�eris the Twonorm data set. The Banana set seems to be di�
ult for all 
lassi�ers.Data Bayes ISE SVM CSBanana 87.7±1.2 87.6±0.9 89.2±0.7 89.4±0.5Ringnorm 96.9±0.8 76.6±17.5 98.3±0.1 No dataTwonorm 97.1±0.7 97.2±0.7 97.0±0.6 97.4±0.2Thyroid 95.5±2.3 94.9±2.5 95.2±2.2 95.7±2.2Table 9.1: Average 
lassi�
ation rates for Räts
h data setsIn Table 9.2 the ratios of information potentials for ea
h of the 
lasses in the Räts
hdata sets are listed. The ratios with bold fonts, represent the 
lasses with relatively highestentropy. Data ω1 ω2Banana 45.7% 54.3%Ringnorm 49.3% 50.7%Twonorm 49.7% 50.3%Thyroid 16.6% 83.4%Table 9.2: Class data information potentials for Räts
h data setsTable 9.3 list the average 
lassi�
ation rates in per
ent, with standard deviations for thesele
ted UCI data sets in the same way as in Table 9.1. For the Wine, Iris and Pendigitsdata sets, the standard ISE 
lassi�er performs slightly worse than the Bayes 
lassi�er. Thestandard ISE 
lassi�er is slightly better than the Bayes for the Pima and WBC data set,and notably better for the Ionosphere data set.Data Bayes ISE SVM CSWine 96.6±2.3 95.4±2.4 97.5±1.7 97.3±1.4Iris 94.3±3.0 93.0±3.3 95.7±2.0 94.5±2.1WBC 95.9±1.4 96.3±1.2 96.9±0.7 97.1±0.7Ionosphere 86.3±2.8 94.1±2.3 94.1±1.2 92.5±1.7Pendigits 99.0±0.5 98.2±0.6 99.6±0.2 98.9±0.4Pima 71.8±2.4 72.6±2.4 76.8±1.5 73.9±1.7Table 9.3: Average 
lassi�
ation rates for UCI data sets.In Table 9.4 the estimated ratios of 
lass information potentials are listed. The ratiosin bold fonts are the 
lasses with lowest IP, and thus highest entropy. We will later in thisse
tion use the 
onfusion matri
es for the standard ISE and Bayes 
lassi�ers for these data



72 CHAPTER 9. CLASSIFICATION EXPERIMENTSsets to see if the standard ISE 
lassify more points erroneously to the 
lass with highestentropy, as suggested in Se
tion 5.3.1Data ω1 ω2 ω3Wine 34.5% 26% 39.5%Iris 42.6% 31.6% 25.7%WBC 71.8% 28.2%Ionosphere 58.1% 41.9%Pima 55.1% 44.9%Pendigits 30.0% 28.6% 41.4%Table 9.4: Average 
lass information potentials for UCI data sets9.3.1 Confusion matri
es Standard ISE and BayesIn this se
tion we 
ompare the 
onfusion matri
es obtained by 
lassifying with the standardISE and the Bayes 
lassi�er. We want to 
he
k if there is any 
orresponden
e between the
lass entropies and whi
h 
lass has most 
lassi�
ation errors, when 
omparing the standardISE and the Bayes 
lassi�er.About the 
onfusion matri
es Ea
h row of a 
onfusion matrix denote the 
orre
t 
lasslabel, while ea
h 
olumn denote the predi
ted label from the 
lassi�er. As an example,element (1,2) of a 
onfusion matrix 
ontains the amount of samples that belong to 
lass1, but are predi
ted to belong to 
lass 2. The tra
e of a 
onfusion matrix 
ontains theamount of 
orre
tly estimated samples.BananaIn Table 9.5 we note that the standard ISE 
lassi�es more points to 
lass ω1, with relativelylarger entropy, than the Bayes 
lassi�er.ISE ω̂1 ω̂2

ω1 1941.6 252.9
ω2 285.5 2420.0 Bayes ω̂1 ω̂2

ω1 1874.7 319.8
ω2 201.3 2504.2Table 9.5: Average 
onfusion matri
es Banana data set.RingnormWe note in the 
onfusion matri
es for the Ringnorm data set in Table 9.6 that the standardISE has a mu
h lower 
lassi�
ation rate than the Bayes 
lassi�er. For this data set, 
lass ω1has slightly larger entropy than 
lass ω2. This does not 
ause the standard ISE to 
lassifymore points to 
lass ω1, 
ompared with the Bayes 
lassi�er.
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ω1 132.19 115.97
ω2 0.84 251.00 Bayes ω̂1 ω̂2

ω1 236.25 11.91
ω2 3.42 248.42Table 9.6: Average 
onfusion matri
es Ringnorm data set.TwonormFor the Twonorm data set, 
lass ω1 has a slightly higher entropy than 
lass ω2. Thestandard ISE 
lassi�er should now 
lassify more points to 
lass ω1 than the Bayes 
lassi�er.From Table 9.7 we see that this is not the 
ase.ISE ω̂1 ω̂2

ω1 243.20 6.25
ω2 7.75 242.80 Bayes ω̂1 ω̂2

ω1 243.12 6.33
ω2 8.20 242.35Table 9.7: Average 
onfusion matri
es Twonorm data set.ThyroidThe Thyroid data set has a relatively large entropy di�eren
e between the 
lasses, withrelatively large entropy in 
lass ω1. In Table 9.8 we note that slightly more points are
lassi�ed to 
lass ω1 for the standard ISE 
lassi�er than for the Bayes 
lassi�er.ISE ω̂1 ω̂2

ω1 20.45 1.86
ω2 1.94 50.75 Bayes ω̂1 ω̂2

ω1 20.19 2.12
ω2 1.26 51.43Table 9.8: Average 
onfusion matri
es Thyroid data set.



74 CHAPTER 9. CLASSIFICATION EXPERIMENTSWineFor the Wine data set in Table 9.9, the standard ISE 
lassi�er seems to take a small amountof samples from 
lass ω1 and ω3 and 
lassify to 
lass ω2, 
ompared with the Bayes 
lassi�er.From Table 9.4 we see that 
lass ω2 has largest entropy of the 
lasses.ISE ω̂1 ω̂2 ω̂3

ω1 19.72 0.15 0
ω2 1.05 21.68 1.29
ω3 0 0.25 15.86 Bayes ω̂1 ω̂2 ω̂3

ω1 19.81 0.03 0
ω2 1.10 21.89 0.80
ω3 0 0.10 16.27Table 9.9: Average 
onfusion matri
es Wine data set.IrisFor the Iris data set in Table 9.10, the standard ISE 
lassi�er takes a small amount ofsamples from 
lass ω1 and ω2 and 
lassify as ω3, 
ompared with the Bayes 
lassi�er. FromTable 9.4 we see that 
lass ω3 has largest entropy.ISE ω̂1 ω̂2 ω̂3

ω1 16.11 0.01 0.44
ω2 0 15.53 1.16
ω3 0 1.91 14.84 Bayes ω̂1 ω̂2 ω̂3

ω1 16.76 0.17 0
ω2 0 15.60 1.12
ω3 0 1.5700 14.78Table 9.10: Average 
onfusion matri
es Iris data setWBCFor the WBC data set in Table 9.11, 
lass ω2 has relatively mu
h larger entropy than 
lass

ω1. The standard ISE has a higher 
lassi�
ation rate than the Bayes 
lassi�er for this dataset, but it does not seem to move samples from the 
lass with relatively lower entropy.ISE ω̂1 ω̂2

ω1 65.98 4.44
ω2 2.59 117.99 Bayes ω̂1 ω̂2

ω1 65.19 5.89
ω2 1.90 118.02Table 9.11: Average 
onfusion matri
es WBC data setIonosphereFrom Table 9.4 we note that 
lass ω2 has larger entropy than 
lass ω1, and the standardISE 
lassi�er in Table 9.12 seems to add more samples to 
lass ω2 when 
ompared withthe Bayes 
lassi�er. For this data set this gives a higher 
lassi�
ation rate for the standardISE 
lassi�er.
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ω1 71.55 3.41
ω2 3.53 38.51 Bayes ω̂1 ω̂2

ω1 73.39 1.40
ω2 14.68 27.53Table 9.12: Average 
onfusion matri
es Ionosphere data setPimaFor the Pima data set in Table 9.13 we note that the standard ISE 
lassi�er has moresamples assigned to 
lass ω2 with largest entropy, than the Bayes 
lassi�er. Again this givesthe standard ISE 
lassi�er a slightly higher 
lassi�
ation rate than our Bayes 
lassi�er.ISE ω̂1 ω̂2

ω1 123.09 42.90
ω2 27.17 62.85 Bayes ω̂1 ω̂2

ω1 138.50 27.55
ω2 44.74 45.21Table 9.13: Average 
onfusion matri
es PimaPendigitsFor the sele
ted 
lasses from Pendigits, we know from Table 9.4 that 
lass ω2 has largestentropy. Thus we expe
t the standard ISE 
lassi�er to 
lassify more points from 
lass ω1and 
lass ω3 to 
lass ω2 than the Bayes 
lassi�er. In Table 9.14 we see that this is the 
asefor 
lass ω1, but not 
lass ω2.ISE ω̂1 ω̂2 ω̂3

ω1 121.09 1.00 0
ω2 0.22 116.14 4.90
ω3 0.07 0.49 121.09 Bayes ω̂1 ω̂2 ω̂3

ω1 121.58 0 0
ω2 0 118.89 2.99
ω3 0 0.58 120.96Table 9.14: Average 
onfusion matri
es Pendigits
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lassi�
ation results for the standard ISE 
las-si�erThe standard ISE 
lassi�er seems to perform very well and similar to our Bayes 
lassi�er,but is only able to beat our implementation of a surprisingly good Bayes 
lassi�er for 4 outof 10 data sets. The Ringnorm data set is the only set where the standard ISE performsnotably worse than the Bayes 
lassi�er. For WBC, Ionosphere, Pima and Twonorm thestandard ISE 
lassi�er has slightly higher 
lassi�
ation rates than the Bayes 
lassi�er. Forea
h data set we 
ompared the di�eren
e in entropy between the 
lasses and the 
onfusionmatri
es for the standard ISE and Bayes 
lassi�er. If we ex
lude the Ringnorm data set,the di�eren
e in entropy seems to let the standard ISE draw points from low entropy
lasses to higher entropy 
lasses for the Wine, Iris, Ionosphere, Pendigits, Pima, Bananaand Thyroid data sets (7 of 9 data sets), 
ompared with the Bayes 
lassi�er. For theTwonorm and WBC data sets this was not the 
ase. It is hard to explain exa
tly why thestandard ISE 
lassi�er doesn't behave as expe
ted for some data sets.
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ian ISEIn this se
tion we present average 
lassi�
ation rates using the version of the ISE 
lassi�erdis
ussed in Chapter 6, operating impli
itly in the Mer
er spa
e spanned by the eigenve
-tors of the Lapla
ian matrix. The weighting of the training data samples 
hanges the 
lassentropies, so we 
hoose not to 
ompare the di�erent Lapla
ian ISE 
onfusion matri
es withthe Bayes 
onfusion matri
es. The average 
onfusion matri
es for the data sets using theLapla
ian ISE 
lassi�er may be found in the appendix. For some sele
ted data sets wealso plot the weights for the training data in ea
h 
lass, to 
he
k if some 
lass samples areweighted more than others. If some 
lasses have uniform weights for the training samples,this implies that the Lapla
ian ISE 
lassi�er should give the same results as the standardISE 
lassi�er.In Table 9.15 we list the average 
lassi�
ation rates with standard deviations in per
ent,using the Lapla
ian ISE 
lassi�er on the sele
ted Räts
h data sets. To redu
e the 
om-putation time we redu
ed the amount of training and test data to 100 and 50 samples inea
h realization for Banana, Ringnorm and Twonorm for this 
lassi�er. The listed resultsshould still give a good indi
ation of the 
lassi�er performan
e. On these data sets theweighting indu
ed by the Lapla
ian ISE does not seem to in�uen
e the results signi�
antlyin a positive manner, 
ompared to the standard ISE 
lassi�er.Data RateBanana 86.2±5.0Ringnorm 76.7±22.1Twonorm 96.3±2.7Thyroid 94.6±2.9Table 9.15: Average Lapla
ian ISE 
lassi�
ation rates for Räts
h data sets.In Fig. 9.1 we illustrate the two 
lasses in a typi
al training set for the Banana dataset. The points marked with star symbols represent some of the largest weights in the dataset. The 
lasses in this data set are very di�
ult to separate be
ause they are distributedin several overlapping 
lusters. The points representing the largest weights seems to besituated in the outer borders of the data set.
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Figure 9.1: Plot of a sample training data set from the Banana data set. Class ω1 and
ω2, are illustrated with × and © respe
tively. Some of the points with largest weights areplotted with star symbols.



9.4. LAPLACIAN ISE 79In Fig. 9.2 we illustrate the weights for a typi
al training data set from the Bananadata set. Ea
h �gure illustrate the weight assigned to ea
h sample within a 
lass. We notethat of the most of the samples are weighted similarly, but for a few samples in ea
h 
lassthe weights are mu
h larger than the others, e.g the sample with a weighing of 400 in 
lass
ω2 
ompared to most of the others whi
h seem to have weights in the interval 10-100. Thelargest weights in this �gure 
orresponds to the star symbols in Fig. 9.1. The weighting ofdata points does not seem improve the 
lassi�
ation rate on this data set.
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Figure 9.2: Sample weights for the Banana training data set. Top and bottom �guresillustrate typi
al weights for training samples from 
lass ω1 and ω2, respe
tively.



80 CHAPTER 9. CLASSIFICATION EXPERIMENTSIn Table 9.16 we list the average 
lassi�
ation rates with standard deviations, usingthe Lapla
ian ISE 
lassi�er on the sele
ted UCI data sets. We note that the results arevery similar to the standard ISE rates. For Iris, Wine, WBC and Pendigits we a
hieveslightly higher 
lassi�
ation rates with the Lapla
ian ISE 
lassi�er than for the standardISE 
lassi�er. The Ionosphere data set has notably worse 
lassi�
ation rates with theLapla
ian ISE 
lassi�er, 89.0% versus 94.1% for the standard ISE 
lassi�er. The Pimadata set has slightly worse 
lassi�
ation rate for the Lapla
ian ISE 
lassi�er versus thestandard ISE 
lassi�er. Data set ISEWine 95.6±2.1Iris 94.1±2.6WBC 96.6±1.2Ionosphere 89.0±2.4Pendigits 98.5±0.6Pima 72.4±2.4Table 9.16: Average 
lassi�
ation rates using the Lapla
ian ISE 
lassi�er on UCI datasets.In Fig. 9.3 we illustrate the weights for a typi
al training data set from the Wine dataset. Ea
h �gure illustrate the weight assigned to ea
h sample within a 
lass. The weightsseem to emphasize some of the points within ea
h 
lass a bit more than the others, butmostly they are quite similar. For this data set the Lapla
ian indu
ed weighting seems togive a slightly better 
lassi�
ation rate.
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Figure 9.3: Sample weights for the Wine training data set. Top, middle and bottom �guresillustrate typi
al weights for training samples from 
lass ω1, ω2 and ω3, respe
tively.



82 CHAPTER 9. CLASSIFICATION EXPERIMENTSIn Fig. 9.4 we illustrate the weights for a typi
al training data set from the Iris dataset. Ea
h �gure illustrate the weight assigned to ea
h sample within a 
lass. We note thatfor this training data set ea
h 
lass have a few points that have relatively large weights
ompared to the others.
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Figure 9.4: Sample weights for the Iris training data set. Top, middleand bottom �gures illustrate typi
al weights for training samples in 
lass
ω1, ω2 and ω3, respe
tively.In Fig. 9.5 we plotted dimension 2 vs dimension 3 of the same training set used inFig. 9.4. The 15 points with the largest weights are marked with a star symbol. Thepoints with the largest weights all seem to lie in the border of a 
lass 
luster. Emphasizingthese points seems to in
rease the separability of the di�erent 
lasses sin
e the Lapla
ianISE 
lassi�er performs slightly better than the standard ISE 
lassi�er for this data set.
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Figure 9.5: Illustration of a typi
al Iris training data set. We plot dimension 2 versus3 with the 15 points with largest weights marked with star symbols. Class ω1, ω2 and ω3samples are illustrated with ©, × and �, respe
tively.
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lassi�
ation results for the Lapla
ian ISE 
las-si�erWe note that weighting the training data as des
ribed in Chapter 6 a
tually gave slightlyworse results for the Räts
h data set. This may be be
ause the training data 
omes from
lasses with mu
h overlap between the borders of the 
lass 
lusters, as illustrated for theBanana data set in Fig. 9.1. This seems to give largest weights to the points in the outerborder of the whole data set, and may not in
rease the separability of the 
lasses. Forthe UCI data sets, we get slightly better 
lassi�
ation rates, ex
ept for the Ionosphere andPima data sets. Looking at the samples in dimension 2 versus 3 for the Iris data set inFig. 9.5 the largest weights seem to be in the di�erent 
luster borders of quite separable
lasses. This may indi
ate that the Lapla
ian indu
ed weighting of data helps the 
lassi�erwhen the 
lass borders are not overlapping, but it is hard to 
on
lude from the few datasets we have looked at.9.5 Spe
tral ISEIn this se
tion we present results using the spe
tral ISE 
lassi�er dis
ussed in Chapter 7.We in
lude the 
lassi�
ation rates using the mean ve
tors in the approximate Mer
erkernel spa
e given by the prin
ipal eigenve
tors of the training data a�nity matrix. Theresults with median ve
tors are very similar, indi
ating that the data sets have few outliers.Classi�
ation results and 
onfusion matri
es using the median version of the spe
tral ISE
lassi�er are in
luded in the appendix for referen
e. We also illustrate how some of the datasets with low 
lassi�
ation results are proje
ted to the approximate Mer
er kernel spa
e.The illustration of mappings where the spe
tral 
lassi�ers performs well are postponed tothe dis
ussion of the spe
tral Lapla
ian ISE 
lassi�er in the next se
tion.In Table 9.17 we list the average 
lassi�
ation rates with standard deviations using themean version of the spe
tral ISE 
lassi�er on sele
ted Räts
h data sets. We note thatfor the Banana data set this 
lassi�er seems to fail and that the Ringnorm data set hasslightly higher 
lassi�
ation rates than the standard ISE 
lassi�er. The other data setshave 
lassi�
ation rates slightly lower, but similar to the standard ISE 
lassi�er.Data Mean rateBanana 54.2±6.2Ringnorm 77.3±1.8Twonorm 97.3±0.6Thyroid 93.5±2.4 Table 9.17: Average 
lassi�
ation rates forsome Räts
h data sets using the spe
tral ISE
lassi�er.



9.5. SPECTRAL ISE 85In Fig. 9.6 we illustrate the mapping of the Banana data set proje
ted to the approx-imate Mer
er kernel spa
e given by the two prin
ipal eigenve
tors of the a�nity matrixwhi
h gives a 
lassi�
ation rate of 54.2%. Note that the training data samples for both
lasses are 
lustered together around origo and almost impossible to separate from ea
hother. In Fig. 9.1 in the previous se
tion, we saw that the 
lass 
lusters for the Bananadata set in the input spa
e also were highly overlapping. The test samples illustrated with
∗ symbols are spread far a way from the 
lass mean ve
tors, but the spe
tral ISE 
lassi�erfails, be
ause no test point is distin
tly 
loser to one of the two 
lass means.
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Figure 9.6: Illustration of the data mapping given by the a�nity matrix 
re-ated with training data from the Banana data set. We proje
ted 50 trainingsamples from ea
h of 
lass ω1 illustrated with ©, and 50 from 
lass ω2 illus-trated with ×. Mapping of 20 test samples is illustrated with ∗ symbols.



86 CHAPTER 9. CLASSIFICATION EXPERIMENTSIn Table 9.18 we list the average 
lassi�
ation rates with standard deviations using thespe
tral ISE 
lassi�er on sele
ted UCI data sets. We get lower 
lassi�
ation rates, butsimilar to the standard ISE 
lassi�er.We illustrate the mapping of data for the Ionosphereand Iris data sets in Fig. 9.7 and Fig. 9.8, respe
tively.Data set Mean rateWine 95.1±2.5Iris 81.1±6.8WBC 90.0±2.3Ionosphere 70.6±3.4Pendigits 84.1±2.1Pima 69.6±2.5Table 9.18: Average 
lassi�
ation rates for some UCI data sets using thespe
tral ISE 
lassi�er.In Fig. 9.7 we illustrate the mapping of data proje
ted onto the two prin
ipal eigen-ve
tors of the a�nity matrix for the Ionosphere data set. We marked the mean points ofea
h 
lass from the training data with large bold symbols. The 
lass means seem to end up
lose to ea
h other around origo, with test samples spread far away from the 
lass means.This makes it di�
ult for the spe
tral ISE 
lassi�er to separate the two 
lasses, sin
e thedistan
es from ea
h test point to ea
h 
lass mean are very similar.
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Figure 9.7: Illustration of the data mapping given by the a�nity matrix 
reated with train-ing data from the Ionosphere data set. We proje
ted 50 training samples from ea
h of 
lass
ω1 illustrated with ©, and 50 from 
lass ω2 illustrated with ×. Mapping of test samples isillustrated with ∗ symbols.



88 CHAPTER 9. CLASSIFICATION EXPERIMENTSIn Fig. 9.8 we illustrate the mapping of a typi
al training data proje
ted onto the threeprin
ipal eigenve
tors of the a�nity matrix for the Iris data set. We marked the meanpoints of ea
h 
lass with large bold symbols. Note that the data set is 
learly not linearlyseparable for all 
lasses, and this is probably why the ISE 
lassi�er seems to have someproblems.
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Figure 9.8: Illustration of the data mapping given by the a�nity matrix 
reated with train-ing data from the Iris data set. We proje
ted typi
al training samples from ea
h of 
lass
ω1, ω2 and ω3 and illustrated with ©, × and � symbols, respe
tively. The mean points ofea
h 
lass are marked with large bold symbols.



9.5. SPECTRAL ISE 899.5.1 Summary of 
lassi�
ation results for the spe
tral ISE 
las-si�erThe results obtained with the spe
tral ISE 
lassi�er are similar to the results obtained withthe standard ISE 
lassi�er, but with a lower 
lassi�
ation rate in most 
ases. Note thatfor the Ringnorm and Twonorm data sets the 
lassi�
ation rates are slightly better usingthe spe
tral ISE 
lassi�er 
ompared with the standard ISE 
lassi�er. Why the spe
tralISE 
lassi�er seems to work better for these two data sets is hard to say. The lower
lassi�
ation rates may be explained with the fa
t that the spe
tral ISE 
lassi�er worksin an approximated Mer
er spa
e, while the standard ISE 
lassi�er works impli
itly in aMer
er spa
e. When the spe
tral ISE 
lassi�er fails, it seems to be be
ause almost alltraining points are mapped to 
lusters where the mean ve
tors are 
lose to ea
h other.When a test sample is far away from 
losely grouped mean ve
tors, the distan
e betweenthe test point and ea
h of the 
lass means are very similar, and the 
lassi�er seems to bemore likely to make an error.
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tral Lapla
ian ISEIn this se
tion we present results using the spe
tral Lapla
ian 
lassi�er dis
ussed in Chap-ter 7. For the same reason as previously we fo
us on the version using the mean ve
torsin an approximate Mer
er spa
e. Results obtained with the median version are in
ludedin the appendix along with 
onfusion matri
es for both versions. We also illustrate howsome of the data sets with good 
lassi�
ation rates are mapped to the spa
e spanned bythe prin
ipal eigenve
tors of their Lapla
ian matri
es.In Table 9.19 we note that the Banana set is di�
ult to 
lassify 
orre
tly when usingthe spe
tral Lapla
ian 
lassi�er. The Ringnorm data set is the big surprise here, andwe will illustrate in Fig. 9.9 why we a
hieve so high 
lassi�
ation rate for this data set.The Twonorm data set now has a slightly higher 
lassi�
ation rate than for the spe
tral
lassi�er, while the Thyroid has a slightly lower 
lassi�
ation rate.Data Mean rateBanana 58.3±5.3Ringnorm 98.0±0.7Twonorm 97.5±0.7Thyroid 92.9±2.3Table 9.19: Average 
lassi�
ation rates for Räts
h data sets, using thespe
tral Lapla
ian ISE 
lassi�er.In Fig. 9.9 we illustrate the mapping of a typi
al training data proje
ted onto the twoprin
ipal eigenve
tors of the Lapla
ian matrix for the Ringnorm data set. We illustratethe mean points of ea
h 
lass with large bold symbols. Note that ea
h mean point is farfrom the other. The test samples are mapped along the same line as the training data,and it is easy to see whi
h of the 
lass means most samples are 
losest to.In Table 9.20 we list the average 
lassi�
ation rates in per
ent with standard deviationsobtained with the mean version of the spe
tral Lapla
ian 
lassi�er. We note that for Wineand Iris we a
hieve better results with the spe
tral Lapla
ian 
lassi�er than with thespe
tral ISE 
lassi�er, so weighting of data points in
rease the separability of the data inthese data sets. For Ionosphere and Pima we get worse results, so weighting the trainingsamples does not give a positive e�e
t for these data sets.In Fig. 9.10 we illustrate the mapping of training data and some samples for the Winedata set. It seems from the �gure that we get three distin
t 
lusters, one for ea
h 
lasswith 
learly separated mean ve
tors. The Lapla
ian ISE 
lassi�er is able to assign the testpoints to the 
orre
t mean 
luster in most 
ases, and we a
hieve high 
lassi�
ation rates.
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Figure 9.9: Illustration of the data mapping given by the Lapla
ian matrix 
reated withtraining data from the Ringnorm data set. We proje
ted typi
al training samples from ea
hof 
lass ω1 and ω2 and and illustrated with © and � symbols, respe
tively. The meanpoints of ea
h 
lass are marked with large bold symbols. Some proje
ted test samples areillustrated with ∗ symbols.
Data Mean rateWine 97.7±1.8Iris 85.2±4.8WBC 78.9±2.2Ionosphere 57.5±10.7Pendigits 79.4±3.9Pima 68.3±2.7Table 9.20: Average 
lassi�
ation rates for UCI data sets, using the spe
tral Lapla
ian ISE
lassi�er.
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Figure 9.10: Illustration of the data mapping given by the Lapla
ian matrix 
reated withtraining data from the Wine data set. We proje
ted typi
al training samples from ea
hof 
lass ω1, ω2 and ω3 and illustrated with ©, � and × symbols, respe
tively. The meanpoints of ea
h 
lass are marked with large bold symbols. Some proje
ted test samples areillustrated with ∗ symbols.
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lassi�
ation results for the spe
tral Lapla
ianISE 
lassi�erWe sometimes get better results using the spe
tral Lapla
ian ISE 
lassi�er than for thespe
tral ISE 
lassi�er, but overall the results are inferior to the other 
lassi�ers. Generallyall the spe
tral methods seems to give slightly worse results than the methods workingimpli
itly in Mer
er spa
e.
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Part IIICon
lusion
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Chapter 10Con
lusionIn this thesis we have provided a study of many of the relatively new 
on
epts used ininformation theoreti
 learning. We also reviewed ba
kground information ne
essary to un-derstand basi
 density estimation and pattern 
lassi�
ation. New 
lassi�ers based on theinformation theoreti
 ISE divergen
e measure and kernel methods, using both weightedand unweighted data, are investigated. Relations between an ISE divergen
e based 
lassi-�er operating impli
itly in a Mer
er kernel spa
e and the well known Parzen window basedBayes 
lassi�er are studied. We found that by using unweighted data the ISE 
lassi�er is
omparable to the Bayes 
lassi�er with slightly di�erent properties. This 
lassi�er seemsto prioritize the 
lasses with highest entropy 
ompared to the Bayes 
lassi�er on severalpopular data sets, but not all. We use the spe
tral properties of the data a�nity andLapla
ian matrix, to propose and investigate ISE based 
lassi�ers working dire
tly in ap-proximated Mer
er kernel spa
es. We found that in most 
ases the spe
tral versions of theISE 
lassi�er perform slightly worse than the versions working impli
itly in Mer
er spa
es.10.1 Further work
• In this thesis we have used the same single bandwidth kernel size for all 
lasses withina data set. This is �ne if the 
lasses have the same type of distribution, but this isprobably not a realisti
 situation. It should be rather simple to extend the 
lassi�ersdis
ussed in this thesis to allow for di�erent kernel sizes for ea
h 
lass. We 
an also
he
k several other Mer
er and Non-Mer
er kernels to try to �nd out if some typesof data distributions bene�t from a parti
ular kernel type.
• It may be interesting to investigate how the 
lassi�ers perform with di�erent kernelswhen the kernel size is sele
ted by some referen
e rule, e.g. Silverman's rule inEq. 3.13 on page 17, sin
e we 
an't always a�ord to do 
ross-validation.
• The spe
tral ISE 
lassi�er and the spe
tral Lapla
ian 
lassi�er both work in spa
esspanned by a number of eigenve
tors 
orresponding to the number of 
lasses in ea
h97



98 CHAPTER 10. CONCLUSIONdata set. It may be interesting to see if in
luding a few more eigenve
tors 
an improvethe 
lassi�ers performan
e.
• The weighting of data points used in the Lapla
ian ISE 
lassi�ers seems to givelargest weights to points on the 
lass borders. For large data sets it may be useful totrain the 
lassi�ers by sele
ting a small portion of the points with the largest weights,within ea
h 
lass. This may redu
e the 
omputation time for the 
lassi�ers, withoutredu
ing the 
lassi�
ation rates signi�
antly.
• Sin
e we have developed spe
tral 
lassi�ers whi
h use the median ve
tors in an ap-proximated Mer
er spa
e, it should be interesting to test how they behave 
omparedto the same 
lassi�ers using mean ve
tors on data sets whi
h 
learly 
ontains outliers.An analysis of how the di�erent 
lassi�ers behave on data sets with outliers shouldalso be done.



Appendix ALapla
ian ISE 
lassi�erClassi�
ation results for the Lapla
ian ISE 
lassi�er not listed in the main part of thethesis.A.1 Average 
onfusion matri
es Lapla
ian ISE 
lassi�er
ω̂1 ω̂2

ω1 18.57 4.26
ω2 2.63 24.54Table A.1: Average 
onfusion matrix Banana data set.

ω̂1 ω̂2

ω1 12.94 11.40
ω2 0.26 25.40Table A.2: Average 
onfusion matrix Ringnorm data set.

ω̂1 ω̂2

ω1 18.61 3.70
ω2 0.35 52.34Table A.3: Average 
onfusion matrix Thyroid data set.
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ω̂1 ω̂2

ω1 24.66 0.97
ω2 0.86 23.51Table A.4: Average 
onfusion matrix Twonorm data set.

ω̂1 ω̂2

ω1 66.84 4.02
ω2 2.44 117.70Table A.5: Average 
onfusion matrix WBC data set

ω̂1 ω̂2

ω1 73.64 1.80
ω2 11.06 30.50Table A.6: Average 
onfusion matrix Ionosphere data set.

ω̂1 ω̂2

ω1 127.41 39.63
ω2 31.02 57.94Table A.7: Average 
onfusion matrix Pima data set.

ω̂1 ω̂2 ω̂3

ω1 19.68 0 0
ω2 1.22 21.20 1.41
ω3 0 0.04 16.45Table A.8: Average 
onfusion matrix Wine data set.

ω̂1 ω̂2 ω̂3

ω1 16.44 0.20 0.10
ω2 0 14.96 1.00
ω3 0 1.63 15.67Table A.9: Average 
onfusion matrix Iris data set.

ω̂1 ω̂2 ω̂3

ω1 121.89 0.04 0.04
ω2 0.01 116.52 5.37
ω3 0 0.180 120.95Table A.10: Average 
onfusion matrix Pendigits data set.



Appendix BSpe
tral ISE 
lassi�erClassi�
ation results for the spe
tral ISE 
lassi�er not listed in the main part of the thesis.Data Median rateBanana 56.59±5.58Ringnorm 76.69±1.92Twonorm 97.28±0.58Thyroid 93.35±2.70Table B.1: Average 
lassi�
ation rates for some Räts
h data sets using the spe
tral ISE
lassi�er with median ve
tors. Data set Median rateWine 95.5±2.4Iris 81.3±6.3WBC 89.2±2.9Ionosphere 68.9±8.4Pendigits 83.0±2.0Pima 69.2±2.3Table B.2: Average 
lassi�
ation rates for some UCI data sets using the spe
tral ISE
lassi�er with median ve
tors.
101



102 APPENDIX B. SPECTRAL ISE CLASSIFIERB.1 Average 
onfusion matri
es Spe
tral ISEMeans ω̂1 ω̂2

ω1 1431.69 1489.02
ω2 762.78 1216.51 Medians ω̂1 ω̂2

ω1 1524.60 1412.56
ω2 669.87 1292.97Table B.3: Average 
onfusion matri
es for the Banana data set.Means ω̂1 ω̂2

ω1 134.82 113.34
ω2 0 251.84 Medians ω̂1 ω̂2

ω1 131.61 116.55
ω2 0 251.84Table B.4: Average 
onfusion matri
es for the Ringnorm data set.Means ω̂1 ω̂2

ω1 243.73 5.72
ω2 8.00 242.55 Medians ω̂1 ω̂2

ω1 243.79 5.66
ω2 7.95 242.60Table B.5: Average 
onfusion matri
es for the Twonorm data set.
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ω1 19.56 2.15
ω2 2.75 50.54 Medians ω̂1 ω̂2

ω1 19.50 2.18
ω2 2.81 50.51Table B.6: Average 
onfusion matri
es for the Thyroid data set.Means ω̂1 ω̂2 ω̂3

ω1 19.94 1.29 0
ω2 0 20.61 0
ω3 0 1.63 16.53 Medians ω̂1 ω̂2 ω̂3

ω1 19.94 1.2 0
ω2 0 20.82 0
ω3 0 1.51 16.53Table B.7: Average 
onfusion matri
es for the Wine data set.Means ω̂1 ω̂2 ω̂3

ω1 15.85 0 0
ω2 0.06 12.99 3.8
ω3 0.61 4.02 12.67 Medians ω̂1 ω̂2 ω̂3

ω1 15.93 0 0
ω2 0.01 12.9 3.94
ω3 0.58 4.11 12.53Table B.8: Average 
onfusion matri
es for the Iris data set.Means ω̂1 ω̂2

ω1 60.82 9.51
ω2 9.6 111.07 Medians ω̂1 ω̂2

ω1 57.45 7.71
ω2 12.97 112.87Table B.9: Average 
onfusion matri
es for the WBC data set.Means ω̂1 ω̂2

ω1 46.24 5.33
ω2 29.06 36.37 Medians ω̂1 ω̂2

ω1 45.87 6.93
ω2 29.43 34.77Table B.10: Average 
onfusion matri
es for the Ionosphere data set.Means ω̂1 ω̂2 ω̂3

ω1 113.34 6.27 2.30
ω2 0 82.40 38.60
ω3 0 10.87 111.22 Medians ω̂1 ω̂2 ω̂3

ω1 113.01 5.12 3.78
ω2 0 70.65 50.35
ω3 0 2.64 119.45Table B.11: Average 
onfusion matri
es for the Pendigits data set.Means ω̂1 ω̂2

ω1 130.61 37.03
ω2 40.75 47.61 Medians ω̂1 ω̂2

ω1 126.27 41.37
ω2 37.51 50.85Table B.12: Average 
onfusion matri
es for the Pima data set.
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Appendix CSpe
tral Lapla
ian ISE 
lassi�erClassi�
ation results for the spe
tral Lapla
ian ISE 
lassi�er not listed in the main part ofthe thesis. Data Median rateBanana 58.8±3.9Ringnorm 98.0±0.7Twonorm 97.4±1.0Thyroid 92.7±2.6Table C.1: Average 
lassi�
ation rates for Räts
h data sets, using the spe
tral Lapla
ianISE 
lassi�er with median ve
tors.

Data Median rateWine 98.0±1.9Iris 85.1±4.8WBC 78.9±2.2Ionosphere 61.6±14.8Pendigits 80.9±2.7Pima 68.3±2.6Table C.2: Average 
lassi�
ation rates for UCI data sets, using the spe
tral Lapla
ian ISE
lassi�er with median ve
tors. 105



106 APPENDIX C. SPECTRAL LAPLACIAN ISE CLASSIFIERC.1 Average 
onfusion matri
es for the spe
tral Lapla-
ian ISE 
lassi�er.Means ω̂1 ω̂2

ω1 1546.59 1396.16
ω2 647.88 1309.37 Medians ω1 ω2

ω̂1 1576.08 1401.74
ω̂2 618.39 1303.79Table C.3: Average 
onfusion matri
es for the Banana data set.Means ω̂1 ω̂2

ω1 239.83 1.46
ω2 8.33 250.38 Medians ω̂1 ω̂2

ω1 239.73 1.35
ω2 8.43 250.49Table C.4: Average 
onfusion matri
es for the Ringnorm data set.Means ω̂1 ω̂2

ω1 244.34 5.11
ω2 7.50 243.05 Median ω̂1 ω̂2

ω1 243.71 5.74
ω2 7.32 243.23Table C.5: Average 
onfusion matri
es for the Twonorm data set.
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ω1 19.22 2.21
ω2 3.09 50.48 Medians ω̂1 ω̂2

ω1 19.03 2.20
ω2 3.28 50.49Table C.6: Average 
onfusion matri
es for the Thyroid data set.Means ω̂1 ω̂2 ω̂3

ω1 19.87 0.51 0
ω2 0.06 22.89 0.21
ω3 0 0.62 15.84 Medians ω̂1 ω̂2 ω̂3

ω1 19.85 0.39 0
ω2 0.08 23.04 0.16
ω3 0 0.59 15.89Table C.7: Average 
onfusion matri
es for the Wine data set.Means ω̂1 ω̂2 ω̂3

ω1 17.11 0 0
ω2 0.04 12.18 3.28
ω3 0 4.08 13.31 Medians ω̂1 ω̂2 ω̂3

ω1 17.13 0 0
ω2 0.02 12.15 3.3
ω3 0 4.11 13.29Table C.8: Average 
onfusion matri
es for the Iris data set.Means ω̂1 ω̂2

ω1 49 18.24
ω2 22.12 101.64 Medians ω̂1 ω̂2

ω1 49.09 18.21
ω2 22.03 101.67Table C.9: Average 
onfusion matri
es for the WBC data set.Means ω̂1 ω̂2

ω1 40.16 14.15
ω2 35.56 27.13 Medians ω̂1 ω̂2

ω1 32.69 1.85
ω2 43.03 39.43Table C.10: Average 
onfusion matri
es for the Ionosphere data set.Means ω̂1 ω̂2

ω1 130.10 36.54
ω2 44.67 44.69 Medians ω̂1 ω̂2

ω1 130.26 36.38
ω2 44.66 44.70Table C.11: Average 
onfusion matri
es for the Pima data set.Means ω̂1 ω̂2 ω̂3

ω1 110.75 3.06 6.12
ω2 0 58.00 65.32
ω3 0 0.68 121.07 Medians ω̂1 ω̂2 ω̂3

ω1 108.35 9.95 1.63
ω2 0 65.39 57.93
ω3 0 0.34 121.41Table C.12: Average 
onfusion matri
es for the Pendigits data set.
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